iscontrol(8): Fix synopsis, sync usage() & improve markup
[dragonfly.git] / sys / kern / vfs_subr.c
blob9f56e001b42f6b60b9400f753be70842d81bf8ae
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.118 2008/09/17 21:44:18 dillon Exp $
44 * External virtual filesystem routines
46 #include "opt_ddb.h"
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/dirent.h>
53 #include <sys/domain.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fcntl.h>
56 #include <sys/file.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/mount.h>
62 #include <sys/proc.h>
63 #include <sys/reboot.h>
64 #include <sys/socket.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/unistd.h>
69 #include <sys/vmmeter.h>
70 #include <sys/vnode.h>
72 #include <machine/limits.h>
74 #include <vm/vm.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_kern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vnode_pager.h>
83 #include <vm/vm_zone.h>
85 #include <sys/buf2.h>
86 #include <sys/thread2.h>
87 #include <sys/sysref2.h>
89 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
91 int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
93 int vfs_fastdev = 1;
94 SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
96 enum vtype iftovt_tab[16] = {
97 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
100 int vttoif_tab[9] = {
101 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 S_IFSOCK, S_IFIFO, S_IFMT,
105 static int reassignbufcalls;
106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
107 &reassignbufcalls, 0, "");
108 static int reassignbufloops;
109 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
110 &reassignbufloops, 0, "");
111 static int reassignbufsortgood;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
113 &reassignbufsortgood, 0, "");
114 static int reassignbufsortbad;
115 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
116 &reassignbufsortbad, 0, "");
117 static int reassignbufmethod = 1;
118 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
119 &reassignbufmethod, 0, "");
121 int nfs_mount_type = -1;
122 static struct lwkt_token spechash_token;
123 struct nfs_public nfs_pub; /* publicly exported FS */
125 int desiredvnodes;
126 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
127 &desiredvnodes, 0, "Maximum number of vnodes");
129 static void vfs_free_addrlist (struct netexport *nep);
130 static int vfs_free_netcred (struct radix_node *rn, void *w);
131 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
132 const struct export_args *argp);
135 * Red black tree functions
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
144 if (b1->b_loffset < b2->b_loffset)
145 return(-1);
146 if (b1->b_loffset > b2->b_loffset)
147 return(1);
148 return(0);
152 * Returns non-zero if the vnode is a candidate for lazy msyncing.
154 static __inline int
155 vshouldmsync(struct vnode *vp)
157 if (vp->v_auxrefs != 0 || vp->v_sysref.refcnt > 0)
158 return (0); /* other holders */
159 if (vp->v_object &&
160 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
161 return (0);
163 return (1);
167 * Initialize the vnode management data structures.
169 * Called from vfsinit()
171 void
172 vfs_subr_init(void)
175 * Desiredvnodes is kern.maxvnodes. We want to scale it
176 * according to available system memory but we may also have
177 * to limit it based on available KVM, which is capped on 32 bit
178 * systems.
180 desiredvnodes = min(maxproc + vmstats.v_page_count / 4,
181 KvaSize / (20 *
182 (sizeof(struct vm_object) + sizeof(struct vnode))));
184 lwkt_token_init(&spechash_token);
188 * Knob to control the precision of file timestamps:
190 * 0 = seconds only; nanoseconds zeroed.
191 * 1 = seconds and nanoseconds, accurate within 1/HZ.
192 * 2 = seconds and nanoseconds, truncated to microseconds.
193 * >=3 = seconds and nanoseconds, maximum precision.
195 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
197 static int timestamp_precision = TSP_SEC;
198 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
199 &timestamp_precision, 0, "");
202 * Get a current timestamp.
204 * MPSAFE
206 void
207 vfs_timestamp(struct timespec *tsp)
209 struct timeval tv;
211 switch (timestamp_precision) {
212 case TSP_SEC:
213 tsp->tv_sec = time_second;
214 tsp->tv_nsec = 0;
215 break;
216 case TSP_HZ:
217 getnanotime(tsp);
218 break;
219 case TSP_USEC:
220 microtime(&tv);
221 TIMEVAL_TO_TIMESPEC(&tv, tsp);
222 break;
223 case TSP_NSEC:
224 default:
225 nanotime(tsp);
226 break;
231 * Set vnode attributes to VNOVAL
233 void
234 vattr_null(struct vattr *vap)
236 vap->va_type = VNON;
237 vap->va_size = VNOVAL;
238 vap->va_bytes = VNOVAL;
239 vap->va_mode = VNOVAL;
240 vap->va_nlink = VNOVAL;
241 vap->va_uid = VNOVAL;
242 vap->va_gid = VNOVAL;
243 vap->va_fsid = VNOVAL;
244 vap->va_fileid = VNOVAL;
245 vap->va_blocksize = VNOVAL;
246 vap->va_rmajor = VNOVAL;
247 vap->va_rminor = VNOVAL;
248 vap->va_atime.tv_sec = VNOVAL;
249 vap->va_atime.tv_nsec = VNOVAL;
250 vap->va_mtime.tv_sec = VNOVAL;
251 vap->va_mtime.tv_nsec = VNOVAL;
252 vap->va_ctime.tv_sec = VNOVAL;
253 vap->va_ctime.tv_nsec = VNOVAL;
254 vap->va_flags = VNOVAL;
255 vap->va_gen = VNOVAL;
256 vap->va_vaflags = 0;
257 vap->va_fsmid = VNOVAL;
258 /* va_*_uuid fields are only valid if related flags are set */
262 * Flush out and invalidate all buffers associated with a vnode.
264 * vp must be locked.
266 static int vinvalbuf_bp(struct buf *bp, void *data);
268 struct vinvalbuf_bp_info {
269 struct vnode *vp;
270 int slptimeo;
271 int lkflags;
272 int flags;
275 void
276 vupdatefsmid(struct vnode *vp)
278 atomic_set_int(&vp->v_flag, VFSMID);
282 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
284 struct vinvalbuf_bp_info info;
285 vm_object_t object;
286 lwkt_tokref vlock;
287 int error;
289 lwkt_gettoken(&vlock, &vp->v_token);
292 * If we are being asked to save, call fsync to ensure that the inode
293 * is updated.
295 if (flags & V_SAVE) {
296 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
297 if (error)
298 goto done;
299 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
300 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
301 goto done;
304 * Dirty bufs may be left or generated via races
305 * in circumstances where vinvalbuf() is called on
306 * a vnode not undergoing reclamation. Only
307 * panic if we are trying to reclaim the vnode.
309 if ((vp->v_flag & VRECLAIMED) &&
310 (bio_track_active(&vp->v_track_write) ||
311 !RB_EMPTY(&vp->v_rbdirty_tree))) {
312 panic("vinvalbuf: dirty bufs");
316 info.slptimeo = slptimeo;
317 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
318 if (slpflag & PCATCH)
319 info.lkflags |= LK_PCATCH;
320 info.flags = flags;
321 info.vp = vp;
324 * Flush the buffer cache until nothing is left.
326 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
327 !RB_EMPTY(&vp->v_rbdirty_tree)) {
328 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
329 vinvalbuf_bp, &info);
330 if (error == 0) {
331 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
332 vinvalbuf_bp, &info);
337 * Wait for I/O completion. We may block in the pip code so we have
338 * to re-check.
340 do {
341 bio_track_wait(&vp->v_track_write, 0, 0);
342 if ((object = vp->v_object) != NULL) {
343 while (object->paging_in_progress)
344 vm_object_pip_sleep(object, "vnvlbx");
346 } while (bio_track_active(&vp->v_track_write));
349 * Destroy the copy in the VM cache, too.
351 if ((object = vp->v_object) != NULL) {
352 vm_object_page_remove(object, 0, 0,
353 (flags & V_SAVE) ? TRUE : FALSE);
356 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
357 panic("vinvalbuf: flush failed");
358 if (!RB_EMPTY(&vp->v_rbhash_tree))
359 panic("vinvalbuf: flush failed, buffers still present");
360 error = 0;
361 done:
362 lwkt_reltoken(&vlock);
363 return (error);
366 static int
367 vinvalbuf_bp(struct buf *bp, void *data)
369 struct vinvalbuf_bp_info *info = data;
370 int error;
372 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
373 error = BUF_TIMELOCK(bp, info->lkflags,
374 "vinvalbuf", info->slptimeo);
375 if (error == 0) {
376 BUF_UNLOCK(bp);
377 error = ENOLCK;
379 if (error == ENOLCK)
380 return(0);
381 return (-error);
384 KKASSERT(bp->b_vp == info->vp);
387 * XXX Since there are no node locks for NFS, I
388 * believe there is a slight chance that a delayed
389 * write will occur while sleeping just above, so
390 * check for it. Note that vfs_bio_awrite expects
391 * buffers to reside on a queue, while bwrite() and
392 * brelse() do not.
394 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
395 * check. This code will write out the buffer, period.
397 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
398 (info->flags & V_SAVE)) {
399 if (bp->b_vp == info->vp) {
400 if (bp->b_flags & B_CLUSTEROK) {
401 vfs_bio_awrite(bp);
402 } else {
403 bremfree(bp);
404 bawrite(bp);
406 } else {
407 bremfree(bp);
408 bwrite(bp);
410 } else if (info->flags & V_SAVE) {
412 * Cannot set B_NOCACHE on a clean buffer as this will
413 * destroy the VM backing store which might actually
414 * be dirty (and unsynchronized).
416 bremfree(bp);
417 bp->b_flags |= (B_INVAL | B_RELBUF);
418 brelse(bp);
419 } else {
420 bremfree(bp);
421 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
422 brelse(bp);
424 return(0);
428 * Truncate a file's buffer and pages to a specified length. This
429 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
430 * sync activity.
432 * The vnode must be locked.
434 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
435 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
436 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
437 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
440 vtruncbuf(struct vnode *vp, off_t length, int blksize)
442 off_t truncloffset;
443 const char *filename;
444 lwkt_tokref vlock;
445 int count;
448 * Round up to the *next* block, then destroy the buffers in question.
449 * Since we are only removing some of the buffers we must rely on the
450 * scan count to determine whether a loop is necessary.
452 if ((count = (int)(length % blksize)) != 0)
453 truncloffset = length + (blksize - count);
454 else
455 truncloffset = length;
457 lwkt_gettoken(&vlock, &vp->v_token);
458 do {
459 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
460 vtruncbuf_bp_trunc_cmp,
461 vtruncbuf_bp_trunc, &truncloffset);
462 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
463 vtruncbuf_bp_trunc_cmp,
464 vtruncbuf_bp_trunc, &truncloffset);
465 } while(count);
468 * For safety, fsync any remaining metadata if the file is not being
469 * truncated to 0. Since the metadata does not represent the entire
470 * dirty list we have to rely on the hit count to ensure that we get
471 * all of it.
473 if (length > 0) {
474 do {
475 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
476 vtruncbuf_bp_metasync_cmp,
477 vtruncbuf_bp_metasync, vp);
478 } while (count);
482 * Clean out any left over VM backing store.
484 * It is possible to have in-progress I/O from buffers that were
485 * not part of the truncation. This should not happen if we
486 * are truncating to 0-length.
488 vnode_pager_setsize(vp, length);
489 bio_track_wait(&vp->v_track_write, 0, 0);
491 filename = TAILQ_FIRST(&vp->v_namecache) ?
492 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
495 * Make sure no buffers were instantiated while we were trying
496 * to clean out the remaining VM pages. This could occur due
497 * to busy dirty VM pages being flushed out to disk.
499 do {
500 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
501 vtruncbuf_bp_trunc_cmp,
502 vtruncbuf_bp_trunc, &truncloffset);
503 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
504 vtruncbuf_bp_trunc_cmp,
505 vtruncbuf_bp_trunc, &truncloffset);
506 if (count) {
507 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
508 "left over buffers in %s\n", count, filename);
510 } while(count);
512 lwkt_reltoken(&vlock);
514 return (0);
518 * The callback buffer is beyond the new file EOF and must be destroyed.
519 * Note that the compare function must conform to the RB_SCAN's requirements.
521 static
523 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
525 if (bp->b_loffset >= *(off_t *)data)
526 return(0);
527 return(-1);
530 static
531 int
532 vtruncbuf_bp_trunc(struct buf *bp, void *data)
535 * Do not try to use a buffer we cannot immediately lock, but sleep
536 * anyway to prevent a livelock. The code will loop until all buffers
537 * can be acted upon.
539 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
540 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
541 BUF_UNLOCK(bp);
542 } else {
543 bremfree(bp);
544 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
545 brelse(bp);
547 return(1);
551 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
552 * blocks (with a negative loffset) are scanned.
553 * Note that the compare function must conform to the RB_SCAN's requirements.
555 static int
556 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
558 if (bp->b_loffset < 0)
559 return(0);
560 return(1);
563 static int
564 vtruncbuf_bp_metasync(struct buf *bp, void *data)
566 struct vnode *vp = data;
568 if (bp->b_flags & B_DELWRI) {
570 * Do not try to use a buffer we cannot immediately lock,
571 * but sleep anyway to prevent a livelock. The code will
572 * loop until all buffers can be acted upon.
574 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
575 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
576 BUF_UNLOCK(bp);
577 } else {
578 bremfree(bp);
579 if (bp->b_vp == vp)
580 bawrite(bp);
581 else
582 bwrite(bp);
584 return(1);
585 } else {
586 return(0);
591 * vfsync - implements a multipass fsync on a file which understands
592 * dependancies and meta-data. The passed vnode must be locked. The
593 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
595 * When fsyncing data asynchronously just do one consolidated pass starting
596 * with the most negative block number. This may not get all the data due
597 * to dependancies.
599 * When fsyncing data synchronously do a data pass, then a metadata pass,
600 * then do additional data+metadata passes to try to get all the data out.
602 static int vfsync_wait_output(struct vnode *vp,
603 int (*waitoutput)(struct vnode *, struct thread *));
604 static int vfsync_data_only_cmp(struct buf *bp, void *data);
605 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
606 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
607 static int vfsync_bp(struct buf *bp, void *data);
609 struct vfsync_info {
610 struct vnode *vp;
611 int synchronous;
612 int syncdeps;
613 int lazycount;
614 int lazylimit;
615 int skippedbufs;
616 int (*checkdef)(struct buf *);
620 vfsync(struct vnode *vp, int waitfor, int passes,
621 int (*checkdef)(struct buf *),
622 int (*waitoutput)(struct vnode *, struct thread *))
624 struct vfsync_info info;
625 lwkt_tokref vlock;
626 int error;
628 bzero(&info, sizeof(info));
629 info.vp = vp;
630 if ((info.checkdef = checkdef) == NULL)
631 info.syncdeps = 1;
633 lwkt_gettoken(&vlock, &vp->v_token);
635 switch(waitfor) {
636 case MNT_LAZY:
638 * Lazy (filesystem syncer typ) Asynchronous plus limit the
639 * number of data (not meta) pages we try to flush to 1MB.
640 * A non-zero return means that lazy limit was reached.
642 info.lazylimit = 1024 * 1024;
643 info.syncdeps = 1;
644 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
645 vfsync_lazy_range_cmp, vfsync_bp, &info);
646 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
647 vfsync_meta_only_cmp, vfsync_bp, &info);
648 if (error == 0)
649 vp->v_lazyw = 0;
650 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
651 vn_syncer_add_to_worklist(vp, 1);
652 error = 0;
653 break;
654 case MNT_NOWAIT:
656 * Asynchronous. Do a data-only pass and a meta-only pass.
658 info.syncdeps = 1;
659 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
660 vfsync_bp, &info);
661 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
662 vfsync_bp, &info);
663 error = 0;
664 break;
665 default:
667 * Synchronous. Do a data-only pass, then a meta-data+data
668 * pass, then additional integrated passes to try to get
669 * all the dependancies flushed.
671 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
672 vfsync_bp, &info);
673 error = vfsync_wait_output(vp, waitoutput);
674 if (error == 0) {
675 info.skippedbufs = 0;
676 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
677 vfsync_bp, &info);
678 error = vfsync_wait_output(vp, waitoutput);
679 if (info.skippedbufs)
680 kprintf("Warning: vfsync skipped %d dirty bufs in pass2!\n", info.skippedbufs);
682 while (error == 0 && passes > 0 &&
683 !RB_EMPTY(&vp->v_rbdirty_tree)
685 if (--passes == 0) {
686 info.synchronous = 1;
687 info.syncdeps = 1;
689 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
690 vfsync_bp, &info);
691 if (error < 0)
692 error = -error;
693 info.syncdeps = 1;
694 if (error == 0)
695 error = vfsync_wait_output(vp, waitoutput);
697 break;
699 lwkt_reltoken(&vlock);
700 return(error);
703 static int
704 vfsync_wait_output(struct vnode *vp,
705 int (*waitoutput)(struct vnode *, struct thread *))
707 int error;
709 error = bio_track_wait(&vp->v_track_write, 0, 0);
710 if (waitoutput)
711 error = waitoutput(vp, curthread);
712 return(error);
715 static int
716 vfsync_data_only_cmp(struct buf *bp, void *data)
718 if (bp->b_loffset < 0)
719 return(-1);
720 return(0);
723 static int
724 vfsync_meta_only_cmp(struct buf *bp, void *data)
726 if (bp->b_loffset < 0)
727 return(0);
728 return(1);
731 static int
732 vfsync_lazy_range_cmp(struct buf *bp, void *data)
734 struct vfsync_info *info = data;
735 if (bp->b_loffset < info->vp->v_lazyw)
736 return(-1);
737 return(0);
740 static int
741 vfsync_bp(struct buf *bp, void *data)
743 struct vfsync_info *info = data;
744 struct vnode *vp = info->vp;
745 int error;
748 * if syncdeps is not set we do not try to write buffers which have
749 * dependancies.
751 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
752 return(0);
755 * Ignore buffers that we cannot immediately lock. XXX
757 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
758 kprintf("Warning: vfsync_bp skipping dirty buffer %p\n", bp);
759 ++info->skippedbufs;
760 return(0);
762 if ((bp->b_flags & B_DELWRI) == 0)
763 panic("vfsync_bp: buffer not dirty");
764 if (vp != bp->b_vp)
765 panic("vfsync_bp: buffer vp mismatch");
768 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
769 * has been written but an additional handshake with the device
770 * is required before we can dispose of the buffer. We have no idea
771 * how to do this so we have to skip these buffers.
773 if (bp->b_flags & B_NEEDCOMMIT) {
774 BUF_UNLOCK(bp);
775 return(0);
779 * Ask bioops if it is ok to sync
781 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
782 bremfree(bp);
783 brelse(bp);
784 return(0);
787 if (info->synchronous) {
789 * Synchronous flushing. An error may be returned.
791 bremfree(bp);
792 error = bwrite(bp);
793 } else {
795 * Asynchronous flushing. A negative return value simply
796 * stops the scan and is not considered an error. We use
797 * this to support limited MNT_LAZY flushes.
799 vp->v_lazyw = bp->b_loffset;
800 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
801 info->lazycount += vfs_bio_awrite(bp);
802 } else {
803 info->lazycount += bp->b_bufsize;
804 bremfree(bp);
805 bawrite(bp);
807 if (info->lazylimit && info->lazycount >= info->lazylimit)
808 error = 1;
809 else
810 error = 0;
812 return(-error);
816 * Associate a buffer with a vnode.
818 * MPSAFE
821 bgetvp(struct vnode *vp, struct buf *bp)
823 lwkt_tokref vlock;
825 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
826 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
829 * Insert onto list for new vnode.
831 lwkt_gettoken(&vlock, &vp->v_token);
832 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
833 lwkt_reltoken(&vlock);
834 return (EEXIST);
836 bp->b_vp = vp;
837 bp->b_flags |= B_HASHED;
838 bp->b_flags |= B_VNCLEAN;
839 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
840 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
841 vhold(vp);
842 lwkt_reltoken(&vlock);
843 return(0);
847 * Disassociate a buffer from a vnode.
849 void
850 brelvp(struct buf *bp)
852 struct vnode *vp;
853 lwkt_tokref vlock;
855 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
858 * Delete from old vnode list, if on one.
860 vp = bp->b_vp;
861 lwkt_gettoken(&vlock, &vp->v_token);
862 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
863 if (bp->b_flags & B_VNDIRTY)
864 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
865 else
866 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
867 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
869 if (bp->b_flags & B_HASHED) {
870 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
871 bp->b_flags &= ~B_HASHED;
873 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
874 vp->v_flag &= ~VONWORKLST;
875 LIST_REMOVE(vp, v_synclist);
877 bp->b_vp = NULL;
878 lwkt_reltoken(&vlock);
880 vdrop(vp);
884 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
885 * This routine is called when the state of the B_DELWRI bit is changed.
887 * MPSAFE
889 void
890 reassignbuf(struct buf *bp)
892 struct vnode *vp = bp->b_vp;
893 lwkt_tokref vlock;
894 int delay;
896 KKASSERT(vp != NULL);
897 ++reassignbufcalls;
900 * B_PAGING flagged buffers cannot be reassigned because their vp
901 * is not fully linked in.
903 if (bp->b_flags & B_PAGING)
904 panic("cannot reassign paging buffer");
906 lwkt_gettoken(&vlock, &vp->v_token);
907 if (bp->b_flags & B_DELWRI) {
909 * Move to the dirty list, add the vnode to the worklist
911 if (bp->b_flags & B_VNCLEAN) {
912 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
913 bp->b_flags &= ~B_VNCLEAN;
915 if ((bp->b_flags & B_VNDIRTY) == 0) {
916 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
917 panic("reassignbuf: dup lblk vp %p bp %p",
918 vp, bp);
920 bp->b_flags |= B_VNDIRTY;
922 if ((vp->v_flag & VONWORKLST) == 0) {
923 switch (vp->v_type) {
924 case VDIR:
925 delay = dirdelay;
926 break;
927 case VCHR:
928 case VBLK:
929 if (vp->v_rdev &&
930 vp->v_rdev->si_mountpoint != NULL) {
931 delay = metadelay;
932 break;
934 /* fall through */
935 default:
936 delay = filedelay;
938 vn_syncer_add_to_worklist(vp, delay);
940 } else {
942 * Move to the clean list, remove the vnode from the worklist
943 * if no dirty blocks remain.
945 if (bp->b_flags & B_VNDIRTY) {
946 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
947 bp->b_flags &= ~B_VNDIRTY;
949 if ((bp->b_flags & B_VNCLEAN) == 0) {
950 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
951 panic("reassignbuf: dup lblk vp %p bp %p",
952 vp, bp);
954 bp->b_flags |= B_VNCLEAN;
956 if ((vp->v_flag & VONWORKLST) &&
957 RB_EMPTY(&vp->v_rbdirty_tree)) {
958 vp->v_flag &= ~VONWORKLST;
959 LIST_REMOVE(vp, v_synclist);
962 lwkt_reltoken(&vlock);
966 * Create a vnode for a block device.
967 * Used for mounting the root file system.
969 extern struct vop_ops *devfs_vnode_dev_vops_p;
971 bdevvp(cdev_t dev, struct vnode **vpp)
973 struct vnode *vp;
974 struct vnode *nvp;
975 int error;
977 if (dev == NULL) {
978 *vpp = NULLVP;
979 return (ENXIO);
981 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
982 &nvp, 0, 0);
983 if (error) {
984 *vpp = NULLVP;
985 return (error);
987 vp = nvp;
988 vp->v_type = VCHR;
989 #if 0
990 vp->v_rdev = dev;
991 #endif
992 v_associate_rdev(vp, dev);
993 vp->v_umajor = dev->si_umajor;
994 vp->v_uminor = dev->si_uminor;
995 vx_unlock(vp);
996 *vpp = vp;
997 return (0);
1001 v_associate_rdev(struct vnode *vp, cdev_t dev)
1003 lwkt_tokref ilock;
1005 if (dev == NULL)
1006 return(ENXIO);
1007 if (dev_is_good(dev) == 0)
1008 return(ENXIO);
1009 KKASSERT(vp->v_rdev == NULL);
1010 vp->v_rdev = reference_dev(dev);
1011 lwkt_gettoken(&ilock, &spechash_token);
1012 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1013 lwkt_reltoken(&ilock);
1014 return(0);
1017 void
1018 v_release_rdev(struct vnode *vp)
1020 lwkt_tokref ilock;
1021 cdev_t dev;
1023 if ((dev = vp->v_rdev) != NULL) {
1024 lwkt_gettoken(&ilock, &spechash_token);
1025 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1026 vp->v_rdev = NULL;
1027 release_dev(dev);
1028 lwkt_reltoken(&ilock);
1033 * Add a vnode to the alias list hung off the cdev_t. We only associate
1034 * the device number with the vnode. The actual device is not associated
1035 * until the vnode is opened (usually in spec_open()), and will be
1036 * disassociated on last close.
1038 void
1039 addaliasu(struct vnode *nvp, int x, int y)
1041 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1042 panic("addaliasu on non-special vnode");
1043 nvp->v_umajor = x;
1044 nvp->v_uminor = y;
1048 * Simple call that a filesystem can make to try to get rid of a
1049 * vnode. It will fail if anyone is referencing the vnode (including
1050 * the caller).
1052 * The filesystem can check whether its in-memory inode structure still
1053 * references the vp on return.
1055 void
1056 vclean_unlocked(struct vnode *vp)
1058 vx_get(vp);
1059 if (sysref_isactive(&vp->v_sysref) == 0)
1060 vgone_vxlocked(vp);
1061 vx_put(vp);
1065 * Disassociate a vnode from its underlying filesystem.
1067 * The vnode must be VX locked and referenced. In all normal situations
1068 * there are no active references. If vclean_vxlocked() is called while
1069 * there are active references, the vnode is being ripped out and we have
1070 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1072 void
1073 vclean_vxlocked(struct vnode *vp, int flags)
1075 int active;
1076 int n;
1077 vm_object_t object;
1080 * If the vnode has already been reclaimed we have nothing to do.
1082 if (vp->v_flag & VRECLAIMED)
1083 return;
1084 vp->v_flag |= VRECLAIMED;
1087 * Scrap the vfs cache
1089 while (cache_inval_vp(vp, 0) != 0) {
1090 kprintf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1091 tsleep(vp, 0, "vclninv", 2);
1095 * Check to see if the vnode is in use. If so we have to reference it
1096 * before we clean it out so that its count cannot fall to zero and
1097 * generate a race against ourselves to recycle it.
1099 active = sysref_isactive(&vp->v_sysref);
1102 * Clean out any buffers associated with the vnode and destroy its
1103 * object, if it has one.
1105 vinvalbuf(vp, V_SAVE, 0, 0);
1108 * If purging an active vnode (typically during a forced unmount
1109 * or reboot), it must be closed and deactivated before being
1110 * reclaimed. This isn't really all that safe, but what can
1111 * we do? XXX.
1113 * Note that neither of these routines unlocks the vnode.
1115 if (active && (flags & DOCLOSE)) {
1116 while ((n = vp->v_opencount) != 0) {
1117 if (vp->v_writecount)
1118 VOP_CLOSE(vp, FWRITE|FNONBLOCK);
1119 else
1120 VOP_CLOSE(vp, FNONBLOCK);
1121 if (vp->v_opencount == n) {
1122 kprintf("Warning: unable to force-close"
1123 " vnode %p\n", vp);
1124 break;
1130 * If the vnode has not been deactivated, deactivated it. Deactivation
1131 * can create new buffers and VM pages so we have to call vinvalbuf()
1132 * again to make sure they all get flushed.
1134 * This can occur if a file with a link count of 0 needs to be
1135 * truncated.
1137 if ((vp->v_flag & VINACTIVE) == 0) {
1138 vp->v_flag |= VINACTIVE;
1139 VOP_INACTIVE(vp);
1140 vinvalbuf(vp, V_SAVE, 0, 0);
1144 * If the vnode has an object, destroy it.
1146 if ((object = vp->v_object) != NULL) {
1147 if (object->ref_count == 0) {
1148 if ((object->flags & OBJ_DEAD) == 0)
1149 vm_object_terminate(object);
1150 } else {
1151 vm_pager_deallocate(object);
1153 vp->v_flag &= ~VOBJBUF;
1155 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1158 * Reclaim the vnode.
1160 if (VOP_RECLAIM(vp))
1161 panic("vclean: cannot reclaim");
1164 * Done with purge, notify sleepers of the grim news.
1166 vp->v_ops = &dead_vnode_vops_p;
1167 vn_pollgone(vp);
1168 vp->v_tag = VT_NON;
1171 * If we are destroying an active vnode, reactivate it now that
1172 * we have reassociated it with deadfs. This prevents the system
1173 * from crashing on the vnode due to it being unexpectedly marked
1174 * as inactive or reclaimed.
1176 if (active && (flags & DOCLOSE)) {
1177 vp->v_flag &= ~(VINACTIVE|VRECLAIMED);
1182 * Eliminate all activity associated with the requested vnode
1183 * and with all vnodes aliased to the requested vnode.
1185 * The vnode must be referenced but should not be locked.
1188 vrevoke(struct vnode *vp, struct ucred *cred)
1190 struct vnode *vq;
1191 struct vnode *vqn;
1192 lwkt_tokref ilock;
1193 cdev_t dev;
1194 int error;
1197 * If the vnode has a device association, scrap all vnodes associated
1198 * with the device. Don't let the device disappear on us while we
1199 * are scrapping the vnodes.
1201 * The passed vp will probably show up in the list, do not VX lock
1202 * it twice!
1204 * Releasing the vnode's rdev here can mess up specfs's call to
1205 * device close, so don't do it. The vnode has been disassociated
1206 * and the device will be closed after the last ref on the related
1207 * fp goes away (if not still open by e.g. the kernel).
1209 if (vp->v_type != VCHR) {
1210 error = fdrevoke(vp, DTYPE_VNODE, cred);
1211 return (error);
1213 if ((dev = vp->v_rdev) == NULL) {
1214 return(0);
1216 reference_dev(dev);
1217 lwkt_gettoken(&ilock, &spechash_token);
1219 vqn = SLIST_FIRST(&dev->si_hlist);
1220 if (vqn)
1221 vref(vqn);
1222 while ((vq = vqn) != NULL) {
1223 vqn = SLIST_NEXT(vqn, v_cdevnext);
1224 if (vqn)
1225 vref(vqn);
1226 fdrevoke(vq, DTYPE_VNODE, cred);
1227 /*v_release_rdev(vq);*/
1228 vrele(vq);
1230 lwkt_reltoken(&ilock);
1231 dev_drevoke(dev);
1232 release_dev(dev);
1233 return (0);
1237 * This is called when the object underlying a vnode is being destroyed,
1238 * such as in a remove(). Try to recycle the vnode immediately if the
1239 * only active reference is our reference.
1241 * Directory vnodes in the namecache with children cannot be immediately
1242 * recycled because numerous VOP_N*() ops require them to be stable.
1245 vrecycle(struct vnode *vp)
1247 if (vp->v_sysref.refcnt <= 1) {
1248 if (cache_inval_vp_nonblock(vp))
1249 return(0);
1250 vgone_vxlocked(vp);
1251 return (1);
1253 return (0);
1257 * Return the maximum I/O size allowed for strategy calls on VP.
1259 * If vp is VCHR or VBLK we dive the device, otherwise we use
1260 * the vp's mount info.
1263 vmaxiosize(struct vnode *vp)
1265 if (vp->v_type == VBLK || vp->v_type == VCHR) {
1266 return(vp->v_rdev->si_iosize_max);
1267 } else {
1268 return(vp->v_mount->mnt_iosize_max);
1273 * Eliminate all activity associated with a vnode in preparation for reuse.
1275 * The vnode must be VX locked and refd and will remain VX locked and refd
1276 * on return. This routine may be called with the vnode in any state, as
1277 * long as it is VX locked. The vnode will be cleaned out and marked
1278 * VRECLAIMED but will not actually be reused until all existing refs and
1279 * holds go away.
1281 * NOTE: This routine may be called on a vnode which has not yet been
1282 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1283 * already been reclaimed.
1285 * This routine is not responsible for placing us back on the freelist.
1286 * Instead, it happens automatically when the caller releases the VX lock
1287 * (assuming there aren't any other references).
1290 void
1291 vgone_vxlocked(struct vnode *vp)
1294 * assert that the VX lock is held. This is an absolute requirement
1295 * now for vgone_vxlocked() to be called.
1297 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1300 * Clean out the filesystem specific data and set the VRECLAIMED
1301 * bit. Also deactivate the vnode if necessary.
1303 vclean_vxlocked(vp, DOCLOSE);
1306 * Delete from old mount point vnode list, if on one.
1308 if (vp->v_mount != NULL)
1309 insmntque(vp, NULL);
1312 * If special device, remove it from special device alias list
1313 * if it is on one. This should normally only occur if a vnode is
1314 * being revoked as the device should otherwise have been released
1315 * naturally.
1317 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1318 v_release_rdev(vp);
1322 * Set us to VBAD
1324 vp->v_type = VBAD;
1328 * Lookup a vnode by device number.
1330 * Returns non-zero and *vpp set to a vref'd vnode on success.
1331 * Returns zero on failure.
1334 vfinddev(cdev_t dev, enum vtype type, struct vnode **vpp)
1336 lwkt_tokref ilock;
1337 struct vnode *vp;
1339 lwkt_gettoken(&ilock, &spechash_token);
1340 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1341 if (type == vp->v_type) {
1342 *vpp = vp;
1343 vref(vp);
1344 lwkt_reltoken(&ilock);
1345 return (1);
1348 lwkt_reltoken(&ilock);
1349 return (0);
1353 * Calculate the total number of references to a special device. This
1354 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1355 * an overloaded field. Since udev2dev can now return NULL, we have
1356 * to check for a NULL v_rdev.
1359 count_dev(cdev_t dev)
1361 lwkt_tokref ilock;
1362 struct vnode *vp;
1363 int count = 0;
1365 if (SLIST_FIRST(&dev->si_hlist)) {
1366 lwkt_gettoken(&ilock, &spechash_token);
1367 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1368 count += vp->v_opencount;
1370 lwkt_reltoken(&ilock);
1372 return(count);
1376 vcount(struct vnode *vp)
1378 if (vp->v_rdev == NULL)
1379 return(0);
1380 return(count_dev(vp->v_rdev));
1384 * Initialize VMIO for a vnode. This routine MUST be called before a
1385 * VFS can issue buffer cache ops on a vnode. It is typically called
1386 * when a vnode is initialized from its inode.
1389 vinitvmio(struct vnode *vp, off_t filesize)
1391 vm_object_t object;
1392 int error = 0;
1394 retry:
1395 if ((object = vp->v_object) == NULL) {
1396 object = vnode_pager_alloc(vp, filesize, 0, 0);
1398 * Dereference the reference we just created. This assumes
1399 * that the object is associated with the vp.
1401 object->ref_count--;
1402 vrele(vp);
1403 } else {
1404 if (object->flags & OBJ_DEAD) {
1405 vn_unlock(vp);
1406 vm_object_dead_sleep(object, "vodead");
1407 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1408 goto retry;
1411 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1412 vp->v_flag |= VOBJBUF;
1413 return (error);
1418 * Print out a description of a vnode.
1420 static char *typename[] =
1421 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1423 void
1424 vprint(char *label, struct vnode *vp)
1426 char buf[96];
1428 if (label != NULL)
1429 kprintf("%s: %p: ", label, (void *)vp);
1430 else
1431 kprintf("%p: ", (void *)vp);
1432 kprintf("type %s, sysrefs %d, writecount %d, holdcnt %d,",
1433 typename[vp->v_type],
1434 vp->v_sysref.refcnt, vp->v_writecount, vp->v_auxrefs);
1435 buf[0] = '\0';
1436 if (vp->v_flag & VROOT)
1437 strcat(buf, "|VROOT");
1438 if (vp->v_flag & VPFSROOT)
1439 strcat(buf, "|VPFSROOT");
1440 if (vp->v_flag & VTEXT)
1441 strcat(buf, "|VTEXT");
1442 if (vp->v_flag & VSYSTEM)
1443 strcat(buf, "|VSYSTEM");
1444 if (vp->v_flag & VFREE)
1445 strcat(buf, "|VFREE");
1446 if (vp->v_flag & VOBJBUF)
1447 strcat(buf, "|VOBJBUF");
1448 if (buf[0] != '\0')
1449 kprintf(" flags (%s)", &buf[1]);
1450 if (vp->v_data == NULL) {
1451 kprintf("\n");
1452 } else {
1453 kprintf("\n\t");
1454 VOP_PRINT(vp);
1458 #ifdef DDB
1459 #include <ddb/ddb.h>
1461 static int db_show_locked_vnodes(struct mount *mp, void *data);
1464 * List all of the locked vnodes in the system.
1465 * Called when debugging the kernel.
1467 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1469 kprintf("Locked vnodes\n");
1470 mountlist_scan(db_show_locked_vnodes, NULL,
1471 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1474 static int
1475 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1477 struct vnode *vp;
1479 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1480 if (vn_islocked(vp))
1481 vprint(NULL, vp);
1483 return(0);
1485 #endif
1488 * Top level filesystem related information gathering.
1490 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1492 static int
1493 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1495 int *name = (int *)arg1 - 1; /* XXX */
1496 u_int namelen = arg2 + 1; /* XXX */
1497 struct vfsconf *vfsp;
1498 int maxtypenum;
1500 #if 1 || defined(COMPAT_PRELITE2)
1501 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1502 if (namelen == 1)
1503 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1504 #endif
1506 #ifdef notyet
1507 /* all sysctl names at this level are at least name and field */
1508 if (namelen < 2)
1509 return (ENOTDIR); /* overloaded */
1510 if (name[0] != VFS_GENERIC) {
1511 vfsp = vfsconf_find_by_typenum(name[0]);
1512 if (vfsp == NULL)
1513 return (EOPNOTSUPP);
1514 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1515 oldp, oldlenp, newp, newlen, p));
1517 #endif
1518 switch (name[1]) {
1519 case VFS_MAXTYPENUM:
1520 if (namelen != 2)
1521 return (ENOTDIR);
1522 maxtypenum = vfsconf_get_maxtypenum();
1523 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1524 case VFS_CONF:
1525 if (namelen != 3)
1526 return (ENOTDIR); /* overloaded */
1527 vfsp = vfsconf_find_by_typenum(name[2]);
1528 if (vfsp == NULL)
1529 return (EOPNOTSUPP);
1530 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1532 return (EOPNOTSUPP);
1535 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1536 "Generic filesystem");
1538 #if 1 || defined(COMPAT_PRELITE2)
1540 static int
1541 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1543 int error;
1544 struct ovfsconf ovfs;
1545 struct sysctl_req *req = (struct sysctl_req*) data;
1547 bzero(&ovfs, sizeof(ovfs));
1548 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1549 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1550 ovfs.vfc_index = vfsp->vfc_typenum;
1551 ovfs.vfc_refcount = vfsp->vfc_refcount;
1552 ovfs.vfc_flags = vfsp->vfc_flags;
1553 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1554 if (error)
1555 return error; /* abort iteration with error code */
1556 else
1557 return 0; /* continue iterating with next element */
1560 static int
1561 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1563 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1566 #endif /* 1 || COMPAT_PRELITE2 */
1569 * Check to see if a filesystem is mounted on a block device.
1572 vfs_mountedon(struct vnode *vp)
1574 cdev_t dev;
1576 if ((dev = vp->v_rdev) == NULL) {
1577 /* if (vp->v_type != VBLK)
1578 dev = get_dev(vp->v_uminor, vp->v_umajor); */
1580 if (dev != NULL && dev->si_mountpoint)
1581 return (EBUSY);
1582 return (0);
1586 * Unmount all filesystems. The list is traversed in reverse order
1587 * of mounting to avoid dependencies.
1590 static int vfs_umountall_callback(struct mount *mp, void *data);
1592 void
1593 vfs_unmountall(void)
1595 int count;
1597 do {
1598 count = mountlist_scan(vfs_umountall_callback,
1599 NULL, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1600 } while (count);
1603 static
1605 vfs_umountall_callback(struct mount *mp, void *data)
1607 int error;
1609 error = dounmount(mp, MNT_FORCE);
1610 if (error) {
1611 mountlist_remove(mp);
1612 kprintf("unmount of filesystem mounted from %s failed (",
1613 mp->mnt_stat.f_mntfromname);
1614 if (error == EBUSY)
1615 kprintf("BUSY)\n");
1616 else
1617 kprintf("%d)\n", error);
1619 return(1);
1623 * Checks the mount flags for parameter mp and put the names comma-separated
1624 * into a string buffer buf with a size limit specified by len.
1626 * It returns the number of bytes written into buf, and (*errorp) will be
1627 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1628 * not large enough). The buffer will be 0-terminated if len was not 0.
1630 size_t
1631 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1632 char *buf, size_t len, int *errorp)
1634 static const struct mountctl_opt optnames[] = {
1635 { MNT_ASYNC, "asynchronous" },
1636 { MNT_EXPORTED, "NFS exported" },
1637 { MNT_LOCAL, "local" },
1638 { MNT_NOATIME, "noatime" },
1639 { MNT_NODEV, "nodev" },
1640 { MNT_NOEXEC, "noexec" },
1641 { MNT_NOSUID, "nosuid" },
1642 { MNT_NOSYMFOLLOW, "nosymfollow" },
1643 { MNT_QUOTA, "with-quotas" },
1644 { MNT_RDONLY, "read-only" },
1645 { MNT_SYNCHRONOUS, "synchronous" },
1646 { MNT_UNION, "union" },
1647 { MNT_NOCLUSTERR, "noclusterr" },
1648 { MNT_NOCLUSTERW, "noclusterw" },
1649 { MNT_SUIDDIR, "suiddir" },
1650 { MNT_SOFTDEP, "soft-updates" },
1651 { MNT_IGNORE, "ignore" },
1652 { 0, NULL}
1654 int bwritten;
1655 int bleft;
1656 int optlen;
1657 int actsize;
1659 *errorp = 0;
1660 bwritten = 0;
1661 bleft = len - 1; /* leave room for trailing \0 */
1664 * Checks the size of the string. If it contains
1665 * any data, then we will append the new flags to
1666 * it.
1668 actsize = strlen(buf);
1669 if (actsize > 0)
1670 buf += actsize;
1672 /* Default flags if no flags passed */
1673 if (optp == NULL)
1674 optp = optnames;
1676 if (bleft < 0) { /* degenerate case, 0-length buffer */
1677 *errorp = EINVAL;
1678 return(0);
1681 for (; flags && optp->o_opt; ++optp) {
1682 if ((flags & optp->o_opt) == 0)
1683 continue;
1684 optlen = strlen(optp->o_name);
1685 if (bwritten || actsize > 0) {
1686 if (bleft < 2) {
1687 *errorp = ENOSPC;
1688 break;
1690 buf[bwritten++] = ',';
1691 buf[bwritten++] = ' ';
1692 bleft -= 2;
1694 if (bleft < optlen) {
1695 *errorp = ENOSPC;
1696 break;
1698 bcopy(optp->o_name, buf + bwritten, optlen);
1699 bwritten += optlen;
1700 bleft -= optlen;
1701 flags &= ~optp->o_opt;
1705 * Space already reserved for trailing \0
1707 buf[bwritten] = 0;
1708 return (bwritten);
1712 * Build hash lists of net addresses and hang them off the mount point.
1713 * Called by ufs_mount() to set up the lists of export addresses.
1715 static int
1716 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1717 const struct export_args *argp)
1719 struct netcred *np;
1720 struct radix_node_head *rnh;
1721 int i;
1722 struct radix_node *rn;
1723 struct sockaddr *saddr, *smask = 0;
1724 struct domain *dom;
1725 int error;
1727 if (argp->ex_addrlen == 0) {
1728 if (mp->mnt_flag & MNT_DEFEXPORTED)
1729 return (EPERM);
1730 np = &nep->ne_defexported;
1731 np->netc_exflags = argp->ex_flags;
1732 np->netc_anon = argp->ex_anon;
1733 np->netc_anon.cr_ref = 1;
1734 mp->mnt_flag |= MNT_DEFEXPORTED;
1735 return (0);
1738 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1739 return (EINVAL);
1740 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1741 return (EINVAL);
1743 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1744 np = (struct netcred *) kmalloc(i, M_NETADDR, M_WAITOK | M_ZERO);
1745 saddr = (struct sockaddr *) (np + 1);
1746 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1747 goto out;
1748 if (saddr->sa_len > argp->ex_addrlen)
1749 saddr->sa_len = argp->ex_addrlen;
1750 if (argp->ex_masklen) {
1751 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1752 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1753 if (error)
1754 goto out;
1755 if (smask->sa_len > argp->ex_masklen)
1756 smask->sa_len = argp->ex_masklen;
1758 i = saddr->sa_family;
1759 if ((rnh = nep->ne_rtable[i]) == 0) {
1761 * Seems silly to initialize every AF when most are not used,
1762 * do so on demand here
1764 SLIST_FOREACH(dom, &domains, dom_next)
1765 if (dom->dom_family == i && dom->dom_rtattach) {
1766 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1767 dom->dom_rtoffset);
1768 break;
1770 if ((rnh = nep->ne_rtable[i]) == 0) {
1771 error = ENOBUFS;
1772 goto out;
1775 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1776 np->netc_rnodes);
1777 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1778 error = EPERM;
1779 goto out;
1781 np->netc_exflags = argp->ex_flags;
1782 np->netc_anon = argp->ex_anon;
1783 np->netc_anon.cr_ref = 1;
1784 return (0);
1785 out:
1786 kfree(np, M_NETADDR);
1787 return (error);
1790 /* ARGSUSED */
1791 static int
1792 vfs_free_netcred(struct radix_node *rn, void *w)
1794 struct radix_node_head *rnh = (struct radix_node_head *) w;
1796 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1797 kfree((caddr_t) rn, M_NETADDR);
1798 return (0);
1802 * Free the net address hash lists that are hanging off the mount points.
1804 static void
1805 vfs_free_addrlist(struct netexport *nep)
1807 int i;
1808 struct radix_node_head *rnh;
1810 for (i = 0; i <= AF_MAX; i++)
1811 if ((rnh = nep->ne_rtable[i])) {
1812 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1813 (caddr_t) rnh);
1814 kfree((caddr_t) rnh, M_RTABLE);
1815 nep->ne_rtable[i] = 0;
1820 vfs_export(struct mount *mp, struct netexport *nep,
1821 const struct export_args *argp)
1823 int error;
1825 if (argp->ex_flags & MNT_DELEXPORT) {
1826 if (mp->mnt_flag & MNT_EXPUBLIC) {
1827 vfs_setpublicfs(NULL, NULL, NULL);
1828 mp->mnt_flag &= ~MNT_EXPUBLIC;
1830 vfs_free_addrlist(nep);
1831 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1833 if (argp->ex_flags & MNT_EXPORTED) {
1834 if (argp->ex_flags & MNT_EXPUBLIC) {
1835 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1836 return (error);
1837 mp->mnt_flag |= MNT_EXPUBLIC;
1839 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1840 return (error);
1841 mp->mnt_flag |= MNT_EXPORTED;
1843 return (0);
1848 * Set the publicly exported filesystem (WebNFS). Currently, only
1849 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1852 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1853 const struct export_args *argp)
1855 int error;
1856 struct vnode *rvp;
1857 char *cp;
1860 * mp == NULL -> invalidate the current info, the FS is
1861 * no longer exported. May be called from either vfs_export
1862 * or unmount, so check if it hasn't already been done.
1864 if (mp == NULL) {
1865 if (nfs_pub.np_valid) {
1866 nfs_pub.np_valid = 0;
1867 if (nfs_pub.np_index != NULL) {
1868 FREE(nfs_pub.np_index, M_TEMP);
1869 nfs_pub.np_index = NULL;
1872 return (0);
1876 * Only one allowed at a time.
1878 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1879 return (EBUSY);
1882 * Get real filehandle for root of exported FS.
1884 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1885 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1887 if ((error = VFS_ROOT(mp, &rvp)))
1888 return (error);
1890 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1891 return (error);
1893 vput(rvp);
1896 * If an indexfile was specified, pull it in.
1898 if (argp->ex_indexfile != NULL) {
1899 int namelen;
1901 error = vn_get_namelen(rvp, &namelen);
1902 if (error)
1903 return (error);
1904 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1905 M_WAITOK);
1906 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1907 namelen, NULL);
1908 if (!error) {
1910 * Check for illegal filenames.
1912 for (cp = nfs_pub.np_index; *cp; cp++) {
1913 if (*cp == '/') {
1914 error = EINVAL;
1915 break;
1919 if (error) {
1920 FREE(nfs_pub.np_index, M_TEMP);
1921 return (error);
1925 nfs_pub.np_mount = mp;
1926 nfs_pub.np_valid = 1;
1927 return (0);
1930 struct netcred *
1931 vfs_export_lookup(struct mount *mp, struct netexport *nep,
1932 struct sockaddr *nam)
1934 struct netcred *np;
1935 struct radix_node_head *rnh;
1936 struct sockaddr *saddr;
1938 np = NULL;
1939 if (mp->mnt_flag & MNT_EXPORTED) {
1941 * Lookup in the export list first.
1943 if (nam != NULL) {
1944 saddr = nam;
1945 rnh = nep->ne_rtable[saddr->sa_family];
1946 if (rnh != NULL) {
1947 np = (struct netcred *)
1948 (*rnh->rnh_matchaddr)((char *)saddr,
1949 rnh);
1950 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1951 np = NULL;
1955 * If no address match, use the default if it exists.
1957 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1958 np = &nep->ne_defexported;
1960 return (np);
1964 * perform msync on all vnodes under a mount point. The mount point must
1965 * be locked. This code is also responsible for lazy-freeing unreferenced
1966 * vnodes whos VM objects no longer contain pages.
1968 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1970 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
1971 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
1972 * way up in this high level function.
1974 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1975 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1977 void
1978 vfs_msync(struct mount *mp, int flags)
1980 int vmsc_flags;
1982 vmsc_flags = VMSC_GETVP;
1983 if (flags != MNT_WAIT)
1984 vmsc_flags |= VMSC_NOWAIT;
1985 vmntvnodescan(mp, vmsc_flags, vfs_msync_scan1, vfs_msync_scan2,
1986 (void *)(intptr_t)flags);
1990 * scan1 is a fast pre-check. There could be hundreds of thousands of
1991 * vnodes, we cannot afford to do anything heavy weight until we have a
1992 * fairly good indication that there is work to do.
1994 static
1996 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1998 int flags = (int)(intptr_t)data;
2000 if ((vp->v_flag & VRECLAIMED) == 0) {
2001 if (vshouldmsync(vp))
2002 return(0); /* call scan2 */
2003 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2004 (vp->v_flag & VOBJDIRTY) &&
2005 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2006 return(0); /* call scan2 */
2011 * do not call scan2, continue the loop
2013 return(-1);
2017 * This callback is handed a locked vnode.
2019 static
2021 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2023 vm_object_t obj;
2024 int flags = (int)(intptr_t)data;
2026 if (vp->v_flag & VRECLAIMED)
2027 return(0);
2029 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2030 if ((obj = vp->v_object) != NULL) {
2031 vm_object_page_clean(obj, 0, 0,
2032 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2035 return(0);
2039 * Record a process's interest in events which might happen to
2040 * a vnode. Because poll uses the historic select-style interface
2041 * internally, this routine serves as both the ``check for any
2042 * pending events'' and the ``record my interest in future events''
2043 * functions. (These are done together, while the lock is held,
2044 * to avoid race conditions.)
2047 vn_pollrecord(struct vnode *vp, int events)
2049 lwkt_tokref vlock;
2051 KKASSERT(curthread->td_proc != NULL);
2053 lwkt_gettoken(&vlock, &vp->v_token);
2054 if (vp->v_pollinfo.vpi_revents & events) {
2056 * This leaves events we are not interested
2057 * in available for the other process which
2058 * which presumably had requested them
2059 * (otherwise they would never have been
2060 * recorded).
2062 events &= vp->v_pollinfo.vpi_revents;
2063 vp->v_pollinfo.vpi_revents &= ~events;
2065 lwkt_reltoken(&vlock);
2066 return events;
2068 vp->v_pollinfo.vpi_events |= events;
2069 selrecord(curthread, &vp->v_pollinfo.vpi_selinfo);
2070 lwkt_reltoken(&vlock);
2071 return 0;
2075 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2076 * it is possible for us to miss an event due to race conditions, but
2077 * that condition is expected to be rare, so for the moment it is the
2078 * preferred interface.
2080 void
2081 vn_pollevent(struct vnode *vp, int events)
2083 lwkt_tokref vlock;
2085 lwkt_gettoken(&vlock, &vp->v_token);
2086 if (vp->v_pollinfo.vpi_events & events) {
2088 * We clear vpi_events so that we don't
2089 * call selwakeup() twice if two events are
2090 * posted before the polling process(es) is
2091 * awakened. This also ensures that we take at
2092 * most one selwakeup() if the polling process
2093 * is no longer interested. However, it does
2094 * mean that only one event can be noticed at
2095 * a time. (Perhaps we should only clear those
2096 * event bits which we note?) XXX
2098 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2099 vp->v_pollinfo.vpi_revents |= events;
2100 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2102 lwkt_reltoken(&vlock);
2106 * Wake up anyone polling on vp because it is being revoked.
2107 * This depends on dead_poll() returning POLLHUP for correct
2108 * behavior.
2110 void
2111 vn_pollgone(struct vnode *vp)
2113 lwkt_tokref vlock;
2115 lwkt_gettoken(&vlock, &vp->v_token);
2116 if (vp->v_pollinfo.vpi_events) {
2117 vp->v_pollinfo.vpi_events = 0;
2118 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2120 lwkt_reltoken(&vlock);
2124 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2125 * (or v_rdev might be NULL).
2127 cdev_t
2128 vn_todev(struct vnode *vp)
2130 if (vp->v_type != VBLK && vp->v_type != VCHR)
2131 return (NULL);
2132 KKASSERT(vp->v_rdev != NULL);
2133 return (vp->v_rdev);
2137 * Check if vnode represents a disk device. The vnode does not need to be
2138 * opened.
2140 * MPALMOSTSAFE
2143 vn_isdisk(struct vnode *vp, int *errp)
2145 cdev_t dev;
2147 if (vp->v_type != VCHR) {
2148 if (errp != NULL)
2149 *errp = ENOTBLK;
2150 return (0);
2153 dev = vp->v_rdev;
2155 if (dev == NULL) {
2156 if (errp != NULL)
2157 *errp = ENXIO;
2158 return (0);
2160 if (dev_is_good(dev) == 0) {
2161 if (errp != NULL)
2162 *errp = ENXIO;
2163 return (0);
2165 if ((dev_dflags(dev) & D_DISK) == 0) {
2166 if (errp != NULL)
2167 *errp = ENOTBLK;
2168 return (0);
2170 if (errp != NULL)
2171 *errp = 0;
2172 return (1);
2176 vn_get_namelen(struct vnode *vp, int *namelen)
2178 int error;
2179 register_t retval[2];
2181 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2182 if (error)
2183 return (error);
2184 *namelen = (int)retval[0];
2185 return (0);
2189 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2190 uint16_t d_namlen, const char *d_name)
2192 struct dirent *dp;
2193 size_t len;
2195 len = _DIRENT_RECLEN(d_namlen);
2196 if (len > uio->uio_resid)
2197 return(1);
2199 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2201 dp->d_ino = d_ino;
2202 dp->d_namlen = d_namlen;
2203 dp->d_type = d_type;
2204 bcopy(d_name, dp->d_name, d_namlen);
2206 *error = uiomove((caddr_t)dp, len, uio);
2208 kfree(dp, M_TEMP);
2210 return(0);
2213 void
2214 vn_mark_atime(struct vnode *vp, struct thread *td)
2216 struct proc *p = td->td_proc;
2217 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2219 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2220 VOP_MARKATIME(vp, cred);