iscontrol(8): Fix synopsis, sync usage() & improve markup
[dragonfly.git] / sys / kern / vfs_cache.c
blobbfdd17d21a7e48b638c4e6811696222129a5eeae
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the University of
51 * California, Berkeley and its contributors.
52 * 4. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
68 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
69 * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70 * $DragonFly: src/sys/kern/vfs_cache.c,v 1.91 2008/06/14 05:34:06 dillon Exp $
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
91 #include <sys/sysref2.h>
93 #define MAX_RECURSION_DEPTH 64
96 * Random lookups in the cache are accomplished with a hash table using
97 * a hash key of (nc_src_vp, name).
99 * Negative entries may exist and correspond to structures where nc_vp
100 * is NULL. In a negative entry, NCF_WHITEOUT will be set if the entry
101 * corresponds to a whited-out directory entry (verses simply not finding the
102 * entry at all).
104 * Upon reaching the last segment of a path, if the reference is for DELETE,
105 * or NOCACHE is set (rewrite), and the name is located in the cache, it
106 * will be dropped.
110 * Structures associated with name cacheing.
112 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
113 #define MINNEG 1024
115 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
117 static LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
118 static struct namecache_list ncneglist; /* instead of vnode */
121 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
122 * to create the namecache infrastructure leading to a dangling vnode.
124 * 0 Only errors are reported
125 * 1 Successes are reported
126 * 2 Successes + the whole directory scan is reported
127 * 3 Force the directory scan code run as if the parent vnode did not
128 * have a namecache record, even if it does have one.
130 static int ncvp_debug;
131 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
133 static u_long nchash; /* size of hash table */
134 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
136 static u_long ncnegfactor = 16; /* ratio of negative entries */
137 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
139 static int nclockwarn; /* warn on locked entries in ticks */
140 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
142 static u_long numneg; /* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
145 static u_long numcache; /* number of cache entries allocated */
146 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
148 static u_long numunres; /* number of unresolved entries */
149 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
151 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
152 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
154 static int cache_resolve_mp(struct mount *mp);
155 static struct vnode *cache_dvpref(struct namecache *ncp);
156 static void _cache_rehash(struct namecache *ncp);
157 static void _cache_lock(struct namecache *ncp);
158 static void _cache_setunresolved(struct namecache *ncp);
161 * The new name cache statistics
163 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
164 #define STATNODE(mode, name, var) \
165 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
166 STATNODE(CTLFLAG_RD, numneg, &numneg);
167 STATNODE(CTLFLAG_RD, numcache, &numcache);
168 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
169 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
170 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
171 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
172 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
173 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
174 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
175 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
176 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
177 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
179 struct nchstats nchstats[SMP_MAXCPU];
181 * Export VFS cache effectiveness statistics to user-land.
183 * The statistics are left for aggregation to user-land so
184 * neat things can be achieved, like observing per-CPU cache
185 * distribution.
187 static int
188 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
190 struct globaldata *gd;
191 int i, error;
193 error = 0;
194 for (i = 0; i < ncpus; ++i) {
195 gd = globaldata_find(i);
196 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
197 sizeof(struct nchstats))))
198 break;
201 return (error);
203 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
204 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
206 static void cache_zap(struct namecache *ncp);
209 * cache_hold() and cache_drop() prevent the premature deletion of a
210 * namecache entry but do not prevent operations (such as zapping) on
211 * that namecache entry.
213 * This routine may only be called from outside this source module if
214 * nc_refs is already at least 1.
216 * This is a rare case where callers are allowed to hold a spinlock,
217 * so we can't ourselves.
219 static __inline
220 struct namecache *
221 _cache_hold(struct namecache *ncp)
223 atomic_add_int(&ncp->nc_refs, 1);
224 return(ncp);
228 * When dropping an entry, if only one ref remains and the entry has not
229 * been resolved, zap it. Since the one reference is being dropped the
230 * entry had better not be locked.
232 static __inline
233 void
234 _cache_drop(struct namecache *ncp)
236 KKASSERT(ncp->nc_refs > 0);
237 if (ncp->nc_refs == 1 &&
238 (ncp->nc_flag & NCF_UNRESOLVED) &&
239 TAILQ_EMPTY(&ncp->nc_list)
241 KKASSERT(ncp->nc_exlocks == 0);
242 _cache_lock(ncp);
243 cache_zap(ncp);
244 } else {
245 atomic_subtract_int(&ncp->nc_refs, 1);
250 * Link a new namecache entry to its parent. Be careful to avoid races
251 * if vhold() blocks in the future.
253 static void
254 cache_link_parent(struct namecache *ncp, struct namecache *par)
256 KKASSERT(ncp->nc_parent == NULL);
257 ncp->nc_parent = par;
258 if (TAILQ_EMPTY(&par->nc_list)) {
259 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
261 * Any vp associated with an ncp which has children must
262 * be held to prevent it from being recycled.
264 if (par->nc_vp)
265 vhold(par->nc_vp);
266 } else {
267 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
272 * Remove the parent association from a namecache structure. If this is
273 * the last child of the parent the cache_drop(par) will attempt to
274 * recursively zap the parent.
276 static void
277 cache_unlink_parent(struct namecache *ncp)
279 struct namecache *par;
281 if ((par = ncp->nc_parent) != NULL) {
282 ncp->nc_parent = NULL;
283 par = _cache_hold(par);
284 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
285 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
286 vdrop(par->nc_vp);
287 _cache_drop(par);
292 * Allocate a new namecache structure. Most of the code does not require
293 * zero-termination of the string but it makes vop_compat_ncreate() easier.
295 static struct namecache *
296 cache_alloc(int nlen)
298 struct namecache *ncp;
300 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
301 if (nlen)
302 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
303 ncp->nc_nlen = nlen;
304 ncp->nc_flag = NCF_UNRESOLVED;
305 ncp->nc_error = ENOTCONN; /* needs to be resolved */
306 ncp->nc_refs = 1;
309 * Construct a fake FSMID based on the time of day and a 32 bit
310 * roller for uniqueness. This is used to generate a useful
311 * FSMID for filesystems which do not support it.
313 ncp->nc_fsmid = cache_getnewfsmid();
314 TAILQ_INIT(&ncp->nc_list);
315 _cache_lock(ncp);
316 return(ncp);
319 static void
320 _cache_free(struct namecache *ncp)
322 KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
323 if (ncp->nc_name)
324 kfree(ncp->nc_name, M_VFSCACHE);
325 kfree(ncp, M_VFSCACHE);
328 void
329 cache_zero(struct nchandle *nch)
331 nch->ncp = NULL;
332 nch->mount = NULL;
336 * Ref and deref a namecache structure.
338 * Warning: caller may hold an unrelated read spinlock, which means we can't
339 * use read spinlocks here.
341 struct nchandle *
342 cache_hold(struct nchandle *nch)
344 _cache_hold(nch->ncp);
345 ++nch->mount->mnt_refs;
346 return(nch);
349 void
350 cache_copy(struct nchandle *nch, struct nchandle *target)
352 *target = *nch;
353 _cache_hold(target->ncp);
354 ++nch->mount->mnt_refs;
357 void
358 cache_changemount(struct nchandle *nch, struct mount *mp)
360 --nch->mount->mnt_refs;
361 nch->mount = mp;
362 ++nch->mount->mnt_refs;
365 void
366 cache_drop(struct nchandle *nch)
368 --nch->mount->mnt_refs;
369 _cache_drop(nch->ncp);
370 nch->ncp = NULL;
371 nch->mount = NULL;
375 * Namespace locking. The caller must already hold a reference to the
376 * namecache structure in order to lock/unlock it. This function prevents
377 * the namespace from being created or destroyed by accessors other then
378 * the lock holder.
380 * Note that holding a locked namecache structure prevents other threads
381 * from making namespace changes (e.g. deleting or creating), prevents
382 * vnode association state changes by other threads, and prevents the
383 * namecache entry from being resolved or unresolved by other threads.
385 * The lock owner has full authority to associate/disassociate vnodes
386 * and resolve/unresolve the locked ncp.
388 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
389 * or recycled, but it does NOT help you if the vnode had already initiated
390 * a recyclement. If this is important, use cache_get() rather then
391 * cache_lock() (and deal with the differences in the way the refs counter
392 * is handled). Or, alternatively, make an unconditional call to
393 * cache_validate() or cache_resolve() after cache_lock() returns.
395 static
396 void
397 _cache_lock(struct namecache *ncp)
399 thread_t td;
400 int didwarn;
402 KKASSERT(ncp->nc_refs != 0);
403 didwarn = 0;
404 td = curthread;
406 for (;;) {
407 if (ncp->nc_exlocks == 0) {
408 ncp->nc_exlocks = 1;
409 ncp->nc_locktd = td;
411 * The vp associated with a locked ncp must be held
412 * to prevent it from being recycled (which would
413 * cause the ncp to become unresolved).
415 * WARNING! If VRECLAIMED is set the vnode could
416 * already be in the middle of a recycle. Callers
417 * should not assume that nc_vp is usable when
418 * not NULL. cache_vref() or cache_vget() must be
419 * called.
421 * XXX loop on race for later MPSAFE work.
423 if (ncp->nc_vp)
424 vhold(ncp->nc_vp);
425 break;
427 if (ncp->nc_locktd == td) {
428 ++ncp->nc_exlocks;
429 break;
431 ncp->nc_flag |= NCF_LOCKREQ;
432 if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
433 if (didwarn)
434 continue;
435 didwarn = 1;
436 kprintf("[diagnostic] cache_lock: blocked on %p", ncp);
437 kprintf(" \"%*.*s\"\n",
438 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
442 if (didwarn == 1) {
443 kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
444 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
448 void
449 cache_lock(struct nchandle *nch)
451 _cache_lock(nch->ncp);
454 static
456 _cache_lock_nonblock(struct namecache *ncp)
458 thread_t td;
460 KKASSERT(ncp->nc_refs != 0);
461 td = curthread;
462 if (ncp->nc_exlocks == 0) {
463 ncp->nc_exlocks = 1;
464 ncp->nc_locktd = td;
466 * The vp associated with a locked ncp must be held
467 * to prevent it from being recycled (which would
468 * cause the ncp to become unresolved).
470 * WARNING! If VRECLAIMED is set the vnode could
471 * already be in the middle of a recycle. Callers
472 * should not assume that nc_vp is usable when
473 * not NULL. cache_vref() or cache_vget() must be
474 * called.
476 * XXX loop on race for later MPSAFE work.
478 if (ncp->nc_vp)
479 vhold(ncp->nc_vp);
480 return(0);
481 } else {
482 return(EWOULDBLOCK);
487 cache_lock_nonblock(struct nchandle *nch)
489 return(_cache_lock_nonblock(nch->ncp));
492 static
493 void
494 _cache_unlock(struct namecache *ncp)
496 thread_t td = curthread;
498 KKASSERT(ncp->nc_refs > 0);
499 KKASSERT(ncp->nc_exlocks > 0);
500 KKASSERT(ncp->nc_locktd == td);
501 if (--ncp->nc_exlocks == 0) {
502 if (ncp->nc_vp)
503 vdrop(ncp->nc_vp);
504 ncp->nc_locktd = NULL;
505 if (ncp->nc_flag & NCF_LOCKREQ) {
506 ncp->nc_flag &= ~NCF_LOCKREQ;
507 wakeup(ncp);
512 void
513 cache_unlock(struct nchandle *nch)
515 _cache_unlock(nch->ncp);
519 * ref-and-lock, unlock-and-deref functions.
521 * This function is primarily used by nlookup. Even though cache_lock
522 * holds the vnode, it is possible that the vnode may have already
523 * initiated a recyclement. We want cache_get() to return a definitively
524 * usable vnode or a definitively unresolved ncp.
526 static
527 struct namecache *
528 _cache_get(struct namecache *ncp)
530 _cache_hold(ncp);
531 _cache_lock(ncp);
532 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
533 _cache_setunresolved(ncp);
534 return(ncp);
538 * note: the same nchandle can be passed for both arguments.
540 void
541 cache_get(struct nchandle *nch, struct nchandle *target)
543 target->mount = nch->mount;
544 target->ncp = _cache_get(nch->ncp);
545 ++target->mount->mnt_refs;
548 static int
549 _cache_get_nonblock(struct namecache *ncp)
551 /* XXX MP */
552 if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
553 _cache_hold(ncp);
554 _cache_lock(ncp);
555 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
556 _cache_setunresolved(ncp);
557 return(0);
559 return(EWOULDBLOCK);
563 cache_get_nonblock(struct nchandle *nch)
565 int error;
567 if ((error = _cache_get_nonblock(nch->ncp)) == 0)
568 ++nch->mount->mnt_refs;
569 return (error);
572 static __inline
573 void
574 _cache_put(struct namecache *ncp)
576 _cache_unlock(ncp);
577 _cache_drop(ncp);
580 void
581 cache_put(struct nchandle *nch)
583 --nch->mount->mnt_refs;
584 _cache_put(nch->ncp);
585 nch->ncp = NULL;
586 nch->mount = NULL;
590 * Resolve an unresolved ncp by associating a vnode with it. If the
591 * vnode is NULL, a negative cache entry is created.
593 * The ncp should be locked on entry and will remain locked on return.
595 static
596 void
597 _cache_setvp(struct mount *mp, struct namecache *ncp, struct vnode *vp)
599 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
600 ncp->nc_vp = vp;
601 if (vp != NULL) {
603 * Any vp associated with an ncp which has children must
604 * be held. Any vp associated with a locked ncp must be held.
606 if (!TAILQ_EMPTY(&ncp->nc_list))
607 vhold(vp);
608 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
609 if (ncp->nc_exlocks)
610 vhold(vp);
613 * Set auxiliary flags
615 switch(vp->v_type) {
616 case VDIR:
617 ncp->nc_flag |= NCF_ISDIR;
618 break;
619 case VLNK:
620 ncp->nc_flag |= NCF_ISSYMLINK;
621 /* XXX cache the contents of the symlink */
622 break;
623 default:
624 break;
626 ++numcache;
627 ncp->nc_error = 0;
628 } else {
630 * When creating a negative cache hit we set the
631 * namecache_gen. A later resolve will clean out the
632 * negative cache hit if the mount point's namecache_gen
633 * has changed. Used by devfs, could also be used by
634 * other remote FSs.
636 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
637 ++numneg;
638 ncp->nc_error = ENOENT;
639 if (mp)
640 ncp->nc_namecache_gen = mp->mnt_namecache_gen;
642 ncp->nc_flag &= ~NCF_UNRESOLVED;
645 void
646 cache_setvp(struct nchandle *nch, struct vnode *vp)
648 _cache_setvp(nch->mount, nch->ncp, vp);
651 void
652 cache_settimeout(struct nchandle *nch, int nticks)
654 struct namecache *ncp = nch->ncp;
656 if ((ncp->nc_timeout = ticks + nticks) == 0)
657 ncp->nc_timeout = 1;
661 * Disassociate the vnode or negative-cache association and mark a
662 * namecache entry as unresolved again. Note that the ncp is still
663 * left in the hash table and still linked to its parent.
665 * The ncp should be locked and refd on entry and will remain locked and refd
666 * on return.
668 * This routine is normally never called on a directory containing children.
669 * However, NFS often does just that in its rename() code as a cop-out to
670 * avoid complex namespace operations. This disconnects a directory vnode
671 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
672 * sync.
674 * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
675 * in a create, properly propogates flag up the chain.
677 static
678 void
679 _cache_setunresolved(struct namecache *ncp)
681 struct vnode *vp;
683 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
684 ncp->nc_flag |= NCF_UNRESOLVED;
685 ncp->nc_timeout = 0;
686 ncp->nc_error = ENOTCONN;
687 ++numunres;
688 if ((vp = ncp->nc_vp) != NULL) {
689 --numcache;
690 ncp->nc_vp = NULL;
691 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
694 * Any vp associated with an ncp with children is
695 * held by that ncp. Any vp associated with a locked
696 * ncp is held by that ncp. These conditions must be
697 * undone when the vp is cleared out from the ncp.
699 if (ncp->nc_flag & NCF_FSMID)
700 vupdatefsmid(vp);
701 if (!TAILQ_EMPTY(&ncp->nc_list))
702 vdrop(vp);
703 if (ncp->nc_exlocks)
704 vdrop(vp);
705 } else {
706 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
707 --numneg;
709 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
710 NCF_FSMID);
715 * The cache_nresolve() code calls this function to automatically
716 * set a resolved cache element to unresolved if it has timed out
717 * or if it is a negative cache hit and the mount point namecache_gen
718 * has changed.
720 static __inline void
721 _cache_auto_unresolve(struct mount *mp, struct namecache *ncp)
724 * Already in an unresolved state, nothing to do.
726 if (ncp->nc_flag & NCF_UNRESOLVED)
727 return;
730 * Try to zap entries that have timed out. We have
731 * to be careful here because locked leafs may depend
732 * on the vnode remaining intact in a parent, so only
733 * do this under very specific conditions.
735 if (ncp->nc_timeout && (int)(ncp->nc_timeout - ticks) < 0 &&
736 TAILQ_EMPTY(&ncp->nc_list)) {
737 _cache_setunresolved(ncp);
738 return;
742 * If a resolved negative cache hit is invalid due to
743 * the mount's namecache generation being bumped, zap it.
745 if (ncp->nc_vp == NULL &&
746 ncp->nc_namecache_gen != mp->mnt_namecache_gen) {
747 _cache_setunresolved(ncp);
748 return;
752 void
753 cache_setunresolved(struct nchandle *nch)
755 _cache_setunresolved(nch->ncp);
759 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
760 * looking for matches. This flag tells the lookup code when it must
761 * check for a mount linkage and also prevents the directories in question
762 * from being deleted or renamed.
764 static
766 cache_clrmountpt_callback(struct mount *mp, void *data)
768 struct nchandle *nch = data;
770 if (mp->mnt_ncmounton.ncp == nch->ncp)
771 return(1);
772 if (mp->mnt_ncmountpt.ncp == nch->ncp)
773 return(1);
774 return(0);
777 void
778 cache_clrmountpt(struct nchandle *nch)
780 int count;
782 count = mountlist_scan(cache_clrmountpt_callback, nch,
783 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
784 if (count == 0)
785 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
789 * Invalidate portions of the namecache topology given a starting entry.
790 * The passed ncp is set to an unresolved state and:
792 * The passed ncp must be locked.
794 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
795 * that the physical underlying nodes have been
796 * destroyed... as in deleted. For example, when
797 * a directory is removed. This will cause record
798 * lookups on the name to no longer be able to find
799 * the record and tells the resolver to return failure
800 * rather then trying to resolve through the parent.
802 * The topology itself, including ncp->nc_name,
803 * remains intact.
805 * This only applies to the passed ncp, if CINV_CHILDREN
806 * is specified the children are not flagged.
808 * CINV_CHILDREN - Set all children (recursively) to an unresolved
809 * state as well.
811 * Note that this will also have the side effect of
812 * cleaning out any unreferenced nodes in the topology
813 * from the leaves up as the recursion backs out.
815 * Note that the topology for any referenced nodes remains intact.
817 * It is possible for cache_inval() to race a cache_resolve(), meaning that
818 * the namecache entry may not actually be invalidated on return if it was
819 * revalidated while recursing down into its children. This code guarentees
820 * that the node(s) will go through an invalidation cycle, but does not
821 * guarentee that they will remain in an invalidated state.
823 * Returns non-zero if a revalidation was detected during the invalidation
824 * recursion, zero otherwise. Note that since only the original ncp is
825 * locked the revalidation ultimately can only indicate that the original ncp
826 * *MIGHT* no have been reresolved.
828 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
829 * have to avoid blowing out the kernel stack. We do this by saving the
830 * deep namecache node and aborting the recursion, then re-recursing at that
831 * node using a depth-first algorithm in order to allow multiple deep
832 * recursions to chain through each other, then we restart the invalidation
833 * from scratch.
836 struct cinvtrack {
837 struct namecache *resume_ncp;
838 int depth;
841 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
843 static
845 _cache_inval(struct namecache *ncp, int flags)
847 struct cinvtrack track;
848 struct namecache *ncp2;
849 int r;
851 track.depth = 0;
852 track.resume_ncp = NULL;
854 for (;;) {
855 r = _cache_inval_internal(ncp, flags, &track);
856 if (track.resume_ncp == NULL)
857 break;
858 kprintf("Warning: deep namecache recursion at %s\n",
859 ncp->nc_name);
860 _cache_unlock(ncp);
861 while ((ncp2 = track.resume_ncp) != NULL) {
862 track.resume_ncp = NULL;
863 _cache_lock(ncp2);
864 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
865 &track);
866 _cache_put(ncp2);
868 _cache_lock(ncp);
870 return(r);
874 cache_inval(struct nchandle *nch, int flags)
876 return(_cache_inval(nch->ncp, flags));
879 static int
880 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
882 struct namecache *kid;
883 struct namecache *nextkid;
884 int rcnt = 0;
886 KKASSERT(ncp->nc_exlocks);
888 _cache_setunresolved(ncp);
889 if (flags & CINV_DESTROY)
890 ncp->nc_flag |= NCF_DESTROYED;
892 if ((flags & CINV_CHILDREN) &&
893 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
895 if (++track->depth > MAX_RECURSION_DEPTH) {
896 track->resume_ncp = ncp;
897 _cache_hold(ncp);
898 ++rcnt;
900 _cache_hold(kid);
901 _cache_unlock(ncp);
902 while (kid) {
903 if (track->resume_ncp) {
904 _cache_drop(kid);
905 break;
907 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
908 _cache_hold(nextkid);
909 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
910 TAILQ_FIRST(&kid->nc_list)
912 _cache_lock(kid);
913 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
914 _cache_unlock(kid);
916 _cache_drop(kid);
917 kid = nextkid;
919 --track->depth;
920 _cache_lock(ncp);
924 * Someone could have gotten in there while ncp was unlocked,
925 * retry if so.
927 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
928 ++rcnt;
929 return (rcnt);
933 * Invalidate a vnode's namecache associations. To avoid races against
934 * the resolver we do not invalidate a node which we previously invalidated
935 * but which was then re-resolved while we were in the invalidation loop.
937 * Returns non-zero if any namecache entries remain after the invalidation
938 * loop completed.
940 * NOTE: unlike the namecache topology which guarentees that ncp's will not
941 * be ripped out of the topology while held, the vnode's v_namecache list
942 * has no such restriction. NCP's can be ripped out of the list at virtually
943 * any time if not locked, even if held.
946 cache_inval_vp(struct vnode *vp, int flags)
948 struct namecache *ncp;
949 struct namecache *next;
951 restart:
952 ncp = TAILQ_FIRST(&vp->v_namecache);
953 if (ncp)
954 _cache_hold(ncp);
955 while (ncp) {
956 /* loop entered with ncp held */
957 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
958 _cache_hold(next);
959 _cache_lock(ncp);
960 if (ncp->nc_vp != vp) {
961 kprintf("Warning: cache_inval_vp: race-A detected on "
962 "%s\n", ncp->nc_name);
963 _cache_put(ncp);
964 if (next)
965 _cache_drop(next);
966 goto restart;
968 _cache_inval(ncp, flags);
969 _cache_put(ncp); /* also releases reference */
970 ncp = next;
971 if (ncp && ncp->nc_vp != vp) {
972 kprintf("Warning: cache_inval_vp: race-B detected on "
973 "%s\n", ncp->nc_name);
974 _cache_drop(ncp);
975 goto restart;
978 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
982 * This routine is used instead of the normal cache_inval_vp() when we
983 * are trying to recycle otherwise good vnodes.
985 * Return 0 on success, non-zero if not all namecache records could be
986 * disassociated from the vnode (for various reasons).
989 cache_inval_vp_nonblock(struct vnode *vp)
991 struct namecache *ncp;
992 struct namecache *next;
994 ncp = TAILQ_FIRST(&vp->v_namecache);
995 if (ncp)
996 _cache_hold(ncp);
997 while (ncp) {
998 /* loop entered with ncp held */
999 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
1000 _cache_hold(next);
1001 if (_cache_lock_nonblock(ncp)) {
1002 _cache_drop(ncp);
1003 if (next)
1004 _cache_drop(next);
1005 break;
1007 if (ncp->nc_vp != vp) {
1008 kprintf("Warning: cache_inval_vp: race-A detected on "
1009 "%s\n", ncp->nc_name);
1010 _cache_put(ncp);
1011 if (next)
1012 _cache_drop(next);
1013 break;
1015 _cache_inval(ncp, 0);
1016 _cache_put(ncp); /* also releases reference */
1017 ncp = next;
1018 if (ncp && ncp->nc_vp != vp) {
1019 kprintf("Warning: cache_inval_vp: race-B detected on "
1020 "%s\n", ncp->nc_name);
1021 _cache_drop(ncp);
1022 break;
1025 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
1029 * The source ncp has been renamed to the target ncp. Both fncp and tncp
1030 * must be locked. The target ncp is destroyed (as a normal rename-over
1031 * would destroy the target file or directory).
1033 * Because there may be references to the source ncp we cannot copy its
1034 * contents to the target. Instead the source ncp is relinked as the target
1035 * and the target ncp is removed from the namecache topology.
1037 void
1038 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
1040 struct namecache *fncp = fnch->ncp;
1041 struct namecache *tncp = tnch->ncp;
1042 char *oname;
1044 _cache_setunresolved(tncp);
1045 cache_unlink_parent(fncp);
1046 cache_link_parent(fncp, tncp->nc_parent);
1047 cache_unlink_parent(tncp);
1048 oname = fncp->nc_name;
1049 fncp->nc_name = tncp->nc_name;
1050 fncp->nc_nlen = tncp->nc_nlen;
1051 tncp->nc_name = NULL;
1052 tncp->nc_nlen = 0;
1053 if (fncp->nc_flag & NCF_HASHED)
1054 _cache_rehash(fncp);
1055 if (tncp->nc_flag & NCF_HASHED)
1056 _cache_rehash(tncp);
1057 if (oname)
1058 kfree(oname, M_VFSCACHE);
1062 * vget the vnode associated with the namecache entry. Resolve the namecache
1063 * entry if necessary and deal with namecache/vp races. The passed ncp must
1064 * be referenced and may be locked. The ncp's ref/locking state is not
1065 * effected by this call.
1067 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
1068 * (depending on the passed lk_type) will be returned in *vpp with an error
1069 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
1070 * most typical error is ENOENT, meaning that the ncp represents a negative
1071 * cache hit and there is no vnode to retrieve, but other errors can occur
1072 * too.
1074 * The main race we have to deal with are namecache zaps. The ncp itself
1075 * will not disappear since it is referenced, and it turns out that the
1076 * validity of the vp pointer can be checked simply by rechecking the
1077 * contents of ncp->nc_vp.
1080 cache_vget(struct nchandle *nch, struct ucred *cred,
1081 int lk_type, struct vnode **vpp)
1083 struct namecache *ncp;
1084 struct vnode *vp;
1085 int error;
1087 ncp = nch->ncp;
1088 again:
1089 vp = NULL;
1090 if (ncp->nc_flag & NCF_UNRESOLVED) {
1091 _cache_lock(ncp);
1092 error = cache_resolve(nch, cred);
1093 _cache_unlock(ncp);
1094 } else {
1095 error = 0;
1097 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1099 * Accessing the vnode from the namecache is a bit
1100 * dangerous. Because there are no refs on the vnode, it
1101 * could be in the middle of a reclaim.
1103 if (vp->v_flag & VRECLAIMED) {
1104 kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
1105 _cache_lock(ncp);
1106 _cache_setunresolved(ncp);
1107 _cache_unlock(ncp);
1108 goto again;
1110 error = vget(vp, lk_type);
1111 if (error) {
1112 if (vp != ncp->nc_vp)
1113 goto again;
1114 vp = NULL;
1115 } else if (vp != ncp->nc_vp) {
1116 vput(vp);
1117 goto again;
1118 } else if (vp->v_flag & VRECLAIMED) {
1119 panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
1122 if (error == 0 && vp == NULL)
1123 error = ENOENT;
1124 *vpp = vp;
1125 return(error);
1129 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1131 struct namecache *ncp;
1132 struct vnode *vp;
1133 int error;
1135 ncp = nch->ncp;
1137 again:
1138 vp = NULL;
1139 if (ncp->nc_flag & NCF_UNRESOLVED) {
1140 _cache_lock(ncp);
1141 error = cache_resolve(nch, cred);
1142 _cache_unlock(ncp);
1143 } else {
1144 error = 0;
1146 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1148 * Since we did not obtain any locks, a cache zap
1149 * race can occur here if the vnode is in the middle
1150 * of being reclaimed and has not yet been able to
1151 * clean out its cache node. If that case occurs,
1152 * we must lock and unresolve the cache, then loop
1153 * to retry.
1155 if ((error = vget(vp, LK_SHARED)) != 0) {
1156 if (error == ENOENT) {
1157 kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
1158 _cache_lock(ncp);
1159 _cache_setunresolved(ncp);
1160 _cache_unlock(ncp);
1161 goto again;
1163 /* fatal error */
1164 } else {
1165 /* caller does not want a lock */
1166 vn_unlock(vp);
1169 if (error == 0 && vp == NULL)
1170 error = ENOENT;
1171 *vpp = vp;
1172 return(error);
1176 * Return a referenced vnode representing the parent directory of
1177 * ncp. Because the caller has locked the ncp it should not be possible for
1178 * the parent ncp to go away.
1180 * However, we might race against the parent dvp and not be able to
1181 * reference it. If we race, return NULL.
1183 static struct vnode *
1184 cache_dvpref(struct namecache *ncp)
1186 struct namecache *par;
1187 struct vnode *dvp;
1189 dvp = NULL;
1190 if ((par = ncp->nc_parent) != NULL) {
1191 if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1192 if ((dvp = par->nc_vp) != NULL) {
1193 if (vget(dvp, LK_SHARED) == 0) {
1194 vn_unlock(dvp);
1195 /* return referenced, unlocked dvp */
1196 } else {
1197 dvp = NULL;
1202 return(dvp);
1206 * Recursively set the FSMID update flag for namecache nodes leading
1207 * to root. This will cause the next getattr or reclaim to increment the
1208 * fsmid and mark the inode for lazy updating.
1210 * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1211 * This makes FSMIDs work in an Einsteinian fashion - where the observation
1212 * effects the result. In this case a program monitoring a higher level
1213 * node will have detected some prior change and started its scan (clearing
1214 * NCF_FSMID in higher level nodes), but since it has not yet observed the
1215 * node where we find NCF_FSMID still set, we can safely make the related
1216 * modification without interfering with the theorized program.
1218 * This also means that FSMIDs cannot represent time-domain quantities
1219 * in a hierarchical sense. But the main reason for doing it this way
1220 * is to reduce the amount of recursion that occurs in the critical path
1221 * when e.g. a program is writing to a file that sits deep in a directory
1222 * hierarchy.
1224 void
1225 cache_update_fsmid(struct nchandle *nch)
1227 struct namecache *ncp;
1228 struct namecache *scan;
1229 struct vnode *vp;
1231 ncp = nch->ncp;
1234 * Warning: even if we get a non-NULL vp it could still be in the
1235 * middle of a recyclement. Don't do anything fancy, just set
1236 * NCF_FSMID.
1238 if ((vp = ncp->nc_vp) != NULL) {
1239 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1240 for (scan = ncp; scan; scan = scan->nc_parent) {
1241 if (scan->nc_flag & NCF_FSMID)
1242 break;
1243 scan->nc_flag |= NCF_FSMID;
1246 } else {
1247 while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
1248 ncp->nc_flag |= NCF_FSMID;
1249 ncp = ncp->nc_parent;
1254 void
1255 cache_update_fsmid_vp(struct vnode *vp)
1257 struct namecache *ncp;
1258 struct namecache *scan;
1260 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1261 for (scan = ncp; scan; scan = scan->nc_parent) {
1262 if (scan->nc_flag & NCF_FSMID)
1263 break;
1264 scan->nc_flag |= NCF_FSMID;
1270 * If getattr is called on a vnode (e.g. a stat call), the filesystem
1271 * may call this routine to determine if the namecache has the hierarchical
1272 * change flag set, requiring the fsmid to be updated.
1274 * Since 0 indicates no support, make sure the filesystem fsmid is at least
1275 * 1.
1278 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
1280 struct namecache *ncp;
1281 int changed = 0;
1283 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1284 if (ncp->nc_flag & NCF_FSMID) {
1285 ncp->nc_flag &= ~NCF_FSMID;
1286 changed = 1;
1289 if (*fsmid == 0)
1290 ++*fsmid;
1291 if (changed)
1292 ++*fsmid;
1293 return(changed);
1297 * Obtain the FSMID for a vnode for filesystems which do not support
1298 * a built-in FSMID.
1300 int64_t
1301 cache_sync_fsmid_vp(struct vnode *vp)
1303 struct namecache *ncp;
1305 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1306 if (ncp->nc_flag & NCF_FSMID) {
1307 ncp->nc_flag &= ~NCF_FSMID;
1308 ++ncp->nc_fsmid;
1310 return(ncp->nc_fsmid);
1312 return(VNOVAL);
1316 * Convert a directory vnode to a namecache record without any other
1317 * knowledge of the topology. This ONLY works with directory vnodes and
1318 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
1319 * returned ncp (if not NULL) will be held and unlocked.
1321 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1322 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1323 * for dvp. This will fail only if the directory has been deleted out from
1324 * under the caller.
1326 * Callers must always check for a NULL return no matter the value of 'makeit'.
1328 * To avoid underflowing the kernel stack each recursive call increments
1329 * the makeit variable.
1332 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1333 struct vnode *dvp, char *fakename);
1334 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1335 struct vnode **saved_dvp);
1338 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1339 struct nchandle *nch)
1341 struct vnode *saved_dvp;
1342 struct vnode *pvp;
1343 char *fakename;
1344 int error;
1346 nch->ncp = NULL;
1347 nch->mount = dvp->v_mount;
1348 saved_dvp = NULL;
1349 fakename = NULL;
1352 * Temporary debugging code to force the directory scanning code
1353 * to be exercised.
1355 if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1356 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1357 kprintf("cache_fromdvp: forcing %s\n", nch->ncp->nc_name);
1358 goto force;
1362 * Loop until resolution, inside code will break out on error.
1364 while ((nch->ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1365 force:
1367 * If dvp is the root of its filesystem it should already
1368 * have a namecache pointer associated with it as a side
1369 * effect of the mount, but it may have been disassociated.
1371 if (dvp->v_flag & VROOT) {
1372 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1373 error = cache_resolve_mp(nch->mount);
1374 _cache_put(nch->ncp);
1375 if (ncvp_debug) {
1376 kprintf("cache_fromdvp: resolve root of mount %p error %d",
1377 dvp->v_mount, error);
1379 if (error) {
1380 if (ncvp_debug)
1381 kprintf(" failed\n");
1382 nch->ncp = NULL;
1383 break;
1385 if (ncvp_debug)
1386 kprintf(" succeeded\n");
1387 continue;
1391 * If we are recursed too deeply resort to an O(n^2)
1392 * algorithm to resolve the namecache topology. The
1393 * resolved pvp is left referenced in saved_dvp to
1394 * prevent the tree from being destroyed while we loop.
1396 if (makeit > 20) {
1397 error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1398 if (error) {
1399 kprintf("lookupdotdot(longpath) failed %d "
1400 "dvp %p\n", error, dvp);
1401 nch->ncp = NULL;
1402 break;
1404 continue;
1408 * Get the parent directory and resolve its ncp.
1410 if (fakename) {
1411 kfree(fakename, M_TEMP);
1412 fakename = NULL;
1414 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1415 &fakename);
1416 if (error) {
1417 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1418 break;
1420 vn_unlock(pvp);
1423 * Reuse makeit as a recursion depth counter. On success
1424 * nch will be fully referenced.
1426 cache_fromdvp(pvp, cred, makeit + 1, nch);
1427 vrele(pvp);
1428 if (nch->ncp == NULL)
1429 break;
1432 * Do an inefficient scan of pvp (embodied by ncp) to look
1433 * for dvp. This will create a namecache record for dvp on
1434 * success. We loop up to recheck on success.
1436 * ncp and dvp are both held but not locked.
1438 error = cache_inefficient_scan(nch, cred, dvp, fakename);
1439 if (error) {
1440 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1441 pvp, nch->ncp->nc_name, dvp);
1442 cache_drop(nch);
1443 /* nch was NULLed out, reload mount */
1444 nch->mount = dvp->v_mount;
1445 break;
1447 if (ncvp_debug) {
1448 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1449 pvp, nch->ncp->nc_name);
1451 cache_drop(nch);
1452 /* nch was NULLed out, reload mount */
1453 nch->mount = dvp->v_mount;
1456 if (fakename)
1457 kfree(fakename, M_TEMP);
1460 * hold it for real so the mount gets a ref
1462 if (nch->ncp)
1463 cache_hold(nch);
1464 if (saved_dvp)
1465 vrele(saved_dvp);
1466 if (nch->ncp)
1467 return (0);
1468 return (EINVAL);
1472 * Go up the chain of parent directories until we find something
1473 * we can resolve into the namecache. This is very inefficient.
1475 static
1477 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1478 struct vnode **saved_dvp)
1480 struct nchandle nch;
1481 struct vnode *pvp;
1482 int error;
1483 static time_t last_fromdvp_report;
1484 char *fakename;
1487 * Loop getting the parent directory vnode until we get something we
1488 * can resolve in the namecache.
1490 vref(dvp);
1491 nch.mount = dvp->v_mount;
1492 nch.ncp = NULL;
1493 fakename = NULL;
1495 for (;;) {
1496 if (fakename) {
1497 kfree(fakename, M_TEMP);
1498 fakename = NULL;
1500 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1501 &fakename);
1502 if (error) {
1503 vrele(dvp);
1504 break;
1506 vn_unlock(pvp);
1507 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1508 _cache_hold(nch.ncp);
1509 vrele(pvp);
1510 break;
1512 if (pvp->v_flag & VROOT) {
1513 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1514 error = cache_resolve_mp(nch.mount);
1515 _cache_unlock(nch.ncp);
1516 vrele(pvp);
1517 if (error) {
1518 _cache_drop(nch.ncp);
1519 nch.ncp = NULL;
1520 vrele(dvp);
1522 break;
1524 vrele(dvp);
1525 dvp = pvp;
1527 if (error == 0) {
1528 if (last_fromdvp_report != time_second) {
1529 last_fromdvp_report = time_second;
1530 kprintf("Warning: extremely inefficient path "
1531 "resolution on %s\n",
1532 nch.ncp->nc_name);
1534 error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1537 * Hopefully dvp now has a namecache record associated with
1538 * it. Leave it referenced to prevent the kernel from
1539 * recycling the vnode. Otherwise extremely long directory
1540 * paths could result in endless recycling.
1542 if (*saved_dvp)
1543 vrele(*saved_dvp);
1544 *saved_dvp = dvp;
1545 _cache_drop(nch.ncp);
1547 if (fakename)
1548 kfree(fakename, M_TEMP);
1549 return (error);
1553 * Do an inefficient scan of the directory represented by ncp looking for
1554 * the directory vnode dvp. ncp must be held but not locked on entry and
1555 * will be held on return. dvp must be refd but not locked on entry and
1556 * will remain refd on return.
1558 * Why do this at all? Well, due to its stateless nature the NFS server
1559 * converts file handles directly to vnodes without necessarily going through
1560 * the namecache ops that would otherwise create the namecache topology
1561 * leading to the vnode. We could either (1) Change the namecache algorithms
1562 * to allow disconnect namecache records that are re-merged opportunistically,
1563 * or (2) Make the NFS server backtrack and scan to recover a connected
1564 * namecache topology in order to then be able to issue new API lookups.
1566 * It turns out that (1) is a huge mess. It takes a nice clean set of
1567 * namecache algorithms and introduces a lot of complication in every subsystem
1568 * that calls into the namecache to deal with the re-merge case, especially
1569 * since we are using the namecache to placehold negative lookups and the
1570 * vnode might not be immediately assigned. (2) is certainly far less
1571 * efficient then (1), but since we are only talking about directories here
1572 * (which are likely to remain cached), the case does not actually run all
1573 * that often and has the supreme advantage of not polluting the namecache
1574 * algorithms.
1576 * If a fakename is supplied just construct a namecache entry using the
1577 * fake name.
1579 static int
1580 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1581 struct vnode *dvp, char *fakename)
1583 struct nlcomponent nlc;
1584 struct nchandle rncp;
1585 struct dirent *den;
1586 struct vnode *pvp;
1587 struct vattr vat;
1588 struct iovec iov;
1589 struct uio uio;
1590 int blksize;
1591 int eofflag;
1592 int bytes;
1593 char *rbuf;
1594 int error;
1596 vat.va_blocksize = 0;
1597 if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1598 return (error);
1599 if ((error = cache_vref(nch, cred, &pvp)) != 0)
1600 return (error);
1601 if (ncvp_debug) {
1602 kprintf("inefficient_scan: directory iosize %ld "
1603 "vattr fileid = %lld\n",
1604 vat.va_blocksize,
1605 (long long)vat.va_fileid);
1609 * Use the supplied fakename if not NULL. Fake names are typically
1610 * not in the actual filesystem hierarchy. This is used by HAMMER
1611 * to glue @@timestamp recursions together.
1613 if (fakename) {
1614 nlc.nlc_nameptr = fakename;
1615 nlc.nlc_namelen = strlen(fakename);
1616 rncp = cache_nlookup(nch, &nlc);
1617 goto done;
1620 if ((blksize = vat.va_blocksize) == 0)
1621 blksize = DEV_BSIZE;
1622 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1623 rncp.ncp = NULL;
1625 eofflag = 0;
1626 uio.uio_offset = 0;
1627 again:
1628 iov.iov_base = rbuf;
1629 iov.iov_len = blksize;
1630 uio.uio_iov = &iov;
1631 uio.uio_iovcnt = 1;
1632 uio.uio_resid = blksize;
1633 uio.uio_segflg = UIO_SYSSPACE;
1634 uio.uio_rw = UIO_READ;
1635 uio.uio_td = curthread;
1637 if (ncvp_debug >= 2)
1638 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1639 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1640 if (error == 0) {
1641 den = (struct dirent *)rbuf;
1642 bytes = blksize - uio.uio_resid;
1644 while (bytes > 0) {
1645 if (ncvp_debug >= 2) {
1646 kprintf("cache_inefficient_scan: %*.*s\n",
1647 den->d_namlen, den->d_namlen,
1648 den->d_name);
1650 if (den->d_type != DT_WHT &&
1651 den->d_ino == vat.va_fileid) {
1652 if (ncvp_debug) {
1653 kprintf("cache_inefficient_scan: "
1654 "MATCHED inode %lld path %s/%*.*s\n",
1655 (long long)vat.va_fileid,
1656 nch->ncp->nc_name,
1657 den->d_namlen, den->d_namlen,
1658 den->d_name);
1660 nlc.nlc_nameptr = den->d_name;
1661 nlc.nlc_namelen = den->d_namlen;
1662 rncp = cache_nlookup(nch, &nlc);
1663 KKASSERT(rncp.ncp != NULL);
1664 break;
1666 bytes -= _DIRENT_DIRSIZ(den);
1667 den = _DIRENT_NEXT(den);
1669 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1670 goto again;
1672 kfree(rbuf, M_TEMP);
1673 done:
1674 vrele(pvp);
1675 if (rncp.ncp) {
1676 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1677 _cache_setvp(rncp.mount, rncp.ncp, dvp);
1678 if (ncvp_debug >= 2) {
1679 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1680 nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1682 } else {
1683 if (ncvp_debug >= 2) {
1684 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1685 nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1686 rncp.ncp->nc_vp);
1689 if (rncp.ncp->nc_vp == NULL)
1690 error = rncp.ncp->nc_error;
1692 * Release rncp after a successful nlookup. rncp was fully
1693 * referenced.
1695 cache_put(&rncp);
1696 } else {
1697 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1698 dvp, nch->ncp->nc_name);
1699 error = ENOENT;
1701 return (error);
1705 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
1706 * state, which disassociates it from its vnode or ncneglist.
1708 * Then, if there are no additional references to the ncp and no children,
1709 * the ncp is removed from the topology and destroyed. This function will
1710 * also run through the nc_parent chain and destroy parent ncps if possible.
1711 * As a side benefit, it turns out the only conditions that allow running
1712 * up the chain are also the conditions to ensure no deadlock will occur.
1714 * References and/or children may exist if the ncp is in the middle of the
1715 * topology, preventing the ncp from being destroyed.
1717 * This function must be called with the ncp held and locked and will unlock
1718 * and drop it during zapping.
1720 static void
1721 cache_zap(struct namecache *ncp)
1723 struct namecache *par;
1726 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1728 _cache_setunresolved(ncp);
1731 * Try to scrap the entry and possibly tail-recurse on its parent.
1732 * We only scrap unref'd (other then our ref) unresolved entries,
1733 * we do not scrap 'live' entries.
1735 while (ncp->nc_flag & NCF_UNRESOLVED) {
1737 * Someone other then us has a ref, stop.
1739 if (ncp->nc_refs > 1)
1740 goto done;
1743 * We have children, stop.
1745 if (!TAILQ_EMPTY(&ncp->nc_list))
1746 goto done;
1749 * Remove ncp from the topology: hash table and parent linkage.
1751 if (ncp->nc_flag & NCF_HASHED) {
1752 ncp->nc_flag &= ~NCF_HASHED;
1753 LIST_REMOVE(ncp, nc_hash);
1755 if ((par = ncp->nc_parent) != NULL) {
1756 par = _cache_hold(par);
1757 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1758 ncp->nc_parent = NULL;
1759 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1760 vdrop(par->nc_vp);
1764 * ncp should not have picked up any refs. Physically
1765 * destroy the ncp.
1767 KKASSERT(ncp->nc_refs == 1);
1768 --numunres;
1769 /* _cache_unlock(ncp) not required */
1770 ncp->nc_refs = -1; /* safety */
1771 if (ncp->nc_name)
1772 kfree(ncp->nc_name, M_VFSCACHE);
1773 kfree(ncp, M_VFSCACHE);
1776 * Loop on the parent (it may be NULL). Only bother looping
1777 * if the parent has a single ref (ours), which also means
1778 * we can lock it trivially.
1780 ncp = par;
1781 if (ncp == NULL)
1782 return;
1783 if (ncp->nc_refs != 1) {
1784 _cache_drop(ncp);
1785 return;
1787 KKASSERT(par->nc_exlocks == 0);
1788 _cache_lock(ncp);
1790 done:
1791 _cache_unlock(ncp);
1792 atomic_subtract_int(&ncp->nc_refs, 1);
1795 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1797 static __inline
1798 void
1799 cache_hysteresis(void)
1802 * Don't cache too many negative hits. We use hysteresis to reduce
1803 * the impact on the critical path.
1805 switch(cache_hysteresis_state) {
1806 case CHI_LOW:
1807 if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1808 cache_cleanneg(10);
1809 cache_hysteresis_state = CHI_HIGH;
1811 break;
1812 case CHI_HIGH:
1813 if (numneg > MINNEG * 9 / 10 &&
1814 numneg * ncnegfactor * 9 / 10 > numcache
1816 cache_cleanneg(10);
1817 } else {
1818 cache_hysteresis_state = CHI_LOW;
1820 break;
1825 * NEW NAMECACHE LOOKUP API
1827 * Lookup an entry in the cache. A locked, referenced, non-NULL
1828 * entry is *always* returned, even if the supplied component is illegal.
1829 * The resulting namecache entry should be returned to the system with
1830 * cache_put() or _cache_unlock() + cache_drop().
1832 * namecache locks are recursive but care must be taken to avoid lock order
1833 * reversals.
1835 * Nobody else will be able to manipulate the associated namespace (e.g.
1836 * create, delete, rename, rename-target) until the caller unlocks the
1837 * entry.
1839 * The returned entry will be in one of three states: positive hit (non-null
1840 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1841 * Unresolved entries must be resolved through the filesystem to associate the
1842 * vnode and/or determine whether a positive or negative hit has occured.
1844 * It is not necessary to lock a directory in order to lock namespace under
1845 * that directory. In fact, it is explicitly not allowed to do that. A
1846 * directory is typically only locked when being created, renamed, or
1847 * destroyed.
1849 * The directory (par) may be unresolved, in which case any returned child
1850 * will likely also be marked unresolved. Likely but not guarenteed. Since
1851 * the filesystem lookup requires a resolved directory vnode the caller is
1852 * responsible for resolving the namecache chain top-down. This API
1853 * specifically allows whole chains to be created in an unresolved state.
1855 struct nchandle
1856 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
1858 struct nchandle nch;
1859 struct namecache *ncp;
1860 struct namecache *new_ncp;
1861 struct nchashhead *nchpp;
1862 struct mount *mp;
1863 u_int32_t hash;
1864 globaldata_t gd;
1866 numcalls++;
1867 gd = mycpu;
1868 mp = par_nch->mount;
1871 * Try to locate an existing entry
1873 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1874 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
1875 new_ncp = NULL;
1876 restart:
1877 LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1878 numchecks++;
1881 * Break out if we find a matching entry. Note that
1882 * UNRESOLVED entries may match, but DESTROYED entries
1883 * do not.
1885 if (ncp->nc_parent == par_nch->ncp &&
1886 ncp->nc_nlen == nlc->nlc_namelen &&
1887 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1888 (ncp->nc_flag & NCF_DESTROYED) == 0
1890 if (_cache_get_nonblock(ncp) == 0) {
1891 _cache_auto_unresolve(mp, ncp);
1892 if (new_ncp)
1893 _cache_free(new_ncp);
1894 goto found;
1896 _cache_get(ncp);
1897 _cache_put(ncp);
1898 goto restart;
1903 * We failed to locate an entry, create a new entry and add it to
1904 * the cache. We have to relookup after possibly blocking in
1905 * malloc.
1907 if (new_ncp == NULL) {
1908 new_ncp = cache_alloc(nlc->nlc_namelen);
1909 goto restart;
1912 ncp = new_ncp;
1915 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1916 * and link to the parent. The mount point is usually inherited
1917 * from the parent unless this is a special case such as a mount
1918 * point where nlc_namelen is 0. If nlc_namelen is 0 nc_name will
1919 * be NULL.
1921 if (nlc->nlc_namelen) {
1922 bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1923 ncp->nc_name[nlc->nlc_namelen] = 0;
1925 nchpp = NCHHASH(hash);
1926 LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1927 ncp->nc_flag |= NCF_HASHED;
1928 cache_link_parent(ncp, par_nch->ncp);
1929 found:
1931 * stats and namecache size management
1933 if (ncp->nc_flag & NCF_UNRESOLVED)
1934 ++gd->gd_nchstats->ncs_miss;
1935 else if (ncp->nc_vp)
1936 ++gd->gd_nchstats->ncs_goodhits;
1937 else
1938 ++gd->gd_nchstats->ncs_neghits;
1939 cache_hysteresis();
1940 nch.mount = mp;
1941 nch.ncp = ncp;
1942 ++nch.mount->mnt_refs;
1943 return(nch);
1947 * The namecache entry is marked as being used as a mount point.
1948 * Locate the mount if it is visible to the caller.
1950 struct findmount_info {
1951 struct mount *result;
1952 struct mount *nch_mount;
1953 struct namecache *nch_ncp;
1956 static
1958 cache_findmount_callback(struct mount *mp, void *data)
1960 struct findmount_info *info = data;
1963 * Check the mount's mounted-on point against the passed nch.
1965 if (mp->mnt_ncmounton.mount == info->nch_mount &&
1966 mp->mnt_ncmounton.ncp == info->nch_ncp
1968 info->result = mp;
1969 return(-1);
1971 return(0);
1974 struct mount *
1975 cache_findmount(struct nchandle *nch)
1977 struct findmount_info info;
1979 info.result = NULL;
1980 info.nch_mount = nch->mount;
1981 info.nch_ncp = nch->ncp;
1982 mountlist_scan(cache_findmount_callback, &info,
1983 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1984 return(info.result);
1988 * Resolve an unresolved namecache entry, generally by looking it up.
1989 * The passed ncp must be locked and refd.
1991 * Theoretically since a vnode cannot be recycled while held, and since
1992 * the nc_parent chain holds its vnode as long as children exist, the
1993 * direct parent of the cache entry we are trying to resolve should
1994 * have a valid vnode. If not then generate an error that we can
1995 * determine is related to a resolver bug.
1997 * However, if a vnode was in the middle of a recyclement when the NCP
1998 * got locked, ncp->nc_vp might point to a vnode that is about to become
1999 * invalid. cache_resolve() handles this case by unresolving the entry
2000 * and then re-resolving it.
2002 * Note that successful resolution does not necessarily return an error
2003 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
2004 * will be returned.
2007 cache_resolve(struct nchandle *nch, struct ucred *cred)
2009 struct namecache *par;
2010 struct namecache *ncp;
2011 struct nchandle nctmp;
2012 struct mount *mp;
2013 struct vnode *dvp;
2014 int error;
2016 ncp = nch->ncp;
2017 mp = nch->mount;
2018 restart:
2020 * If the ncp is already resolved we have nothing to do. However,
2021 * we do want to guarentee that a usable vnode is returned when
2022 * a vnode is present, so make sure it hasn't been reclaimed.
2024 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2025 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2026 _cache_setunresolved(ncp);
2027 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
2028 return (ncp->nc_error);
2032 * Mount points need special handling because the parent does not
2033 * belong to the same filesystem as the ncp.
2035 if (ncp == mp->mnt_ncmountpt.ncp)
2036 return (cache_resolve_mp(mp));
2039 * We expect an unbroken chain of ncps to at least the mount point,
2040 * and even all the way to root (but this code doesn't have to go
2041 * past the mount point).
2043 if (ncp->nc_parent == NULL) {
2044 kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2045 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2046 ncp->nc_error = EXDEV;
2047 return(ncp->nc_error);
2051 * The vp's of the parent directories in the chain are held via vhold()
2052 * due to the existance of the child, and should not disappear.
2053 * However, there are cases where they can disappear:
2055 * - due to filesystem I/O errors.
2056 * - due to NFS being stupid about tracking the namespace and
2057 * destroys the namespace for entire directories quite often.
2058 * - due to forced unmounts.
2059 * - due to an rmdir (parent will be marked DESTROYED)
2061 * When this occurs we have to track the chain backwards and resolve
2062 * it, looping until the resolver catches up to the current node. We
2063 * could recurse here but we might run ourselves out of kernel stack
2064 * so we do it in a more painful manner. This situation really should
2065 * not occur all that often, or if it does not have to go back too
2066 * many nodes to resolve the ncp.
2068 while ((dvp = cache_dvpref(ncp)) == NULL) {
2070 * This case can occur if a process is CD'd into a
2071 * directory which is then rmdir'd. If the parent is marked
2072 * destroyed there is no point trying to resolve it.
2074 if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2075 return(ENOENT);
2077 par = ncp->nc_parent;
2078 while (par->nc_parent && par->nc_parent->nc_vp == NULL)
2079 par = par->nc_parent;
2080 if (par->nc_parent == NULL) {
2081 kprintf("EXDEV case 2 %*.*s\n",
2082 par->nc_nlen, par->nc_nlen, par->nc_name);
2083 return (EXDEV);
2085 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2086 par->nc_nlen, par->nc_nlen, par->nc_name);
2088 * The parent is not set in stone, ref and lock it to prevent
2089 * it from disappearing. Also note that due to renames it
2090 * is possible for our ncp to move and for par to no longer
2091 * be one of its parents. We resolve it anyway, the loop
2092 * will handle any moves.
2094 _cache_get(par);
2095 if (par == nch->mount->mnt_ncmountpt.ncp) {
2096 cache_resolve_mp(nch->mount);
2097 } else if ((dvp = cache_dvpref(par)) == NULL) {
2098 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2099 _cache_put(par);
2100 continue;
2101 } else {
2102 if (par->nc_flag & NCF_UNRESOLVED) {
2103 nctmp.mount = mp;
2104 nctmp.ncp = par;
2105 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2107 vrele(dvp);
2109 if ((error = par->nc_error) != 0) {
2110 if (par->nc_error != EAGAIN) {
2111 kprintf("EXDEV case 3 %*.*s error %d\n",
2112 par->nc_nlen, par->nc_nlen, par->nc_name,
2113 par->nc_error);
2114 _cache_put(par);
2115 return(error);
2117 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2118 par, par->nc_nlen, par->nc_nlen, par->nc_name);
2120 _cache_put(par);
2121 /* loop */
2125 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2126 * ncp's and reattach them. If this occurs the original ncp is marked
2127 * EAGAIN to force a relookup.
2129 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2130 * ncp must already be resolved.
2132 if (dvp) {
2133 nctmp.mount = mp;
2134 nctmp.ncp = ncp;
2135 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2136 vrele(dvp);
2137 } else {
2138 ncp->nc_error = EPERM;
2140 if (ncp->nc_error == EAGAIN) {
2141 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2142 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2143 goto restart;
2145 return(ncp->nc_error);
2149 * Resolve the ncp associated with a mount point. Such ncp's almost always
2150 * remain resolved and this routine is rarely called. NFS MPs tends to force
2151 * re-resolution more often due to its mac-truck-smash-the-namecache
2152 * method of tracking namespace changes.
2154 * The semantics for this call is that the passed ncp must be locked on
2155 * entry and will be locked on return. However, if we actually have to
2156 * resolve the mount point we temporarily unlock the entry in order to
2157 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
2158 * the unlock we have to recheck the flags after we relock.
2160 static int
2161 cache_resolve_mp(struct mount *mp)
2163 struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2164 struct vnode *vp;
2165 int error;
2167 KKASSERT(mp != NULL);
2170 * If the ncp is already resolved we have nothing to do. However,
2171 * we do want to guarentee that a usable vnode is returned when
2172 * a vnode is present, so make sure it hasn't been reclaimed.
2174 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2175 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2176 _cache_setunresolved(ncp);
2179 if (ncp->nc_flag & NCF_UNRESOLVED) {
2180 _cache_unlock(ncp);
2181 while (vfs_busy(mp, 0))
2183 error = VFS_ROOT(mp, &vp);
2184 _cache_lock(ncp);
2187 * recheck the ncp state after relocking.
2189 if (ncp->nc_flag & NCF_UNRESOLVED) {
2190 ncp->nc_error = error;
2191 if (error == 0) {
2192 _cache_setvp(mp, ncp, vp);
2193 vput(vp);
2194 } else {
2195 kprintf("[diagnostic] cache_resolve_mp: failed"
2196 " to resolve mount %p err=%d ncp=%p\n",
2197 mp, error, ncp);
2198 _cache_setvp(mp, ncp, NULL);
2200 } else if (error == 0) {
2201 vput(vp);
2203 vfs_unbusy(mp);
2205 return(ncp->nc_error);
2208 void
2209 cache_cleanneg(int count)
2211 struct namecache *ncp;
2214 * Automode from the vnlru proc - clean out 10% of the negative cache
2215 * entries.
2217 if (count == 0)
2218 count = numneg / 10 + 1;
2221 * Attempt to clean out the specified number of negative cache
2222 * entries.
2224 while (count) {
2225 ncp = TAILQ_FIRST(&ncneglist);
2226 if (ncp == NULL) {
2227 KKASSERT(numneg == 0);
2228 break;
2230 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2231 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2232 if (_cache_get_nonblock(ncp) == 0)
2233 cache_zap(ncp);
2234 --count;
2239 * Rehash a ncp. Rehashing is typically required if the name changes (should
2240 * not generally occur) or the parent link changes. This function will
2241 * unhash the ncp if the ncp is no longer hashable.
2243 static void
2244 _cache_rehash(struct namecache *ncp)
2246 struct nchashhead *nchpp;
2247 u_int32_t hash;
2249 if (ncp->nc_flag & NCF_HASHED) {
2250 ncp->nc_flag &= ~NCF_HASHED;
2251 LIST_REMOVE(ncp, nc_hash);
2253 if (ncp->nc_nlen && ncp->nc_parent) {
2254 hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
2255 hash = fnv_32_buf(&ncp->nc_parent,
2256 sizeof(ncp->nc_parent), hash);
2257 nchpp = NCHHASH(hash);
2258 LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
2259 ncp->nc_flag |= NCF_HASHED;
2264 * Name cache initialization, from vfsinit() when we are booting
2266 void
2267 nchinit(void)
2269 int i;
2270 globaldata_t gd;
2272 /* initialise per-cpu namecache effectiveness statistics. */
2273 for (i = 0; i < ncpus; ++i) {
2274 gd = globaldata_find(i);
2275 gd->gd_nchstats = &nchstats[i];
2277 TAILQ_INIT(&ncneglist);
2278 nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
2279 nclockwarn = 5 * hz;
2283 * Called from start_init() to bootstrap the root filesystem. Returns
2284 * a referenced, unlocked namecache record.
2286 void
2287 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2289 nch->ncp = cache_alloc(0);
2290 nch->mount = mp;
2291 ++mp->mnt_refs;
2292 if (vp)
2293 _cache_setvp(nch->mount, nch->ncp, vp);
2297 * vfs_cache_setroot()
2299 * Create an association between the root of our namecache and
2300 * the root vnode. This routine may be called several times during
2301 * booting.
2303 * If the caller intends to save the returned namecache pointer somewhere
2304 * it must cache_hold() it.
2306 void
2307 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2309 struct vnode *ovp;
2310 struct nchandle onch;
2312 ovp = rootvnode;
2313 onch = rootnch;
2314 rootvnode = nvp;
2315 if (nch)
2316 rootnch = *nch;
2317 else
2318 cache_zero(&rootnch);
2319 if (ovp)
2320 vrele(ovp);
2321 if (onch.ncp)
2322 cache_drop(&onch);
2326 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
2327 * topology and is being removed as quickly as possible. The new VOP_N*()
2328 * API calls are required to make specific adjustments using the supplied
2329 * ncp pointers rather then just bogusly purging random vnodes.
2331 * Invalidate all namecache entries to a particular vnode as well as
2332 * any direct children of that vnode in the namecache. This is a
2333 * 'catch all' purge used by filesystems that do not know any better.
2335 * Note that the linkage between the vnode and its namecache entries will
2336 * be removed, but the namecache entries themselves might stay put due to
2337 * active references from elsewhere in the system or due to the existance of
2338 * the children. The namecache topology is left intact even if we do not
2339 * know what the vnode association is. Such entries will be marked
2340 * NCF_UNRESOLVED.
2342 void
2343 cache_purge(struct vnode *vp)
2345 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2349 * Flush all entries referencing a particular filesystem.
2351 * Since we need to check it anyway, we will flush all the invalid
2352 * entries at the same time.
2354 #if 0
2356 void
2357 cache_purgevfs(struct mount *mp)
2359 struct nchashhead *nchpp;
2360 struct namecache *ncp, *nnp;
2363 * Scan hash tables for applicable entries.
2365 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2366 ncp = LIST_FIRST(nchpp);
2367 if (ncp)
2368 _cache_hold(ncp);
2369 while (ncp) {
2370 nnp = LIST_NEXT(ncp, nc_hash);
2371 if (nnp)
2372 _cache_hold(nnp);
2373 if (ncp->nc_mount == mp) {
2374 _cache_lock(ncp);
2375 cache_zap(ncp);
2376 } else {
2377 _cache_drop(ncp);
2379 ncp = nnp;
2384 #endif
2387 * Create a new (theoretically) unique fsmid
2389 int64_t
2390 cache_getnewfsmid(void)
2392 static int fsmid_roller;
2393 int64_t fsmid;
2395 ++fsmid_roller;
2396 fsmid = ((int64_t)time_second << 32) |
2397 (fsmid_roller & 0x7FFFFFFF);
2398 return (fsmid);
2402 static int disablecwd;
2403 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2405 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2406 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2407 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2408 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2409 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2410 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2413 sys___getcwd(struct __getcwd_args *uap)
2415 int buflen;
2416 int error;
2417 char *buf;
2418 char *bp;
2420 if (disablecwd)
2421 return (ENODEV);
2423 buflen = uap->buflen;
2424 if (buflen == 0)
2425 return (EINVAL);
2426 if (buflen > MAXPATHLEN)
2427 buflen = MAXPATHLEN;
2429 buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2430 bp = kern_getcwd(buf, buflen, &error);
2431 if (error == 0)
2432 error = copyout(bp, uap->buf, strlen(bp) + 1);
2433 kfree(buf, M_TEMP);
2434 return (error);
2437 char *
2438 kern_getcwd(char *buf, size_t buflen, int *error)
2440 struct proc *p = curproc;
2441 char *bp;
2442 int i, slash_prefixed;
2443 struct filedesc *fdp;
2444 struct nchandle nch;
2446 numcwdcalls++;
2447 bp = buf;
2448 bp += buflen - 1;
2449 *bp = '\0';
2450 fdp = p->p_fd;
2451 slash_prefixed = 0;
2453 nch = fdp->fd_ncdir;
2454 while (nch.ncp && (nch.ncp != fdp->fd_nrdir.ncp ||
2455 nch.mount != fdp->fd_nrdir.mount)
2458 * While traversing upwards if we encounter the root
2459 * of the current mount we have to skip to the mount point
2460 * in the underlying filesystem.
2462 if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2463 nch = nch.mount->mnt_ncmounton;
2464 continue;
2468 * Prepend the path segment
2470 for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2471 if (bp == buf) {
2472 numcwdfail4++;
2473 *error = ERANGE;
2474 return(NULL);
2476 *--bp = nch.ncp->nc_name[i];
2478 if (bp == buf) {
2479 numcwdfail4++;
2480 *error = ERANGE;
2481 return(NULL);
2483 *--bp = '/';
2484 slash_prefixed = 1;
2487 * Go up a directory. This isn't a mount point so we don't
2488 * have to check again.
2490 nch.ncp = nch.ncp->nc_parent;
2492 if (nch.ncp == NULL) {
2493 numcwdfail2++;
2494 *error = ENOENT;
2495 return(NULL);
2497 if (!slash_prefixed) {
2498 if (bp == buf) {
2499 numcwdfail4++;
2500 *error = ERANGE;
2501 return(NULL);
2503 *--bp = '/';
2505 numcwdfound++;
2506 *error = 0;
2507 return (bp);
2511 * Thus begins the fullpath magic.
2514 #undef STATNODE
2515 #define STATNODE(name) \
2516 static u_int name; \
2517 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2519 static int disablefullpath;
2520 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2521 &disablefullpath, 0, "");
2523 STATNODE(numfullpathcalls);
2524 STATNODE(numfullpathfail1);
2525 STATNODE(numfullpathfail2);
2526 STATNODE(numfullpathfail3);
2527 STATNODE(numfullpathfail4);
2528 STATNODE(numfullpathfound);
2531 cache_fullpath(struct proc *p, struct nchandle *nchp, char **retbuf, char **freebuf)
2533 char *bp, *buf;
2534 int i, slash_prefixed;
2535 struct nchandle fd_nrdir;
2536 struct nchandle nch;
2538 numfullpathcalls--;
2540 *retbuf = NULL;
2541 *freebuf = NULL;
2543 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2544 bp = buf + MAXPATHLEN - 1;
2545 *bp = '\0';
2546 if (p != NULL)
2547 fd_nrdir = p->p_fd->fd_nrdir;
2548 else
2549 fd_nrdir = rootnch;
2550 slash_prefixed = 0;
2551 nch = *nchp;
2553 while (nch.ncp &&
2554 (nch.ncp != fd_nrdir.ncp || nch.mount != fd_nrdir.mount)
2557 * While traversing upwards if we encounter the root
2558 * of the current mount we have to skip to the mount point.
2560 if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2561 nch = nch.mount->mnt_ncmounton;
2562 continue;
2566 * Prepend the path segment
2568 for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2569 if (bp == buf) {
2570 numfullpathfail4++;
2571 kfree(buf, M_TEMP);
2572 return(ENOMEM);
2574 *--bp = nch.ncp->nc_name[i];
2576 if (bp == buf) {
2577 numfullpathfail4++;
2578 kfree(buf, M_TEMP);
2579 return(ENOMEM);
2581 *--bp = '/';
2582 slash_prefixed = 1;
2585 * Go up a directory. This isn't a mount point so we don't
2586 * have to check again.
2588 nch.ncp = nch.ncp->nc_parent;
2590 if (nch.ncp == NULL) {
2591 numfullpathfail2++;
2592 kfree(buf, M_TEMP);
2593 return(ENOENT);
2596 if (!slash_prefixed) {
2597 if (bp == buf) {
2598 numfullpathfail4++;
2599 kfree(buf, M_TEMP);
2600 return(ENOMEM);
2602 *--bp = '/';
2604 numfullpathfound++;
2605 *retbuf = bp;
2606 *freebuf = buf;
2608 return(0);
2612 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2614 struct namecache *ncp;
2615 struct nchandle nch;
2617 numfullpathcalls++;
2618 if (disablefullpath)
2619 return (ENODEV);
2621 if (p == NULL)
2622 return (EINVAL);
2624 /* vn is NULL, client wants us to use p->p_textvp */
2625 if (vn == NULL) {
2626 if ((vn = p->p_textvp) == NULL)
2627 return (EINVAL);
2629 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2630 if (ncp->nc_nlen)
2631 break;
2633 if (ncp == NULL)
2634 return (EINVAL);
2636 numfullpathcalls--;
2637 nch.ncp = ncp;;
2638 nch.mount = vn->v_mount;
2639 return(cache_fullpath(p, &nch, retbuf, freebuf));