Replace local array size calculations with NELEM().
[dragonfly.git] / usr.bin / top / m_dragonfly.c
blob04b20c905efc3789d479ff3d83897d240e617742
1 /*
2 * top - a top users display for Unix
4 * SYNOPSIS: For DragonFly 2.x and later
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
12 * This is the machine-dependent module for DragonFly 2.5.1
13 * Should work for:
14 * DragonFly 2.x and above
16 * LIBS: -lkvm
18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19 * This module has been put together from different sources and is based on the
20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
45 /* Swap */
46 #include <stdlib.h>
47 #include <string.h>
48 #include <sys/conf.h>
50 #include <osreldate.h> /* for changes in kernel structures */
52 #include <sys/kinfo.h>
53 #include <kinfo.h>
54 #include "top.h"
55 #include "display.h"
56 #include "machine.h"
57 #include "screen.h"
58 #include "utils.h"
60 int swapmode(int *retavail, int *retfree);
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
65 int n_cpus = 0;
67 /* get_process_info passes back a handle. This is what it looks like: */
69 struct handle {
70 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
71 int remaining; /* number of pointers remaining */
72 int show_threads;
75 /* declarations for load_avg */
76 #include "loadavg.h"
78 #define PP(pp, field) ((pp)->kp_ ## field)
79 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
80 #define VP(pp, field) ((pp)->kp_vm_ ## field)
82 /* what we consider to be process size: */
83 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
86 * These definitions control the format of the per-process area
89 static char smp_header[] =
90 " PID %-*.*s NICE SIZE RES STATE C TIME CTIME CPU COMMAND";
92 #define smp_Proc_format \
93 "%6d %-*.*s %3d%7s %6s %8.8s %3d %6s %7s %5.2f%% %.*s"
95 /* process state names for the "STATE" column of the display */
97 * the extra nulls in the string "run" are for adding a slash and the
98 * processor number when needed
101 const char *state_abbrev[] = {
102 "", "RUN\0\0\0", "STOP", "SLEEP",
106 static kvm_t *kd;
108 /* values that we stash away in _init and use in later routines */
110 static long lastpid;
112 /* these are for calculating cpu state percentages */
114 static struct kinfo_cputime *cp_time, *cp_old;
116 /* these are for detailing the process states */
118 #define MAXPSTATES 6
120 int process_states[MAXPSTATES];
122 char *procstatenames[] = {
123 " running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
124 NULL
127 /* these are for detailing the cpu states */
128 #define CPU_STATES 5
129 int *cpu_states;
130 int* cpu_averages;
131 char *cpustatenames[CPU_STATES + 1] = {
132 "user", "nice", "system", "interrupt", "idle", NULL
135 /* these are for detailing the memory statistics */
137 long memory_stats[7];
138 char *memorynames[] = {
139 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
140 NULL
143 long swap_stats[7];
144 char *swapnames[] = {
145 /* 0 1 2 3 4 5 */
146 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
147 NULL
151 /* these are for keeping track of the proc array */
153 static int nproc;
154 static int onproc = -1;
155 static int pref_len;
156 static struct kinfo_proc *pbase;
157 static struct kinfo_proc **pref;
159 static uint64_t prev_pbase_time; /* unit: us */
160 static struct kinfo_proc *prev_pbase;
161 static int prev_pbase_alloc;
162 static int prev_nproc;
163 static int fscale;
165 /* these are for getting the memory statistics */
167 static int pageshift; /* log base 2 of the pagesize */
169 /* define pagetok in terms of pageshift */
171 #define pagetok(size) ((size) << pageshift)
173 /* sorting orders. first is default */
174 char *ordernames[] = {
175 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", "pres", NULL
178 /* compare routines */
179 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
180 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
181 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
182 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
183 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
184 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
185 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
186 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
187 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
189 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
190 proc_compare,
191 compare_size,
192 compare_res,
193 compare_time,
194 compare_prio,
195 compare_thr,
196 compare_pid,
197 compare_ctime,
198 compare_pres,
199 NULL
202 static void
203 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
204 struct kinfo_cputime *old)
206 struct kinfo_cputime diffs;
207 uint64_t total_change, half_total;
209 /* initialization */
210 total_change = 0;
212 diffs.cp_user = new->cp_user - old->cp_user;
213 diffs.cp_nice = new->cp_nice - old->cp_nice;
214 diffs.cp_sys = new->cp_sys - old->cp_sys;
215 diffs.cp_intr = new->cp_intr - old->cp_intr;
216 diffs.cp_idle = new->cp_idle - old->cp_idle;
217 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
218 diffs.cp_intr + diffs.cp_idle;
219 old->cp_user = new->cp_user;
220 old->cp_nice = new->cp_nice;
221 old->cp_sys = new->cp_sys;
222 old->cp_intr = new->cp_intr;
223 old->cp_idle = new->cp_idle;
225 /* avoid divide by zero potential */
226 if (total_change == 0)
227 total_change = 1;
229 /* calculate percentages based on overall change, rounding up */
230 half_total = total_change >> 1;
232 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
233 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
234 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
235 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
236 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
240 machine_init(struct statics *statics)
242 int pagesize;
243 size_t modelen, prmlen;
244 struct passwd *pw;
245 struct timeval boottime;
247 if (n_cpus < 1) {
248 if (kinfo_get_cpus(&n_cpus))
249 err(1, "kinfo_get_cpus failed");
251 /* get boot time */
252 modelen = sizeof(boottime);
253 if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
254 /* we have no boottime to report */
255 boottime.tv_sec = -1;
258 prmlen = sizeof(fscale);
259 if (sysctlbyname("kern.fscale", &fscale, &prmlen, NULL, 0) == -1)
260 err(1, "sysctl kern.fscale failed");
262 while ((pw = getpwent()) != NULL) {
263 if ((int)strlen(pw->pw_name) > namelength)
264 namelength = strlen(pw->pw_name);
266 if (namelength < 8)
267 namelength = 8;
268 if (namelength > 13)
269 namelength = 13;
271 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
272 return -1;
274 pbase = NULL;
275 pref = NULL;
276 nproc = 0;
277 onproc = -1;
278 prev_pbase = NULL;
279 prev_pbase_alloc = 0;
280 prev_pbase_time = 0;
281 prev_nproc = 0;
283 * get the page size with "getpagesize" and calculate pageshift from
284 * it
286 pagesize = getpagesize();
287 pageshift = 0;
288 while (pagesize > 1) {
289 pageshift++;
290 pagesize >>= 1;
293 /* we only need the amount of log(2)1024 for our conversion */
294 pageshift -= LOG1024;
296 /* fill in the statics information */
297 statics->procstate_names = procstatenames;
298 statics->cpustate_names = cpustatenames;
299 statics->memory_names = memorynames;
300 statics->boottime = boottime.tv_sec;
301 statics->swap_names = swapnames;
302 statics->order_names = ordernames;
303 /* we need kvm descriptor in order to show full commands */
304 statics->flags.fullcmds = kd != NULL;
305 statics->flags.threads = 1;
307 /* all done! */
308 return (0);
311 char *
312 format_header(char *uname_field)
314 static char Header[128];
316 snprintf(Header, sizeof(Header), smp_header,
317 namelength, namelength, uname_field);
319 if (screen_width <= 79)
320 cmdlength = 80;
321 else
322 cmdlength = screen_width;
324 cmdlength = cmdlength - strlen(Header) + 6;
326 return Header;
329 static int swappgsin = -1;
330 static int swappgsout = -1;
331 extern struct timeval timeout;
333 void
334 get_system_info(struct system_info *si)
336 size_t len;
337 int cpu;
339 if (cpu_states == NULL) {
340 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
341 if (cpu_states == NULL)
342 err(1, "malloc");
343 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
345 if (cp_time == NULL) {
346 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
347 if (cp_time == NULL)
348 err(1, "cp_time");
349 cp_old = cp_time + n_cpus;
350 len = n_cpus * sizeof(cp_old[0]);
351 bzero(cp_time, len);
352 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
353 err(1, "kern.cputime");
355 len = n_cpus * sizeof(cp_time[0]);
356 bzero(cp_time, len);
357 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
358 err(1, "kern.cputime");
360 getloadavg(si->load_avg, 3);
362 lastpid = 0;
364 /* convert cp_time counts to percentages */
365 int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
366 for (cpu = 0; cpu < n_cpus; ++cpu) {
367 cputime_percentages(cpu_states + cpu * CPU_STATES,
368 &cp_time[cpu], &cp_old[cpu]);
370 if (combine_cpus) {
371 if (cpu_averages == NULL) {
372 cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
373 if (cpu_averages == NULL)
374 err(1, "cpu_averages");
376 bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
377 for (cpu = 0; cpu < n_cpus; ++cpu) {
378 int j = 0;
379 cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
380 cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
381 cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
382 cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
383 cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
385 for (int i = 0; i < CPU_STATES; ++i)
386 cpu_averages[i] /= n_cpus;
389 /* sum memory & swap statistics */
391 struct vmmeter vmm;
392 struct vmstats vms;
393 size_t vms_size = sizeof(vms);
394 size_t vmm_size = sizeof(vmm);
395 static unsigned int swap_delay = 0;
396 static int swapavail = 0;
397 static int swapfree = 0;
398 static long bufspace = 0;
400 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
401 err(1, "sysctlbyname: vm.vmstats");
403 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
404 err(1, "sysctlbyname: vm.vmmeter");
406 if (kinfo_get_vfs_bufspace(&bufspace))
407 err(1, "kinfo_get_vfs_bufspace");
409 /* convert memory stats to Kbytes */
410 memory_stats[0] = pagetok(vms.v_active_count);
411 memory_stats[1] = pagetok(vms.v_inactive_count);
412 memory_stats[2] = pagetok(vms.v_wire_count);
413 memory_stats[3] = pagetok(vms.v_cache_count);
414 memory_stats[4] = bufspace / 1024;
415 memory_stats[5] = pagetok(vms.v_free_count);
416 memory_stats[6] = -1;
418 /* first interval */
419 if (swappgsin < 0) {
420 swap_stats[4] = 0;
421 swap_stats[5] = 0;
423 /* compute differences between old and new swap statistic */
424 else {
425 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
426 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
429 swappgsin = vmm.v_swappgsin;
430 swappgsout = vmm.v_swappgsout;
432 /* call CPU heavy swapmode() only for changes */
433 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
434 swap_stats[3] = swapmode(&swapavail, &swapfree);
435 swap_stats[0] = swapavail;
436 swap_stats[1] = swapavail - swapfree;
437 swap_stats[2] = swapfree;
439 swap_delay = 1;
440 swap_stats[6] = -1;
443 /* set arrays and strings */
444 si->cpustates = combine_cpus == 1 ?
445 cpu_averages : cpu_states;
446 si->memory = memory_stats;
447 si->swap = swap_stats;
450 if (lastpid > 0) {
451 si->last_pid = lastpid;
452 } else {
453 si->last_pid = -1;
458 static struct handle handle;
460 static void
461 fixup_pctcpu(struct kinfo_proc *fixit, uint64_t d)
463 struct kinfo_proc *pp;
464 uint64_t ticks;
465 int i;
467 if (prev_nproc == 0 || d == 0)
468 return;
470 if (LP(fixit, pid) == -1) {
471 /* Skip kernel "idle" threads */
472 if (PP(fixit, stat) == SIDL)
473 return;
474 for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
475 if (LP(pp, pid) == -1 &&
476 PP(pp, ktaddr) == PP(fixit, ktaddr))
477 break;
479 } else {
480 for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
481 if (LP(pp, pid) == LP(fixit, pid) &&
482 LP(pp, tid) == LP(fixit, tid)) {
483 if (PP(pp, paddr) != PP(fixit, paddr)) {
484 /* pid/tid are reused */
485 pp = NULL;
487 break;
491 if (i == prev_nproc || pp == NULL)
492 return;
494 ticks = LP(fixit, iticks) - LP(pp, iticks);
495 ticks += LP(fixit, sticks) - LP(pp, sticks);
496 ticks += LP(fixit, uticks) - LP(pp, uticks);
497 if (ticks > d)
498 ticks = d;
499 LP(fixit, pctcpu) = (ticks * (uint64_t)fscale) / d;
502 caddr_t
503 get_process_info(struct system_info *si, struct process_select *sel,
504 int compare_index)
506 struct timespec tv;
507 uint64_t t, d = 0;
509 int i;
510 int total_procs;
511 int active_procs;
512 struct kinfo_proc **prefp;
513 struct kinfo_proc *pp;
515 /* these are copied out of sel for speed */
516 int show_idle;
517 int show_system;
518 int show_uid;
519 int show_threads;
520 char *match_command;
522 show_threads = sel->threads;
524 pbase = kvm_getprocs(kd,
525 KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
526 if (nproc > onproc)
527 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
528 * (onproc = nproc));
529 if (pref == NULL || pbase == NULL) {
530 (void)fprintf(stderr, "top: Out of memory.\n");
531 quit(23);
534 clock_gettime(CLOCK_MONOTONIC_PRECISE, &tv);
535 t = (tv.tv_sec * 1000000ULL) + (tv.tv_nsec / 1000ULL);
536 if (prev_pbase_time > 0 && t > prev_pbase_time)
537 d = t - prev_pbase_time;
539 /* get a pointer to the states summary array */
540 si->procstates = process_states;
542 /* set up flags which define what we are going to select */
543 show_idle = sel->idle;
544 show_system = sel->system;
545 show_uid = sel->uid != -1;
546 show_fullcmd = sel->fullcmd;
547 match_command = sel->command;
549 /* count up process states and get pointers to interesting procs */
550 total_procs = 0;
551 active_procs = 0;
552 memset((char *)process_states, 0, sizeof(process_states));
553 prefp = pref;
554 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
556 * Place pointers to each valid proc structure in pref[].
557 * Process slots that are actually in use have a non-zero
558 * status field. Processes with P_SYSTEM set are system
559 * processes---these get ignored unless show_sysprocs is set.
561 if ((show_system && (LP(pp, pid) == -1)) ||
562 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
563 int lpstate = LP(pp, stat);
564 int pstate = PP(pp, stat);
566 total_procs++;
567 if (lpstate == LSRUN)
568 process_states[0]++;
569 if (pstate >= 0 && pstate < MAXPSTATES - 1)
570 process_states[pstate]++;
572 if (match_command != NULL &&
573 strstr(PP(pp, comm), match_command) == NULL) {
574 /* Command does not match */
575 continue;
578 if (show_uid && PP(pp, ruid) != (uid_t)sel->uid) {
579 /* UID does not match */
580 continue;
583 if (!show_system && LP(pp, pid) == -1) {
584 /* Don't show system processes */
585 continue;
588 /* Fix up pctcpu before show_idle test */
589 fixup_pctcpu(pp, d);
591 if (!show_idle && LP(pp, pctcpu) == 0 &&
592 lpstate != LSRUN) {
593 /* Don't show idle processes */
594 continue;
597 *prefp++ = pp;
598 active_procs++;
603 * Save kinfo_procs for later pctcpu fixup.
605 if (prev_pbase_alloc < nproc) {
606 prev_pbase_alloc = nproc;
607 prev_pbase = realloc(prev_pbase,
608 prev_pbase_alloc * sizeof(struct kinfo_proc));
609 if (prev_pbase == NULL) {
610 fprintf(stderr, "top: Out of memory.\n");
611 quit(23);
614 prev_nproc = nproc;
615 prev_pbase_time = t;
616 memcpy(prev_pbase, pbase, nproc * sizeof(struct kinfo_proc));
618 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
619 (int (*)(const void *, const void *))proc_compares[compare_index]);
621 /* remember active and total counts */
622 si->p_total = total_procs;
623 si->p_active = pref_len = active_procs;
625 /* pass back a handle */
626 handle.next_proc = pref;
627 handle.remaining = active_procs;
628 handle.show_threads = show_threads;
629 return ((caddr_t) & handle);
632 char fmt[MAX_COLS]; /* static area where result is built */
634 char *
635 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
637 struct kinfo_proc *pp;
638 long cputime;
639 long ccputime;
640 double pct;
641 struct handle *hp;
642 char status[16];
643 int state;
644 int xnice;
645 char *comm;
646 char cputime_fmt[10], ccputime_fmt[10];
648 /* find and remember the next proc structure */
649 hp = (struct handle *)xhandle;
650 pp = *(hp->next_proc++);
651 hp->remaining--;
653 /* get the process's command name */
654 if (show_fullcmd) {
655 char **comm_full = kvm_getargv(kd, pp, 0);
656 if (comm_full != 0)
657 comm = *comm_full;
658 else
659 comm = PP(pp, comm);
661 else {
662 comm = PP(pp, comm);
665 /* the actual field to display */
666 char cmdfield[MAX_COLS];
668 if (PP(pp, flags) & P_SYSTEM) {
669 /* system process */
670 snprintf(cmdfield, sizeof cmdfield, "[%s]", comm);
671 } else if (hp->show_threads && PP(pp, nthreads) > 1) {
672 /* display it as a thread */
673 if (strcmp(PP(pp, comm), LP(pp, comm)) == 0) {
674 snprintf(cmdfield, sizeof cmdfield, "%s{%d}", comm,
675 LP(pp, tid));
676 } else {
677 /* show thread name in addition to tid */
678 snprintf(cmdfield, sizeof cmdfield, "%s{%d/%s}", comm,
679 LP(pp, tid), LP(pp, comm));
681 } else {
682 snprintf(cmdfield, sizeof cmdfield, "%s", comm);
686 * Convert the process's runtime from microseconds to seconds. This
687 * time includes the interrupt time to be in compliance with ps output.
689 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
690 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
691 format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
692 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
694 /* calculate the base for cpu percentages */
695 pct = pctdouble(LP(pp, pctcpu));
697 /* generate "STATE" field */
698 switch (state = LP(pp, stat)) {
699 case LSRUN:
700 if (LP(pp, tdflags) & TDF_RUNNING)
701 sprintf(status, "CPU%d", LP(pp, cpuid));
702 else
703 strcpy(status, "RUN");
704 break;
705 case LSSLEEP:
706 if (LP(pp, wmesg) != NULL) {
707 sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
708 break;
710 /* fall through */
711 default:
713 if (state >= 0 && (unsigned)state < NELEM(state_abbrev))
714 sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
715 else
716 sprintf(status, "?%5d", state);
717 break;
720 if (PP(pp, stat) == SZOMB)
721 strcpy(status, "ZOMB");
724 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
725 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
726 * 0 - 31 -> nice value -53 -
728 switch (LP(pp, rtprio.type)) {
729 case RTP_PRIO_REALTIME:
730 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
731 break;
732 case RTP_PRIO_IDLE:
733 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
734 break;
735 case RTP_PRIO_THREAD:
736 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
737 break;
738 default:
739 xnice = PP(pp, nice);
740 break;
743 /* format this entry */
744 snprintf(fmt, sizeof(fmt),
745 smp_Proc_format,
746 (int)PP(pp, pid),
747 namelength, namelength,
748 get_userid(PP(pp, ruid)),
749 (int)xnice,
750 format_k(PROCSIZE(pp)),
751 format_k(pagetok(VP(pp, rssize))),
752 status,
753 LP(pp, cpuid),
754 cputime_fmt,
755 ccputime_fmt,
756 100.0 * pct,
757 cmdlength,
758 cmdfield);
760 /* return the result */
761 return (fmt);
764 /* comparison routines for qsort */
767 * proc_compare - comparison function for "qsort"
768 * Compares the resource consumption of two processes using five
769 * distinct keys. The keys (in descending order of importance) are:
770 * percent cpu, cpu ticks, state, resident set size, total virtual
771 * memory usage. The process states are ordered as follows (from least
772 * to most important): WAIT, zombie, sleep, stop, start, run. The
773 * array declaration below maps a process state index into a number
774 * that reflects this ordering.
777 static unsigned char sorted_state[] =
779 0, /* not used */
780 3, /* sleep */
781 1, /* ABANDONED (WAIT) */
782 6, /* run */
783 5, /* start */
784 2, /* zombie */
785 4 /* stop */
789 #define ORDERKEY_PCTCPU \
790 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
791 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
793 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
795 #define ORDERKEY_CPTICKS \
796 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
797 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
799 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
800 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
802 #define ORDERKEY_CTIME \
803 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
804 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
806 #define ORDERKEY_STATE \
807 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
808 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
810 #define ORDERKEY_PRIO \
811 if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
813 #define ORDERKEY_KTHREADS \
814 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
816 #define ORDERKEY_KTHREADS_PRIO \
817 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
819 #define ORDERKEY_RSSIZE \
820 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
822 #define ORDERKEY_MEM \
823 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
825 #define ORDERKEY_PID \
826 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
828 #define ORDERKEY_PRSSIZE \
829 if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
831 static __inline int
832 orderkey_kernidle(const struct kinfo_proc *p1, const struct kinfo_proc *p2)
834 int p1_kidle = 0, p2_kidle = 0;
836 if (LP(p1, pid) == -1 && PP(p1, stat) == SIDL)
837 p1_kidle = 1;
838 if (LP(p2, pid) == -1 && PP(p2, stat) == SIDL)
839 p2_kidle = 1;
841 if (!p2_kidle && p1_kidle)
842 return 1;
843 if (p2_kidle && !p1_kidle)
844 return -1;
845 return 0;
848 #define ORDERKEY_KIDLE if ((result = orderkey_kernidle(p1, p2)) == 0)
850 /* compare_cpu - the comparison function for sorting by cpu percentage */
853 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
855 struct kinfo_proc *p1;
856 struct kinfo_proc *p2;
857 int result;
858 pctcpu lresult;
860 /* remove one level of indirection */
861 p1 = *(struct kinfo_proc **) pp1;
862 p2 = *(struct kinfo_proc **) pp2;
864 ORDERKEY_KIDLE
865 ORDERKEY_PCTCPU
866 ORDERKEY_CPTICKS
867 ORDERKEY_STATE
868 ORDERKEY_PRIO
869 ORDERKEY_RSSIZE
870 ORDERKEY_MEM
873 return (result);
876 /* compare_size - the comparison function for sorting by total memory usage */
879 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
881 struct kinfo_proc *p1;
882 struct kinfo_proc *p2;
883 int result;
884 pctcpu lresult;
886 /* remove one level of indirection */
887 p1 = *(struct kinfo_proc **) pp1;
888 p2 = *(struct kinfo_proc **) pp2;
890 ORDERKEY_MEM
891 ORDERKEY_RSSIZE
892 ORDERKEY_KIDLE
893 ORDERKEY_PCTCPU
894 ORDERKEY_CPTICKS
895 ORDERKEY_STATE
896 ORDERKEY_PRIO
899 return (result);
902 /* compare_res - the comparison function for sorting by resident set size */
905 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
907 struct kinfo_proc *p1;
908 struct kinfo_proc *p2;
909 int result;
910 pctcpu lresult;
912 /* remove one level of indirection */
913 p1 = *(struct kinfo_proc **) pp1;
914 p2 = *(struct kinfo_proc **) pp2;
916 ORDERKEY_RSSIZE
917 ORDERKEY_MEM
918 ORDERKEY_KIDLE
919 ORDERKEY_PCTCPU
920 ORDERKEY_CPTICKS
921 ORDERKEY_STATE
922 ORDERKEY_PRIO
925 return (result);
928 /* compare_pres - the comparison function for sorting by proportional resident set size */
931 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
933 struct kinfo_proc *p1;
934 struct kinfo_proc *p2;
935 int result;
936 pctcpu lresult;
938 /* remove one level of indirection */
939 p1 = *(struct kinfo_proc **) pp1;
940 p2 = *(struct kinfo_proc **) pp2;
942 ORDERKEY_PRSSIZE
943 ORDERKEY_RSSIZE
944 ORDERKEY_MEM
945 ORDERKEY_KIDLE
946 ORDERKEY_PCTCPU
947 ORDERKEY_CPTICKS
948 ORDERKEY_STATE
949 ORDERKEY_PRIO
952 return (result);
955 /* compare_time - the comparison function for sorting by total cpu time */
958 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
960 struct kinfo_proc *p1;
961 struct kinfo_proc *p2;
962 int result;
963 pctcpu lresult;
965 /* remove one level of indirection */
966 p1 = *(struct kinfo_proc **) pp1;
967 p2 = *(struct kinfo_proc **) pp2;
969 ORDERKEY_KIDLE
970 ORDERKEY_CPTICKS
971 ORDERKEY_PCTCPU
972 ORDERKEY_KTHREADS
973 ORDERKEY_KTHREADS_PRIO
974 ORDERKEY_STATE
975 ORDERKEY_PRIO
976 ORDERKEY_RSSIZE
977 ORDERKEY_MEM
980 return (result);
984 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
986 struct kinfo_proc *p1;
987 struct kinfo_proc *p2;
988 int result;
989 pctcpu lresult;
991 /* remove one level of indirection */
992 p1 = *(struct kinfo_proc **) pp1;
993 p2 = *(struct kinfo_proc **) pp2;
995 ORDERKEY_KIDLE
996 ORDERKEY_CTIME
997 ORDERKEY_PCTCPU
998 ORDERKEY_KTHREADS
999 ORDERKEY_KTHREADS_PRIO
1000 ORDERKEY_STATE
1001 ORDERKEY_PRIO
1002 ORDERKEY_RSSIZE
1003 ORDERKEY_MEM
1006 return (result);
1009 /* compare_prio - the comparison function for sorting by cpu percentage */
1012 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1014 struct kinfo_proc *p1;
1015 struct kinfo_proc *p2;
1016 int result;
1017 pctcpu lresult;
1019 /* remove one level of indirection */
1020 p1 = *(struct kinfo_proc **) pp1;
1021 p2 = *(struct kinfo_proc **) pp2;
1023 ORDERKEY_KTHREADS
1024 ORDERKEY_KTHREADS_PRIO
1025 ORDERKEY_PRIO
1026 ORDERKEY_KIDLE
1027 ORDERKEY_CPTICKS
1028 ORDERKEY_PCTCPU
1029 ORDERKEY_STATE
1030 ORDERKEY_RSSIZE
1031 ORDERKEY_MEM
1034 return (result);
1038 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1040 struct kinfo_proc *p1;
1041 struct kinfo_proc *p2;
1042 int result;
1043 pctcpu lresult;
1045 /* remove one level of indirection */
1046 p1 = *(struct kinfo_proc **)pp1;
1047 p2 = *(struct kinfo_proc **)pp2;
1049 ORDERKEY_KTHREADS
1050 ORDERKEY_KTHREADS_PRIO
1051 ORDERKEY_KIDLE
1052 ORDERKEY_CPTICKS
1053 ORDERKEY_PCTCPU
1054 ORDERKEY_STATE
1055 ORDERKEY_RSSIZE
1056 ORDERKEY_MEM
1059 return (result);
1062 /* compare_pid - the comparison function for sorting by process id */
1065 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1067 struct kinfo_proc *p1;
1068 struct kinfo_proc *p2;
1069 int result;
1071 /* remove one level of indirection */
1072 p1 = *(struct kinfo_proc **) pp1;
1073 p2 = *(struct kinfo_proc **) pp2;
1075 ORDERKEY_PID
1078 return(result);
1082 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1083 * the process does not exist.
1084 * It is EXTREMLY IMPORTANT that this function work correctly.
1085 * If top runs setuid root (as in SVR4), then this function
1086 * is the only thing that stands in the way of a serious
1087 * security problem. It validates requests for the "kill"
1088 * and "renice" commands.
1092 proc_owner(int pid)
1094 int xcnt;
1095 struct kinfo_proc **prefp;
1096 struct kinfo_proc *pp;
1098 prefp = pref;
1099 xcnt = pref_len;
1100 while (--xcnt >= 0) {
1101 pp = *prefp++;
1102 if (PP(pp, pid) == (pid_t) pid) {
1103 return ((int)PP(pp, ruid));
1106 return (-1);
1111 * swapmode is based on a program called swapinfo written
1112 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
1115 swapmode(int *retavail, int *retfree)
1117 int n;
1118 int pagesize = getpagesize();
1119 struct kvm_swap swapary[1];
1121 *retavail = 0;
1122 *retfree = 0;
1124 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1126 n = kvm_getswapinfo(kd, swapary, 1, 0);
1127 if (n < 0 || swapary[0].ksw_total == 0)
1128 return (0);
1130 *retavail = CONVERT(swapary[0].ksw_total);
1131 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1133 n = (int)((double)swapary[0].ksw_used * 100.0 /
1134 (double)swapary[0].ksw_total);
1135 return (n);