kernel - TMPFS - Bug fixing pass - paging to/from swap, vnode recycling
[dragonfly.git] / sys / vm / vm_page.c
blobf905bc1eb34d0a84d90dd082d5e974ede9835d60
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38 * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
42 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43 * All rights reserved.
45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47 * Permission to use, copy, modify and distribute this software and
48 * its documentation is hereby granted, provided that both the copyright
49 * notice and this permission notice appear in all copies of the
50 * software, derivative works or modified versions, and any portions
51 * thereof, and that both notices appear in supporting documentation.
53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 * Carnegie Mellon requests users of this software to return to
59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
60 * School of Computer Science
61 * Carnegie Mellon University
62 * Pittsburgh PA 15213-3890
64 * any improvements or extensions that they make and grant Carnegie the
65 * rights to redistribute these changes.
68 * Resident memory management module. The module manipulates 'VM pages'.
69 * A VM page is the core building block for memory management.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 #include <vm/swap_pager.h>
93 #include <machine/md_var.h>
95 static void vm_page_queue_init(void);
96 static void vm_page_free_wakeup(void);
97 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
98 static vm_page_t _vm_page_list_find2(int basequeue, int index);
100 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
102 #define ASSERT_IN_CRIT_SECTION() KKASSERT(crit_test(curthread));
104 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
105 vm_pindex_t, pindex);
107 static void
108 vm_page_queue_init(void)
110 int i;
112 for (i = 0; i < PQ_L2_SIZE; i++)
113 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
114 for (i = 0; i < PQ_L2_SIZE; i++)
115 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
117 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
118 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
119 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
120 /* PQ_NONE has no queue */
122 for (i = 0; i < PQ_COUNT; i++)
123 TAILQ_INIT(&vm_page_queues[i].pl);
127 * note: place in initialized data section? Is this necessary?
129 long first_page = 0;
130 int vm_page_array_size = 0;
131 int vm_page_zero_count = 0;
132 vm_page_t vm_page_array = 0;
135 * (low level boot)
137 * Sets the page size, perhaps based upon the memory size.
138 * Must be called before any use of page-size dependent functions.
140 void
141 vm_set_page_size(void)
143 if (vmstats.v_page_size == 0)
144 vmstats.v_page_size = PAGE_SIZE;
145 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
146 panic("vm_set_page_size: page size not a power of two");
150 * (low level boot)
152 * Add a new page to the freelist for use by the system. New pages
153 * are added to both the head and tail of the associated free page
154 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
155 * requests pull 'recent' adds (higher physical addresses) first.
157 * Must be called in a critical section.
159 vm_page_t
160 vm_add_new_page(vm_paddr_t pa)
162 struct vpgqueues *vpq;
163 vm_page_t m;
165 ++vmstats.v_page_count;
166 ++vmstats.v_free_count;
167 m = PHYS_TO_VM_PAGE(pa);
168 m->phys_addr = pa;
169 m->flags = 0;
170 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
171 m->queue = m->pc + PQ_FREE;
172 KKASSERT(m->dirty == 0);
174 vpq = &vm_page_queues[m->queue];
175 if (vpq->flipflop)
176 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
177 else
178 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
179 vpq->flipflop = 1 - vpq->flipflop;
181 vm_page_queues[m->queue].lcnt++;
182 return (m);
186 * (low level boot)
188 * Initializes the resident memory module.
190 * Allocates memory for the page cells, and for the object/offset-to-page
191 * hash table headers. Each page cell is initialized and placed on the
192 * free list.
194 * starta/enda represents the range of physical memory addresses available
195 * for use (skipping memory already used by the kernel), subject to
196 * phys_avail[]. Note that phys_avail[] has already mapped out memory
197 * already in use by the kernel.
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
202 vm_offset_t mapped;
203 vm_size_t npages;
204 vm_paddr_t page_range;
205 vm_paddr_t new_end;
206 int i;
207 vm_paddr_t pa;
208 int nblocks;
209 vm_paddr_t last_pa;
210 vm_paddr_t end;
211 vm_paddr_t biggestone, biggestsize;
212 vm_paddr_t total;
214 total = 0;
215 biggestsize = 0;
216 biggestone = 0;
217 nblocks = 0;
218 vaddr = round_page(vaddr);
220 for (i = 0; phys_avail[i + 1]; i += 2) {
221 phys_avail[i] = round_page64(phys_avail[i]);
222 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
225 for (i = 0; phys_avail[i + 1]; i += 2) {
226 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
228 if (size > biggestsize) {
229 biggestone = i;
230 biggestsize = size;
232 ++nblocks;
233 total += size;
236 end = phys_avail[biggestone+1];
237 end = trunc_page(end);
240 * Initialize the queue headers for the free queue, the active queue
241 * and the inactive queue.
244 vm_page_queue_init();
246 /* VKERNELs don't support minidumps and as such don't need vm_page_dump */
247 #if !defined(_KERNEL_VIRTUAL)
249 * Allocate a bitmap to indicate that a random physical page
250 * needs to be included in a minidump.
252 * The amd64 port needs this to indicate which direct map pages
253 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
255 * However, i386 still needs this workspace internally within the
256 * minidump code. In theory, they are not needed on i386, but are
257 * included should the sf_buf code decide to use them.
259 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
260 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
261 end -= vm_page_dump_size;
262 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
263 VM_PROT_READ | VM_PROT_WRITE);
264 bzero((void *)vm_page_dump, vm_page_dump_size);
265 #endif
268 * Compute the number of pages of memory that will be available for
269 * use (taking into account the overhead of a page structure per
270 * page).
272 first_page = phys_avail[0] / PAGE_SIZE;
273 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
274 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
277 * Initialize the mem entry structures now, and put them in the free
278 * queue.
280 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
281 mapped = pmap_map(&vaddr, new_end, end,
282 VM_PROT_READ | VM_PROT_WRITE);
283 vm_page_array = (vm_page_t)mapped;
285 #ifdef __x86_64__
287 * since pmap_map on amd64 returns stuff out of a direct-map region,
288 * we have to manually add these pages to the minidump tracking so
289 * that they can be dumped, including the vm_page_array.
291 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
292 dump_add_page(pa);
293 #endif
296 * Clear all of the page structures
298 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
299 vm_page_array_size = page_range;
302 * Construct the free queue(s) in ascending order (by physical
303 * address) so that the first 16MB of physical memory is allocated
304 * last rather than first. On large-memory machines, this avoids
305 * the exhaustion of low physical memory before isa_dmainit has run.
307 vmstats.v_page_count = 0;
308 vmstats.v_free_count = 0;
309 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
310 pa = phys_avail[i];
311 if (i == biggestone)
312 last_pa = new_end;
313 else
314 last_pa = phys_avail[i + 1];
315 while (pa < last_pa && npages-- > 0) {
316 vm_add_new_page(pa);
317 pa += PAGE_SIZE;
320 return (vaddr);
324 * Scan comparison function for Red-Black tree scans. An inclusive
325 * (start,end) is expected. Other fields are not used.
328 rb_vm_page_scancmp(struct vm_page *p, void *data)
330 struct rb_vm_page_scan_info *info = data;
332 if (p->pindex < info->start_pindex)
333 return(-1);
334 if (p->pindex > info->end_pindex)
335 return(1);
336 return(0);
340 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
342 if (p1->pindex < p2->pindex)
343 return(-1);
344 if (p1->pindex > p2->pindex)
345 return(1);
346 return(0);
350 * The opposite of vm_page_hold(). A page can be freed while being held,
351 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq()
352 * in this case to actually free it once the hold count drops to 0.
354 * This routine must be called at splvm().
356 void
357 vm_page_unhold(vm_page_t mem)
359 --mem->hold_count;
360 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
361 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
362 vm_page_busy(mem);
363 vm_page_free_toq(mem);
368 * Inserts the given mem entry into the object and object list.
370 * The pagetables are not updated but will presumably fault the page
371 * in if necessary, or if a kernel page the caller will at some point
372 * enter the page into the kernel's pmap. We are not allowed to block
373 * here so we *can't* do this anyway.
375 * This routine may not block.
376 * This routine must be called with a critical section held.
378 void
379 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
381 ASSERT_IN_CRIT_SECTION();
382 if (m->object != NULL)
383 panic("vm_page_insert: already inserted");
386 * Record the object/offset pair in this page
388 m->object = object;
389 m->pindex = pindex;
392 * Insert it into the object.
394 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
395 object->generation++;
398 * show that the object has one more resident page.
400 object->resident_page_count++;
403 * Since we are inserting a new and possibly dirty page,
404 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
406 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
407 vm_object_set_writeable_dirty(object);
410 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
412 swap_pager_page_inserted(m);
416 * Removes the given vm_page_t from the global (object,index) hash table
417 * and from the object's memq.
419 * The underlying pmap entry (if any) is NOT removed here.
420 * This routine may not block.
422 * The page must be BUSY and will remain BUSY on return. No spl needs to be
423 * held on call to this routine.
425 * note: FreeBSD side effect was to unbusy the page on return. We leave
426 * it busy.
428 void
429 vm_page_remove(vm_page_t m)
431 vm_object_t object;
433 crit_enter();
434 if (m->object == NULL) {
435 crit_exit();
436 return;
439 if ((m->flags & PG_BUSY) == 0)
440 panic("vm_page_remove: page not busy");
442 object = m->object;
445 * Remove the page from the object and update the object.
447 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
448 object->resident_page_count--;
449 object->generation++;
450 m->object = NULL;
452 crit_exit();
456 * Locate and return the page at (object, pindex), or NULL if the
457 * page could not be found.
459 * This routine will operate properly without spl protection, but
460 * the returned page could be in flux if it is busy. Because an
461 * interrupt can race a caller's busy check (unbusying and freeing the
462 * page we return before the caller is able to check the busy bit),
463 * the caller should generally call this routine with a critical
464 * section held.
466 * Callers may call this routine without spl protection if they know
467 * 'for sure' that the page will not be ripped out from under them
468 * by an interrupt.
470 vm_page_t
471 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
473 vm_page_t m;
476 * Search the hash table for this object/offset pair
478 crit_enter();
479 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
480 crit_exit();
481 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
482 return(m);
486 * vm_page_rename()
488 * Move the given memory entry from its current object to the specified
489 * target object/offset.
491 * The object must be locked.
492 * This routine may not block.
494 * Note: This routine will raise itself to splvm(), the caller need not.
496 * Note: Swap associated with the page must be invalidated by the move. We
497 * have to do this for several reasons: (1) we aren't freeing the
498 * page, (2) we are dirtying the page, (3) the VM system is probably
499 * moving the page from object A to B, and will then later move
500 * the backing store from A to B and we can't have a conflict.
502 * Note: We *always* dirty the page. It is necessary both for the
503 * fact that we moved it, and because we may be invalidating
504 * swap. If the page is on the cache, we have to deactivate it
505 * or vm_page_dirty() will panic. Dirty pages are not allowed
506 * on the cache.
508 void
509 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
511 crit_enter();
512 vm_page_remove(m);
513 vm_page_insert(m, new_object, new_pindex);
514 if (m->queue - m->pc == PQ_CACHE)
515 vm_page_deactivate(m);
516 vm_page_dirty(m);
517 vm_page_wakeup(m);
518 crit_exit();
522 * vm_page_unqueue() without any wakeup. This routine is used when a page
523 * is being moved between queues or otherwise is to remain BUSYied by the
524 * caller.
526 * This routine must be called at splhigh().
527 * This routine may not block.
529 void
530 vm_page_unqueue_nowakeup(vm_page_t m)
532 int queue = m->queue;
533 struct vpgqueues *pq;
535 if (queue != PQ_NONE) {
536 pq = &vm_page_queues[queue];
537 m->queue = PQ_NONE;
538 TAILQ_REMOVE(&pq->pl, m, pageq);
539 (*pq->cnt)--;
540 pq->lcnt--;
545 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
546 * if necessary.
548 * This routine must be called at splhigh().
549 * This routine may not block.
551 void
552 vm_page_unqueue(vm_page_t m)
554 int queue = m->queue;
555 struct vpgqueues *pq;
557 if (queue != PQ_NONE) {
558 m->queue = PQ_NONE;
559 pq = &vm_page_queues[queue];
560 TAILQ_REMOVE(&pq->pl, m, pageq);
561 (*pq->cnt)--;
562 pq->lcnt--;
563 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
564 pagedaemon_wakeup();
569 * vm_page_list_find()
571 * Find a page on the specified queue with color optimization.
573 * The page coloring optimization attempts to locate a page that does
574 * not overload other nearby pages in the object in the cpu's L1 or L2
575 * caches. We need this optimization because cpu caches tend to be
576 * physical caches, while object spaces tend to be virtual.
578 * This routine must be called at splvm().
579 * This routine may not block.
581 * Note that this routine is carefully inlined. A non-inlined version
582 * is available for outside callers but the only critical path is
583 * from within this source file.
585 static __inline
586 vm_page_t
587 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
589 vm_page_t m;
591 if (prefer_zero)
592 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
593 else
594 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
595 if (m == NULL)
596 m = _vm_page_list_find2(basequeue, index);
597 return(m);
600 static vm_page_t
601 _vm_page_list_find2(int basequeue, int index)
603 int i;
604 vm_page_t m = NULL;
605 struct vpgqueues *pq;
607 pq = &vm_page_queues[basequeue];
610 * Note that for the first loop, index+i and index-i wind up at the
611 * same place. Even though this is not totally optimal, we've already
612 * blown it by missing the cache case so we do not care.
615 for(i = PQ_L2_SIZE / 2; i > 0; --i) {
616 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
617 break;
619 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
620 break;
622 return(m);
625 vm_page_t
626 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
628 return(_vm_page_list_find(basequeue, index, prefer_zero));
632 * Find a page on the cache queue with color optimization. As pages
633 * might be found, but not applicable, they are deactivated. This
634 * keeps us from using potentially busy cached pages.
636 * This routine must be called with a critical section held.
637 * This routine may not block.
639 vm_page_t
640 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
642 vm_page_t m;
644 while (TRUE) {
645 m = _vm_page_list_find(
646 PQ_CACHE,
647 (pindex + object->pg_color) & PQ_L2_MASK,
648 FALSE
650 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
651 m->hold_count || m->wire_count)) {
652 vm_page_deactivate(m);
653 continue;
655 return m;
657 /* not reached */
661 * Find a free or zero page, with specified preference. We attempt to
662 * inline the nominal case and fall back to _vm_page_select_free()
663 * otherwise.
665 * This routine must be called with a critical section held.
666 * This routine may not block.
668 static __inline vm_page_t
669 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
671 vm_page_t m;
673 m = _vm_page_list_find(
674 PQ_FREE,
675 (pindex + object->pg_color) & PQ_L2_MASK,
676 prefer_zero
678 return(m);
682 * vm_page_alloc()
684 * Allocate and return a memory cell associated with this VM object/offset
685 * pair.
687 * page_req classes:
689 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
690 * VM_ALLOC_QUICK like normal but cannot use cache
691 * VM_ALLOC_SYSTEM greater free drain
692 * VM_ALLOC_INTERRUPT allow free list to be completely drained
693 * VM_ALLOC_ZERO advisory request for pre-zero'd page
695 * The object must be locked.
696 * This routine may not block.
697 * The returned page will be marked PG_BUSY
699 * Additional special handling is required when called from an interrupt
700 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
701 * in this case.
703 vm_page_t
704 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
706 vm_page_t m = NULL;
708 KKASSERT(object != NULL);
709 KASSERT(!vm_page_lookup(object, pindex),
710 ("vm_page_alloc: page already allocated"));
711 KKASSERT(page_req &
712 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
713 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
716 * Certain system threads (pageout daemon, buf_daemon's) are
717 * allowed to eat deeper into the free page list.
719 if (curthread->td_flags & TDF_SYSTHREAD)
720 page_req |= VM_ALLOC_SYSTEM;
722 crit_enter();
723 loop:
724 if (vmstats.v_free_count > vmstats.v_free_reserved ||
725 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
726 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
727 vmstats.v_free_count > vmstats.v_interrupt_free_min)
730 * The free queue has sufficient free pages to take one out.
732 if (page_req & VM_ALLOC_ZERO)
733 m = vm_page_select_free(object, pindex, TRUE);
734 else
735 m = vm_page_select_free(object, pindex, FALSE);
736 } else if (page_req & VM_ALLOC_NORMAL) {
738 * Allocatable from the cache (non-interrupt only). On
739 * success, we must free the page and try again, thus
740 * ensuring that vmstats.v_*_free_min counters are replenished.
742 #ifdef INVARIANTS
743 if (curthread->td_preempted) {
744 kprintf("vm_page_alloc(): warning, attempt to allocate"
745 " cache page from preempting interrupt\n");
746 m = NULL;
747 } else {
748 m = vm_page_select_cache(object, pindex);
750 #else
751 m = vm_page_select_cache(object, pindex);
752 #endif
754 * On success move the page into the free queue and loop.
756 if (m != NULL) {
757 KASSERT(m->dirty == 0,
758 ("Found dirty cache page %p", m));
759 vm_page_busy(m);
760 vm_page_protect(m, VM_PROT_NONE);
761 vm_page_free(m);
762 goto loop;
766 * On failure return NULL
768 crit_exit();
769 #if defined(DIAGNOSTIC)
770 if (vmstats.v_cache_count > 0)
771 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
772 #endif
773 vm_pageout_deficit++;
774 pagedaemon_wakeup();
775 return (NULL);
776 } else {
778 * No pages available, wakeup the pageout daemon and give up.
780 crit_exit();
781 vm_pageout_deficit++;
782 pagedaemon_wakeup();
783 return (NULL);
787 * Good page found. The page has not yet been busied. We are in
788 * a critical section.
790 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
791 KASSERT(m->dirty == 0,
792 ("vm_page_alloc: free/cache page %p was dirty", m));
795 * Remove from free queue
797 vm_page_unqueue_nowakeup(m);
800 * Initialize structure. Only the PG_ZERO flag is inherited. Set
801 * the page PG_BUSY
803 if (m->flags & PG_ZERO) {
804 vm_page_zero_count--;
805 m->flags = PG_ZERO | PG_BUSY;
806 } else {
807 m->flags = PG_BUSY;
809 m->wire_count = 0;
810 m->hold_count = 0;
811 m->act_count = 0;
812 m->busy = 0;
813 m->valid = 0;
816 * vm_page_insert() is safe prior to the crit_exit(). Note also that
817 * inserting a page here does not insert it into the pmap (which
818 * could cause us to block allocating memory). We cannot block
819 * anywhere.
821 vm_page_insert(m, object, pindex);
824 * Don't wakeup too often - wakeup the pageout daemon when
825 * we would be nearly out of memory.
827 pagedaemon_wakeup();
829 crit_exit();
832 * A PG_BUSY page is returned.
834 return (m);
838 * Block until free pages are available for allocation, called in various
839 * places before memory allocations.
841 void
842 vm_wait(int timo)
844 crit_enter();
845 if (curthread == pagethread) {
846 vm_pageout_pages_needed = 1;
847 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
848 } else {
849 if (vm_pages_needed == 0) {
850 vm_pages_needed = 1;
851 wakeup(&vm_pages_needed);
853 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
855 crit_exit();
859 * Block until free pages are available for allocation
861 * Called only in vm_fault so that processes page faulting can be
862 * easily tracked.
864 void
865 vm_waitpfault(void)
867 crit_enter();
868 if (vm_pages_needed == 0) {
869 vm_pages_needed = 1;
870 wakeup(&vm_pages_needed);
872 tsleep(&vmstats.v_free_count, 0, "pfault", 0);
873 crit_exit();
877 * Put the specified page on the active list (if appropriate). Ensure
878 * that act_count is at least ACT_INIT but do not otherwise mess with it.
880 * The page queues must be locked.
881 * This routine may not block.
883 void
884 vm_page_activate(vm_page_t m)
886 crit_enter();
887 if (m->queue != PQ_ACTIVE) {
888 if ((m->queue - m->pc) == PQ_CACHE)
889 mycpu->gd_cnt.v_reactivated++;
891 vm_page_unqueue(m);
893 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
894 m->queue = PQ_ACTIVE;
895 vm_page_queues[PQ_ACTIVE].lcnt++;
896 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
897 m, pageq);
898 if (m->act_count < ACT_INIT)
899 m->act_count = ACT_INIT;
900 vmstats.v_active_count++;
902 } else {
903 if (m->act_count < ACT_INIT)
904 m->act_count = ACT_INIT;
906 crit_exit();
910 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
911 * routine is called when a page has been added to the cache or free
912 * queues.
914 * This routine may not block.
915 * This routine must be called at splvm()
917 static __inline void
918 vm_page_free_wakeup(void)
921 * if pageout daemon needs pages, then tell it that there are
922 * some free.
924 if (vm_pageout_pages_needed &&
925 vmstats.v_cache_count + vmstats.v_free_count >=
926 vmstats.v_pageout_free_min
928 wakeup(&vm_pageout_pages_needed);
929 vm_pageout_pages_needed = 0;
933 * wakeup processes that are waiting on memory if we hit a
934 * high water mark. And wakeup scheduler process if we have
935 * lots of memory. this process will swapin processes.
937 if (vm_pages_needed && !vm_page_count_min(0)) {
938 vm_pages_needed = 0;
939 wakeup(&vmstats.v_free_count);
944 * vm_page_free_toq:
946 * Returns the given page to the PQ_FREE list, disassociating it with
947 * any VM object.
949 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
950 * return (the page will have been freed). No particular spl is required
951 * on entry.
953 * This routine may not block.
955 void
956 vm_page_free_toq(vm_page_t m)
958 struct vpgqueues *pq;
960 crit_enter();
961 mycpu->gd_cnt.v_tfree++;
963 KKASSERT((m->flags & PG_MAPPED) == 0);
965 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
966 kprintf(
967 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
968 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
969 m->hold_count);
970 if ((m->queue - m->pc) == PQ_FREE)
971 panic("vm_page_free: freeing free page");
972 else
973 panic("vm_page_free: freeing busy page");
977 * unqueue, then remove page. Note that we cannot destroy
978 * the page here because we do not want to call the pager's
979 * callback routine until after we've put the page on the
980 * appropriate free queue.
982 vm_page_unqueue_nowakeup(m);
983 vm_page_remove(m);
986 * No further management of fictitious pages occurs beyond object
987 * and queue removal.
989 if ((m->flags & PG_FICTITIOUS) != 0) {
990 vm_page_wakeup(m);
991 crit_exit();
992 return;
995 m->valid = 0;
996 vm_page_undirty(m);
998 if (m->wire_count != 0) {
999 if (m->wire_count > 1) {
1000 panic(
1001 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1002 m->wire_count, (long)m->pindex);
1004 panic("vm_page_free: freeing wired page");
1008 * Clear the UNMANAGED flag when freeing an unmanaged page.
1010 if (m->flags & PG_UNMANAGED) {
1011 m->flags &= ~PG_UNMANAGED;
1014 if (m->hold_count != 0) {
1015 m->flags &= ~PG_ZERO;
1016 m->queue = PQ_HOLD;
1017 } else {
1018 m->queue = PQ_FREE + m->pc;
1020 pq = &vm_page_queues[m->queue];
1021 pq->lcnt++;
1022 ++(*pq->cnt);
1025 * Put zero'd pages on the end ( where we look for zero'd pages
1026 * first ) and non-zerod pages at the head.
1028 if (m->flags & PG_ZERO) {
1029 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1030 ++vm_page_zero_count;
1031 } else {
1032 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1034 vm_page_wakeup(m);
1035 vm_page_free_wakeup();
1036 crit_exit();
1040 * vm_page_unmanage()
1042 * Prevent PV management from being done on the page. The page is
1043 * removed from the paging queues as if it were wired, and as a
1044 * consequence of no longer being managed the pageout daemon will not
1045 * touch it (since there is no way to locate the pte mappings for the
1046 * page). madvise() calls that mess with the pmap will also no longer
1047 * operate on the page.
1049 * Beyond that the page is still reasonably 'normal'. Freeing the page
1050 * will clear the flag.
1052 * This routine is used by OBJT_PHYS objects - objects using unswappable
1053 * physical memory as backing store rather then swap-backed memory and
1054 * will eventually be extended to support 4MB unmanaged physical
1055 * mappings.
1057 * Must be called with a critical section held.
1059 void
1060 vm_page_unmanage(vm_page_t m)
1062 ASSERT_IN_CRIT_SECTION();
1063 if ((m->flags & PG_UNMANAGED) == 0) {
1064 if (m->wire_count == 0)
1065 vm_page_unqueue(m);
1067 vm_page_flag_set(m, PG_UNMANAGED);
1071 * Mark this page as wired down by yet another map, removing it from
1072 * paging queues as necessary.
1074 * The page queues must be locked.
1075 * This routine may not block.
1077 void
1078 vm_page_wire(vm_page_t m)
1081 * Only bump the wire statistics if the page is not already wired,
1082 * and only unqueue the page if it is on some queue (if it is unmanaged
1083 * it is already off the queues). Don't do anything with fictitious
1084 * pages because they are always wired.
1086 crit_enter();
1087 if ((m->flags & PG_FICTITIOUS) == 0) {
1088 if (m->wire_count == 0) {
1089 if ((m->flags & PG_UNMANAGED) == 0)
1090 vm_page_unqueue(m);
1091 vmstats.v_wire_count++;
1093 m->wire_count++;
1094 KASSERT(m->wire_count != 0,
1095 ("vm_page_wire: wire_count overflow m=%p", m));
1097 crit_exit();
1101 * Release one wiring of this page, potentially enabling it to be paged again.
1103 * Many pages placed on the inactive queue should actually go
1104 * into the cache, but it is difficult to figure out which. What
1105 * we do instead, if the inactive target is well met, is to put
1106 * clean pages at the head of the inactive queue instead of the tail.
1107 * This will cause them to be moved to the cache more quickly and
1108 * if not actively re-referenced, freed more quickly. If we just
1109 * stick these pages at the end of the inactive queue, heavy filesystem
1110 * meta-data accesses can cause an unnecessary paging load on memory bound
1111 * processes. This optimization causes one-time-use metadata to be
1112 * reused more quickly.
1114 * BUT, if we are in a low-memory situation we have no choice but to
1115 * put clean pages on the cache queue.
1117 * A number of routines use vm_page_unwire() to guarantee that the page
1118 * will go into either the inactive or active queues, and will NEVER
1119 * be placed in the cache - for example, just after dirtying a page.
1120 * dirty pages in the cache are not allowed.
1122 * The page queues must be locked.
1123 * This routine may not block.
1125 void
1126 vm_page_unwire(vm_page_t m, int activate)
1128 crit_enter();
1129 if (m->flags & PG_FICTITIOUS) {
1130 /* do nothing */
1131 } else if (m->wire_count <= 0) {
1132 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1133 } else {
1134 if (--m->wire_count == 0) {
1135 --vmstats.v_wire_count;
1136 if (m->flags & PG_UNMANAGED) {
1138 } else if (activate) {
1139 TAILQ_INSERT_TAIL(
1140 &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1141 m->queue = PQ_ACTIVE;
1142 vm_page_queues[PQ_ACTIVE].lcnt++;
1143 vmstats.v_active_count++;
1144 } else {
1145 vm_page_flag_clear(m, PG_WINATCFLS);
1146 TAILQ_INSERT_TAIL(
1147 &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1148 m->queue = PQ_INACTIVE;
1149 vm_page_queues[PQ_INACTIVE].lcnt++;
1150 vmstats.v_inactive_count++;
1154 crit_exit();
1159 * Move the specified page to the inactive queue. If the page has
1160 * any associated swap, the swap is deallocated.
1162 * Normally athead is 0 resulting in LRU operation. athead is set
1163 * to 1 if we want this page to be 'as if it were placed in the cache',
1164 * except without unmapping it from the process address space.
1166 * This routine may not block.
1168 static __inline void
1169 _vm_page_deactivate(vm_page_t m, int athead)
1172 * Ignore if already inactive.
1174 if (m->queue == PQ_INACTIVE)
1175 return;
1177 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1178 if ((m->queue - m->pc) == PQ_CACHE)
1179 mycpu->gd_cnt.v_reactivated++;
1180 vm_page_flag_clear(m, PG_WINATCFLS);
1181 vm_page_unqueue(m);
1182 if (athead)
1183 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1184 else
1185 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1186 m->queue = PQ_INACTIVE;
1187 vm_page_queues[PQ_INACTIVE].lcnt++;
1188 vmstats.v_inactive_count++;
1192 void
1193 vm_page_deactivate(vm_page_t m)
1195 crit_enter();
1196 _vm_page_deactivate(m, 0);
1197 crit_exit();
1201 * vm_page_try_to_cache:
1203 * Returns 0 on failure, 1 on success
1206 vm_page_try_to_cache(vm_page_t m)
1208 crit_enter();
1209 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1210 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1211 crit_exit();
1212 return(0);
1214 vm_page_test_dirty(m);
1215 if (m->dirty) {
1216 crit_exit();
1217 return(0);
1219 vm_page_cache(m);
1220 crit_exit();
1221 return(1);
1225 * Attempt to free the page. If we cannot free it, we do nothing.
1226 * 1 is returned on success, 0 on failure.
1229 vm_page_try_to_free(vm_page_t m)
1231 crit_enter();
1232 if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1233 (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1234 crit_exit();
1235 return(0);
1237 vm_page_test_dirty(m);
1238 if (m->dirty) {
1239 crit_exit();
1240 return(0);
1242 vm_page_busy(m);
1243 vm_page_protect(m, VM_PROT_NONE);
1244 vm_page_free(m);
1245 crit_exit();
1246 return(1);
1250 * vm_page_cache
1252 * Put the specified page onto the page cache queue (if appropriate).
1254 * This routine may not block.
1256 void
1257 vm_page_cache(vm_page_t m)
1259 ASSERT_IN_CRIT_SECTION();
1261 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1262 m->wire_count || m->hold_count) {
1263 kprintf("vm_page_cache: attempting to cache busy/held page\n");
1264 return;
1268 * Already in the cache (and thus not mapped)
1270 if ((m->queue - m->pc) == PQ_CACHE) {
1271 KKASSERT((m->flags & PG_MAPPED) == 0);
1272 return;
1276 * Caller is required to test m->dirty, but note that the act of
1277 * removing the page from its maps can cause it to become dirty
1278 * on an SMP system due to another cpu running in usermode.
1280 if (m->dirty) {
1281 panic("vm_page_cache: caching a dirty page, pindex: %ld",
1282 (long)m->pindex);
1286 * Remove all pmaps and indicate that the page is not
1287 * writeable or mapped. Our vm_page_protect() call may
1288 * have blocked (especially w/ VM_PROT_NONE), so recheck
1289 * everything.
1291 vm_page_busy(m);
1292 vm_page_protect(m, VM_PROT_NONE);
1293 vm_page_wakeup(m);
1294 if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1295 m->wire_count || m->hold_count) {
1296 /* do nothing */
1297 } else if (m->dirty) {
1298 vm_page_deactivate(m);
1299 } else {
1300 vm_page_unqueue_nowakeup(m);
1301 m->queue = PQ_CACHE + m->pc;
1302 vm_page_queues[m->queue].lcnt++;
1303 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1304 vmstats.v_cache_count++;
1305 vm_page_free_wakeup();
1310 * vm_page_dontneed()
1312 * Cache, deactivate, or do nothing as appropriate. This routine
1313 * is typically used by madvise() MADV_DONTNEED.
1315 * Generally speaking we want to move the page into the cache so
1316 * it gets reused quickly. However, this can result in a silly syndrome
1317 * due to the page recycling too quickly. Small objects will not be
1318 * fully cached. On the otherhand, if we move the page to the inactive
1319 * queue we wind up with a problem whereby very large objects
1320 * unnecessarily blow away our inactive and cache queues.
1322 * The solution is to move the pages based on a fixed weighting. We
1323 * either leave them alone, deactivate them, or move them to the cache,
1324 * where moving them to the cache has the highest weighting.
1325 * By forcing some pages into other queues we eventually force the
1326 * system to balance the queues, potentially recovering other unrelated
1327 * space from active. The idea is to not force this to happen too
1328 * often.
1330 void
1331 vm_page_dontneed(vm_page_t m)
1333 static int dnweight;
1334 int dnw;
1335 int head;
1337 dnw = ++dnweight;
1340 * occassionally leave the page alone
1342 crit_enter();
1343 if ((dnw & 0x01F0) == 0 ||
1344 m->queue == PQ_INACTIVE ||
1345 m->queue - m->pc == PQ_CACHE
1347 if (m->act_count >= ACT_INIT)
1348 --m->act_count;
1349 crit_exit();
1350 return;
1353 if (m->dirty == 0)
1354 vm_page_test_dirty(m);
1356 if (m->dirty || (dnw & 0x0070) == 0) {
1358 * Deactivate the page 3 times out of 32.
1360 head = 0;
1361 } else {
1363 * Cache the page 28 times out of every 32. Note that
1364 * the page is deactivated instead of cached, but placed
1365 * at the head of the queue instead of the tail.
1367 head = 1;
1369 _vm_page_deactivate(m, head);
1370 crit_exit();
1374 * Grab a page, blocking if it is busy and allocating a page if necessary.
1375 * A busy page is returned or NULL.
1377 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1378 * If VM_ALLOC_RETRY is not specified
1380 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1381 * always returned if we had blocked.
1382 * This routine will never return NULL if VM_ALLOC_RETRY is set.
1383 * This routine may not be called from an interrupt.
1384 * The returned page may not be entirely valid.
1386 * This routine may be called from mainline code without spl protection and
1387 * be guarenteed a busied page associated with the object at the specified
1388 * index.
1390 vm_page_t
1391 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1393 vm_page_t m;
1394 int generation;
1396 KKASSERT(allocflags &
1397 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1398 crit_enter();
1399 retrylookup:
1400 if ((m = vm_page_lookup(object, pindex)) != NULL) {
1401 if (m->busy || (m->flags & PG_BUSY)) {
1402 generation = object->generation;
1404 while ((object->generation == generation) &&
1405 (m->busy || (m->flags & PG_BUSY))) {
1406 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1407 tsleep(m, 0, "pgrbwt", 0);
1408 if ((allocflags & VM_ALLOC_RETRY) == 0) {
1409 m = NULL;
1410 goto done;
1413 goto retrylookup;
1414 } else {
1415 vm_page_busy(m);
1416 goto done;
1419 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1420 if (m == NULL) {
1421 vm_wait(0);
1422 if ((allocflags & VM_ALLOC_RETRY) == 0)
1423 goto done;
1424 goto retrylookup;
1426 done:
1427 crit_exit();
1428 return(m);
1432 * Mapping function for valid bits or for dirty bits in
1433 * a page. May not block.
1435 * Inputs are required to range within a page.
1437 __inline int
1438 vm_page_bits(int base, int size)
1440 int first_bit;
1441 int last_bit;
1443 KASSERT(
1444 base + size <= PAGE_SIZE,
1445 ("vm_page_bits: illegal base/size %d/%d", base, size)
1448 if (size == 0) /* handle degenerate case */
1449 return(0);
1451 first_bit = base >> DEV_BSHIFT;
1452 last_bit = (base + size - 1) >> DEV_BSHIFT;
1454 return ((2 << last_bit) - (1 << first_bit));
1458 * Sets portions of a page valid and clean. The arguments are expected
1459 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1460 * of any partial chunks touched by the range. The invalid portion of
1461 * such chunks will be zero'd.
1463 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1464 * align base to DEV_BSIZE so as not to mark clean a partially
1465 * truncated device block. Otherwise the dirty page status might be
1466 * lost.
1468 * This routine may not block.
1470 * (base + size) must be less then or equal to PAGE_SIZE.
1472 static void
1473 _vm_page_zero_valid(vm_page_t m, int base, int size)
1475 int frag;
1476 int endoff;
1478 if (size == 0) /* handle degenerate case */
1479 return;
1482 * If the base is not DEV_BSIZE aligned and the valid
1483 * bit is clear, we have to zero out a portion of the
1484 * first block.
1487 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1488 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1490 pmap_zero_page_area(
1491 VM_PAGE_TO_PHYS(m),
1492 frag,
1493 base - frag
1498 * If the ending offset is not DEV_BSIZE aligned and the
1499 * valid bit is clear, we have to zero out a portion of
1500 * the last block.
1503 endoff = base + size;
1505 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1506 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1508 pmap_zero_page_area(
1509 VM_PAGE_TO_PHYS(m),
1510 endoff,
1511 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1517 * Set valid, clear dirty bits. If validating the entire
1518 * page we can safely clear the pmap modify bit. We also
1519 * use this opportunity to clear the PG_NOSYNC flag. If a process
1520 * takes a write fault on a MAP_NOSYNC memory area the flag will
1521 * be set again.
1523 * We set valid bits inclusive of any overlap, but we can only
1524 * clear dirty bits for DEV_BSIZE chunks that are fully within
1525 * the range.
1527 void
1528 vm_page_set_valid(vm_page_t m, int base, int size)
1530 _vm_page_zero_valid(m, base, size);
1531 m->valid |= vm_page_bits(base, size);
1536 * Set valid bits and clear dirty bits.
1538 * NOTE: This function does not clear the pmap modified bit.
1539 * Also note that e.g. NFS may use a byte-granular base
1540 * and size.
1542 void
1543 vm_page_set_validclean(vm_page_t m, int base, int size)
1545 int pagebits;
1547 _vm_page_zero_valid(m, base, size);
1548 pagebits = vm_page_bits(base, size);
1549 m->valid |= pagebits;
1550 m->dirty &= ~pagebits;
1551 if (base == 0 && size == PAGE_SIZE) {
1552 /*pmap_clear_modify(m);*/
1553 vm_page_flag_clear(m, PG_NOSYNC);
1558 * Set valid & dirty. Used by buwrite()
1560 void
1561 vm_page_set_validdirty(vm_page_t m, int base, int size)
1563 int pagebits;
1565 pagebits = vm_page_bits(base, size);
1566 m->valid |= pagebits;
1567 m->dirty |= pagebits;
1568 if (m->object)
1569 vm_object_set_writeable_dirty(m->object);
1573 * Clear dirty bits.
1575 * NOTE: This function does not clear the pmap modified bit.
1576 * Also note that e.g. NFS may use a byte-granular base
1577 * and size.
1579 void
1580 vm_page_clear_dirty(vm_page_t m, int base, int size)
1582 m->dirty &= ~vm_page_bits(base, size);
1583 if (base == 0 && size == PAGE_SIZE) {
1584 /*pmap_clear_modify(m);*/
1585 vm_page_flag_clear(m, PG_NOSYNC);
1590 * Make the page all-dirty.
1592 * Also make sure the related object and vnode reflect the fact that the
1593 * object may now contain a dirty page.
1595 void
1596 vm_page_dirty(vm_page_t m)
1598 #ifdef INVARIANTS
1599 int pqtype = m->queue - m->pc;
1600 #endif
1601 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1602 ("vm_page_dirty: page in free/cache queue!"));
1603 if (m->dirty != VM_PAGE_BITS_ALL) {
1604 m->dirty = VM_PAGE_BITS_ALL;
1605 if (m->object)
1606 vm_object_set_writeable_dirty(m->object);
1611 * Invalidates DEV_BSIZE'd chunks within a page. Both the
1612 * valid and dirty bits for the effected areas are cleared.
1614 * May not block.
1616 void
1617 vm_page_set_invalid(vm_page_t m, int base, int size)
1619 int bits;
1621 bits = vm_page_bits(base, size);
1622 m->valid &= ~bits;
1623 m->dirty &= ~bits;
1624 m->object->generation++;
1628 * The kernel assumes that the invalid portions of a page contain
1629 * garbage, but such pages can be mapped into memory by user code.
1630 * When this occurs, we must zero out the non-valid portions of the
1631 * page so user code sees what it expects.
1633 * Pages are most often semi-valid when the end of a file is mapped
1634 * into memory and the file's size is not page aligned.
1636 void
1637 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1639 int b;
1640 int i;
1643 * Scan the valid bits looking for invalid sections that
1644 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
1645 * valid bit may be set ) have already been zerod by
1646 * vm_page_set_validclean().
1648 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1649 if (i == (PAGE_SIZE / DEV_BSIZE) ||
1650 (m->valid & (1 << i))
1652 if (i > b) {
1653 pmap_zero_page_area(
1654 VM_PAGE_TO_PHYS(m),
1655 b << DEV_BSHIFT,
1656 (i - b) << DEV_BSHIFT
1659 b = i + 1;
1664 * setvalid is TRUE when we can safely set the zero'd areas
1665 * as being valid. We can do this if there are no cache consistency
1666 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
1668 if (setvalid)
1669 m->valid = VM_PAGE_BITS_ALL;
1673 * Is a (partial) page valid? Note that the case where size == 0
1674 * will return FALSE in the degenerate case where the page is entirely
1675 * invalid, and TRUE otherwise.
1677 * May not block.
1680 vm_page_is_valid(vm_page_t m, int base, int size)
1682 int bits = vm_page_bits(base, size);
1684 if (m->valid && ((m->valid & bits) == bits))
1685 return 1;
1686 else
1687 return 0;
1691 * update dirty bits from pmap/mmu. May not block.
1693 void
1694 vm_page_test_dirty(vm_page_t m)
1696 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1697 vm_page_dirty(m);
1702 * Issue an event on a VM page. Corresponding action structures are
1703 * removed from the page's list and called.
1705 void
1706 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1708 struct vm_page_action *scan, *next;
1710 LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1711 if (scan->event == event) {
1712 scan->event = VMEVENT_NONE;
1713 LIST_REMOVE(scan, entry);
1714 scan->func(m, scan);
1719 #include "opt_ddb.h"
1720 #ifdef DDB
1721 #include <sys/kernel.h>
1723 #include <ddb/ddb.h>
1725 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1727 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1728 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1729 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1730 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1731 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1732 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1733 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1734 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1735 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1736 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1739 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1741 int i;
1742 db_printf("PQ_FREE:");
1743 for(i=0;i<PQ_L2_SIZE;i++) {
1744 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1746 db_printf("\n");
1748 db_printf("PQ_CACHE:");
1749 for(i=0;i<PQ_L2_SIZE;i++) {
1750 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1752 db_printf("\n");
1754 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1755 vm_page_queues[PQ_ACTIVE].lcnt,
1756 vm_page_queues[PQ_INACTIVE].lcnt);
1758 #endif /* DDB */