re: Leverage Realtek driver's chip/PHY initialization/reset.
[dragonfly.git] / sys / dev / netif / re / if_re.c
blobcfb9a8292958029ae3584e15e4453c170362a1ea
1 /*
2 * Copyright (c) 2004
3 * Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
5 * Copyright (c) 1997, 1998-2003
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
35 * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
39 * RealTek 8169S/8110S/8168/8111/8101E PCI NIC driver
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * seven devices in this family: the the RTL8169, the RTL8169S, RTL8110S,
50 * the RTL8168, the RTL8111 and the RTL8101E.
52 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC:
54 * o Descriptor based DMA mechanism. Each descriptor represents
55 * a single packet fragment. Data buffers may be aligned on
56 * any byte boundary.
58 * o 64-bit DMA.
60 * o TCP/IP checksum offload for both RX and TX.
62 * o High and normal priority transmit DMA rings.
64 * o VLAN tag insertion and extraction.
66 * o TCP large send (segmentation offload).
68 * o 1000Mbps mode.
70 * o Jumbo frames.
72 * o GMII and TBI ports/registers for interfacing with copper
73 * or fiber PHYs.
75 * o RX and TX DMA rings can have up to 1024 descriptors.
77 * The 8169 does not have a built-in PHY. Most reference boards use a
78 * Marvell 88E1000 'Alaska' copper gigE PHY. 8169/8110 is _no longer_
79 * supported.
81 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
82 * (the 'S' stands for 'single-chip'). These devices have the same
83 * programming API as the older 8169, but also have some vendor-specific
84 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
85 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
87 * This driver takes advantage of the RX and TX checksum offload and
88 * VLAN tag insertion/extraction features. It also implements
89 * interrupt moderation using the timer interrupt registers, which
90 * significantly reduces interrupt load.
93 #define _IP_VHL
95 #include "opt_ifpoll.h"
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/endian.h>
100 #include <sys/kernel.h>
101 #include <sys/in_cksum.h>
102 #include <sys/interrupt.h>
103 #include <sys/malloc.h>
104 #include <sys/mbuf.h>
105 #include <sys/rman.h>
106 #include <sys/serialize.h>
107 #include <sys/socket.h>
108 #include <sys/sockio.h>
109 #include <sys/sysctl.h>
111 #include <net/bpf.h>
112 #include <net/ethernet.h>
113 #include <net/if.h>
114 #include <net/ifq_var.h>
115 #include <net/if_arp.h>
116 #include <net/if_dl.h>
117 #include <net/if_media.h>
118 #include <net/if_poll.h>
119 #include <net/if_types.h>
120 #include <net/vlan/if_vlan_var.h>
121 #include <net/vlan/if_vlan_ether.h>
123 #include <netinet/ip.h>
125 #include "pcidevs.h"
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
129 #include <dev/netif/re/if_rereg.h>
130 #include <dev/netif/re/if_revar.h>
131 #include <dev/netif/re/re.h>
132 #include <dev/netif/re/re_dragonfly.h>
135 * Various supported device vendors/types and their names.
137 static const struct re_type {
138 uint16_t re_vid;
139 uint16_t re_did;
140 const char *re_name;
141 } re_devs[] = {
142 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
143 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
145 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
146 "RealTek 810x PCIe 10/100baseTX" },
148 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
149 "RealTek 8111/8168 PCIe Gigabit Ethernet" },
151 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168_1,
152 "RealTek 8168 PCIe Gigabit Ethernet" },
154 #ifdef notyet
156 * This driver now only supports built-in PHYs.
158 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
159 "RealTek 8110/8169 Gigabit Ethernet" },
160 #endif
162 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
163 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
165 { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
166 "Corega CG-LAPCIGT Gigabit Ethernet" },
168 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
169 "Linksys EG1032 Gigabit Ethernet" },
171 { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
172 "US Robotics 997902 Gigabit Ethernet" },
174 { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
175 "TTTech MC322 Gigabit Ethernet" },
177 { 0, 0, NULL }
180 static int re_probe(device_t);
181 static int re_attach(device_t);
182 static int re_detach(device_t);
183 static int re_suspend(device_t);
184 static int re_resume(device_t);
185 static void re_shutdown(device_t);
187 static int re_allocmem(device_t);
188 static void re_freemem(device_t);
189 static void re_freebufmem(struct re_softc *, int, int);
190 static int re_encap(struct re_softc *, struct mbuf **, int *);
191 static int re_newbuf_std(struct re_softc *, int, int);
192 #ifdef RE_JUMBO
193 static int re_newbuf_jumbo(struct re_softc *, int, int);
194 #endif
195 static void re_setup_rxdesc(struct re_softc *, int);
196 static int re_rx_list_init(struct re_softc *);
197 static int re_tx_list_init(struct re_softc *);
198 static int re_rxeof(struct re_softc *);
199 static int re_txeof(struct re_softc *);
200 static int re_tx_collect(struct re_softc *);
201 static void re_intr(void *);
202 static void re_tick(void *);
203 static void re_tick_serialized(void *);
204 static void re_disable_aspm(device_t);
205 static void re_link_up(struct re_softc *);
206 static void re_link_down(struct re_softc *);
208 static void re_start(struct ifnet *, struct ifaltq_subque *);
209 static int re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
210 static void re_init(void *);
211 static void re_stop(struct re_softc *, boolean_t);
212 static void re_watchdog(struct ifnet *);
214 static void re_setup_hw_im(struct re_softc *);
215 static void re_setup_sim_im(struct re_softc *);
216 static void re_disable_hw_im(struct re_softc *);
217 static void re_disable_sim_im(struct re_softc *);
218 static void re_config_imtype(struct re_softc *, int);
219 static void re_setup_intr(struct re_softc *, int, int);
221 static int re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
222 static int re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
223 static int re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
224 static int re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
225 static int re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
227 static int re_jpool_alloc(struct re_softc *);
228 static void re_jpool_free(struct re_softc *);
229 #ifdef RE_JUMBO
230 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
231 static void re_jbuf_free(void *);
232 static void re_jbuf_ref(void *);
233 #endif
235 #ifdef IFPOLL_ENABLE
236 static void re_npoll(struct ifnet *, struct ifpoll_info *);
237 static void re_npoll_compat(struct ifnet *, void *, int);
238 #endif
240 static device_method_t re_methods[] = {
241 /* Device interface */
242 DEVMETHOD(device_probe, re_probe),
243 DEVMETHOD(device_attach, re_attach),
244 DEVMETHOD(device_detach, re_detach),
245 DEVMETHOD(device_suspend, re_suspend),
246 DEVMETHOD(device_resume, re_resume),
247 DEVMETHOD(device_shutdown, re_shutdown),
248 DEVMETHOD_END
251 static driver_t re_driver = {
252 "re",
253 re_methods,
254 sizeof(struct re_softc)
257 static devclass_t re_devclass;
259 DECLARE_DUMMY_MODULE(if_re);
260 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
261 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
263 static int re_rx_desc_count = RE_RX_DESC_CNT_DEF;
264 static int re_tx_desc_count = RE_TX_DESC_CNT_DEF;
265 static int re_msi_enable = 1;
267 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
268 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
269 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
271 static __inline void
272 re_free_rxchain(struct re_softc *sc)
274 if (sc->re_head != NULL) {
275 m_freem(sc->re_head);
276 sc->re_head = sc->re_tail = NULL;
280 static int
281 re_probe(device_t dev)
283 const struct re_type *t;
284 uint16_t vendor, product;
286 vendor = pci_get_vendor(dev);
287 product = pci_get_device(dev);
290 * Only attach to rev.3 of the Linksys EG1032 adapter.
291 * Rev.2 is supported by sk(4).
293 if (vendor == PCI_VENDOR_LINKSYS &&
294 product == PCI_PRODUCT_LINKSYS_EG1032 &&
295 pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
296 return ENXIO;
298 for (t = re_devs; t->re_name != NULL; t++) {
299 if (product == t->re_did && vendor == t->re_vid)
300 break;
302 if (t->re_name == NULL)
303 return ENXIO;
305 device_set_desc(dev, t->re_name);
306 return 0;
309 static int
310 re_allocmem(device_t dev)
312 struct re_softc *sc = device_get_softc(dev);
313 bus_dmamem_t dmem;
314 int error, i;
317 * Allocate list data
319 sc->re_ldata.re_tx_mbuf =
320 kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
321 M_DEVBUF, M_ZERO | M_WAITOK);
323 sc->re_ldata.re_rx_mbuf =
324 kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
325 M_DEVBUF, M_ZERO | M_WAITOK);
327 sc->re_ldata.re_rx_paddr =
328 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
329 M_DEVBUF, M_ZERO | M_WAITOK);
331 sc->re_ldata.re_tx_dmamap =
332 kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
333 M_DEVBUF, M_ZERO | M_WAITOK);
335 sc->re_ldata.re_rx_dmamap =
336 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
337 M_DEVBUF, M_ZERO | M_WAITOK);
340 * Allocate the parent bus DMA tag appropriate for PCI.
342 error = bus_dma_tag_create(NULL, /* parent */
343 1, 0, /* alignment, boundary */
344 BUS_SPACE_MAXADDR, /* lowaddr */
345 BUS_SPACE_MAXADDR, /* highaddr */
346 NULL, NULL, /* filter, filterarg */
347 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
348 0, /* nsegments */
349 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
350 0, /* flags */
351 &sc->re_parent_tag);
352 if (error) {
353 device_printf(dev, "could not allocate parent dma tag\n");
354 return error;
357 /* Allocate TX descriptor list. */
358 error = bus_dmamem_coherent(sc->re_parent_tag,
359 RE_RING_ALIGN, 0,
360 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
361 RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
362 &dmem);
363 if (error) {
364 device_printf(dev, "could not allocate TX ring\n");
365 return error;
367 sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
368 sc->re_ldata.re_tx_list_map = dmem.dmem_map;
369 sc->re_ldata.re_tx_list = dmem.dmem_addr;
370 sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
372 /* Allocate RX descriptor list. */
373 error = bus_dmamem_coherent(sc->re_parent_tag,
374 RE_RING_ALIGN, 0,
375 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
376 RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
377 &dmem);
378 if (error) {
379 device_printf(dev, "could not allocate RX ring\n");
380 return error;
382 sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
383 sc->re_ldata.re_rx_list_map = dmem.dmem_map;
384 sc->re_ldata.re_rx_list = dmem.dmem_addr;
385 sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
387 /* Allocate maps for TX mbufs. */
388 error = bus_dma_tag_create(sc->re_parent_tag,
389 1, 0,
390 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
391 NULL, NULL,
392 RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
393 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
394 &sc->re_ldata.re_tx_mtag);
395 if (error) {
396 device_printf(dev, "could not allocate TX buf dma tag\n");
397 return(error);
400 /* Create DMA maps for TX buffers */
401 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
402 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
403 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
404 &sc->re_ldata.re_tx_dmamap[i]);
405 if (error) {
406 device_printf(dev, "can't create DMA map for TX buf\n");
407 re_freebufmem(sc, i, 0);
408 return(error);
412 /* Allocate maps for RX mbufs. */
413 error = bus_dma_tag_create(sc->re_parent_tag,
414 RE_RXBUF_ALIGN, 0,
415 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
416 NULL, NULL,
417 MCLBYTES, 1, MCLBYTES,
418 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
419 &sc->re_ldata.re_rx_mtag);
420 if (error) {
421 device_printf(dev, "could not allocate RX buf dma tag\n");
422 return(error);
425 /* Create spare DMA map for RX */
426 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
427 &sc->re_ldata.re_rx_spare);
428 if (error) {
429 device_printf(dev, "can't create spare DMA map for RX\n");
430 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
431 sc->re_ldata.re_rx_mtag = NULL;
432 return error;
435 /* Create DMA maps for RX buffers */
436 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
437 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
438 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
439 if (error) {
440 device_printf(dev, "can't create DMA map for RX buf\n");
441 re_freebufmem(sc, sc->re_tx_desc_cnt, i);
442 return(error);
446 /* Create jumbo buffer pool for RX if required */
447 if (sc->re_caps & RE_C_CONTIGRX) {
448 error = re_jpool_alloc(sc);
449 if (error) {
450 re_jpool_free(sc);
451 #ifdef RE_JUMBO
452 /* Disable jumbo frame support */
453 sc->re_maxmtu = ETHERMTU;
454 #endif
457 return(0);
460 static void
461 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
463 int i;
465 /* Destroy all the RX and TX buffer maps */
466 if (sc->re_ldata.re_tx_mtag) {
467 for (i = 0; i < tx_cnt; i++) {
468 bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
469 sc->re_ldata.re_tx_dmamap[i]);
471 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
472 sc->re_ldata.re_tx_mtag = NULL;
475 if (sc->re_ldata.re_rx_mtag) {
476 for (i = 0; i < rx_cnt; i++) {
477 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
478 sc->re_ldata.re_rx_dmamap[i]);
480 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
481 sc->re_ldata.re_rx_spare);
482 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
483 sc->re_ldata.re_rx_mtag = NULL;
487 static void
488 re_freemem(device_t dev)
490 struct re_softc *sc = device_get_softc(dev);
492 /* Unload and free the RX DMA ring memory and map */
493 if (sc->re_ldata.re_rx_list_tag) {
494 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
495 sc->re_ldata.re_rx_list_map);
496 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
497 sc->re_ldata.re_rx_list,
498 sc->re_ldata.re_rx_list_map);
499 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
502 /* Unload and free the TX DMA ring memory and map */
503 if (sc->re_ldata.re_tx_list_tag) {
504 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
505 sc->re_ldata.re_tx_list_map);
506 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
507 sc->re_ldata.re_tx_list,
508 sc->re_ldata.re_tx_list_map);
509 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
512 /* Free RX/TX buf DMA stuffs */
513 re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
515 /* Unload and free the stats buffer and map */
516 if (sc->re_ldata.re_stag) {
517 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
518 bus_dmamem_free(sc->re_ldata.re_stag,
519 sc->re_ldata.re_stats,
520 sc->re_ldata.re_smap);
521 bus_dma_tag_destroy(sc->re_ldata.re_stag);
524 if (sc->re_caps & RE_C_CONTIGRX)
525 re_jpool_free(sc);
527 if (sc->re_parent_tag)
528 bus_dma_tag_destroy(sc->re_parent_tag);
530 if (sc->re_ldata.re_tx_mbuf != NULL)
531 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
532 if (sc->re_ldata.re_rx_mbuf != NULL)
533 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
534 if (sc->re_ldata.re_rx_paddr != NULL)
535 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
536 if (sc->re_ldata.re_tx_dmamap != NULL)
537 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
538 if (sc->re_ldata.re_rx_dmamap != NULL)
539 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
542 static boolean_t
543 re_is_faste(struct re_softc *sc)
545 if (pci_get_vendor(sc->dev) == PCI_VENDOR_REALTEK) {
546 switch (sc->re_device_id) {
547 case PCI_PRODUCT_REALTEK_RT8169:
548 case PCI_PRODUCT_REALTEK_RT8169SC:
549 case PCI_PRODUCT_REALTEK_RT8168:
550 case PCI_PRODUCT_REALTEK_RT8168_1:
551 return FALSE;
552 default:
553 return TRUE;
555 } else {
556 return FALSE;
561 * Attach the interface. Allocate softc structures, do ifmedia
562 * setup and ethernet/BPF attach.
564 static int
565 re_attach(device_t dev)
567 struct re_softc *sc = device_get_softc(dev);
568 struct ifnet *ifp;
569 struct sysctl_ctx_list *ctx;
570 struct sysctl_oid *tree;
571 uint8_t eaddr[ETHER_ADDR_LEN];
572 int error = 0, qlen, msi_enable;
573 u_int irq_flags;
575 callout_init_mp(&sc->re_timer);
576 sc->dev = dev;
577 sc->re_device_id = pci_get_device(dev);
578 sc->re_unit = device_get_unit(dev);
579 ifmedia_init(&sc->media, IFM_IMASK, rtl_ifmedia_upd, rtl_ifmedia_sts);
581 sc->re_caps = RE_C_HWIM;
583 sc->re_rx_desc_cnt = re_rx_desc_count;
584 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
585 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
587 sc->re_tx_desc_cnt = re_tx_desc_count;
588 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
589 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
591 qlen = RE_IFQ_MAXLEN;
592 if (sc->re_tx_desc_cnt > qlen)
593 qlen = sc->re_tx_desc_cnt;
595 sc->re_rxbuf_size = MCLBYTES;
596 sc->re_newbuf = re_newbuf_std;
599 * Hardware interrupt moderation settings.
600 * XXX does not seem correct, undocumented.
602 sc->re_tx_time = 5; /* 125us */
603 sc->re_rx_time = 2; /* 50us */
605 /* Simulated interrupt moderation setting. */
606 sc->re_sim_time = 150; /* 150us */
608 /* Use simulated interrupt moderation by default. */
609 sc->re_imtype = RE_IMTYPE_SIM;
610 re_config_imtype(sc, sc->re_imtype);
612 ctx = device_get_sysctl_ctx(dev);
613 tree = device_get_sysctl_tree(dev);
614 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
615 "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
616 0, "RX desc count");
617 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
618 "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
619 0, "TX desc count");
620 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sim_time",
621 CTLTYPE_INT | CTLFLAG_RW,
622 sc, 0, re_sysctl_simtime, "I",
623 "Simulated interrupt moderation time (usec).");
624 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "imtype",
625 CTLTYPE_INT | CTLFLAG_RW,
626 sc, 0, re_sysctl_imtype, "I",
627 "Interrupt moderation type -- "
628 "0:disable, 1:simulated, "
629 "2:hardware(if supported)");
630 if (sc->re_caps & RE_C_HWIM) {
631 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
632 OID_AUTO, "hw_rxtime",
633 CTLTYPE_INT | CTLFLAG_RW,
634 sc, 0, re_sysctl_rxtime, "I",
635 "Hardware interrupt moderation time "
636 "(unit: 25usec).");
637 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
638 OID_AUTO, "hw_txtime",
639 CTLTYPE_INT | CTLFLAG_RW,
640 sc, 0, re_sysctl_txtime, "I",
641 "Hardware interrupt moderation time "
642 "(unit: 25usec).");
645 #ifndef BURN_BRIDGES
647 * Handle power management nonsense.
650 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
651 uint32_t membase, irq;
653 /* Save important PCI config data. */
654 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
655 irq = pci_read_config(dev, PCIR_INTLINE, 4);
657 /* Reset the power state. */
658 device_printf(dev, "chip is in D%d power mode "
659 "-- setting to D0\n", pci_get_powerstate(dev));
661 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
663 /* Restore PCI config data. */
664 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
665 pci_write_config(dev, PCIR_INTLINE, irq, 4);
667 #endif
669 * Map control/status registers.
671 pci_enable_busmaster(dev);
673 if (pci_is_pcie(dev)) {
674 sc->re_res_rid = PCIR_BAR(2);
675 sc->re_res_type = SYS_RES_MEMORY;
676 } else {
677 sc->re_res_rid = PCIR_BAR(0);
678 sc->re_res_type = SYS_RES_IOPORT;
680 sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
681 &sc->re_res_rid, RF_ACTIVE);
682 if (sc->re_res == NULL) {
683 device_printf(dev, "couldn't map IO\n");
684 error = ENXIO;
685 goto fail;
688 sc->re_btag = rman_get_bustag(sc->re_res);
689 sc->re_bhandle = rman_get_bushandle(sc->re_res);
691 error = rtl_check_mac_version(sc);
692 if (error) {
693 device_printf(dev, "check mac version failed\n");
694 goto fail;
697 rtl_init_software_variable(sc);
698 if (pci_is_pcie(dev))
699 sc->re_if_flags |= RL_FLAG_PCIE;
700 else
701 sc->re_if_flags &= ~RL_FLAG_PCIE;
702 device_printf(dev, "MAC version 0x%08x, MACFG %u%s%s\n",
703 (CSR_READ_4(sc, RE_TXCFG) & 0xFCF00000), sc->re_type,
704 sc->re_coalesce_tx_pkt ? ", software TX defrag" : "",
705 sc->re_hw_enable_msi_msix ? ", support MSI" : "");
708 * Allocate interrupt
710 if (pci_is_pcie(dev) && sc->re_hw_enable_msi_msix)
711 msi_enable = re_msi_enable;
712 else
713 msi_enable = 0;
714 sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
715 &sc->re_irq_rid, &irq_flags);
717 sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
718 irq_flags);
719 if (sc->re_irq == NULL) {
720 device_printf(dev, "couldn't map interrupt\n");
721 error = ENXIO;
722 goto fail;
725 /* Disable ASPM */
726 re_disable_aspm(dev);
728 rtl_exit_oob(sc);
729 rtl_hw_init(sc);
731 /* Reset the adapter. */
732 rtl_reset(sc);
734 rtl_get_hw_mac_address(sc, eaddr);
735 if (sc->re_type == MACFG_3) /* Change PCI Latency time*/
736 pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
738 /* Allocate DMA stuffs */
739 error = re_allocmem(dev);
740 if (error)
741 goto fail;
743 if (pci_is_pcie(dev)) {
744 sc->re_bus_speed = 125;
745 } else {
746 uint8_t cfg2;
748 cfg2 = CSR_READ_1(sc, RE_CFG2);
749 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
750 case RE_CFG2_PCICLK_33MHZ:
751 sc->re_bus_speed = 33;
752 break;
753 case RE_CFG2_PCICLK_66MHZ:
754 sc->re_bus_speed = 66;
755 break;
756 default:
757 device_printf(dev, "unknown bus speed, assume 33MHz\n");
758 sc->re_bus_speed = 33;
759 break;
762 device_printf(dev, "bus speed %dMHz\n", sc->re_bus_speed);
764 rtl_phy_power_up(sc);
765 rtl_hw_phy_config(sc);
766 rtl_clrwol(sc);
768 /* TODO: jumbo frame */
769 CSR_WRITE_2(sc, RE_RxMaxSize, sc->re_rxbuf_size);
771 /* Enable hardware checksum if available. */
772 sc->re_tx_cstag = 1;
773 sc->re_rx_cstag = 1;
775 ifp = &sc->arpcom.ac_if;
776 ifp->if_softc = sc;
777 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
778 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
779 ifp->if_ioctl = re_ioctl;
780 ifp->if_start = re_start;
781 #ifdef IFPOLL_ENABLE
782 ifp->if_npoll = re_npoll;
783 #endif
784 ifp->if_watchdog = re_watchdog;
785 ifp->if_init = re_init;
786 if (!re_is_faste(sc))
787 ifp->if_baudrate = 1000000000;
788 else
789 ifp->if_baudrate = 100000000;
790 ifp->if_nmbclusters = sc->re_rx_desc_cnt;
791 ifq_set_maxlen(&ifp->if_snd, qlen);
792 ifq_set_ready(&ifp->if_snd);
794 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
795 IFCAP_RXCSUM | IFCAP_TXCSUM;
796 ifp->if_capenable = ifp->if_capabilities;
797 /* NOTE: if_hwassist will be setup after the interface is up. */
800 * Call MI attach routine.
802 ether_ifattach(ifp, eaddr, NULL);
804 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
806 #ifdef IFPOLL_ENABLE
807 ifpoll_compat_setup(&sc->re_npoll, ctx, (struct sysctl_oid *)tree,
808 device_get_unit(dev), ifp->if_serializer);
809 #endif
811 /* Hook interrupt last to avoid having to lock softc */
812 error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE | INTR_HIFREQ,
813 re_intr, sc, &sc->re_intrhand, ifp->if_serializer);
814 if (error) {
815 device_printf(dev, "couldn't set up irq\n");
816 ether_ifdetach(ifp);
817 goto fail;
820 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
821 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
822 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
823 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
824 if (!re_is_faste(sc)) {
825 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
826 0, NULL);
828 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
829 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
830 rtl_ifmedia_upd(ifp);
832 fail:
833 if (error)
834 re_detach(dev);
836 return (error);
840 * Shutdown hardware and free up resources. This can be called any
841 * time after the mutex has been initialized. It is called in both
842 * the error case in attach and the normal detach case so it needs
843 * to be careful about only freeing resources that have actually been
844 * allocated.
846 static int
847 re_detach(device_t dev)
849 struct re_softc *sc = device_get_softc(dev);
850 struct ifnet *ifp = &sc->arpcom.ac_if;
852 /* These should only be active if attach succeeded */
853 if (device_is_attached(dev)) {
854 lwkt_serialize_enter(ifp->if_serializer);
855 re_stop(sc, TRUE);
856 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
857 lwkt_serialize_exit(ifp->if_serializer);
859 ether_ifdetach(ifp);
861 ifmedia_removeall(&sc->media);
863 if (sc->re_irq)
864 bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
865 sc->re_irq);
867 if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
868 pci_release_msi(dev);
870 if (sc->re_res) {
871 bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
872 sc->re_res);
875 /* Free DMA stuffs */
876 re_freemem(dev);
878 return(0);
881 static void
882 re_setup_rxdesc(struct re_softc *sc, int idx)
884 bus_addr_t paddr;
885 uint32_t cmdstat;
886 struct re_desc *d;
888 paddr = sc->re_ldata.re_rx_paddr[idx];
889 d = &sc->re_ldata.re_rx_list[idx];
891 d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
892 d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
894 cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
895 if (idx == (sc->re_rx_desc_cnt - 1))
896 cmdstat |= RE_RDESC_CMD_EOR;
897 d->re_cmdstat = htole32(cmdstat);
900 static int
901 re_newbuf_std(struct re_softc *sc, int idx, int init)
903 bus_dma_segment_t seg;
904 bus_dmamap_t map;
905 struct mbuf *m;
906 int error, nsegs;
908 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
909 if (m == NULL) {
910 error = ENOBUFS;
912 if (init) {
913 if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
914 return error;
915 } else {
916 goto back;
919 m->m_len = m->m_pkthdr.len = MCLBYTES;
922 * NOTE:
923 * re(4) chips need address of the receive buffer to be 8-byte
924 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
927 error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
928 sc->re_ldata.re_rx_spare, m,
929 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
930 if (error) {
931 m_freem(m);
932 if (init) {
933 if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
934 return error;
935 } else {
936 goto back;
940 if (!init) {
941 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
942 sc->re_ldata.re_rx_dmamap[idx],
943 BUS_DMASYNC_POSTREAD);
944 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
945 sc->re_ldata.re_rx_dmamap[idx]);
947 sc->re_ldata.re_rx_mbuf[idx] = m;
948 sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
950 map = sc->re_ldata.re_rx_dmamap[idx];
951 sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
952 sc->re_ldata.re_rx_spare = map;
953 back:
954 re_setup_rxdesc(sc, idx);
955 return error;
958 #ifdef RE_JUMBO
959 static int
960 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
962 struct mbuf *m;
963 struct re_jbuf *jbuf;
964 int error = 0;
966 MGETHDR(m, init ? M_WAITOK : M_NOWAIT, MT_DATA);
967 if (m == NULL) {
968 error = ENOBUFS;
969 if (init) {
970 if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
971 return error;
972 } else {
973 goto back;
977 jbuf = re_jbuf_alloc(sc);
978 if (jbuf == NULL) {
979 m_freem(m);
981 error = ENOBUFS;
982 if (init) {
983 if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
984 return error;
985 } else {
986 goto back;
990 m->m_ext.ext_arg = jbuf;
991 m->m_ext.ext_buf = jbuf->re_buf;
992 m->m_ext.ext_free = re_jbuf_free;
993 m->m_ext.ext_ref = re_jbuf_ref;
994 m->m_ext.ext_size = sc->re_rxbuf_size;
996 m->m_data = m->m_ext.ext_buf;
997 m->m_flags |= M_EXT;
998 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1001 * NOTE:
1002 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1003 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1006 sc->re_ldata.re_rx_mbuf[idx] = m;
1007 sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1008 back:
1009 re_setup_rxdesc(sc, idx);
1010 return error;
1012 #endif /* RE_JUMBO */
1014 static int
1015 re_tx_list_init(struct re_softc *sc)
1017 bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1019 sc->re_ldata.re_tx_prodidx = 0;
1020 sc->re_ldata.re_tx_considx = 0;
1021 sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1023 return(0);
1026 static int
1027 re_rx_list_init(struct re_softc *sc)
1029 int i, error;
1031 bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1033 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1034 error = sc->re_newbuf(sc, i, 1);
1035 if (error)
1036 return(error);
1039 sc->re_ldata.re_rx_prodidx = 0;
1040 sc->re_head = sc->re_tail = NULL;
1042 return(0);
1045 #define RE_IP4_PACKET 0x1
1046 #define RE_TCP_PACKET 0x2
1047 #define RE_UDP_PACKET 0x4
1049 static __inline uint8_t
1050 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1052 uint8_t packet_type = 0;
1054 if (sc->re_if_flags & RL_FLAG_DESCV2) {
1055 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1056 packet_type |= RE_IP4_PACKET;
1057 } else {
1058 if (rxstat & RE_RDESC_STAT_PROTOID)
1059 packet_type |= RE_IP4_PACKET;
1061 if (RE_TCPPKT(rxstat))
1062 packet_type |= RE_TCP_PACKET;
1063 else if (RE_UDPPKT(rxstat))
1064 packet_type |= RE_UDP_PACKET;
1065 return packet_type;
1069 * RX handler for C+ and 8169. For the gigE chips, we support
1070 * the reception of jumbo frames that have been fragmented
1071 * across multiple 2K mbuf cluster buffers.
1073 static int
1074 re_rxeof(struct re_softc *sc)
1076 struct ifnet *ifp = &sc->arpcom.ac_if;
1077 struct mbuf *m;
1078 struct re_desc *cur_rx;
1079 uint32_t rxstat, rxctrl;
1080 int i, total_len, rx = 0;
1082 for (i = sc->re_ldata.re_rx_prodidx;
1083 RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1084 cur_rx = &sc->re_ldata.re_rx_list[i];
1085 m = sc->re_ldata.re_rx_mbuf[i];
1086 total_len = RE_RXBYTES(cur_rx);
1087 rxstat = le32toh(cur_rx->re_cmdstat);
1088 rxctrl = le32toh(cur_rx->re_control);
1090 rx = 1;
1092 #ifdef INVARIANTS
1093 if (sc->re_flags & RE_F_USE_JPOOL)
1094 KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1095 #endif
1097 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1098 if (sc->re_flags & RE_F_DROP_RXFRAG) {
1099 re_setup_rxdesc(sc, i);
1100 continue;
1103 if (sc->re_newbuf(sc, i, 0)) {
1104 /* Drop upcoming fragments */
1105 sc->re_flags |= RE_F_DROP_RXFRAG;
1106 continue;
1109 m->m_len = MCLBYTES;
1110 if (sc->re_head == NULL) {
1111 sc->re_head = sc->re_tail = m;
1112 } else {
1113 sc->re_tail->m_next = m;
1114 sc->re_tail = m;
1116 continue;
1117 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1119 * Last fragment of a multi-fragment packet.
1121 * Since error already happened, this fragment
1122 * must be dropped as well as the fragment chain.
1124 re_setup_rxdesc(sc, i);
1125 re_free_rxchain(sc);
1126 sc->re_flags &= ~RE_F_DROP_RXFRAG;
1127 continue;
1130 rxstat >>= 1;
1131 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1132 IFNET_STAT_INC(ifp, ierrors, 1);
1134 * If this is part of a multi-fragment packet,
1135 * discard all the pieces.
1137 re_free_rxchain(sc);
1138 re_setup_rxdesc(sc, i);
1139 continue;
1143 * If allocating a replacement mbuf fails,
1144 * reload the current one.
1147 if (sc->re_newbuf(sc, i, 0)) {
1148 IFNET_STAT_INC(ifp, ierrors, 1);
1149 continue;
1152 if (sc->re_head != NULL) {
1153 m->m_len = total_len % MCLBYTES;
1155 * Special case: if there's 4 bytes or less
1156 * in this buffer, the mbuf can be discarded:
1157 * the last 4 bytes is the CRC, which we don't
1158 * care about anyway.
1160 if (m->m_len <= ETHER_CRC_LEN) {
1161 sc->re_tail->m_len -=
1162 (ETHER_CRC_LEN - m->m_len);
1163 m_freem(m);
1164 } else {
1165 m->m_len -= ETHER_CRC_LEN;
1166 sc->re_tail->m_next = m;
1168 m = sc->re_head;
1169 sc->re_head = sc->re_tail = NULL;
1170 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1171 } else {
1172 m->m_pkthdr.len = m->m_len =
1173 (total_len - ETHER_CRC_LEN);
1176 IFNET_STAT_INC(ifp, ipackets, 1);
1177 m->m_pkthdr.rcvif = ifp;
1179 /* Do RX checksumming if enabled */
1181 if (ifp->if_capenable & IFCAP_RXCSUM) {
1182 uint8_t packet_type;
1184 packet_type = re_packet_type(sc, rxstat, rxctrl);
1186 /* Check IP header checksum */
1187 if (packet_type & RE_IP4_PACKET) {
1188 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1189 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1190 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1193 /* Check TCP/UDP checksum */
1194 if (((packet_type & RE_TCP_PACKET) &&
1195 (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1196 ((packet_type & RE_UDP_PACKET) &&
1197 (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
1198 m->m_pkthdr.csum_flags |=
1199 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1200 CSUM_FRAG_NOT_CHECKED;
1201 m->m_pkthdr.csum_data = 0xffff;
1205 if (rxctrl & RE_RDESC_CTL_HASTAG) {
1206 m->m_flags |= M_VLANTAG;
1207 m->m_pkthdr.ether_vlantag =
1208 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
1210 ifp->if_input(ifp, m, NULL, -1);
1213 sc->re_ldata.re_rx_prodidx = i;
1215 return rx;
1218 #undef RE_IP4_PACKET
1219 #undef RE_TCP_PACKET
1220 #undef RE_UDP_PACKET
1222 static int
1223 re_tx_collect(struct re_softc *sc)
1225 struct ifnet *ifp = &sc->arpcom.ac_if;
1226 uint32_t txstat;
1227 int idx, tx = 0;
1229 for (idx = sc->re_ldata.re_tx_considx;
1230 sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
1231 RE_TXDESC_INC(sc, idx)) {
1232 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1233 if (txstat & RE_TDESC_CMD_OWN)
1234 break;
1236 tx = 1;
1238 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
1241 * We only stash mbufs in the last descriptor
1242 * in a fragment chain, which also happens to
1243 * be the only place where the TX status bits
1244 * are valid.
1246 if (txstat & RE_TDESC_CMD_EOF) {
1247 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
1248 sc->re_ldata.re_tx_dmamap[idx]);
1249 m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1250 sc->re_ldata.re_tx_mbuf[idx] = NULL;
1251 if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1252 RE_TDESC_STAT_COLCNT))
1253 IFNET_STAT_INC(ifp, collisions, 1);
1254 if (txstat & RE_TDESC_STAT_TXERRSUM)
1255 IFNET_STAT_INC(ifp, oerrors, 1);
1256 else
1257 IFNET_STAT_INC(ifp, opackets, 1);
1259 sc->re_ldata.re_tx_free++;
1261 sc->re_ldata.re_tx_considx = idx;
1263 return tx;
1266 static int
1267 re_txeof(struct re_softc *sc)
1269 struct ifnet *ifp = &sc->arpcom.ac_if;
1270 int tx;
1272 tx = re_tx_collect(sc);
1274 /* There is enough free TX descs */
1275 if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
1276 ifq_clr_oactive(&ifp->if_snd);
1279 * Some chips will ignore a second TX request issued while an
1280 * existing transmission is in progress. If the transmitter goes
1281 * idle but there are still packets waiting to be sent, we need
1282 * to restart the channel here to flush them out. This only seems
1283 * to be required with the PCIe devices.
1285 if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
1286 CSR_WRITE_1(sc, RE_TPPOLL, RE_NPQ);
1287 else
1288 ifp->if_timer = 0;
1290 return tx;
1293 static void
1294 re_tick(void *xsc)
1296 struct re_softc *sc = xsc;
1298 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1299 re_tick_serialized(xsc);
1300 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1303 static void
1304 re_tick_serialized(void *xsc)
1306 struct re_softc *sc = xsc;
1307 struct ifnet *ifp = &sc->arpcom.ac_if;
1309 ASSERT_SERIALIZED(ifp->if_serializer);
1311 if ((ifp->if_flags & IFF_RUNNING) == 0)
1312 return;
1314 if (rtl_link_ok(sc)) {
1315 if ((sc->re_flags & RE_F_LINKED) == 0)
1316 re_link_up(sc);
1317 } else if (sc->re_flags & RE_F_LINKED) {
1318 re_link_down(sc);
1320 callout_reset(&sc->re_timer, hz, re_tick, sc);
1323 #ifdef IFPOLL_ENABLE
1325 static void
1326 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1328 struct re_softc *sc = ifp->if_softc;
1330 ASSERT_SERIALIZED(ifp->if_serializer);
1332 if (sc->re_npoll.ifpc_stcount-- == 0) {
1333 uint16_t status;
1335 sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
1337 status = CSR_READ_2(sc, RE_ISR);
1338 if (status)
1339 CSR_WRITE_2(sc, RE_ISR, status);
1342 * XXX check behaviour on receiver stalls.
1345 if (status & RE_ISR_SYSTEM_ERR) {
1346 rtl_reset(sc);
1347 re_init(sc);
1348 /* Done! */
1349 return;
1353 sc->rxcycles = count;
1354 re_rxeof(sc);
1355 re_txeof(sc);
1357 if (!ifq_is_empty(&ifp->if_snd))
1358 if_devstart(ifp);
1361 static void
1362 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1364 struct re_softc *sc = ifp->if_softc;
1366 ASSERT_SERIALIZED(ifp->if_serializer);
1368 if (info != NULL) {
1369 int cpuid = sc->re_npoll.ifpc_cpuid;
1371 info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
1372 info->ifpi_rx[cpuid].arg = NULL;
1373 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1375 if (ifp->if_flags & IFF_RUNNING)
1376 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
1377 ifq_set_cpuid(&ifp->if_snd, cpuid);
1378 } else {
1379 if (ifp->if_flags & IFF_RUNNING)
1380 re_setup_intr(sc, 1, sc->re_imtype);
1381 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1384 #endif /* IFPOLL_ENABLE */
1386 static void
1387 re_intr(void *arg)
1389 struct re_softc *sc = arg;
1390 struct ifnet *ifp = &sc->arpcom.ac_if;
1391 uint16_t status;
1392 int proc;
1394 ASSERT_SERIALIZED(ifp->if_serializer);
1396 if ((sc->re_flags & RE_F_SUSPENDED) ||
1397 (ifp->if_flags & IFF_RUNNING) == 0)
1398 return;
1400 /* Disable interrupts. */
1401 CSR_WRITE_2(sc, RE_IMR, 0);
1403 status = CSR_READ_2(sc, RE_ISR);
1404 again:
1405 proc = 0;
1406 if (status)
1407 CSR_WRITE_2(sc, RE_ISR, status);
1408 if (status & sc->re_intrs) {
1409 if (status & RE_ISR_SYSTEM_ERR) {
1410 rtl_reset(sc);
1411 re_init(sc);
1412 /* Done! */
1413 return;
1415 proc |= re_rxeof(sc);
1416 proc |= re_txeof(sc);
1419 if (sc->re_imtype == RE_IMTYPE_SIM) {
1420 if ((sc->re_flags & RE_F_TIMER_INTR)) {
1421 if (!proc) {
1423 * Nothing needs to be processed, fallback
1424 * to use TX/RX interrupts.
1426 * NOTE: This will re-enable interrupts.
1428 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
1431 * Recollect, mainly to avoid the possible
1432 * race introduced by changing interrupt
1433 * masks.
1435 re_rxeof(sc);
1436 re_txeof(sc);
1437 } else {
1438 /* Re-enable interrupts. */
1439 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
1440 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
1442 } else if (proc) {
1444 * Assume that using simulated interrupt moderation
1445 * (hardware timer based) could reduce the interript
1446 * rate.
1448 * NOTE: This will re-enable interrupts.
1450 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
1451 } else {
1452 /* Re-enable interrupts. */
1453 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
1455 } else {
1456 status = CSR_READ_2(sc, RE_ISR);
1457 if (status & sc->re_intrs) {
1458 if (!ifq_is_empty(&ifp->if_snd))
1459 if_devstart(ifp);
1460 /* NOTE: Interrupts are still disabled. */
1461 goto again;
1463 /* Re-enable interrupts. */
1464 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
1467 if (!ifq_is_empty(&ifp->if_snd))
1468 if_devstart(ifp);
1471 static int
1472 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
1474 struct mbuf *m = *m_head;
1475 bus_dma_segment_t segs[RE_MAXSEGS];
1476 bus_dmamap_t map;
1477 int error, maxsegs, idx, i, nsegs;
1478 struct re_desc *d, *tx_ring;
1479 uint32_t cmd_csum, ctl_csum, vlantag;
1481 KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
1482 ("not enough free TX desc"));
1484 if (sc->re_coalesce_tx_pkt && m->m_pkthdr.len != m->m_len) {
1485 struct mbuf *m_new;
1487 m_new = m_defrag(m, M_NOWAIT);
1488 if (m_new == NULL) {
1489 error = ENOBUFS;
1490 goto back;
1491 } else {
1492 *m_head = m = m_new;
1493 if (m->m_pkthdr.len != m->m_len) {
1494 /* Still not configuous; give up. */
1495 error = ENOBUFS;
1496 goto back;
1501 map = sc->re_ldata.re_tx_dmamap[*idx0];
1504 * Set up checksum offload. Note: checksum offload bits must
1505 * appear in all descriptors of a multi-descriptor transmit
1506 * attempt. (This is according to testing done with an 8169
1507 * chip. I'm not sure if this is a requirement or a bug.)
1509 cmd_csum = ctl_csum = 0;
1510 if (m->m_pkthdr.csum_flags & CSUM_IP) {
1511 cmd_csum |= RE_TDESC_CMD_IPCSUM;
1512 ctl_csum |= RE_TDESC_CTL_IPCSUM;
1514 if (m->m_pkthdr.csum_flags & CSUM_TCP) {
1515 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
1516 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
1518 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1519 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
1520 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
1523 /* For version2 descriptor, csum flags are set on re_control */
1524 if (sc->re_if_flags & RL_FLAG_DESCV2)
1525 cmd_csum = 0;
1526 else
1527 ctl_csum = 0;
1530 * With some of the RealTek chips, using the checksum offload
1531 * support in conjunction with the autopadding feature results
1532 * in the transmission of corrupt frames. For example, if we
1533 * need to send a really small IP fragment that's less than 60
1534 * bytes in size, and IP header checksumming is enabled, the
1535 * resulting ethernet frame that appears on the wire will
1536 * have garbled payload. To work around this, if TX checksum
1537 * offload is enabled, we always manually pad short frames out
1538 * to the minimum ethernet frame size.
1540 * Note: this appears unnecessary for TCP, and doing it for TCP
1541 * with PCIe adapters seems to result in bad checksums.
1543 if ((m->m_pkthdr.csum_flags & (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
1544 (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
1545 m->m_pkthdr.len < RE_MIN_FRAMELEN) {
1546 error = m_devpad(m, RE_MIN_FRAMELEN);
1547 if (error)
1548 goto back;
1551 vlantag = 0;
1552 if (m->m_flags & M_VLANTAG) {
1553 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
1554 RE_TDESC_CTL_INSTAG;
1557 maxsegs = sc->re_ldata.re_tx_free;
1558 if (maxsegs > RE_MAXSEGS)
1559 maxsegs = RE_MAXSEGS;
1561 error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
1562 m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1563 if (error)
1564 goto back;
1566 m = *m_head;
1567 bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
1570 * Map the segment array into descriptors. We also keep track
1571 * of the end of the ring and set the end-of-ring bits as needed,
1572 * and we set the ownership bits in all except the very first
1573 * descriptor, whose ownership bits will be turned on later.
1575 tx_ring = sc->re_ldata.re_tx_list;
1576 idx = *idx0;
1577 i = 0;
1578 for (;;) {
1579 uint32_t cmdstat;
1581 d = &tx_ring[idx];
1583 cmdstat = segs[i].ds_len;
1584 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
1585 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
1586 if (i == 0)
1587 cmdstat |= RE_TDESC_CMD_SOF;
1588 else
1589 cmdstat |= RE_TDESC_CMD_OWN;
1590 if (idx == (sc->re_tx_desc_cnt - 1))
1591 cmdstat |= RE_TDESC_CMD_EOR;
1592 d->re_cmdstat = htole32(cmdstat | cmd_csum);
1593 d->re_control = htole32(ctl_csum | vlantag);
1595 i++;
1596 if (i == nsegs)
1597 break;
1598 RE_TXDESC_INC(sc, idx);
1600 d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
1602 /* Transfer ownership of packet to the chip. */
1603 d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
1604 if (*idx0 != idx)
1605 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
1608 * Insure that the map for this transmission
1609 * is placed at the array index of the last descriptor
1610 * in this chain.
1612 sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
1613 sc->re_ldata.re_tx_dmamap[idx] = map;
1615 sc->re_ldata.re_tx_mbuf[idx] = m;
1616 sc->re_ldata.re_tx_free -= nsegs;
1618 RE_TXDESC_INC(sc, idx);
1619 *idx0 = idx;
1620 back:
1621 if (error) {
1622 m_freem(*m_head);
1623 *m_head = NULL;
1625 return error;
1629 * Main transmit routine for C+ and gigE NICs.
1632 static void
1633 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1635 struct re_softc *sc = ifp->if_softc;
1636 struct mbuf *m_head;
1637 int idx, need_trans, oactive, error;
1639 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1640 ASSERT_SERIALIZED(ifp->if_serializer);
1642 if ((sc->re_flags & RE_F_LINKED) == 0) {
1643 ifq_purge(&ifp->if_snd);
1644 return;
1647 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1648 return;
1650 idx = sc->re_ldata.re_tx_prodidx;
1652 need_trans = 0;
1653 oactive = 0;
1654 while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1655 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
1656 if (!oactive) {
1657 if (re_tx_collect(sc)) {
1658 oactive = 1;
1659 continue;
1662 ifq_set_oactive(&ifp->if_snd);
1663 break;
1666 m_head = ifq_dequeue(&ifp->if_snd);
1667 if (m_head == NULL)
1668 break;
1670 error = re_encap(sc, &m_head, &idx);
1671 if (error) {
1672 /* m_head is freed by re_encap(), if we reach here */
1673 IFNET_STAT_INC(ifp, oerrors, 1);
1675 if (error == EFBIG && !oactive) {
1676 if (re_tx_collect(sc)) {
1677 oactive = 1;
1678 continue;
1681 ifq_set_oactive(&ifp->if_snd);
1682 break;
1685 oactive = 0;
1686 need_trans = 1;
1689 * If there's a BPF listener, bounce a copy of this frame
1690 * to him.
1692 ETHER_BPF_MTAP(ifp, m_head);
1696 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
1697 * for OACTIVE to not be properly set when we also do not
1698 * have sufficient free tx descriptors, leaving packet in
1699 * ifp->if_snd. This can cause if_start_dispatch() to loop
1700 * infinitely so make sure OACTIVE is set properly.
1702 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
1703 if (!ifq_is_oactive(&ifp->if_snd)) {
1704 #if 0
1705 if_printf(ifp, "Debug: OACTIVE was not set when "
1706 "re_tx_free was below minimum!\n");
1707 #endif
1708 ifq_set_oactive(&ifp->if_snd);
1711 if (!need_trans)
1712 return;
1714 sc->re_ldata.re_tx_prodidx = idx;
1717 * RealTek put the TX poll request register in a different
1718 * location on the 8169 gigE chip. I don't know why.
1720 CSR_WRITE_1(sc, RE_TPPOLL, RE_NPQ);
1723 * Set a timeout in case the chip goes out to lunch.
1725 ifp->if_timer = 5;
1728 static void
1729 re_link_up(struct re_softc *sc)
1731 struct ifnet *ifp = &sc->arpcom.ac_if;
1732 int error;
1734 ASSERT_SERIALIZED(ifp->if_serializer);
1736 rtl_link_on_patch(sc);
1737 re_stop(sc, FALSE);
1738 rtl_set_eaddr(sc);
1740 error = re_rx_list_init(sc);
1741 if (error) {
1742 re_stop(sc, TRUE);
1743 return;
1745 error = re_tx_list_init(sc);
1746 if (error) {
1747 re_stop(sc, TRUE);
1748 return;
1752 * Load the addresses of the RX and TX lists into the chip.
1754 CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
1755 RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
1756 CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
1757 RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
1759 CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
1760 RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
1761 CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
1762 RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
1764 rtl_hw_start(sc);
1766 #ifdef IFPOLL_ENABLE
1768 * Disable interrupts if we are polling.
1770 if (ifp->if_flags & IFF_NPOLLING)
1771 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
1772 else /* otherwise ... */
1773 #endif /* IFPOLL_ENABLE */
1775 * Enable interrupts.
1777 re_setup_intr(sc, 1, sc->re_imtype);
1778 CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
1780 sc->re_flags |= RE_F_LINKED;
1781 ifp->if_link_state = LINK_STATE_UP;
1782 if_link_state_change(ifp);
1784 if (bootverbose)
1785 if_printf(ifp, "link UP\n");
1787 if (!ifq_is_empty(&ifp->if_snd))
1788 if_devstart(ifp);
1791 static void
1792 re_link_down(struct re_softc *sc)
1794 struct ifnet *ifp = &sc->arpcom.ac_if;
1796 /* NOTE: re_stop() will reset RE_F_LINKED. */
1797 ifp->if_link_state = LINK_STATE_DOWN;
1798 if_link_state_change(ifp);
1800 re_stop(sc, FALSE);
1801 rtl_ifmedia_upd(ifp);
1803 if (bootverbose)
1804 if_printf(ifp, "link DOWN\n");
1807 static void
1808 re_init(void *xsc)
1810 struct re_softc *sc = xsc;
1811 struct ifnet *ifp = &sc->arpcom.ac_if;
1813 ASSERT_SERIALIZED(ifp->if_serializer);
1815 re_stop(sc, TRUE);
1816 if (rtl_link_ok(sc)) {
1817 if (bootverbose)
1818 if_printf(ifp, "link is UP in if_init\n");
1819 re_link_up(sc);
1822 ifp->if_flags |= IFF_RUNNING;
1823 ifq_clr_oactive(&ifp->if_snd);
1825 callout_reset(&sc->re_timer, hz, re_tick, sc);
1828 static int
1829 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1831 struct re_softc *sc = ifp->if_softc;
1832 struct ifreq *ifr = (struct ifreq *)data;
1833 int error = 0, mask;
1835 ASSERT_SERIALIZED(ifp->if_serializer);
1837 switch(command) {
1838 case SIOCSIFMTU:
1839 #ifdef RE_JUMBO
1840 if (ifr->ifr_mtu > sc->re_maxmtu) {
1841 error = EINVAL;
1842 } else if (ifp->if_mtu != ifr->ifr_mtu) {
1843 ifp->if_mtu = ifr->ifr_mtu;
1844 if (ifp->if_flags & IFF_RUNNING)
1845 ifp->if_init(sc);
1847 #else
1848 error = EOPNOTSUPP;
1849 #endif
1850 break;
1852 case SIOCSIFFLAGS:
1853 if (ifp->if_flags & IFF_UP) {
1854 if (ifp->if_flags & IFF_RUNNING) {
1855 if ((ifp->if_flags ^ sc->re_saved_ifflags) &
1856 (IFF_PROMISC | IFF_ALLMULTI))
1857 rtl_set_rx_packet_filter(sc);
1858 } else {
1859 re_init(sc);
1861 } else if (ifp->if_flags & IFF_RUNNING) {
1862 re_stop(sc, TRUE);
1864 sc->re_saved_ifflags = ifp->if_flags;
1865 break;
1867 case SIOCADDMULTI:
1868 case SIOCDELMULTI:
1869 rtl_set_rx_packet_filter(sc);
1870 break;
1872 case SIOCGIFMEDIA:
1873 case SIOCSIFMEDIA:
1874 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1875 break;
1877 case SIOCSIFCAP:
1878 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
1879 ifp->if_capabilities;
1880 ifp->if_capenable ^= mask;
1882 /* NOTE: re_init will setup if_hwassist. */
1883 ifp->if_hwassist = 0;
1885 /* Setup flags for the backend. */
1886 if (ifp->if_capenable & IFCAP_RXCSUM)
1887 sc->re_rx_cstag = 1;
1888 else
1889 sc->re_rx_cstag = 0;
1890 if (ifp->if_capenable & IFCAP_TXCSUM)
1891 sc->re_tx_cstag = 1;
1892 else
1893 sc->re_rx_cstag = 0;
1895 if (mask && (ifp->if_flags & IFF_RUNNING))
1896 re_init(sc);
1897 break;
1899 default:
1900 error = ether_ioctl(ifp, command, data);
1901 break;
1903 return(error);
1906 static void
1907 re_watchdog(struct ifnet *ifp)
1909 struct re_softc *sc = ifp->if_softc;
1911 ASSERT_SERIALIZED(ifp->if_serializer);
1913 IFNET_STAT_INC(ifp, oerrors, 1);
1915 re_txeof(sc);
1916 re_rxeof(sc);
1918 if (sc->re_ldata.re_tx_free != sc->re_tx_desc_cnt) {
1919 if_printf(ifp, "watchdog timeout, txd free %d\n",
1920 sc->re_ldata.re_tx_free);
1921 rtl_reset(sc);
1922 re_init(sc);
1927 * Stop the adapter and free any mbufs allocated to the
1928 * RX and TX lists.
1930 static void
1931 re_stop(struct re_softc *sc, boolean_t full_stop)
1933 struct ifnet *ifp = &sc->arpcom.ac_if;
1934 int i;
1936 ASSERT_SERIALIZED(ifp->if_serializer);
1938 /* Stop the adapter. */
1939 rtl_stop(sc);
1941 ifp->if_timer = 0;
1942 if (full_stop) {
1943 callout_stop(&sc->re_timer);
1944 ifp->if_flags &= ~IFF_RUNNING;
1946 ifq_clr_oactive(&ifp->if_snd);
1947 sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
1949 re_free_rxchain(sc);
1951 /* Free the TX list buffers. */
1952 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1953 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
1954 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
1955 sc->re_ldata.re_tx_dmamap[i]);
1956 m_freem(sc->re_ldata.re_tx_mbuf[i]);
1957 sc->re_ldata.re_tx_mbuf[i] = NULL;
1961 /* Free the RX list buffers. */
1962 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1963 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
1964 if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
1965 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1966 sc->re_ldata.re_rx_dmamap[i]);
1968 m_freem(sc->re_ldata.re_rx_mbuf[i]);
1969 sc->re_ldata.re_rx_mbuf[i] = NULL;
1975 * Device suspend routine. Stop the interface and save some PCI
1976 * settings in case the BIOS doesn't restore them properly on
1977 * resume.
1979 static int
1980 re_suspend(device_t dev)
1982 #ifndef BURN_BRIDGES
1983 int i;
1984 #endif
1985 struct re_softc *sc = device_get_softc(dev);
1986 struct ifnet *ifp = &sc->arpcom.ac_if;
1988 lwkt_serialize_enter(ifp->if_serializer);
1990 re_stop(sc, TRUE);
1992 #ifndef BURN_BRIDGES
1993 for (i = 0; i < 5; i++)
1994 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
1995 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1996 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1997 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1998 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1999 #endif
2001 sc->re_flags |= RE_F_SUSPENDED;
2003 lwkt_serialize_exit(ifp->if_serializer);
2005 return (0);
2009 * Device resume routine. Restore some PCI settings in case the BIOS
2010 * doesn't, re-enable busmastering, and restart the interface if
2011 * appropriate.
2013 static int
2014 re_resume(device_t dev)
2016 struct re_softc *sc = device_get_softc(dev);
2017 struct ifnet *ifp = &sc->arpcom.ac_if;
2018 #ifndef BURN_BRIDGES
2019 int i;
2020 #endif
2022 lwkt_serialize_enter(ifp->if_serializer);
2024 #ifndef BURN_BRIDGES
2025 /* better way to do this? */
2026 for (i = 0; i < 5; i++)
2027 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2028 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2029 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2030 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2031 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2033 /* reenable busmastering */
2034 pci_enable_busmaster(dev);
2035 pci_enable_io(dev, SYS_RES_IOPORT);
2036 #endif
2038 /* reinitialize interface if necessary */
2039 if (ifp->if_flags & IFF_UP)
2040 re_init(sc);
2042 sc->re_flags &= ~RE_F_SUSPENDED;
2044 lwkt_serialize_exit(ifp->if_serializer);
2046 return (0);
2050 * Stop all chip I/O so that the kernel's probe routines don't
2051 * get confused by errant DMAs when rebooting.
2053 static void
2054 re_shutdown(device_t dev)
2056 struct re_softc *sc = device_get_softc(dev);
2057 struct ifnet *ifp = &sc->arpcom.ac_if;
2059 lwkt_serialize_enter(ifp->if_serializer);
2060 re_stop(sc, TRUE);
2061 rtl_hw_d3_para(sc);
2062 rtl_phy_power_down(sc);
2063 lwkt_serialize_exit(ifp->if_serializer);
2066 static int
2067 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2069 struct re_softc *sc = arg1;
2071 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2074 static int
2075 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2077 struct re_softc *sc = arg1;
2079 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2082 static int
2083 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2085 struct re_softc *sc = arg1;
2086 struct ifnet *ifp = &sc->arpcom.ac_if;
2087 int error, v;
2089 lwkt_serialize_enter(ifp->if_serializer);
2091 v = *hwtime;
2092 error = sysctl_handle_int(oidp, &v, 0, req);
2093 if (error || req->newptr == NULL)
2094 goto back;
2096 if (v <= 0) {
2097 error = EINVAL;
2098 goto back;
2101 if (v != *hwtime) {
2102 *hwtime = v;
2104 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
2105 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2106 re_setup_hw_im(sc);
2108 back:
2109 lwkt_serialize_exit(ifp->if_serializer);
2110 return error;
2113 static int
2114 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2116 struct re_softc *sc = arg1;
2117 struct ifnet *ifp = &sc->arpcom.ac_if;
2118 int error, v;
2120 lwkt_serialize_enter(ifp->if_serializer);
2122 v = sc->re_sim_time;
2123 error = sysctl_handle_int(oidp, &v, 0, req);
2124 if (error || req->newptr == NULL)
2125 goto back;
2127 if (v <= 0) {
2128 error = EINVAL;
2129 goto back;
2132 if (v != sc->re_sim_time) {
2133 sc->re_sim_time = v;
2135 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
2136 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
2137 #ifdef foo
2139 * Following code causes various strange
2140 * performance problems. Hmm ...
2142 CSR_WRITE_2(sc, RE_IMR, 0);
2143 CSR_WRITE_4(sc, RE_TIMERINT, 0);
2144 CSR_READ_4(sc, RE_TIMERINT); /* flush */
2146 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2147 re_setup_sim_im(sc);
2148 #else
2149 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2150 DELAY(10);
2151 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2152 #endif
2155 back:
2156 lwkt_serialize_exit(ifp->if_serializer);
2157 return error;
2160 static int
2161 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
2163 struct re_softc *sc = arg1;
2164 struct ifnet *ifp = &sc->arpcom.ac_if;
2165 int error, v;
2167 lwkt_serialize_enter(ifp->if_serializer);
2169 v = sc->re_imtype;
2170 error = sysctl_handle_int(oidp, &v, 0, req);
2171 if (error || req->newptr == NULL)
2172 goto back;
2174 if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
2175 error = EINVAL;
2176 goto back;
2178 if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
2179 /* Can't do hardware interrupt moderation */
2180 error = EOPNOTSUPP;
2181 goto back;
2184 if (v != sc->re_imtype) {
2185 sc->re_imtype = v;
2186 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
2187 IFF_RUNNING)
2188 re_setup_intr(sc, 1, sc->re_imtype);
2190 back:
2191 lwkt_serialize_exit(ifp->if_serializer);
2192 return error;
2195 static void
2196 re_setup_hw_im(struct re_softc *sc)
2198 KKASSERT(sc->re_caps & RE_C_HWIM);
2201 * Interrupt moderation
2203 * 0xABCD
2204 * A - unknown (maybe TX related)
2205 * B - TX timer (unit: 25us)
2206 * C - unknown (maybe RX related)
2207 * D - RX timer (unit: 25us)
2210 * re(4)'s interrupt moderation is actually controlled by
2211 * two variables, like most other NICs (bge, bce etc.)
2212 * o timer
2213 * o number of packets [P]
2215 * The logic relationship between these two variables is
2216 * similar to other NICs too:
2217 * if (timer expire || packets > [P])
2218 * Interrupt is delivered
2220 * Currently we only know how to set 'timer', but not
2221 * 'number of packets', which should be ~30, as far as I
2222 * tested (sink ~900Kpps, interrupt rate is 30KHz)
2224 CSR_WRITE_2(sc, RE_IM,
2225 RE_IM_RXTIME(sc->re_rx_time) |
2226 RE_IM_TXTIME(sc->re_tx_time) |
2227 RE_IM_MAGIC);
2230 static void
2231 re_disable_hw_im(struct re_softc *sc)
2233 if (sc->re_caps & RE_C_HWIM)
2234 CSR_WRITE_2(sc, RE_IM, 0);
2237 static void
2238 re_setup_sim_im(struct re_softc *sc)
2240 uint32_t ticks;
2242 if (sc->re_if_flags & RL_FLAG_PCIE) {
2243 ticks = sc->re_sim_time * sc->re_bus_speed;
2244 } else {
2246 * Datasheet says tick decreases at bus speed,
2247 * but it seems the clock runs a little bit
2248 * faster, so we do some compensation here.
2250 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
2252 CSR_WRITE_4(sc, RE_TIMERINT, ticks);
2254 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2255 sc->re_flags |= RE_F_TIMER_INTR;
2258 static void
2259 re_disable_sim_im(struct re_softc *sc)
2261 CSR_WRITE_4(sc, RE_TIMERINT, 0);
2262 sc->re_flags &= ~RE_F_TIMER_INTR;
2265 static void
2266 re_config_imtype(struct re_softc *sc, int imtype)
2268 switch (imtype) {
2269 case RE_IMTYPE_HW:
2270 KKASSERT(sc->re_caps & RE_C_HWIM);
2271 /* FALL THROUGH */
2272 case RE_IMTYPE_NONE:
2273 sc->re_intrs = RE_INTRS;
2274 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
2275 RE_ISR_RX_OVERRUN;
2276 sc->re_tx_ack = RE_ISR_TX_OK;
2277 break;
2279 case RE_IMTYPE_SIM:
2280 sc->re_intrs = RE_INTRS_TIMER;
2281 sc->re_rx_ack = RE_ISR_PCS_TIMEOUT;
2282 sc->re_tx_ack = RE_ISR_PCS_TIMEOUT;
2283 break;
2285 default:
2286 panic("%s: unknown imtype %d",
2287 sc->arpcom.ac_if.if_xname, imtype);
2291 static void
2292 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
2294 re_config_imtype(sc, imtype);
2296 if (enable_intrs)
2297 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2298 else
2299 CSR_WRITE_2(sc, RE_IMR, 0);
2301 sc->re_npoll.ifpc_stcount = 0;
2303 switch (imtype) {
2304 case RE_IMTYPE_NONE:
2305 re_disable_sim_im(sc);
2306 re_disable_hw_im(sc);
2307 break;
2309 case RE_IMTYPE_HW:
2310 KKASSERT(sc->re_caps & RE_C_HWIM);
2311 re_disable_sim_im(sc);
2312 re_setup_hw_im(sc);
2313 break;
2315 case RE_IMTYPE_SIM:
2316 re_disable_hw_im(sc);
2317 re_setup_sim_im(sc);
2318 break;
2320 default:
2321 panic("%s: unknown imtype %d",
2322 sc->arpcom.ac_if.if_xname, imtype);
2326 static int
2327 re_jpool_alloc(struct re_softc *sc)
2329 struct re_list_data *ldata = &sc->re_ldata;
2330 struct re_jbuf *jbuf;
2331 bus_addr_t paddr;
2332 bus_size_t jpool_size;
2333 bus_dmamem_t dmem;
2334 caddr_t buf;
2335 int i, error;
2337 lwkt_serialize_init(&ldata->re_jbuf_serializer);
2339 ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
2340 M_DEVBUF, M_WAITOK | M_ZERO);
2342 jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
2344 error = bus_dmamem_coherent(sc->re_parent_tag,
2345 RE_RXBUF_ALIGN, 0,
2346 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2347 jpool_size, BUS_DMA_WAITOK, &dmem);
2348 if (error) {
2349 device_printf(sc->dev, "could not allocate jumbo memory\n");
2350 return error;
2352 ldata->re_jpool_tag = dmem.dmem_tag;
2353 ldata->re_jpool_map = dmem.dmem_map;
2354 ldata->re_jpool = dmem.dmem_addr;
2355 paddr = dmem.dmem_busaddr;
2357 /* ..and split it into 9KB chunks */
2358 SLIST_INIT(&ldata->re_jbuf_free);
2360 buf = ldata->re_jpool;
2361 for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
2362 jbuf = &ldata->re_jbuf[i];
2364 jbuf->re_sc = sc;
2365 jbuf->re_inuse = 0;
2366 jbuf->re_slot = i;
2367 jbuf->re_buf = buf;
2368 jbuf->re_paddr = paddr;
2370 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
2372 buf += RE_JBUF_SIZE;
2373 paddr += RE_JBUF_SIZE;
2375 return 0;
2378 static void
2379 re_jpool_free(struct re_softc *sc)
2381 struct re_list_data *ldata = &sc->re_ldata;
2383 if (ldata->re_jpool_tag != NULL) {
2384 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
2385 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
2386 ldata->re_jpool_map);
2387 bus_dma_tag_destroy(ldata->re_jpool_tag);
2388 ldata->re_jpool_tag = NULL;
2391 if (ldata->re_jbuf != NULL) {
2392 kfree(ldata->re_jbuf, M_DEVBUF);
2393 ldata->re_jbuf = NULL;
2397 #ifdef RE_JUMBO
2398 static struct re_jbuf *
2399 re_jbuf_alloc(struct re_softc *sc)
2401 struct re_list_data *ldata = &sc->re_ldata;
2402 struct re_jbuf *jbuf;
2404 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
2406 jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
2407 if (jbuf != NULL) {
2408 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
2409 jbuf->re_inuse = 1;
2412 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
2414 return jbuf;
2417 static void
2418 re_jbuf_free(void *arg)
2420 struct re_jbuf *jbuf = arg;
2421 struct re_softc *sc = jbuf->re_sc;
2422 struct re_list_data *ldata = &sc->re_ldata;
2424 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
2425 panic("%s: free wrong jumbo buffer",
2426 sc->arpcom.ac_if.if_xname);
2427 } else if (jbuf->re_inuse == 0) {
2428 panic("%s: jumbo buffer already freed",
2429 sc->arpcom.ac_if.if_xname);
2432 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
2433 atomic_subtract_int(&jbuf->re_inuse, 1);
2434 if (jbuf->re_inuse == 0)
2435 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
2436 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
2439 static void
2440 re_jbuf_ref(void *arg)
2442 struct re_jbuf *jbuf = arg;
2443 struct re_softc *sc = jbuf->re_sc;
2444 struct re_list_data *ldata = &sc->re_ldata;
2446 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
2447 panic("%s: ref wrong jumbo buffer",
2448 sc->arpcom.ac_if.if_xname);
2449 } else if (jbuf->re_inuse == 0) {
2450 panic("%s: jumbo buffer already freed",
2451 sc->arpcom.ac_if.if_xname);
2453 atomic_add_int(&jbuf->re_inuse, 1);
2455 #endif /* RE_JUMBO */
2457 static void
2458 re_disable_aspm(device_t dev)
2460 uint16_t link_cap, link_ctrl;
2461 uint8_t pcie_ptr, reg;
2463 pcie_ptr = pci_get_pciecap_ptr(dev);
2464 if (pcie_ptr == 0)
2465 return;
2467 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
2468 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
2469 return;
2471 if (bootverbose)
2472 device_printf(dev, "disable ASPM\n");
2474 reg = pcie_ptr + PCIER_LINKCTRL;
2475 link_ctrl = pci_read_config(dev, reg, 2);
2476 link_ctrl &= ~(PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1);
2477 pci_write_config(dev, reg, link_ctrl, 2);