iscontrol(8): Fix synopsis, sync usage() & improve markup
[dragonfly.git] / sys / kern / kern_clock.c
blob8c05ebdd859f4c180e8aca7e8bcde90ece19489b
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $
76 #include "opt_ntp.h"
77 #include "opt_polling.h"
78 #include "opt_ifpoll.h"
79 #include "opt_pctrack.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/kinfo.h>
86 #include <sys/proc.h>
87 #include <sys/malloc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/timex.h>
91 #include <sys/timepps.h>
92 #include <vm/vm.h>
93 #include <sys/lock.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_extern.h>
97 #include <sys/sysctl.h>
98 #include <sys/thread2.h>
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
103 #include <machine/cpufunc.h>
104 #include <machine/specialreg.h>
105 #include <machine/clock.h>
107 #ifdef GPROF
108 #include <sys/gmon.h>
109 #endif
111 #ifdef DEVICE_POLLING
112 extern void init_device_poll_pcpu(int);
113 #endif
115 #ifdef IFPOLL_ENABLE
116 extern void ifpoll_init_pcpu(int);
117 #endif
119 #ifdef DEBUG_PCTRACK
120 static void do_pctrack(struct intrframe *frame, int which);
121 #endif
123 static void initclocks (void *dummy);
124 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
127 * Some of these don't belong here, but it's easiest to concentrate them.
128 * Note that cpu_time counts in microseconds, but most userland programs
129 * just compare relative times against the total by delta.
131 struct kinfo_cputime cputime_percpu[MAXCPU];
132 #ifdef DEBUG_PCTRACK
133 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
134 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
135 #endif
137 #ifdef SMP
138 static int
139 sysctl_cputime(SYSCTL_HANDLER_ARGS)
141 int cpu, error = 0;
142 size_t size = sizeof(struct kinfo_cputime);
144 for (cpu = 0; cpu < ncpus; ++cpu) {
145 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
146 break;
149 return (error);
151 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
152 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
153 #else
154 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
155 "CPU time statistics");
156 #endif
159 * boottime is used to calculate the 'real' uptime. Do not confuse this with
160 * microuptime(). microtime() is not drift compensated. The real uptime
161 * with compensation is nanotime() - bootime. boottime is recalculated
162 * whenever the real time is set based on the compensated elapsed time
163 * in seconds (gd->gd_time_seconds).
165 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
166 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
167 * the real time.
169 struct timespec boottime; /* boot time (realtime) for reference only */
170 time_t time_second; /* read-only 'passive' uptime in seconds */
173 * basetime is used to calculate the compensated real time of day. The
174 * basetime can be modified on a per-tick basis by the adjtime(),
175 * ntp_adjtime(), and sysctl-based time correction APIs.
177 * Note that frequency corrections can also be made by adjusting
178 * gd_cpuclock_base.
180 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
181 * used on both SMP and UP systems to avoid MP races between cpu's and
182 * interrupt races on UP systems.
184 #define BASETIME_ARYSIZE 16
185 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
186 static struct timespec basetime[BASETIME_ARYSIZE];
187 static volatile int basetime_index;
189 static int
190 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
192 struct timespec *bt;
193 int error;
194 int index;
197 * Because basetime data and index may be updated by another cpu,
198 * a load fence is required to ensure that the data we read has
199 * not been speculatively read relative to a possibly updated index.
201 index = basetime_index;
202 cpu_lfence();
203 bt = &basetime[index];
204 error = SYSCTL_OUT(req, bt, sizeof(*bt));
205 return (error);
208 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
209 &boottime, timespec, "System boottime");
210 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
211 sysctl_get_basetime, "S,timespec", "System basetime");
213 static void hardclock(systimer_t info, struct intrframe *frame);
214 static void statclock(systimer_t info, struct intrframe *frame);
215 static void schedclock(systimer_t info, struct intrframe *frame);
216 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
218 int ticks; /* system master ticks at hz */
219 int clocks_running; /* tsleep/timeout clocks operational */
220 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
221 int64_t nsec_acc; /* accumulator */
223 /* NTPD time correction fields */
224 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
225 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
226 int64_t ntp_delta; /* one-time correction in nsec */
227 int64_t ntp_big_delta = 1000000000;
228 int32_t ntp_tick_delta; /* current adjustment rate */
229 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
230 time_t ntp_leap_second; /* time of next leap second */
231 int ntp_leap_insert; /* whether to insert or remove a second */
234 * Finish initializing clock frequencies and start all clocks running.
236 /* ARGSUSED*/
237 static void
238 initclocks(void *dummy)
240 /*psratio = profhz / stathz;*/
241 initclocks_pcpu();
242 clocks_running = 1;
246 * Called on a per-cpu basis
248 void
249 initclocks_pcpu(void)
251 struct globaldata *gd = mycpu;
253 crit_enter();
254 if (gd->gd_cpuid == 0) {
255 gd->gd_time_seconds = 1;
256 gd->gd_cpuclock_base = sys_cputimer->count();
257 } else {
258 /* XXX */
259 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
260 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
263 systimer_intr_enable();
265 #ifdef DEVICE_POLLING
266 init_device_poll_pcpu(gd->gd_cpuid);
267 #endif
269 #ifdef IFPOLL_ENABLE
270 ifpoll_init_pcpu(gd->gd_cpuid);
271 #endif
274 * Use a non-queued periodic systimer to prevent multiple ticks from
275 * building up if the sysclock jumps forward (8254 gets reset). The
276 * sysclock will never jump backwards. Our time sync is based on
277 * the actual sysclock, not the ticks count.
279 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
280 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
281 /* XXX correct the frequency for scheduler / estcpu tests */
282 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
283 NULL, ESTCPUFREQ);
284 crit_exit();
288 * This sets the current real time of day. Timespecs are in seconds and
289 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
290 * instead we adjust basetime so basetime + gd_* results in the current
291 * time of day. This way the gd_* fields are guarenteed to represent
292 * a monotonically increasing 'uptime' value.
294 * When set_timeofday() is called from userland, the system call forces it
295 * onto cpu #0 since only cpu #0 can update basetime_index.
297 void
298 set_timeofday(struct timespec *ts)
300 struct timespec *nbt;
301 int ni;
304 * XXX SMP / non-atomic basetime updates
306 crit_enter();
307 ni = (basetime_index + 1) & BASETIME_ARYMASK;
308 nbt = &basetime[ni];
309 nanouptime(nbt);
310 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
311 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
312 if (nbt->tv_nsec < 0) {
313 nbt->tv_nsec += 1000000000;
314 --nbt->tv_sec;
318 * Note that basetime diverges from boottime as the clock drift is
319 * compensated for, so we cannot do away with boottime. When setting
320 * the absolute time of day the drift is 0 (for an instant) and we
321 * can simply assign boottime to basetime.
323 * Note that nanouptime() is based on gd_time_seconds which is drift
324 * compensated up to a point (it is guarenteed to remain monotonically
325 * increasing). gd_time_seconds is thus our best uptime guess and
326 * suitable for use in the boottime calculation. It is already taken
327 * into account in the basetime calculation above.
329 boottime.tv_sec = nbt->tv_sec;
330 ntp_delta = 0;
333 * We now have a new basetime, make sure all other cpus have it,
334 * then update the index.
336 cpu_sfence();
337 basetime_index = ni;
339 crit_exit();
343 * Each cpu has its own hardclock, but we only increments ticks and softticks
344 * on cpu #0.
346 * NOTE! systimer! the MP lock might not be held here. We can only safely
347 * manipulate objects owned by the current cpu.
349 static void
350 hardclock(systimer_t info, struct intrframe *frame)
352 sysclock_t cputicks;
353 struct proc *p;
354 struct globaldata *gd = mycpu;
357 * Realtime updates are per-cpu. Note that timer corrections as
358 * returned by microtime() and friends make an additional adjustment
359 * using a system-wise 'basetime', but the running time is always
360 * taken from the per-cpu globaldata area. Since the same clock
361 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
362 * stay in synch.
364 * Note that we never allow info->time (aka gd->gd_hardclock.time)
365 * to reverse index gd_cpuclock_base, but that it is possible for
366 * it to temporarily get behind in the seconds if something in the
367 * system locks interrupts for a long period of time. Since periodic
368 * timers count events, though everything should resynch again
369 * immediately.
371 cputicks = info->time - gd->gd_cpuclock_base;
372 if (cputicks >= sys_cputimer->freq) {
373 ++gd->gd_time_seconds;
374 gd->gd_cpuclock_base += sys_cputimer->freq;
378 * The system-wide ticks counter and NTP related timedelta/tickdelta
379 * adjustments only occur on cpu #0. NTP adjustments are accomplished
380 * by updating basetime.
382 if (gd->gd_cpuid == 0) {
383 struct timespec *nbt;
384 struct timespec nts;
385 int leap;
386 int ni;
388 ++ticks;
390 #if 0
391 if (tco->tc_poll_pps)
392 tco->tc_poll_pps(tco);
393 #endif
396 * Calculate the new basetime index. We are in a critical section
397 * on cpu #0 and can safely play with basetime_index. Start
398 * with the current basetime and then make adjustments.
400 ni = (basetime_index + 1) & BASETIME_ARYMASK;
401 nbt = &basetime[ni];
402 *nbt = basetime[basetime_index];
405 * Apply adjtime corrections. (adjtime() API)
407 * adjtime() only runs on cpu #0 so our critical section is
408 * sufficient to access these variables.
410 if (ntp_delta != 0) {
411 nbt->tv_nsec += ntp_tick_delta;
412 ntp_delta -= ntp_tick_delta;
413 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
414 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
415 ntp_tick_delta = ntp_delta;
420 * Apply permanent frequency corrections. (sysctl API)
422 if (ntp_tick_permanent != 0) {
423 ntp_tick_acc += ntp_tick_permanent;
424 if (ntp_tick_acc >= (1LL << 32)) {
425 nbt->tv_nsec += ntp_tick_acc >> 32;
426 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
427 } else if (ntp_tick_acc <= -(1LL << 32)) {
428 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
429 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
430 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
434 if (nbt->tv_nsec >= 1000000000) {
435 nbt->tv_sec++;
436 nbt->tv_nsec -= 1000000000;
437 } else if (nbt->tv_nsec < 0) {
438 nbt->tv_sec--;
439 nbt->tv_nsec += 1000000000;
443 * Another per-tick compensation. (for ntp_adjtime() API)
445 if (nsec_adj != 0) {
446 nsec_acc += nsec_adj;
447 if (nsec_acc >= 0x100000000LL) {
448 nbt->tv_nsec += nsec_acc >> 32;
449 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
450 } else if (nsec_acc <= -0x100000000LL) {
451 nbt->tv_nsec -= -nsec_acc >> 32;
452 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
454 if (nbt->tv_nsec >= 1000000000) {
455 nbt->tv_nsec -= 1000000000;
456 ++nbt->tv_sec;
457 } else if (nbt->tv_nsec < 0) {
458 nbt->tv_nsec += 1000000000;
459 --nbt->tv_sec;
463 /************************************************************
464 * LEAP SECOND CORRECTION *
465 ************************************************************
467 * Taking into account all the corrections made above, figure
468 * out the new real time. If the seconds field has changed
469 * then apply any pending leap-second corrections.
471 getnanotime_nbt(nbt, &nts);
473 if (time_second != nts.tv_sec) {
475 * Apply leap second (sysctl API). Adjust nts for changes
476 * so we do not have to call getnanotime_nbt again.
478 if (ntp_leap_second) {
479 if (ntp_leap_second == nts.tv_sec) {
480 if (ntp_leap_insert) {
481 nbt->tv_sec++;
482 nts.tv_sec++;
483 } else {
484 nbt->tv_sec--;
485 nts.tv_sec--;
487 ntp_leap_second--;
492 * Apply leap second (ntp_adjtime() API), calculate a new
493 * nsec_adj field. ntp_update_second() returns nsec_adj
494 * as a per-second value but we need it as a per-tick value.
496 leap = ntp_update_second(time_second, &nsec_adj);
497 nsec_adj /= hz;
498 nbt->tv_sec += leap;
499 nts.tv_sec += leap;
502 * Update the time_second 'approximate time' global.
504 time_second = nts.tv_sec;
508 * Finally, our new basetime is ready to go live!
510 cpu_sfence();
511 basetime_index = ni;
514 * Figure out how badly the system is starved for memory
516 vm_fault_ratecheck();
520 * softticks are handled for all cpus
522 hardclock_softtick(gd);
525 * The LWKT scheduler will generally allow the current process to
526 * return to user mode even if there are other runnable LWKT threads
527 * running in kernel mode on behalf of a user process. This will
528 * ensure that those other threads have an opportunity to run in
529 * fairly short order (but not instantly).
531 need_lwkt_resched();
534 * ITimer handling is per-tick, per-cpu. I don't think ksignal()
535 * is mpsafe on curproc, so XXX get the mplock.
537 if ((p = curproc) != NULL && try_mplock()) {
538 if (frame && CLKF_USERMODE(frame) &&
539 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
540 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], tick) == 0)
541 ksignal(p, SIGVTALRM);
542 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
543 itimerdecr(&p->p_timer[ITIMER_PROF], tick) == 0)
544 ksignal(p, SIGPROF);
545 rel_mplock();
547 setdelayed();
551 * The statistics clock typically runs at a 125Hz rate, and is intended
552 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
554 * NOTE! systimer! the MP lock might not be held here. We can only safely
555 * manipulate objects owned by the current cpu.
557 * The stats clock is responsible for grabbing a profiling sample.
558 * Most of the statistics are only used by user-level statistics programs.
559 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
560 * p->p_estcpu.
562 * Like the other clocks, the stat clock is called from what is effectively
563 * a fast interrupt, so the context should be the thread/process that got
564 * interrupted.
566 static void
567 statclock(systimer_t info, struct intrframe *frame)
569 #ifdef GPROF
570 struct gmonparam *g;
571 int i;
572 #endif
573 thread_t td;
574 struct proc *p;
575 int bump;
576 struct timeval tv;
577 struct timeval *stv;
580 * How big was our timeslice relative to the last time?
582 microuptime(&tv); /* mpsafe */
583 stv = &mycpu->gd_stattv;
584 if (stv->tv_sec == 0) {
585 bump = 1;
586 } else {
587 bump = tv.tv_usec - stv->tv_usec +
588 (tv.tv_sec - stv->tv_sec) * 1000000;
589 if (bump < 0)
590 bump = 0;
591 if (bump > 1000000)
592 bump = 1000000;
594 *stv = tv;
596 td = curthread;
597 p = td->td_proc;
599 if (frame && CLKF_USERMODE(frame)) {
601 * Came from userland, handle user time and deal with
602 * possible process.
604 if (p && (p->p_flag & P_PROFIL))
605 addupc_intr(p, CLKF_PC(frame), 1);
606 td->td_uticks += bump;
609 * Charge the time as appropriate
611 if (p && p->p_nice > NZERO)
612 cpu_time.cp_nice += bump;
613 else
614 cpu_time.cp_user += bump;
615 } else {
616 #ifdef GPROF
618 * Kernel statistics are just like addupc_intr, only easier.
620 g = &_gmonparam;
621 if (g->state == GMON_PROF_ON && frame) {
622 i = CLKF_PC(frame) - g->lowpc;
623 if (i < g->textsize) {
624 i /= HISTFRACTION * sizeof(*g->kcount);
625 g->kcount[i]++;
628 #endif
630 * Came from kernel mode, so we were:
631 * - handling an interrupt,
632 * - doing syscall or trap work on behalf of the current
633 * user process, or
634 * - spinning in the idle loop.
635 * Whichever it is, charge the time as appropriate.
636 * Note that we charge interrupts to the current process,
637 * regardless of whether they are ``for'' that process,
638 * so that we know how much of its real time was spent
639 * in ``non-process'' (i.e., interrupt) work.
641 * XXX assume system if frame is NULL. A NULL frame
642 * can occur if ipi processing is done from a crit_exit().
644 if (frame && CLKF_INTR(frame))
645 td->td_iticks += bump;
646 else
647 td->td_sticks += bump;
649 if (frame && CLKF_INTR(frame)) {
650 #ifdef DEBUG_PCTRACK
651 do_pctrack(frame, PCTRACK_INT);
652 #endif
653 cpu_time.cp_intr += bump;
654 } else {
655 if (td == &mycpu->gd_idlethread) {
656 cpu_time.cp_idle += bump;
657 } else {
658 #ifdef DEBUG_PCTRACK
659 if (frame)
660 do_pctrack(frame, PCTRACK_SYS);
661 #endif
662 cpu_time.cp_sys += bump;
668 #ifdef DEBUG_PCTRACK
670 * Sample the PC when in the kernel or in an interrupt. User code can
671 * retrieve the information and generate a histogram or other output.
674 static void
675 do_pctrack(struct intrframe *frame, int which)
677 struct kinfo_pctrack *pctrack;
679 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
680 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
681 (void *)CLKF_PC(frame);
682 ++pctrack->pc_index;
685 static int
686 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
688 struct kinfo_pcheader head;
689 int error;
690 int cpu;
691 int ntrack;
693 head.pc_ntrack = PCTRACK_SIZE;
694 head.pc_arysize = PCTRACK_ARYSIZE;
696 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
697 return (error);
699 for (cpu = 0; cpu < ncpus; ++cpu) {
700 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
701 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
702 sizeof(struct kinfo_pctrack));
703 if (error)
704 break;
706 if (error)
707 break;
709 return (error);
711 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
712 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
714 #endif
717 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer,
718 * the MP lock might not be held. We can safely manipulate parts of curproc
719 * but that's about it.
721 * Each cpu has its own scheduler clock.
723 static void
724 schedclock(systimer_t info, struct intrframe *frame)
726 struct lwp *lp;
727 struct rusage *ru;
728 struct vmspace *vm;
729 long rss;
731 if ((lp = lwkt_preempted_proc()) != NULL) {
733 * Account for cpu time used and hit the scheduler. Note
734 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
735 * HERE.
737 ++lp->lwp_cpticks;
738 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic,
739 info->time);
741 if ((lp = curthread->td_lwp) != NULL) {
743 * Update resource usage integrals and maximums.
745 if ((ru = &lp->lwp_proc->p_ru) &&
746 (vm = lp->lwp_proc->p_vmspace) != NULL) {
747 ru->ru_ixrss += pgtok(vm->vm_tsize);
748 ru->ru_idrss += pgtok(vm->vm_dsize);
749 ru->ru_isrss += pgtok(vm->vm_ssize);
750 rss = pgtok(vmspace_resident_count(vm));
751 if (ru->ru_maxrss < rss)
752 ru->ru_maxrss = rss;
758 * Compute number of ticks for the specified amount of time. The
759 * return value is intended to be used in a clock interrupt timed
760 * operation and guarenteed to meet or exceed the requested time.
761 * If the representation overflows, return INT_MAX. The minimum return
762 * value is 1 ticks and the function will average the calculation up.
763 * If any value greater then 0 microseconds is supplied, a value
764 * of at least 2 will be returned to ensure that a near-term clock
765 * interrupt does not cause the timeout to occur (degenerately) early.
767 * Note that limit checks must take into account microseconds, which is
768 * done simply by using the smaller signed long maximum instead of
769 * the unsigned long maximum.
771 * If ints have 32 bits, then the maximum value for any timeout in
772 * 10ms ticks is 248 days.
775 tvtohz_high(struct timeval *tv)
777 int ticks;
778 long sec, usec;
780 sec = tv->tv_sec;
781 usec = tv->tv_usec;
782 if (usec < 0) {
783 sec--;
784 usec += 1000000;
786 if (sec < 0) {
787 #ifdef DIAGNOSTIC
788 if (usec > 0) {
789 sec++;
790 usec -= 1000000;
792 kprintf("tvtohz_high: negative time difference %ld sec %ld usec\n",
793 sec, usec);
794 #endif
795 ticks = 1;
796 } else if (sec <= INT_MAX / hz) {
797 ticks = (int)(sec * hz +
798 ((u_long)usec + (tick - 1)) / tick) + 1;
799 } else {
800 ticks = INT_MAX;
802 return (ticks);
806 * Compute number of ticks for the specified amount of time, erroring on
807 * the side of it being too low to ensure that sleeping the returned number
808 * of ticks will not result in a late return.
810 * The supplied timeval may not be negative and should be normalized. A
811 * return value of 0 is possible if the timeval converts to less then
812 * 1 tick.
814 * If ints have 32 bits, then the maximum value for any timeout in
815 * 10ms ticks is 248 days.
818 tvtohz_low(struct timeval *tv)
820 int ticks;
821 long sec;
823 sec = tv->tv_sec;
824 if (sec <= INT_MAX / hz)
825 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
826 else
827 ticks = INT_MAX;
828 return (ticks);
833 * Start profiling on a process.
835 * Kernel profiling passes proc0 which never exits and hence
836 * keeps the profile clock running constantly.
838 void
839 startprofclock(struct proc *p)
841 if ((p->p_flag & P_PROFIL) == 0) {
842 p->p_flag |= P_PROFIL;
843 #if 0 /* XXX */
844 if (++profprocs == 1 && stathz != 0) {
845 crit_enter();
846 psdiv = psratio;
847 setstatclockrate(profhz);
848 crit_exit();
850 #endif
855 * Stop profiling on a process.
857 void
858 stopprofclock(struct proc *p)
860 if (p->p_flag & P_PROFIL) {
861 p->p_flag &= ~P_PROFIL;
862 #if 0 /* XXX */
863 if (--profprocs == 0 && stathz != 0) {
864 crit_enter();
865 psdiv = 1;
866 setstatclockrate(stathz);
867 crit_exit();
869 #endif
874 * Return information about system clocks.
876 static int
877 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
879 struct kinfo_clockinfo clkinfo;
881 * Construct clockinfo structure.
883 clkinfo.ci_hz = hz;
884 clkinfo.ci_tick = tick;
885 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
886 clkinfo.ci_profhz = profhz;
887 clkinfo.ci_stathz = stathz ? stathz : hz;
888 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
891 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
892 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
895 * We have eight functions for looking at the clock, four for
896 * microseconds and four for nanoseconds. For each there is fast
897 * but less precise version "get{nano|micro}[up]time" which will
898 * return a time which is up to 1/HZ previous to the call, whereas
899 * the raw version "{nano|micro}[up]time" will return a timestamp
900 * which is as precise as possible. The "up" variants return the
901 * time relative to system boot, these are well suited for time
902 * interval measurements.
904 * Each cpu independantly maintains the current time of day, so all
905 * we need to do to protect ourselves from changes is to do a loop
906 * check on the seconds field changing out from under us.
908 * The system timer maintains a 32 bit count and due to various issues
909 * it is possible for the calculated delta to occassionally exceed
910 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
911 * multiplication can easily overflow, so we deal with the case. For
912 * uniformity we deal with the case in the usec case too.
914 * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
916 void
917 getmicrouptime(struct timeval *tvp)
919 struct globaldata *gd = mycpu;
920 sysclock_t delta;
922 do {
923 tvp->tv_sec = gd->gd_time_seconds;
924 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
925 } while (tvp->tv_sec != gd->gd_time_seconds);
927 if (delta >= sys_cputimer->freq) {
928 tvp->tv_sec += delta / sys_cputimer->freq;
929 delta %= sys_cputimer->freq;
931 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
932 if (tvp->tv_usec >= 1000000) {
933 tvp->tv_usec -= 1000000;
934 ++tvp->tv_sec;
938 void
939 getnanouptime(struct timespec *tsp)
941 struct globaldata *gd = mycpu;
942 sysclock_t delta;
944 do {
945 tsp->tv_sec = gd->gd_time_seconds;
946 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
947 } while (tsp->tv_sec != gd->gd_time_seconds);
949 if (delta >= sys_cputimer->freq) {
950 tsp->tv_sec += delta / sys_cputimer->freq;
951 delta %= sys_cputimer->freq;
953 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
956 void
957 microuptime(struct timeval *tvp)
959 struct globaldata *gd = mycpu;
960 sysclock_t delta;
962 do {
963 tvp->tv_sec = gd->gd_time_seconds;
964 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
965 } while (tvp->tv_sec != gd->gd_time_seconds);
967 if (delta >= sys_cputimer->freq) {
968 tvp->tv_sec += delta / sys_cputimer->freq;
969 delta %= sys_cputimer->freq;
971 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
974 void
975 nanouptime(struct timespec *tsp)
977 struct globaldata *gd = mycpu;
978 sysclock_t delta;
980 do {
981 tsp->tv_sec = gd->gd_time_seconds;
982 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
983 } while (tsp->tv_sec != gd->gd_time_seconds);
985 if (delta >= sys_cputimer->freq) {
986 tsp->tv_sec += delta / sys_cputimer->freq;
987 delta %= sys_cputimer->freq;
989 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
993 * realtime routines
995 void
996 getmicrotime(struct timeval *tvp)
998 struct globaldata *gd = mycpu;
999 struct timespec *bt;
1000 sysclock_t delta;
1002 do {
1003 tvp->tv_sec = gd->gd_time_seconds;
1004 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1005 } while (tvp->tv_sec != gd->gd_time_seconds);
1007 if (delta >= sys_cputimer->freq) {
1008 tvp->tv_sec += delta / sys_cputimer->freq;
1009 delta %= sys_cputimer->freq;
1011 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1013 bt = &basetime[basetime_index];
1014 tvp->tv_sec += bt->tv_sec;
1015 tvp->tv_usec += bt->tv_nsec / 1000;
1016 while (tvp->tv_usec >= 1000000) {
1017 tvp->tv_usec -= 1000000;
1018 ++tvp->tv_sec;
1022 void
1023 getnanotime(struct timespec *tsp)
1025 struct globaldata *gd = mycpu;
1026 struct timespec *bt;
1027 sysclock_t delta;
1029 do {
1030 tsp->tv_sec = gd->gd_time_seconds;
1031 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1032 } while (tsp->tv_sec != gd->gd_time_seconds);
1034 if (delta >= sys_cputimer->freq) {
1035 tsp->tv_sec += delta / sys_cputimer->freq;
1036 delta %= sys_cputimer->freq;
1038 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1040 bt = &basetime[basetime_index];
1041 tsp->tv_sec += bt->tv_sec;
1042 tsp->tv_nsec += bt->tv_nsec;
1043 while (tsp->tv_nsec >= 1000000000) {
1044 tsp->tv_nsec -= 1000000000;
1045 ++tsp->tv_sec;
1049 static void
1050 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1052 struct globaldata *gd = mycpu;
1053 sysclock_t delta;
1055 do {
1056 tsp->tv_sec = gd->gd_time_seconds;
1057 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1058 } while (tsp->tv_sec != gd->gd_time_seconds);
1060 if (delta >= sys_cputimer->freq) {
1061 tsp->tv_sec += delta / sys_cputimer->freq;
1062 delta %= sys_cputimer->freq;
1064 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1066 tsp->tv_sec += nbt->tv_sec;
1067 tsp->tv_nsec += nbt->tv_nsec;
1068 while (tsp->tv_nsec >= 1000000000) {
1069 tsp->tv_nsec -= 1000000000;
1070 ++tsp->tv_sec;
1075 void
1076 microtime(struct timeval *tvp)
1078 struct globaldata *gd = mycpu;
1079 struct timespec *bt;
1080 sysclock_t delta;
1082 do {
1083 tvp->tv_sec = gd->gd_time_seconds;
1084 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1085 } while (tvp->tv_sec != gd->gd_time_seconds);
1087 if (delta >= sys_cputimer->freq) {
1088 tvp->tv_sec += delta / sys_cputimer->freq;
1089 delta %= sys_cputimer->freq;
1091 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1093 bt = &basetime[basetime_index];
1094 tvp->tv_sec += bt->tv_sec;
1095 tvp->tv_usec += bt->tv_nsec / 1000;
1096 while (tvp->tv_usec >= 1000000) {
1097 tvp->tv_usec -= 1000000;
1098 ++tvp->tv_sec;
1102 void
1103 nanotime(struct timespec *tsp)
1105 struct globaldata *gd = mycpu;
1106 struct timespec *bt;
1107 sysclock_t delta;
1109 do {
1110 tsp->tv_sec = gd->gd_time_seconds;
1111 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1112 } while (tsp->tv_sec != gd->gd_time_seconds);
1114 if (delta >= sys_cputimer->freq) {
1115 tsp->tv_sec += delta / sys_cputimer->freq;
1116 delta %= sys_cputimer->freq;
1118 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1120 bt = &basetime[basetime_index];
1121 tsp->tv_sec += bt->tv_sec;
1122 tsp->tv_nsec += bt->tv_nsec;
1123 while (tsp->tv_nsec >= 1000000000) {
1124 tsp->tv_nsec -= 1000000000;
1125 ++tsp->tv_sec;
1130 * note: this is not exactly synchronized with real time. To do that we
1131 * would have to do what microtime does and check for a nanoseconds overflow.
1133 time_t
1134 get_approximate_time_t(void)
1136 struct globaldata *gd = mycpu;
1137 struct timespec *bt;
1139 bt = &basetime[basetime_index];
1140 return(gd->gd_time_seconds + bt->tv_sec);
1144 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1146 pps_params_t *app;
1147 struct pps_fetch_args *fapi;
1148 #ifdef PPS_SYNC
1149 struct pps_kcbind_args *kapi;
1150 #endif
1152 switch (cmd) {
1153 case PPS_IOC_CREATE:
1154 return (0);
1155 case PPS_IOC_DESTROY:
1156 return (0);
1157 case PPS_IOC_SETPARAMS:
1158 app = (pps_params_t *)data;
1159 if (app->mode & ~pps->ppscap)
1160 return (EINVAL);
1161 pps->ppsparam = *app;
1162 return (0);
1163 case PPS_IOC_GETPARAMS:
1164 app = (pps_params_t *)data;
1165 *app = pps->ppsparam;
1166 app->api_version = PPS_API_VERS_1;
1167 return (0);
1168 case PPS_IOC_GETCAP:
1169 *(int*)data = pps->ppscap;
1170 return (0);
1171 case PPS_IOC_FETCH:
1172 fapi = (struct pps_fetch_args *)data;
1173 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1174 return (EINVAL);
1175 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1176 return (EOPNOTSUPP);
1177 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1178 fapi->pps_info_buf = pps->ppsinfo;
1179 return (0);
1180 case PPS_IOC_KCBIND:
1181 #ifdef PPS_SYNC
1182 kapi = (struct pps_kcbind_args *)data;
1183 /* XXX Only root should be able to do this */
1184 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1185 return (EINVAL);
1186 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1187 return (EINVAL);
1188 if (kapi->edge & ~pps->ppscap)
1189 return (EINVAL);
1190 pps->kcmode = kapi->edge;
1191 return (0);
1192 #else
1193 return (EOPNOTSUPP);
1194 #endif
1195 default:
1196 return (ENOTTY);
1200 void
1201 pps_init(struct pps_state *pps)
1203 pps->ppscap |= PPS_TSFMT_TSPEC;
1204 if (pps->ppscap & PPS_CAPTUREASSERT)
1205 pps->ppscap |= PPS_OFFSETASSERT;
1206 if (pps->ppscap & PPS_CAPTURECLEAR)
1207 pps->ppscap |= PPS_OFFSETCLEAR;
1210 void
1211 pps_event(struct pps_state *pps, sysclock_t count, int event)
1213 struct globaldata *gd;
1214 struct timespec *tsp;
1215 struct timespec *osp;
1216 struct timespec *bt;
1217 struct timespec ts;
1218 sysclock_t *pcount;
1219 #ifdef PPS_SYNC
1220 sysclock_t tcount;
1221 #endif
1222 sysclock_t delta;
1223 pps_seq_t *pseq;
1224 int foff;
1225 int fhard;
1227 gd = mycpu;
1229 /* Things would be easier with arrays... */
1230 if (event == PPS_CAPTUREASSERT) {
1231 tsp = &pps->ppsinfo.assert_timestamp;
1232 osp = &pps->ppsparam.assert_offset;
1233 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1234 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1235 pcount = &pps->ppscount[0];
1236 pseq = &pps->ppsinfo.assert_sequence;
1237 } else {
1238 tsp = &pps->ppsinfo.clear_timestamp;
1239 osp = &pps->ppsparam.clear_offset;
1240 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1241 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1242 pcount = &pps->ppscount[1];
1243 pseq = &pps->ppsinfo.clear_sequence;
1246 /* Nothing really happened */
1247 if (*pcount == count)
1248 return;
1250 *pcount = count;
1252 do {
1253 ts.tv_sec = gd->gd_time_seconds;
1254 delta = count - gd->gd_cpuclock_base;
1255 } while (ts.tv_sec != gd->gd_time_seconds);
1257 if (delta >= sys_cputimer->freq) {
1258 ts.tv_sec += delta / sys_cputimer->freq;
1259 delta %= sys_cputimer->freq;
1261 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1262 bt = &basetime[basetime_index];
1263 ts.tv_sec += bt->tv_sec;
1264 ts.tv_nsec += bt->tv_nsec;
1265 while (ts.tv_nsec >= 1000000000) {
1266 ts.tv_nsec -= 1000000000;
1267 ++ts.tv_sec;
1270 (*pseq)++;
1271 *tsp = ts;
1273 if (foff) {
1274 timespecadd(tsp, osp);
1275 if (tsp->tv_nsec < 0) {
1276 tsp->tv_nsec += 1000000000;
1277 tsp->tv_sec -= 1;
1280 #ifdef PPS_SYNC
1281 if (fhard) {
1282 /* magic, at its best... */
1283 tcount = count - pps->ppscount[2];
1284 pps->ppscount[2] = count;
1285 if (tcount >= sys_cputimer->freq) {
1286 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1287 sys_cputimer->freq64_nsec *
1288 (tcount % sys_cputimer->freq)) >> 32;
1289 } else {
1290 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1292 hardpps(tsp, delta);
1294 #endif
1298 * Return the tsc target value for a delay of (ns).
1300 * Returns -1 if the TSC is not supported.
1302 int64_t
1303 tsc_get_target(int ns)
1305 #if defined(_RDTSC_SUPPORTED_)
1306 if (cpu_feature & CPUID_TSC) {
1307 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1309 #endif
1310 return(-1);
1314 * Compare the tsc against the passed target
1316 * Returns +1 if the target has been reached
1317 * Returns 0 if the target has not yet been reached
1318 * Returns -1 if the TSC is not supported.
1320 * Typical use: while (tsc_test_target(target) == 0) { ...poll... }
1323 tsc_test_target(int64_t target)
1325 #if defined(_RDTSC_SUPPORTED_)
1326 if (cpu_feature & CPUID_TSC) {
1327 if ((int64_t)(target - rdtsc()) <= 0)
1328 return(1);
1329 return(0);
1331 #endif
1332 return(-1);