iscontrol(8): Fix synopsis, sync usage() & improve markup
[dragonfly.git] / sys / kern / kern_slaballoc.c
blobc621b951735f2ecfd0a343cbd9d21c861a6e83a7
1 /*
2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
3 *
4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
79 * Allocations >= ZoneLimit go directly to kmem.
81 * API REQUIREMENTS AND SIDE EFFECTS
83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84 * have remained compatible with the following API requirements:
86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87 * + all power-of-2 sized allocations are power-of-2 aligned (twe)
88 * + malloc(0) is allowed and returns non-NULL (ahc driver)
89 * + ability to allocate arbitrarily large chunks of memory
92 #include "opt_vm.h"
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
116 #include <machine/cpu.h>
118 #include <sys/thread2.h>
120 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0]))
122 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \
124 sizeof(int))
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 #ifdef SMP
136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #endif
139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
143 #define logmemory(name, ptr, type, size, flags) \
144 KTR_LOG(memory_ ## name, ptr, type, size, flags)
145 #define logmemory_quick(name) \
146 KTR_LOG(memory_ ## name)
149 * Fixed globals (not per-cpu)
151 static int ZoneSize;
152 static int ZoneLimit;
153 static int ZonePageCount;
154 static int ZoneMask;
155 struct malloc_type *kmemstatistics; /* exported to vmstat */
156 static struct kmemusage *kmemusage;
157 static int32_t weirdary[16];
159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
160 static void kmem_slab_free(void *ptr, vm_size_t bytes);
161 #if defined(INVARIANTS)
162 static void chunk_mark_allocated(SLZone *z, void *chunk);
163 static void chunk_mark_free(SLZone *z, void *chunk);
164 #endif
167 * Misc constants. Note that allocations that are exact multiples of
168 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
171 #define MIN_CHUNK_SIZE 8 /* in bytes */
172 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH 2 /* threshold number of zones */
174 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
177 * The WEIRD_ADDR is used as known text to copy into free objects to
178 * try to create deterministic failure cases if the data is accessed after
179 * free.
181 #define WEIRD_ADDR 0xdeadc0de
182 #define MAX_COPY sizeof(weirdary)
183 #define ZERO_LENGTH_PTR ((void *)-8)
186 * Misc global malloc buckets
189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
197 * Initialize the slab memory allocator. We have to choose a zone size based
198 * on available physical memory. We choose a zone side which is approximately
199 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
200 * 128K. The zone size is limited to the bounds set in slaballoc.h
201 * (typically 32K min, 128K max).
203 static void kmeminit(void *dummy);
205 char *ZeroPage;
207 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
209 #ifdef INVARIANTS
211 * If enabled any memory allocated without M_ZERO is initialized to -1.
213 static int use_malloc_pattern;
214 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
215 &use_malloc_pattern, 0, "");
216 #endif
218 static void
219 kmeminit(void *dummy)
221 vm_poff_t limsize;
222 int usesize;
223 int i;
224 vm_pindex_t npg;
226 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
227 if (limsize > KvaSize)
228 limsize = KvaSize;
230 usesize = (int)(limsize / 1024); /* convert to KB */
232 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
233 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
234 ZoneSize <<= 1;
235 ZoneLimit = ZoneSize / 4;
236 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
237 ZoneLimit = ZALLOC_ZONE_LIMIT;
238 ZoneMask = ZoneSize - 1;
239 ZonePageCount = ZoneSize / PAGE_SIZE;
241 npg = KvaSize / PAGE_SIZE;
242 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
243 PAGE_SIZE, M_WAITOK|M_ZERO);
245 for (i = 0; i < arysize(weirdary); ++i)
246 weirdary[i] = WEIRD_ADDR;
248 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
250 if (bootverbose)
251 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
255 * Initialize a malloc type tracking structure.
257 void
258 malloc_init(void *data)
260 struct malloc_type *type = data;
261 vm_poff_t limsize;
263 if (type->ks_magic != M_MAGIC)
264 panic("malloc type lacks magic");
266 if (type->ks_limit != 0)
267 return;
269 if (vmstats.v_page_count == 0)
270 panic("malloc_init not allowed before vm init");
272 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
273 if (limsize > KvaSize)
274 limsize = KvaSize;
275 type->ks_limit = limsize / 10;
277 type->ks_next = kmemstatistics;
278 kmemstatistics = type;
281 void
282 malloc_uninit(void *data)
284 struct malloc_type *type = data;
285 struct malloc_type *t;
286 #ifdef INVARIANTS
287 int i;
288 long ttl;
289 #endif
291 if (type->ks_magic != M_MAGIC)
292 panic("malloc type lacks magic");
294 if (vmstats.v_page_count == 0)
295 panic("malloc_uninit not allowed before vm init");
297 if (type->ks_limit == 0)
298 panic("malloc_uninit on uninitialized type");
300 #ifdef SMP
301 /* Make sure that all pending kfree()s are finished. */
302 lwkt_synchronize_ipiqs("muninit");
303 #endif
305 #ifdef INVARIANTS
307 * memuse is only correct in aggregation. Due to memory being allocated
308 * on one cpu and freed on another individual array entries may be
309 * negative or positive (canceling each other out).
311 for (i = ttl = 0; i < ncpus; ++i)
312 ttl += type->ks_memuse[i];
313 if (ttl) {
314 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
315 ttl, type->ks_shortdesc, i);
317 #endif
318 if (type == kmemstatistics) {
319 kmemstatistics = type->ks_next;
320 } else {
321 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
322 if (t->ks_next == type) {
323 t->ks_next = type->ks_next;
324 break;
328 type->ks_next = NULL;
329 type->ks_limit = 0;
333 * Increase the kmalloc pool limit for the specified pool. No changes
334 * are the made if the pool would shrink.
336 void
337 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
339 if (type->ks_limit == 0)
340 malloc_init(type);
341 if (type->ks_limit < bytes)
342 type->ks_limit = bytes;
346 * Dynamically create a malloc pool. This function is a NOP if *typep is
347 * already non-NULL.
349 void
350 kmalloc_create(struct malloc_type **typep, const char *descr)
352 struct malloc_type *type;
354 if (*typep == NULL) {
355 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
356 type->ks_magic = M_MAGIC;
357 type->ks_shortdesc = descr;
358 malloc_init(type);
359 *typep = type;
364 * Destroy a dynamically created malloc pool. This function is a NOP if
365 * the pool has already been destroyed.
367 void
368 kmalloc_destroy(struct malloc_type **typep)
370 if (*typep != NULL) {
371 malloc_uninit(*typep);
372 kfree(*typep, M_TEMP);
373 *typep = NULL;
378 * Calculate the zone index for the allocation request size and set the
379 * allocation request size to that particular zone's chunk size.
381 static __inline int
382 zoneindex(unsigned long *bytes)
384 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
385 if (n < 128) {
386 *bytes = n = (n + 7) & ~7;
387 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
389 if (n < 256) {
390 *bytes = n = (n + 15) & ~15;
391 return(n / 16 + 7);
393 if (n < 8192) {
394 if (n < 512) {
395 *bytes = n = (n + 31) & ~31;
396 return(n / 32 + 15);
398 if (n < 1024) {
399 *bytes = n = (n + 63) & ~63;
400 return(n / 64 + 23);
402 if (n < 2048) {
403 *bytes = n = (n + 127) & ~127;
404 return(n / 128 + 31);
406 if (n < 4096) {
407 *bytes = n = (n + 255) & ~255;
408 return(n / 256 + 39);
410 *bytes = n = (n + 511) & ~511;
411 return(n / 512 + 47);
413 #if ZALLOC_ZONE_LIMIT > 8192
414 if (n < 16384) {
415 *bytes = n = (n + 1023) & ~1023;
416 return(n / 1024 + 55);
418 #endif
419 #if ZALLOC_ZONE_LIMIT > 16384
420 if (n < 32768) {
421 *bytes = n = (n + 2047) & ~2047;
422 return(n / 2048 + 63);
424 #endif
425 panic("Unexpected byte count %d", n);
426 return(0);
430 * malloc() (SLAB ALLOCATOR)
432 * Allocate memory via the slab allocator. If the request is too large,
433 * or if it page-aligned beyond a certain size, we fall back to the
434 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
435 * &SlabMisc if you don't care.
437 * M_RNOWAIT - don't block.
438 * M_NULLOK - return NULL instead of blocking.
439 * M_ZERO - zero the returned memory.
440 * M_USE_RESERVE - allow greater drawdown of the free list
441 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
443 * MPSAFE
446 void *
447 kmalloc(unsigned long size, struct malloc_type *type, int flags)
449 SLZone *z;
450 SLChunk *chunk;
451 SLGlobalData *slgd;
452 struct globaldata *gd;
453 int zi;
454 #ifdef INVARIANTS
455 int i;
456 #endif
458 logmemory_quick(malloc_beg);
459 gd = mycpu;
460 slgd = &gd->gd_slab;
463 * XXX silly to have this in the critical path.
465 if (type->ks_limit == 0) {
466 crit_enter();
467 if (type->ks_limit == 0)
468 malloc_init(type);
469 crit_exit();
471 ++type->ks_calls;
474 * Handle the case where the limit is reached. Panic if we can't return
475 * NULL. The original malloc code looped, but this tended to
476 * simply deadlock the computer.
478 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
479 * to determine if a more complete limit check should be done. The
480 * actual memory use is tracked via ks_memuse[cpu].
482 while (type->ks_loosememuse >= type->ks_limit) {
483 int i;
484 long ttl;
486 for (i = ttl = 0; i < ncpus; ++i)
487 ttl += type->ks_memuse[i];
488 type->ks_loosememuse = ttl; /* not MP synchronized */
489 if (ttl >= type->ks_limit) {
490 if (flags & M_NULLOK) {
491 logmemory(malloc, NULL, type, size, flags);
492 return(NULL);
494 panic("%s: malloc limit exceeded", type->ks_shortdesc);
499 * Handle the degenerate size == 0 case. Yes, this does happen.
500 * Return a special pointer. This is to maintain compatibility with
501 * the original malloc implementation. Certain devices, such as the
502 * adaptec driver, not only allocate 0 bytes, they check for NULL and
503 * also realloc() later on. Joy.
505 if (size == 0) {
506 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
507 return(ZERO_LENGTH_PTR);
511 * Handle hysteresis from prior frees here in malloc(). We cannot
512 * safely manipulate the kernel_map in free() due to free() possibly
513 * being called via an IPI message or from sensitive interrupt code.
515 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
516 crit_enter();
517 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */
518 z = slgd->FreeZones;
519 slgd->FreeZones = z->z_Next;
520 --slgd->NFreeZones;
521 kmem_slab_free(z, ZoneSize); /* may block */
523 crit_exit();
526 * XXX handle oversized frees that were queued from free().
528 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
529 crit_enter();
530 if ((z = slgd->FreeOvZones) != NULL) {
531 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
532 slgd->FreeOvZones = z->z_Next;
533 kmem_slab_free(z, z->z_ChunkSize); /* may block */
535 crit_exit();
539 * Handle large allocations directly. There should not be very many of
540 * these so performance is not a big issue.
542 * The backend allocator is pretty nasty on a SMP system. Use the
543 * slab allocator for one and two page-sized chunks even though we lose
544 * some efficiency. XXX maybe fix mmio and the elf loader instead.
546 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
547 struct kmemusage *kup;
549 size = round_page(size);
550 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
551 if (chunk == NULL) {
552 logmemory(malloc, NULL, type, size, flags);
553 return(NULL);
555 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
556 flags |= M_PASSIVE_ZERO;
557 kup = btokup(chunk);
558 kup->ku_pagecnt = size / PAGE_SIZE;
559 kup->ku_cpu = gd->gd_cpuid;
560 crit_enter();
561 goto done;
565 * Attempt to allocate out of an existing zone. First try the free list,
566 * then allocate out of unallocated space. If we find a good zone move
567 * it to the head of the list so later allocations find it quickly
568 * (we might have thousands of zones in the list).
570 * Note: zoneindex() will panic of size is too large.
572 zi = zoneindex(&size);
573 KKASSERT(zi < NZONES);
574 crit_enter();
575 if ((z = slgd->ZoneAry[zi]) != NULL) {
576 KKASSERT(z->z_NFree > 0);
579 * Remove us from the ZoneAry[] when we become empty
581 if (--z->z_NFree == 0) {
582 slgd->ZoneAry[zi] = z->z_Next;
583 z->z_Next = NULL;
587 * Locate a chunk in a free page. This attempts to localize
588 * reallocations into earlier pages without us having to sort
589 * the chunk list. A chunk may still overlap a page boundary.
591 while (z->z_FirstFreePg < ZonePageCount) {
592 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
593 #ifdef DIAGNOSTIC
595 * Diagnostic: c_Next is not total garbage.
597 KKASSERT(chunk->c_Next == NULL ||
598 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
599 ((intptr_t)chunk & IN_SAME_PAGE_MASK));
600 #endif
601 #ifdef INVARIANTS
602 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
603 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
604 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
605 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
606 chunk_mark_allocated(z, chunk);
607 #endif
608 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
609 goto done;
611 ++z->z_FirstFreePg;
615 * No chunks are available but NFree said we had some memory, so
616 * it must be available in the never-before-used-memory area
617 * governed by UIndex. The consequences are very serious if our zone
618 * got corrupted so we use an explicit panic rather then a KASSERT.
620 if (z->z_UIndex + 1 != z->z_NMax)
621 z->z_UIndex = z->z_UIndex + 1;
622 else
623 z->z_UIndex = 0;
624 if (z->z_UIndex == z->z_UEndIndex)
625 panic("slaballoc: corrupted zone");
626 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
627 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
628 flags &= ~M_ZERO;
629 flags |= M_PASSIVE_ZERO;
631 #if defined(INVARIANTS)
632 chunk_mark_allocated(z, chunk);
633 #endif
634 goto done;
638 * If all zones are exhausted we need to allocate a new zone for this
639 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
640 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
641 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
642 * we do not pre-zero it because we do not want to mess up the L1 cache.
644 * At least one subsystem, the tty code (see CROUND) expects power-of-2
645 * allocations to be power-of-2 aligned. We maintain compatibility by
646 * adjusting the base offset below.
649 int off;
651 if ((z = slgd->FreeZones) != NULL) {
652 slgd->FreeZones = z->z_Next;
653 --slgd->NFreeZones;
654 bzero(z, sizeof(SLZone));
655 z->z_Flags |= SLZF_UNOTZEROD;
656 } else {
657 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
658 if (z == NULL)
659 goto fail;
663 * How big is the base structure?
665 #if defined(INVARIANTS)
667 * Make room for z_Bitmap. An exact calculation is somewhat more
668 * complicated so don't make an exact calculation.
670 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
671 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
672 #else
673 off = sizeof(SLZone);
674 #endif
677 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
678 * Otherwise just 8-byte align the data.
680 if ((size | (size - 1)) + 1 == (size << 1))
681 off = (off + size - 1) & ~(size - 1);
682 else
683 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
684 z->z_Magic = ZALLOC_SLAB_MAGIC;
685 z->z_ZoneIndex = zi;
686 z->z_NMax = (ZoneSize - off) / size;
687 z->z_NFree = z->z_NMax - 1;
688 z->z_BasePtr = (char *)z + off;
689 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
690 z->z_ChunkSize = size;
691 z->z_FirstFreePg = ZonePageCount;
692 z->z_CpuGd = gd;
693 z->z_Cpu = gd->gd_cpuid;
694 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
695 z->z_Next = slgd->ZoneAry[zi];
696 slgd->ZoneAry[zi] = z;
697 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
698 flags &= ~M_ZERO; /* already zero'd */
699 flags |= M_PASSIVE_ZERO;
701 #if defined(INVARIANTS)
702 chunk_mark_allocated(z, chunk);
703 #endif
706 * Slide the base index for initial allocations out of the next
707 * zone we create so we do not over-weight the lower part of the
708 * cpu memory caches.
710 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
711 & (ZALLOC_MAX_ZONE_SIZE - 1);
713 done:
714 ++type->ks_inuse[gd->gd_cpuid];
715 type->ks_memuse[gd->gd_cpuid] += size;
716 type->ks_loosememuse += size; /* not MP synchronized */
717 crit_exit();
718 if (flags & M_ZERO)
719 bzero(chunk, size);
720 #ifdef INVARIANTS
721 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
722 if (use_malloc_pattern) {
723 for (i = 0; i < size; i += sizeof(int)) {
724 *(int *)((char *)chunk + i) = -1;
727 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
729 #endif
730 logmemory(malloc, chunk, type, size, flags);
731 return(chunk);
732 fail:
733 crit_exit();
734 logmemory(malloc, NULL, type, size, flags);
735 return(NULL);
739 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
741 * Generally speaking this routine is not called very often and we do
742 * not attempt to optimize it beyond reusing the same pointer if the
743 * new size fits within the chunking of the old pointer's zone.
745 void *
746 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
748 SLZone *z;
749 void *nptr;
750 unsigned long osize;
752 KKASSERT((flags & M_ZERO) == 0); /* not supported */
754 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
755 return(kmalloc(size, type, flags));
756 if (size == 0) {
757 kfree(ptr, type);
758 return(NULL);
762 * Handle oversized allocations. XXX we really should require that a
763 * size be passed to free() instead of this nonsense.
766 struct kmemusage *kup;
768 kup = btokup(ptr);
769 if (kup->ku_pagecnt) {
770 osize = kup->ku_pagecnt << PAGE_SHIFT;
771 if (osize == round_page(size))
772 return(ptr);
773 if ((nptr = kmalloc(size, type, flags)) == NULL)
774 return(NULL);
775 bcopy(ptr, nptr, min(size, osize));
776 kfree(ptr, type);
777 return(nptr);
782 * Get the original allocation's zone. If the new request winds up
783 * using the same chunk size we do not have to do anything.
785 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
786 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
789 * Allocate memory for the new request size. Note that zoneindex has
790 * already adjusted the request size to the appropriate chunk size, which
791 * should optimize our bcopy(). Then copy and return the new pointer.
793 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
794 * necessary align the result.
796 * We can only zoneindex (to align size to the chunk size) if the new
797 * size is not too large.
799 if (size < ZoneLimit) {
800 zoneindex(&size);
801 if (z->z_ChunkSize == size)
802 return(ptr);
804 if ((nptr = kmalloc(size, type, flags)) == NULL)
805 return(NULL);
806 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
807 kfree(ptr, type);
808 return(nptr);
812 * Return the kmalloc limit for this type, in bytes.
814 long
815 kmalloc_limit(struct malloc_type *type)
817 if (type->ks_limit == 0) {
818 crit_enter();
819 if (type->ks_limit == 0)
820 malloc_init(type);
821 crit_exit();
823 return(type->ks_limit);
827 * Allocate a copy of the specified string.
829 * (MP SAFE) (MAY BLOCK)
831 char *
832 kstrdup(const char *str, struct malloc_type *type)
834 int zlen; /* length inclusive of terminating NUL */
835 char *nstr;
837 if (str == NULL)
838 return(NULL);
839 zlen = strlen(str) + 1;
840 nstr = kmalloc(zlen, type, M_WAITOK);
841 bcopy(str, nstr, zlen);
842 return(nstr);
845 #ifdef SMP
847 * free() (SLAB ALLOCATOR)
849 * Free the specified chunk of memory.
851 static
852 void
853 free_remote(void *ptr)
855 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
856 kfree(ptr, *(struct malloc_type **)ptr);
859 #endif
862 * free (SLAB ALLOCATOR)
864 * Free a memory block previously allocated by malloc. Note that we do not
865 * attempt to uplodate ks_loosememuse as MP races could prevent us from
866 * checking memory limits in malloc.
868 * MPSAFE
870 void
871 kfree(void *ptr, struct malloc_type *type)
873 SLZone *z;
874 SLChunk *chunk;
875 SLGlobalData *slgd;
876 struct globaldata *gd;
877 int pgno;
879 logmemory_quick(free_beg);
880 gd = mycpu;
881 slgd = &gd->gd_slab;
883 if (ptr == NULL)
884 panic("trying to free NULL pointer");
887 * Handle special 0-byte allocations
889 if (ptr == ZERO_LENGTH_PTR) {
890 logmemory(free_zero, ptr, type, -1, 0);
891 logmemory_quick(free_end);
892 return;
896 * Handle oversized allocations. XXX we really should require that a
897 * size be passed to free() instead of this nonsense.
899 * This code is never called via an ipi.
902 struct kmemusage *kup;
903 unsigned long size;
905 kup = btokup(ptr);
906 if (kup->ku_pagecnt) {
907 size = kup->ku_pagecnt << PAGE_SHIFT;
908 kup->ku_pagecnt = 0;
909 #ifdef INVARIANTS
910 KKASSERT(sizeof(weirdary) <= size);
911 bcopy(weirdary, ptr, sizeof(weirdary));
912 #endif
914 * note: we always adjust our cpu's slot, not the originating
915 * cpu (kup->ku_cpuid). The statistics are in aggregate.
917 * note: XXX we have still inherited the interrupts-can't-block
918 * assumption. An interrupt thread does not bump
919 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
920 * primarily until we can fix softupdate's assumptions about free().
922 crit_enter();
923 --type->ks_inuse[gd->gd_cpuid];
924 type->ks_memuse[gd->gd_cpuid] -= size;
925 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
926 logmemory(free_ovsz_delayed, ptr, type, size, 0);
927 z = (SLZone *)ptr;
928 z->z_Magic = ZALLOC_OVSZ_MAGIC;
929 z->z_Next = slgd->FreeOvZones;
930 z->z_ChunkSize = size;
931 slgd->FreeOvZones = z;
932 crit_exit();
933 } else {
934 crit_exit();
935 logmemory(free_ovsz, ptr, type, size, 0);
936 kmem_slab_free(ptr, size); /* may block */
938 logmemory_quick(free_end);
939 return;
944 * Zone case. Figure out the zone based on the fact that it is
945 * ZoneSize aligned.
947 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
948 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
951 * If we do not own the zone then forward the request to the
952 * cpu that does. Since the timing is non-critical, a passive
953 * message is sent.
955 if (z->z_CpuGd != gd) {
956 *(struct malloc_type **)ptr = type;
957 #ifdef SMP
958 logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
959 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
960 #else
961 panic("Corrupt SLZone");
962 #endif
963 logmemory_quick(free_end);
964 return;
967 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
969 if (type->ks_magic != M_MAGIC)
970 panic("free: malloc type lacks magic");
972 crit_enter();
973 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
974 chunk = ptr;
976 #ifdef INVARIANTS
978 * Attempt to detect a double-free. To reduce overhead we only check
979 * if there appears to be link pointer at the base of the data.
981 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
982 SLChunk *scan;
983 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
984 if (scan == chunk)
985 panic("Double free at %p", chunk);
988 chunk_mark_free(z, chunk);
989 #endif
992 * Put weird data into the memory to detect modifications after freeing,
993 * illegal pointer use after freeing (we should fault on the odd address),
994 * and so forth. XXX needs more work, see the old malloc code.
996 #ifdef INVARIANTS
997 if (z->z_ChunkSize < sizeof(weirdary))
998 bcopy(weirdary, chunk, z->z_ChunkSize);
999 else
1000 bcopy(weirdary, chunk, sizeof(weirdary));
1001 #endif
1004 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1005 * z_FirstFreePg.
1007 #ifdef INVARIANTS
1008 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1009 panic("BADFREE %p", chunk);
1010 #endif
1011 chunk->c_Next = z->z_PageAry[pgno];
1012 z->z_PageAry[pgno] = chunk;
1013 #ifdef INVARIANTS
1014 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1015 panic("BADFREE2");
1016 #endif
1017 if (z->z_FirstFreePg > pgno)
1018 z->z_FirstFreePg = pgno;
1021 * Bump the number of free chunks. If it becomes non-zero the zone
1022 * must be added back onto the appropriate list.
1024 if (z->z_NFree++ == 0) {
1025 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1026 slgd->ZoneAry[z->z_ZoneIndex] = z;
1029 --type->ks_inuse[z->z_Cpu];
1030 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1033 * If the zone becomes totally free, and there are other zones we
1034 * can allocate from, move this zone to the FreeZones list. Since
1035 * this code can be called from an IPI callback, do *NOT* try to mess
1036 * with kernel_map here. Hysteresis will be performed at malloc() time.
1038 if (z->z_NFree == z->z_NMax &&
1039 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1041 SLZone **pz;
1043 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1045 *pz = z->z_Next;
1046 z->z_Magic = -1;
1047 z->z_Next = slgd->FreeZones;
1048 slgd->FreeZones = z;
1049 ++slgd->NFreeZones;
1051 logmemory_quick(free_end);
1052 crit_exit();
1055 #if defined(INVARIANTS)
1057 * Helper routines for sanity checks
1059 static
1060 void
1061 chunk_mark_allocated(SLZone *z, void *chunk)
1063 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1064 __uint32_t *bitptr;
1066 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1067 bitptr = &z->z_Bitmap[bitdex >> 5];
1068 bitdex &= 31;
1069 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
1070 *bitptr |= 1 << bitdex;
1073 static
1074 void
1075 chunk_mark_free(SLZone *z, void *chunk)
1077 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1078 __uint32_t *bitptr;
1080 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1081 bitptr = &z->z_Bitmap[bitdex >> 5];
1082 bitdex &= 31;
1083 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1084 *bitptr &= ~(1 << bitdex);
1087 #endif
1090 * kmem_slab_alloc()
1092 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1093 * specified alignment. M_* flags are expected in the flags field.
1095 * Alignment must be a multiple of PAGE_SIZE.
1097 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1098 * but when we move zalloc() over to use this function as its backend
1099 * we will have to switch to kreserve/krelease and call reserve(0)
1100 * after the new space is made available.
1102 * Interrupt code which has preempted other code is not allowed to
1103 * use PQ_CACHE pages. However, if an interrupt thread is run
1104 * non-preemptively or blocks and then runs non-preemptively, then
1105 * it is free to use PQ_CACHE pages.
1107 * This routine will currently obtain the BGL.
1109 * MPALMOSTSAFE - acquires mplock
1111 static void *
1112 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1114 vm_size_t i;
1115 vm_offset_t addr;
1116 int count, vmflags, base_vmflags;
1117 thread_t td;
1119 size = round_page(size);
1120 addr = vm_map_min(&kernel_map);
1123 * Reserve properly aligned space from kernel_map. RNOWAIT allocations
1124 * cannot block.
1126 if (flags & M_RNOWAIT) {
1127 if (try_mplock() == 0)
1128 return(NULL);
1129 } else {
1130 get_mplock();
1132 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1133 crit_enter();
1134 vm_map_lock(&kernel_map);
1135 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1136 vm_map_unlock(&kernel_map);
1137 if ((flags & M_NULLOK) == 0)
1138 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1139 crit_exit();
1140 vm_map_entry_release(count);
1141 rel_mplock();
1142 return(NULL);
1146 * kernel_object maps 1:1 to kernel_map.
1148 vm_object_reference(&kernel_object);
1149 vm_map_insert(&kernel_map, &count,
1150 &kernel_object, addr, addr, addr + size,
1151 VM_MAPTYPE_NORMAL,
1152 VM_PROT_ALL, VM_PROT_ALL,
1155 td = curthread;
1157 base_vmflags = 0;
1158 if (flags & M_ZERO)
1159 base_vmflags |= VM_ALLOC_ZERO;
1160 if (flags & M_USE_RESERVE)
1161 base_vmflags |= VM_ALLOC_SYSTEM;
1162 if (flags & M_USE_INTERRUPT_RESERVE)
1163 base_vmflags |= VM_ALLOC_INTERRUPT;
1164 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1165 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1169 * Allocate the pages. Do not mess with the PG_ZERO flag yet.
1171 for (i = 0; i < size; i += PAGE_SIZE) {
1172 vm_page_t m;
1175 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1177 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1178 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1179 * implied in this case), though I'm not sure if we really need to
1180 * do that.
1182 vmflags = base_vmflags;
1183 if (flags & M_WAITOK) {
1184 if (td->td_preempted)
1185 vmflags |= VM_ALLOC_SYSTEM;
1186 else
1187 vmflags |= VM_ALLOC_NORMAL;
1190 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1193 * If the allocation failed we either return NULL or we retry.
1195 * If M_WAITOK is specified we wait for more memory and retry.
1196 * If M_WAITOK is specified from a preemption we yield instead of
1197 * wait. Livelock will not occur because the interrupt thread
1198 * will not be preempting anyone the second time around after the
1199 * yield.
1201 if (m == NULL) {
1202 if (flags & M_WAITOK) {
1203 if (td->td_preempted) {
1204 vm_map_unlock(&kernel_map);
1205 lwkt_yield();
1206 vm_map_lock(&kernel_map);
1207 } else {
1208 vm_map_unlock(&kernel_map);
1209 vm_wait(0);
1210 vm_map_lock(&kernel_map);
1212 i -= PAGE_SIZE; /* retry */
1213 continue;
1217 * We were unable to recover, cleanup and return NULL
1219 while (i != 0) {
1220 i -= PAGE_SIZE;
1221 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1222 /* page should already be busy */
1223 vm_page_free(m);
1225 vm_map_delete(&kernel_map, addr, addr + size, &count);
1226 vm_map_unlock(&kernel_map);
1227 crit_exit();
1228 vm_map_entry_release(count);
1229 rel_mplock();
1230 return(NULL);
1235 * Success!
1237 * Mark the map entry as non-pageable using a routine that allows us to
1238 * populate the underlying pages.
1240 * The pages were busied by the allocations above.
1242 vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1243 crit_exit();
1246 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1248 for (i = 0; i < size; i += PAGE_SIZE) {
1249 vm_page_t m;
1251 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1252 m->valid = VM_PAGE_BITS_ALL;
1253 /* page should already be busy */
1254 vm_page_wire(m);
1255 vm_page_wakeup(m);
1256 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1257 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1258 bzero((char *)addr + i, PAGE_SIZE);
1259 vm_page_flag_clear(m, PG_ZERO);
1260 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1261 vm_page_flag_set(m, PG_REFERENCED);
1263 vm_map_unlock(&kernel_map);
1264 vm_map_entry_release(count);
1265 rel_mplock();
1266 return((void *)addr);
1270 * kmem_slab_free()
1272 * MPALMOSTSAFE - acquires mplock
1274 static void
1275 kmem_slab_free(void *ptr, vm_size_t size)
1277 get_mplock();
1278 crit_enter();
1279 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1280 crit_exit();
1281 rel_mplock();