Enable the machdep.disable_rtc_set sysctl on x86_64.
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob768c601756a97df15e50ddc260c8dd43e503ee23
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 #include "use_ether.h"
44 //#include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_msgbuf.h"
54 #include "opt_swap.h"
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/sysproto.h>
59 #include <sys/signalvar.h>
60 #include <sys/kernel.h>
61 #include <sys/linker.h>
62 #include <sys/malloc.h>
63 #include <sys/proc.h>
64 #include <sys/priv.h>
65 #include <sys/buf.h>
66 #include <sys/reboot.h>
67 #include <sys/mbuf.h>
68 #include <sys/msgbuf.h>
69 #include <sys/sysent.h>
70 #include <sys/sysctl.h>
71 #include <sys/vmmeter.h>
72 #include <sys/bus.h>
73 #include <sys/upcall.h>
74 #include <sys/usched.h>
75 #include <sys/reg.h>
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <ddb/ddb.h>
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h> /* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/intr_machdep.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #define PHYSMAP_ENTRIES 10
124 extern void init386(int first);
125 extern void dblfault_handler(void);
126 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
128 extern void printcpuinfo(void); /* XXX header file */
129 extern void identify_cpu(void);
130 #if JG
131 extern void finishidentcpu(void);
132 #endif
133 extern void panicifcpuunsupported(void);
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
147 #ifdef DDB
148 extern vm_offset_t ksym_start, ksym_end;
149 #endif
151 uint64_t KPTphys;
152 uint64_t SMPptpa;
153 pt_entry_t *SMPpt;
156 struct privatespace CPU_prvspace[MAXCPU];
158 int _udatasel, _ucodesel, _ucode32sel;
159 u_long atdevbase;
160 #ifdef SMP
161 int64_t tsc_offsets[MAXCPU];
162 #else
163 int64_t tsc_offsets[1];
164 #endif
166 #if defined(SWTCH_OPTIM_STATS)
167 extern int swtch_optim_stats;
168 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
169 CTLFLAG_RD, &swtch_optim_stats, 0, "");
170 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
171 CTLFLAG_RD, &tlb_flush_count, 0, "");
172 #endif
174 int physmem = 0;
176 static int
177 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
179 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
180 return (error);
183 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
184 0, 0, sysctl_hw_physmem, "IU", "");
186 static int
187 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
189 int error = sysctl_handle_int(oidp, 0,
190 ctob(physmem - vmstats.v_wire_count), req);
191 return (error);
194 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
195 0, 0, sysctl_hw_usermem, "IU", "");
197 static int
198 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
200 int error = sysctl_handle_int(oidp, 0,
201 x86_64_btop(avail_end - avail_start), req);
202 return (error);
205 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
206 0, 0, sysctl_hw_availpages, "I", "");
208 vm_paddr_t Maxmem = 0;
211 * The number of PHYSMAP entries must be one less than the number of
212 * PHYSSEG entries because the PHYSMAP entry that spans the largest
213 * physical address that is accessible by ISA DMA is split into two
214 * PHYSSEG entries.
216 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
218 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
219 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
221 /* must be 2 less so 0 0 can signal end of chunks */
222 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
223 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
225 static vm_offset_t buffer_sva, buffer_eva;
226 vm_offset_t clean_sva, clean_eva;
227 static vm_offset_t pager_sva, pager_eva;
228 static struct trapframe proc0_tf;
230 static void
231 cpu_startup(void *dummy)
233 caddr_t v;
234 vm_size_t size = 0;
235 vm_offset_t firstaddr;
237 if (boothowto & RB_VERBOSE)
238 bootverbose++;
241 * Good {morning,afternoon,evening,night}.
243 kprintf("%s", version);
244 startrtclock();
245 printcpuinfo();
246 panicifcpuunsupported();
247 #ifdef PERFMON
248 perfmon_init();
249 #endif
250 kprintf("real memory = %ju (%juK bytes)\n",
251 (intmax_t)ptoa(Maxmem),
252 (intmax_t)ptoa(Maxmem) / 1024);
254 * Display any holes after the first chunk of extended memory.
256 if (bootverbose) {
257 int indx;
259 kprintf("Physical memory chunk(s):\n");
260 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
261 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
263 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
264 (intmax_t)phys_avail[indx],
265 (intmax_t)phys_avail[indx + 1] - 1,
266 (intmax_t)size1,
267 (intmax_t)(size1 / PAGE_SIZE));
272 * Allocate space for system data structures.
273 * The first available kernel virtual address is in "v".
274 * As pages of kernel virtual memory are allocated, "v" is incremented.
275 * As pages of memory are allocated and cleared,
276 * "firstaddr" is incremented.
277 * An index into the kernel page table corresponding to the
278 * virtual memory address maintained in "v" is kept in "mapaddr".
282 * Make two passes. The first pass calculates how much memory is
283 * needed and allocates it. The second pass assigns virtual
284 * addresses to the various data structures.
286 firstaddr = 0;
287 again:
288 v = (caddr_t)firstaddr;
290 #define valloc(name, type, num) \
291 (name) = (type *)v; v = (caddr_t)((name)+(num))
292 #define valloclim(name, type, num, lim) \
293 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
296 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
297 * For the first 64MB of ram nominally allocate sufficient buffers to
298 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
299 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
300 * the buffer cache we limit the eventual kva reservation to
301 * maxbcache bytes.
303 * factor represents the 1/4 x ram conversion.
305 if (nbuf == 0) {
306 int factor = 4 * BKVASIZE / 1024;
307 int kbytes = physmem * (PAGE_SIZE / 1024);
309 nbuf = 50;
310 if (kbytes > 4096)
311 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
312 if (kbytes > 65536)
313 nbuf += (kbytes - 65536) * 2 / (factor * 5);
314 if (maxbcache && nbuf > maxbcache / BKVASIZE)
315 nbuf = maxbcache / BKVASIZE;
319 * Do not allow the buffer_map to be more then 1/2 the size of the
320 * kernel_map.
322 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
323 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
324 kprintf("Warning: nbufs capped at %d\n", nbuf);
327 nswbuf = max(min(nbuf/4, 256), 16);
328 #ifdef NSWBUF_MIN
329 if (nswbuf < NSWBUF_MIN)
330 nswbuf = NSWBUF_MIN;
331 #endif
332 #ifdef DIRECTIO
333 ffs_rawread_setup();
334 #endif
336 valloc(swbuf, struct buf, nswbuf);
337 valloc(buf, struct buf, nbuf);
340 * End of first pass, size has been calculated so allocate memory
342 if (firstaddr == 0) {
343 size = (vm_size_t)(v - firstaddr);
344 firstaddr = kmem_alloc(&kernel_map, round_page(size));
345 if (firstaddr == 0)
346 panic("startup: no room for tables");
347 goto again;
351 * End of second pass, addresses have been assigned
353 if ((vm_size_t)(v - firstaddr) != size)
354 panic("startup: table size inconsistency");
356 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
357 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
358 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
359 (nbuf*BKVASIZE));
360 buffer_map.system_map = 1;
361 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
362 (nswbuf*MAXPHYS) + pager_map_size);
363 pager_map.system_map = 1;
365 #if defined(USERCONFIG)
366 userconfig();
367 cninit(); /* the preferred console may have changed */
368 #endif
370 kprintf("avail memory = %lu (%luK bytes)\n",
371 ptoa(vmstats.v_free_count),
372 ptoa(vmstats.v_free_count) / 1024);
375 * Set up buffers, so they can be used to read disk labels.
377 bufinit();
378 vm_pager_bufferinit();
380 #ifdef SMP
382 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
384 mp_start(); /* fire up the APs and APICs */
385 mp_announce();
386 #endif /* SMP */
387 cpu_setregs();
391 * Send an interrupt to process.
393 * Stack is set up to allow sigcode stored
394 * at top to call routine, followed by kcall
395 * to sigreturn routine below. After sigreturn
396 * resets the signal mask, the stack, and the
397 * frame pointer, it returns to the user
398 * specified pc, psl.
400 void
401 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
403 struct lwp *lp = curthread->td_lwp;
404 struct proc *p = lp->lwp_proc;
405 struct trapframe *regs;
406 struct sigacts *psp = p->p_sigacts;
407 struct sigframe sf, *sfp;
408 int oonstack;
409 char *sp;
411 regs = lp->lwp_md.md_regs;
412 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
414 /* Save user context */
415 bzero(&sf, sizeof(struct sigframe));
416 sf.sf_uc.uc_sigmask = *mask;
417 sf.sf_uc.uc_stack = lp->lwp_sigstk;
418 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
419 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
420 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
422 /* Make the size of the saved context visible to userland */
423 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
425 /* Save mailbox pending state for syscall interlock semantics */
426 if (p->p_flag & P_MAILBOX)
427 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
429 /* Allocate and validate space for the signal handler context. */
430 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
431 SIGISMEMBER(psp->ps_sigonstack, sig)) {
432 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
433 sizeof(struct sigframe));
434 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
435 } else {
436 /* We take red zone into account */
437 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
440 /* Align to 16 bytes */
441 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
443 /* Translate the signal is appropriate */
444 if (p->p_sysent->sv_sigtbl) {
445 if (sig <= p->p_sysent->sv_sigsize)
446 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
450 * Build the argument list for the signal handler.
452 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
454 regs->tf_rdi = sig; /* argument 1 */
455 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
457 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
459 * Signal handler installed with SA_SIGINFO.
461 * action(signo, siginfo, ucontext)
463 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
464 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
465 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
467 /* fill siginfo structure */
468 sf.sf_si.si_signo = sig;
469 sf.sf_si.si_code = code;
470 sf.sf_si.si_addr = (void *)regs->tf_err;
471 } else {
473 * Old FreeBSD-style arguments.
475 * handler (signo, code, [uc], addr)
477 regs->tf_rsi = (register_t)code; /* argument 2 */
478 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
479 sf.sf_ahu.sf_handler = catcher;
483 * If we're a vm86 process, we want to save the segment registers.
484 * We also change eflags to be our emulated eflags, not the actual
485 * eflags.
487 #if JG
488 if (regs->tf_eflags & PSL_VM) {
489 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
490 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
492 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
493 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
494 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
495 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
497 if (vm86->vm86_has_vme == 0)
498 sf.sf_uc.uc_mcontext.mc_eflags =
499 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
500 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
503 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
504 * syscalls made by the signal handler. This just avoids
505 * wasting time for our lazy fixup of such faults. PSL_NT
506 * does nothing in vm86 mode, but vm86 programs can set it
507 * almost legitimately in probes for old cpu types.
509 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
511 #endif
514 * Save the FPU state and reinit the FP unit
516 npxpush(&sf.sf_uc.uc_mcontext);
519 * Copy the sigframe out to the user's stack.
521 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
523 * Something is wrong with the stack pointer.
524 * ...Kill the process.
526 sigexit(lp, SIGILL);
529 regs->tf_rsp = (register_t)sfp;
530 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
533 * i386 abi specifies that the direction flag must be cleared
534 * on function entry
536 regs->tf_rflags &= ~(PSL_T|PSL_D);
539 * 64 bit mode has a code and stack selector but
540 * no data or extra selector. %fs and %gs are not
541 * stored in-context.
543 regs->tf_cs = _ucodesel;
544 regs->tf_ss = _udatasel;
548 * Sanitize the trapframe for a virtual kernel passing control to a custom
549 * VM context. Remove any items that would otherwise create a privilage
550 * issue.
552 * XXX at the moment we allow userland to set the resume flag. Is this a
553 * bad idea?
556 cpu_sanitize_frame(struct trapframe *frame)
558 frame->tf_cs = _ucodesel;
559 frame->tf_ss = _udatasel;
560 /* XXX VM (8086) mode not supported? */
561 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
562 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
564 return(0);
568 * Sanitize the tls so loading the descriptor does not blow up
569 * on us. For x86_64 we don't have to do anything.
572 cpu_sanitize_tls(struct savetls *tls)
574 return(0);
578 * sigreturn(ucontext_t *sigcntxp)
580 * System call to cleanup state after a signal
581 * has been taken. Reset signal mask and
582 * stack state from context left by sendsig (above).
583 * Return to previous pc and psl as specified by
584 * context left by sendsig. Check carefully to
585 * make sure that the user has not modified the
586 * state to gain improper privileges.
588 * MPSAFE
590 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
591 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
594 sys_sigreturn(struct sigreturn_args *uap)
596 struct lwp *lp = curthread->td_lwp;
597 struct proc *p = lp->lwp_proc;
598 struct trapframe *regs;
599 ucontext_t uc;
600 ucontext_t *ucp;
601 register_t rflags;
602 int cs;
603 int error;
606 * We have to copy the information into kernel space so userland
607 * can't modify it while we are sniffing it.
609 regs = lp->lwp_md.md_regs;
610 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
611 if (error)
612 return (error);
613 ucp = &uc;
614 rflags = ucp->uc_mcontext.mc_rflags;
616 /* VM (8086) mode not supported */
617 rflags &= ~PSL_VM_UNSUPP;
619 #if JG
620 if (eflags & PSL_VM) {
621 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
622 struct vm86_kernel *vm86;
625 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
626 * set up the vm86 area, and we can't enter vm86 mode.
628 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
629 return (EINVAL);
630 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
631 if (vm86->vm86_inited == 0)
632 return (EINVAL);
634 /* go back to user mode if both flags are set */
635 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
636 trapsignal(lp, SIGBUS, 0);
638 if (vm86->vm86_has_vme) {
639 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
640 (eflags & VME_USERCHANGE) | PSL_VM;
641 } else {
642 vm86->vm86_eflags = eflags; /* save VIF, VIP */
643 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
644 (eflags & VM_USERCHANGE) | PSL_VM;
646 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
647 tf->tf_eflags = eflags;
648 tf->tf_vm86_ds = tf->tf_ds;
649 tf->tf_vm86_es = tf->tf_es;
650 tf->tf_vm86_fs = tf->tf_fs;
651 tf->tf_vm86_gs = tf->tf_gs;
652 tf->tf_ds = _udatasel;
653 tf->tf_es = _udatasel;
654 tf->tf_fs = _udatasel;
655 tf->tf_gs = _udatasel;
656 } else
657 #endif
660 * Don't allow users to change privileged or reserved flags.
663 * XXX do allow users to change the privileged flag PSL_RF.
664 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
665 * should sometimes set it there too. tf_eflags is kept in
666 * the signal context during signal handling and there is no
667 * other place to remember it, so the PSL_RF bit may be
668 * corrupted by the signal handler without us knowing.
669 * Corruption of the PSL_RF bit at worst causes one more or
670 * one less debugger trap, so allowing it is fairly harmless.
672 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
673 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
674 return(EINVAL);
678 * Don't allow users to load a valid privileged %cs. Let the
679 * hardware check for invalid selectors, excess privilege in
680 * other selectors, invalid %eip's and invalid %esp's.
682 cs = ucp->uc_mcontext.mc_cs;
683 if (!CS_SECURE(cs)) {
684 kprintf("sigreturn: cs = 0x%x\n", cs);
685 trapsignal(lp, SIGBUS, T_PROTFLT);
686 return(EINVAL);
688 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
692 * Restore the FPU state from the frame
694 crit_enter();
695 npxpop(&ucp->uc_mcontext);
698 * Merge saved signal mailbox pending flag to maintain interlock
699 * semantics against system calls.
701 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
702 p->p_flag |= P_MAILBOX;
704 if (ucp->uc_mcontext.mc_onstack & 1)
705 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
706 else
707 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
709 lp->lwp_sigmask = ucp->uc_sigmask;
710 SIG_CANTMASK(lp->lwp_sigmask);
711 crit_exit();
712 return(EJUSTRETURN);
716 * Stack frame on entry to function. %rax will contain the function vector,
717 * %rcx will contain the function data. flags, rcx, and rax will have
718 * already been pushed on the stack.
720 struct upc_frame {
721 register_t rax;
722 register_t rcx;
723 register_t rdx;
724 register_t flags;
725 register_t oldip;
728 void
729 sendupcall(struct vmupcall *vu, int morepending)
731 struct lwp *lp = curthread->td_lwp;
732 struct trapframe *regs;
733 struct upcall upcall;
734 struct upc_frame upc_frame;
735 int crit_count = 0;
738 * If we are a virtual kernel running an emulated user process
739 * context, switch back to the virtual kernel context before
740 * trying to post the signal.
742 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
743 lp->lwp_md.md_regs->tf_trapno = 0;
744 vkernel_trap(lp, lp->lwp_md.md_regs);
748 * Get the upcall data structure
750 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
751 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
753 vu->vu_pending = 0;
754 kprintf("bad upcall address\n");
755 return;
759 * If the data structure is already marked pending or has a critical
760 * section count, mark the data structure as pending and return
761 * without doing an upcall. vu_pending is left set.
763 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
764 if (upcall.upc_pending < vu->vu_pending) {
765 upcall.upc_pending = vu->vu_pending;
766 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
767 sizeof(upcall.upc_pending));
769 return;
773 * We can run this upcall now, clear vu_pending.
775 * Bump our critical section count and set or clear the
776 * user pending flag depending on whether more upcalls are
777 * pending. The user will be responsible for calling
778 * upc_dispatch(-1) to process remaining upcalls.
780 vu->vu_pending = 0;
781 upcall.upc_pending = morepending;
782 crit_count += TDPRI_CRIT;
783 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
784 sizeof(upcall.upc_pending));
785 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
786 sizeof(int));
789 * Construct a stack frame and issue the upcall
791 regs = lp->lwp_md.md_regs;
792 upc_frame.rax = regs->tf_rax;
793 upc_frame.rcx = regs->tf_rcx;
794 upc_frame.rdx = regs->tf_rdx;
795 upc_frame.flags = regs->tf_rflags;
796 upc_frame.oldip = regs->tf_rip;
797 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
798 sizeof(upc_frame)) != 0) {
799 kprintf("bad stack on upcall\n");
800 } else {
801 regs->tf_rax = (register_t)vu->vu_func;
802 regs->tf_rcx = (register_t)vu->vu_data;
803 regs->tf_rdx = (register_t)lp->lwp_upcall;
804 regs->tf_rip = (register_t)vu->vu_ctx;
805 regs->tf_rsp -= sizeof(upc_frame);
810 * fetchupcall occurs in the context of a system call, which means that
811 * we have to return EJUSTRETURN in order to prevent eax and edx from
812 * being overwritten by the syscall return value.
814 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
815 * and the function pointer in %eax.
818 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
820 struct upc_frame upc_frame;
821 struct lwp *lp = curthread->td_lwp;
822 struct trapframe *regs;
823 int error;
824 struct upcall upcall;
825 int crit_count;
827 regs = lp->lwp_md.md_regs;
829 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
830 if (error == 0) {
831 if (vu) {
833 * This jumps us to the next ready context.
835 vu->vu_pending = 0;
836 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
837 crit_count = 0;
838 if (error == 0)
839 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
840 crit_count += TDPRI_CRIT;
841 if (error == 0)
842 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
843 regs->tf_rax = (register_t)vu->vu_func;
844 regs->tf_rcx = (register_t)vu->vu_data;
845 regs->tf_rdx = (register_t)lp->lwp_upcall;
846 regs->tf_rip = (register_t)vu->vu_ctx;
847 regs->tf_rsp = (register_t)rsp;
848 } else {
850 * This returns us to the originally interrupted code.
852 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
853 regs->tf_rax = upc_frame.rax;
854 regs->tf_rcx = upc_frame.rcx;
855 regs->tf_rdx = upc_frame.rdx;
856 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
857 (upc_frame.flags & PSL_USERCHANGE);
858 regs->tf_rip = upc_frame.oldip;
859 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
862 if (error == 0)
863 error = EJUSTRETURN;
864 return(error);
868 * Machine dependent boot() routine
870 * I haven't seen anything to put here yet
871 * Possibly some stuff might be grafted back here from boot()
873 void
874 cpu_boot(int howto)
879 * Shutdown the CPU as much as possible
881 void
882 cpu_halt(void)
884 for (;;)
885 __asm__ __volatile("hlt");
889 * cpu_idle() represents the idle LWKT. You cannot return from this function
890 * (unless you want to blow things up!). Instead we look for runnable threads
891 * and loop or halt as appropriate. Giant is not held on entry to the thread.
893 * The main loop is entered with a critical section held, we must release
894 * the critical section before doing anything else. lwkt_switch() will
895 * check for pending interrupts due to entering and exiting its own
896 * critical section.
898 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
899 * to wake a HLTed cpu up. However, there are cases where the idlethread
900 * will be entered with the possibility that no IPI will occur and in such
901 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
903 static int cpu_idle_hlt = 1;
904 static int cpu_idle_hltcnt;
905 static int cpu_idle_spincnt;
906 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
907 &cpu_idle_hlt, 0, "Idle loop HLT enable");
908 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
909 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
910 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
911 &cpu_idle_spincnt, 0, "Idle loop entry spins");
913 static void
914 cpu_idle_default_hook(void)
917 * We must guarentee that hlt is exactly the instruction
918 * following the sti.
920 __asm __volatile("sti; hlt");
923 /* Other subsystems (e.g., ACPI) can hook this later. */
924 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
926 void
927 cpu_idle(void)
929 struct thread *td = curthread;
931 crit_exit();
932 KKASSERT(td->td_pri < TDPRI_CRIT);
933 for (;;) {
935 * See if there are any LWKTs ready to go.
937 lwkt_switch();
940 * If we are going to halt call splz unconditionally after
941 * CLIing to catch any interrupt races. Note that we are
942 * at SPL0 and interrupts are enabled.
944 if (cpu_idle_hlt && !lwkt_runnable() &&
945 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
946 __asm __volatile("cli");
947 splz();
948 if (!lwkt_runnable())
949 cpu_idle_hook();
950 #ifdef SMP
951 else
952 __asm __volatile("pause");
953 #endif
954 ++cpu_idle_hltcnt;
955 } else {
956 td->td_flags &= ~TDF_IDLE_NOHLT;
957 splz();
958 #ifdef SMP
959 __asm __volatile("sti; pause");
960 #else
961 __asm __volatile("sti");
962 #endif
963 ++cpu_idle_spincnt;
968 #ifdef SMP
971 * This routine is called when the only runnable threads require
972 * the MP lock, and the scheduler couldn't get it. On a real cpu
973 * we let the scheduler spin.
975 void
976 cpu_mplock_contested(void)
978 cpu_pause();
982 * This routine is called if a spinlock has been held through the
983 * exponential backoff period and is seriously contested. On a real cpu
984 * we let it spin.
986 void
987 cpu_spinlock_contested(void)
989 cpu_pause();
992 #endif
995 * Clear registers on exec
997 void
998 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1000 struct thread *td = curthread;
1001 struct lwp *lp = td->td_lwp;
1002 struct pcb *pcb = td->td_pcb;
1003 struct trapframe *regs = lp->lwp_md.md_regs;
1005 /* was i386_user_cleanup() in NetBSD */
1006 user_ldt_free(pcb);
1008 bzero((char *)regs, sizeof(struct trapframe));
1009 regs->tf_rip = entry;
1010 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1011 regs->tf_rdi = stack; /* argv */
1012 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1013 regs->tf_ss = _udatasel;
1014 regs->tf_cs = _ucodesel;
1015 regs->tf_rbx = ps_strings;
1018 * Reset the hardware debug registers if they were in use.
1019 * They won't have any meaning for the newly exec'd process.
1021 if (pcb->pcb_flags & PCB_DBREGS) {
1022 pcb->pcb_dr0 = 0;
1023 pcb->pcb_dr1 = 0;
1024 pcb->pcb_dr2 = 0;
1025 pcb->pcb_dr3 = 0;
1026 pcb->pcb_dr6 = 0;
1027 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1028 if (pcb == td->td_pcb) {
1030 * Clear the debug registers on the running
1031 * CPU, otherwise they will end up affecting
1032 * the next process we switch to.
1034 reset_dbregs();
1036 pcb->pcb_flags &= ~PCB_DBREGS;
1040 * Initialize the math emulator (if any) for the current process.
1041 * Actually, just clear the bit that says that the emulator has
1042 * been initialized. Initialization is delayed until the process
1043 * traps to the emulator (if it is done at all) mainly because
1044 * emulators don't provide an entry point for initialization.
1046 pcb->pcb_flags &= ~FP_SOFTFP;
1049 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1050 * gd_npxthread. Otherwise a preemptive interrupt thread
1051 * may panic in npxdna().
1053 crit_enter();
1054 load_cr0(rcr0() | CR0_MP);
1057 * NOTE: The MSR values must be correct so we can return to
1058 * userland. gd_user_fs/gs must be correct so the switch
1059 * code knows what the current MSR values are.
1061 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1062 pcb->pcb_gsbase = 0;
1063 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1064 mdcpu->gd_user_gs = 0;
1065 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1066 wrmsr(MSR_KGSBASE, 0);
1068 /* Initialize the npx (if any) for the current process. */
1069 npxinit(__INITIAL_NPXCW__);
1070 crit_exit();
1072 pcb->pcb_ds = _udatasel;
1073 pcb->pcb_es = _udatasel;
1074 pcb->pcb_fs = _udatasel;
1075 pcb->pcb_gs = _udatasel;
1078 void
1079 cpu_setregs(void)
1081 register_t cr0;
1083 cr0 = rcr0();
1084 cr0 |= CR0_NE; /* Done by npxinit() */
1085 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1086 cr0 |= CR0_WP | CR0_AM;
1087 load_cr0(cr0);
1088 load_gs(_udatasel);
1091 static int
1092 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1094 int error;
1095 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1096 req);
1097 if (!error && req->newptr)
1098 resettodr();
1099 return (error);
1102 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1103 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1105 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1106 CTLFLAG_RW, &disable_rtc_set, 0, "");
1108 #if JG
1109 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1110 CTLFLAG_RD, &bootinfo, bootinfo, "");
1111 #endif
1113 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1114 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1116 extern u_long bootdev; /* not a cdev_t - encoding is different */
1117 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1118 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1121 * Initialize 386 and configure to run kernel
1125 * Initialize segments & interrupt table
1128 int _default_ldt;
1129 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1130 static struct gate_descriptor idt0[NIDT];
1131 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1132 #if JG
1133 union descriptor ldt[NLDT]; /* local descriptor table */
1134 #endif
1136 /* table descriptors - used to load tables by cpu */
1137 struct region_descriptor r_gdt, r_idt;
1139 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1140 extern int has_f00f_bug;
1141 #endif
1143 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1145 /* JG proc0paddr is a virtual address */
1146 void *proc0paddr;
1147 /* JG alignment? */
1148 char proc0paddr_buff[LWKT_THREAD_STACK];
1151 /* software prototypes -- in more palatable form */
1152 struct soft_segment_descriptor gdt_segs[] = {
1153 /* GNULL_SEL 0 Null Descriptor */
1154 { 0x0, /* segment base address */
1155 0x0, /* length */
1156 0, /* segment type */
1157 0, /* segment descriptor priority level */
1158 0, /* segment descriptor present */
1159 0, /* long */
1160 0, /* default 32 vs 16 bit size */
1161 0 /* limit granularity (byte/page units)*/ },
1162 /* GCODE_SEL 1 Code Descriptor for kernel */
1163 { 0x0, /* segment base address */
1164 0xfffff, /* length - all address space */
1165 SDT_MEMERA, /* segment type */
1166 SEL_KPL, /* segment descriptor priority level */
1167 1, /* segment descriptor present */
1168 1, /* long */
1169 0, /* default 32 vs 16 bit size */
1170 1 /* limit granularity (byte/page units)*/ },
1171 /* GDATA_SEL 2 Data Descriptor for kernel */
1172 { 0x0, /* segment base address */
1173 0xfffff, /* length - all address space */
1174 SDT_MEMRWA, /* segment type */
1175 SEL_KPL, /* segment descriptor priority level */
1176 1, /* segment descriptor present */
1177 1, /* long */
1178 0, /* default 32 vs 16 bit size */
1179 1 /* limit granularity (byte/page units)*/ },
1180 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1181 { 0x0, /* segment base address */
1182 0xfffff, /* length - all address space */
1183 SDT_MEMERA, /* segment type */
1184 SEL_UPL, /* segment descriptor priority level */
1185 1, /* segment descriptor present */
1186 0, /* long */
1187 1, /* default 32 vs 16 bit size */
1188 1 /* limit granularity (byte/page units)*/ },
1189 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1190 { 0x0, /* segment base address */
1191 0xfffff, /* length - all address space */
1192 SDT_MEMRWA, /* segment type */
1193 SEL_UPL, /* segment descriptor priority level */
1194 1, /* segment descriptor present */
1195 0, /* long */
1196 1, /* default 32 vs 16 bit size */
1197 1 /* limit granularity (byte/page units)*/ },
1198 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1199 { 0x0, /* segment base address */
1200 0xfffff, /* length - all address space */
1201 SDT_MEMERA, /* segment type */
1202 SEL_UPL, /* segment descriptor priority level */
1203 1, /* segment descriptor present */
1204 1, /* long */
1205 0, /* default 32 vs 16 bit size */
1206 1 /* limit granularity (byte/page units)*/ },
1207 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1209 0x0, /* segment base address */
1210 sizeof(struct x86_64tss)-1,/* length - all address space */
1211 SDT_SYSTSS, /* segment type */
1212 SEL_KPL, /* segment descriptor priority level */
1213 1, /* segment descriptor present */
1214 0, /* long */
1215 0, /* unused - default 32 vs 16 bit size */
1216 0 /* limit granularity (byte/page units)*/ },
1217 /* Actually, the TSS is a system descriptor which is double size */
1218 { 0x0, /* segment base address */
1219 0x0, /* length */
1220 0, /* segment type */
1221 0, /* segment descriptor priority level */
1222 0, /* segment descriptor present */
1223 0, /* long */
1224 0, /* default 32 vs 16 bit size */
1225 0 /* limit granularity (byte/page units)*/ },
1226 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1227 { 0x0, /* segment base address */
1228 0xfffff, /* length - all address space */
1229 SDT_MEMRWA, /* segment type */
1230 SEL_UPL, /* segment descriptor priority level */
1231 1, /* segment descriptor present */
1232 0, /* long */
1233 1, /* default 32 vs 16 bit size */
1234 1 /* limit granularity (byte/page units)*/ },
1237 void
1238 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1240 struct gate_descriptor *ip;
1242 ip = idt + idx;
1243 ip->gd_looffset = (uintptr_t)func;
1244 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1245 ip->gd_ist = ist;
1246 ip->gd_xx = 0;
1247 ip->gd_type = typ;
1248 ip->gd_dpl = dpl;
1249 ip->gd_p = 1;
1250 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1253 #define IDTVEC(name) __CONCAT(X,name)
1255 extern inthand_t
1256 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1257 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1258 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1259 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1260 IDTVEC(xmm), IDTVEC(dblfault),
1261 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1263 #ifdef DEBUG_INTERRUPTS
1264 extern inthand_t *Xrsvdary[256];
1265 #endif
1267 void
1268 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1270 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1271 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1272 ssd->ssd_type = sd->sd_type;
1273 ssd->ssd_dpl = sd->sd_dpl;
1274 ssd->ssd_p = sd->sd_p;
1275 ssd->ssd_def32 = sd->sd_def32;
1276 ssd->ssd_gran = sd->sd_gran;
1279 void
1280 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1283 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1284 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1285 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1286 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1287 sd->sd_type = ssd->ssd_type;
1288 sd->sd_dpl = ssd->ssd_dpl;
1289 sd->sd_p = ssd->ssd_p;
1290 sd->sd_long = ssd->ssd_long;
1291 sd->sd_def32 = ssd->ssd_def32;
1292 sd->sd_gran = ssd->ssd_gran;
1295 void
1296 ssdtosyssd(struct soft_segment_descriptor *ssd,
1297 struct system_segment_descriptor *sd)
1300 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1301 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1302 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1303 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1304 sd->sd_type = ssd->ssd_type;
1305 sd->sd_dpl = ssd->ssd_dpl;
1306 sd->sd_p = ssd->ssd_p;
1307 sd->sd_gran = ssd->ssd_gran;
1310 u_int basemem;
1313 * Populate the (physmap) array with base/bound pairs describing the
1314 * available physical memory in the system, then test this memory and
1315 * build the phys_avail array describing the actually-available memory.
1317 * If we cannot accurately determine the physical memory map, then use
1318 * value from the 0xE801 call, and failing that, the RTC.
1320 * Total memory size may be set by the kernel environment variable
1321 * hw.physmem or the compile-time define MAXMEM.
1323 * XXX first should be vm_paddr_t.
1325 static void
1326 getmemsize(caddr_t kmdp, u_int64_t first)
1328 int i, off, physmap_idx, pa_indx, da_indx;
1329 vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1330 u_long physmem_tunable;
1331 pt_entry_t *pte;
1332 struct bios_smap *smapbase, *smap, *smapend;
1333 u_int32_t smapsize;
1334 quad_t dcons_addr, dcons_size;
1336 bzero(physmap, sizeof(physmap));
1337 basemem = 0;
1338 physmap_idx = 0;
1341 * get memory map from INT 15:E820, kindly supplied by the loader.
1343 * subr_module.c says:
1344 * "Consumer may safely assume that size value precedes data."
1345 * ie: an int32_t immediately precedes smap.
1347 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1348 MODINFO_METADATA | MODINFOMD_SMAP);
1349 if (smapbase == NULL)
1350 panic("No BIOS smap info from loader!");
1352 smapsize = *((u_int32_t *)smapbase - 1);
1353 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1355 for (smap = smapbase; smap < smapend; smap++) {
1356 if (boothowto & RB_VERBOSE)
1357 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1358 smap->type, smap->base, smap->length);
1360 if (smap->type != SMAP_TYPE_MEMORY)
1361 continue;
1363 if (smap->length == 0)
1364 continue;
1366 for (i = 0; i <= physmap_idx; i += 2) {
1367 if (smap->base < physmap[i + 1]) {
1368 if (boothowto & RB_VERBOSE)
1369 kprintf(
1370 "Overlapping or non-monotonic memory region, ignoring second region\n");
1371 continue;
1375 if (smap->base == physmap[physmap_idx + 1]) {
1376 physmap[physmap_idx + 1] += smap->length;
1377 continue;
1380 physmap_idx += 2;
1381 if (physmap_idx == PHYSMAP_SIZE) {
1382 kprintf(
1383 "Too many segments in the physical address map, giving up\n");
1384 break;
1386 physmap[physmap_idx] = smap->base;
1387 physmap[physmap_idx + 1] = smap->base + smap->length;
1391 * Find the 'base memory' segment for SMP
1393 basemem = 0;
1394 for (i = 0; i <= physmap_idx; i += 2) {
1395 if (physmap[i] == 0x00000000) {
1396 basemem = physmap[i + 1] / 1024;
1397 break;
1400 if (basemem == 0)
1401 panic("BIOS smap did not include a basemem segment!");
1403 #ifdef SMP
1404 /* make hole for AP bootstrap code */
1405 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1407 /* look for the MP hardware - needed for apic addresses */
1408 mp_probe();
1409 #endif
1412 * Maxmem isn't the "maximum memory", it's one larger than the
1413 * highest page of the physical address space. It should be
1414 * called something like "Maxphyspage". We may adjust this
1415 * based on ``hw.physmem'' and the results of the memory test.
1417 Maxmem = atop(physmap[physmap_idx + 1]);
1419 #ifdef MAXMEM
1420 Maxmem = MAXMEM / 4;
1421 #endif
1423 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1424 Maxmem = atop(physmem_tunable);
1427 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1428 * in the system.
1430 if (Maxmem > atop(physmap[physmap_idx + 1]))
1431 Maxmem = atop(physmap[physmap_idx + 1]);
1433 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1434 (boothowto & RB_VERBOSE))
1435 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1437 /* call pmap initialization to make new kernel address space */
1438 pmap_bootstrap(&first);
1441 * Size up each available chunk of physical memory.
1443 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1444 pa_indx = 0;
1445 da_indx = 1;
1446 phys_avail[pa_indx++] = physmap[0];
1447 phys_avail[pa_indx] = physmap[0];
1448 dump_avail[da_indx] = physmap[0];
1449 pte = CMAP1;
1452 * Get dcons buffer address
1454 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1455 kgetenv_quad("dcons.size", &dcons_size) == 0)
1456 dcons_addr = 0;
1459 * physmap is in bytes, so when converting to page boundaries,
1460 * round up the start address and round down the end address.
1462 for (i = 0; i <= physmap_idx; i += 2) {
1463 vm_paddr_t end;
1465 end = ptoa((vm_paddr_t)Maxmem);
1466 if (physmap[i + 1] < end)
1467 end = trunc_page(physmap[i + 1]);
1468 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1469 int tmp, page_bad, full;
1470 int *ptr = (int *)CADDR1;
1472 full = FALSE;
1474 * block out kernel memory as not available.
1476 if (pa >= 0x100000 && pa < first)
1477 goto do_dump_avail;
1480 * block out dcons buffer
1482 if (dcons_addr > 0
1483 && pa >= trunc_page(dcons_addr)
1484 && pa < dcons_addr + dcons_size)
1485 goto do_dump_avail;
1487 page_bad = FALSE;
1490 * map page into kernel: valid, read/write,non-cacheable
1492 *pte = pa | PG_V | PG_RW | PG_N;
1493 cpu_invltlb();
1495 tmp = *(int *)ptr;
1497 * Test for alternating 1's and 0's
1499 *(volatile int *)ptr = 0xaaaaaaaa;
1500 if (*(volatile int *)ptr != 0xaaaaaaaa)
1501 page_bad = TRUE;
1503 * Test for alternating 0's and 1's
1505 *(volatile int *)ptr = 0x55555555;
1506 if (*(volatile int *)ptr != 0x55555555)
1507 page_bad = TRUE;
1509 * Test for all 1's
1511 *(volatile int *)ptr = 0xffffffff;
1512 if (*(volatile int *)ptr != 0xffffffff)
1513 page_bad = TRUE;
1515 * Test for all 0's
1517 *(volatile int *)ptr = 0x0;
1518 if (*(volatile int *)ptr != 0x0)
1519 page_bad = TRUE;
1521 * Restore original value.
1523 *(int *)ptr = tmp;
1526 * Adjust array of valid/good pages.
1528 if (page_bad == TRUE)
1529 continue;
1531 * If this good page is a continuation of the
1532 * previous set of good pages, then just increase
1533 * the end pointer. Otherwise start a new chunk.
1534 * Note that "end" points one higher than end,
1535 * making the range >= start and < end.
1536 * If we're also doing a speculative memory
1537 * test and we at or past the end, bump up Maxmem
1538 * so that we keep going. The first bad page
1539 * will terminate the loop.
1541 if (phys_avail[pa_indx] == pa) {
1542 phys_avail[pa_indx] += PAGE_SIZE;
1543 } else {
1544 pa_indx++;
1545 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1546 kprintf(
1547 "Too many holes in the physical address space, giving up\n");
1548 pa_indx--;
1549 full = TRUE;
1550 goto do_dump_avail;
1552 phys_avail[pa_indx++] = pa; /* start */
1553 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1555 physmem++;
1556 do_dump_avail:
1557 if (dump_avail[da_indx] == pa) {
1558 dump_avail[da_indx] += PAGE_SIZE;
1559 } else {
1560 da_indx++;
1561 if (da_indx == DUMP_AVAIL_ARRAY_END) {
1562 da_indx--;
1563 goto do_next;
1565 dump_avail[da_indx++] = pa; /* start */
1566 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1568 do_next:
1569 if (full)
1570 break;
1573 *pte = 0;
1574 cpu_invltlb();
1577 * XXX
1578 * The last chunk must contain at least one page plus the message
1579 * buffer to avoid complicating other code (message buffer address
1580 * calculation, etc.).
1582 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1583 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1584 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1585 phys_avail[pa_indx--] = 0;
1586 phys_avail[pa_indx--] = 0;
1589 Maxmem = atop(phys_avail[pa_indx]);
1591 /* Trim off space for the message buffer. */
1592 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1594 avail_end = phys_avail[pa_indx];
1596 /* Map the message buffer. */
1597 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1598 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1599 off);
1603 * IDT VECTORS:
1604 * 0 Divide by zero
1605 * 1 Debug
1606 * 2 NMI
1607 * 3 BreakPoint
1608 * 4 OverFlow
1609 * 5 Bound-Range
1610 * 6 Invalid OpCode
1611 * 7 Device Not Available (x87)
1612 * 8 Double-Fault
1613 * 9 Coprocessor Segment overrun (unsupported, reserved)
1614 * 10 Invalid-TSS
1615 * 11 Segment not present
1616 * 12 Stack
1617 * 13 General Protection
1618 * 14 Page Fault
1619 * 15 Reserved
1620 * 16 x87 FP Exception pending
1621 * 17 Alignment Check
1622 * 18 Machine Check
1623 * 19 SIMD floating point
1624 * 20-31 reserved
1625 * 32-255 INTn/external sources
1627 u_int64_t
1628 hammer_time(u_int64_t modulep, u_int64_t physfree)
1630 caddr_t kmdp;
1631 int gsel_tss, x;
1632 #if JG
1633 int metadata_missing, off;
1634 #endif
1635 struct mdglobaldata *gd;
1636 u_int64_t msr;
1637 char *env;
1639 #if JG
1641 * This must be done before the first references
1642 * to CPU_prvspace[0] are made.
1644 init_paging(&physfree);
1645 #endif
1648 * Prevent lowering of the ipl if we call tsleep() early.
1650 gd = &CPU_prvspace[0].mdglobaldata;
1651 bzero(gd, sizeof(*gd));
1654 * Note: on both UP and SMP curthread must be set non-NULL
1655 * early in the boot sequence because the system assumes
1656 * that 'curthread' is never NULL.
1659 gd->mi.gd_curthread = &thread0;
1660 thread0.td_gd = &gd->mi;
1662 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1664 #if JG
1665 metadata_missing = 0;
1666 if (bootinfo.bi_modulep) {
1667 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1668 preload_bootstrap_relocate(KERNBASE);
1669 } else {
1670 metadata_missing = 1;
1672 if (bootinfo.bi_envp)
1673 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1674 #endif
1676 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1677 preload_bootstrap_relocate(PTOV_OFFSET);
1678 kmdp = preload_search_by_type("elf kernel");
1679 if (kmdp == NULL)
1680 kmdp = preload_search_by_type("elf64 kernel");
1681 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1682 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1683 #ifdef DDB
1684 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1685 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1686 #endif
1689 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1690 * and ncpus_fit_mask remain 0.
1692 ncpus = 1;
1693 ncpus2 = 1;
1694 ncpus_fit = 1;
1695 /* Init basic tunables, hz etc */
1696 init_param1();
1699 * make gdt memory segments
1701 gdt_segs[GPROC0_SEL].ssd_base =
1702 (uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1704 gd->mi.gd_prvspace = &CPU_prvspace[0];
1706 for (x = 0; x < NGDT; x++) {
1707 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1708 ssdtosd(&gdt_segs[x], &gdt[x]);
1710 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1711 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1713 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1714 r_gdt.rd_base = (long) gdt;
1715 lgdt(&r_gdt);
1717 wrmsr(MSR_FSBASE, 0); /* User value */
1718 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1719 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
1721 mi_gdinit(&gd->mi, 0);
1722 cpu_gdinit(gd, 0);
1723 proc0paddr = proc0paddr_buff;
1724 mi_proc0init(&gd->mi, proc0paddr);
1725 safepri = TDPRI_MAX;
1727 /* spinlocks and the BGL */
1728 init_locks();
1730 /* exceptions */
1731 for (x = 0; x < NIDT; x++)
1732 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1733 setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
1734 setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
1735 setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
1736 setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
1737 setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
1738 setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
1739 setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
1740 setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
1741 setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1742 setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
1743 setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
1744 setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
1745 setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
1746 setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
1747 setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
1748 setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
1749 setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1750 setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
1751 setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1753 r_idt.rd_limit = sizeof(idt0) - 1;
1754 r_idt.rd_base = (long) idt;
1755 lidt(&r_idt);
1758 * Initialize the console before we print anything out.
1760 cninit();
1762 #if JG
1763 if (metadata_missing)
1764 kprintf("WARNING: loader(8) metadata is missing!\n");
1765 #endif
1767 #if NISA >0
1768 isa_defaultirq();
1769 #endif
1770 rand_initialize();
1772 #ifdef DDB
1773 kdb_init();
1774 if (boothowto & RB_KDB)
1775 Debugger("Boot flags requested debugger");
1776 #endif
1778 #if JG
1779 finishidentcpu(); /* Final stage of CPU initialization */
1780 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1781 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1782 #endif
1783 identify_cpu(); /* Final stage of CPU initialization */
1784 initializecpu(); /* Initialize CPU registers */
1786 /* make an initial tss so cpu can get interrupt stack on syscall! */
1787 gd->gd_common_tss.tss_rsp0 =
1788 (register_t)(thread0.td_kstack +
1789 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1790 /* Ensure the stack is aligned to 16 bytes */
1791 gd->gd_common_tss.tss_rsp0 &= ~0xFul;
1792 gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1794 /* doublefault stack space, runs on ist1 */
1795 gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1797 /* Set the IO permission bitmap (empty due to tss seg limit) */
1798 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1800 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1801 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1802 gd->gd_common_tssd = *gd->gd_tss_gdt;
1803 ltr(gsel_tss);
1805 /* Set up the fast syscall stuff */
1806 msr = rdmsr(MSR_EFER) | EFER_SCE;
1807 wrmsr(MSR_EFER, msr);
1808 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1809 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1810 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1811 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1812 wrmsr(MSR_STAR, msr);
1813 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1815 getmemsize(kmdp, physfree);
1816 init_param2(physmem);
1818 /* now running on new page tables, configured,and u/iom is accessible */
1820 /* Map the message buffer. */
1821 #if JG
1822 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1823 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1824 #endif
1826 msgbufinit(msgbufp, MSGBUF_SIZE);
1829 /* transfer to user mode */
1831 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1832 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1833 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1835 load_ds(_udatasel);
1836 load_es(_udatasel);
1837 load_fs(_udatasel);
1839 /* setup proc 0's pcb */
1840 thread0.td_pcb->pcb_flags = 0;
1841 thread0.td_pcb->pcb_cr3 = KPML4phys;
1842 thread0.td_pcb->pcb_ext = 0;
1843 lwp0.lwp_md.md_regs = &proc0_tf;
1844 env = kgetenv("kernelname");
1845 if (env != NULL)
1846 strlcpy(kernelname, env, sizeof(kernelname));
1848 /* Location of kernel stack for locore */
1849 return ((u_int64_t)thread0.td_pcb);
1853 * Initialize machine-dependant portions of the global data structure.
1854 * Note that the global data area and cpu0's idlestack in the private
1855 * data space were allocated in locore.
1857 * Note: the idlethread's cpl is 0
1859 * WARNING! Called from early boot, 'mycpu' may not work yet.
1861 void
1862 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1864 if (cpu)
1865 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1867 lwkt_init_thread(&gd->mi.gd_idlethread,
1868 gd->mi.gd_prvspace->idlestack,
1869 sizeof(gd->mi.gd_prvspace->idlestack),
1870 TDF_MPSAFE, &gd->mi);
1871 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1872 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1873 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1874 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1878 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1880 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1881 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1882 return (TRUE);
1884 return (FALSE);
1887 struct globaldata *
1888 globaldata_find(int cpu)
1890 KKASSERT(cpu >= 0 && cpu < ncpus);
1891 return(&CPU_prvspace[cpu].mdglobaldata.mi);
1894 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1895 static void f00f_hack(void *unused);
1896 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1898 static void
1899 f00f_hack(void *unused)
1901 struct gate_descriptor *new_idt;
1902 vm_offset_t tmp;
1904 if (!has_f00f_bug)
1905 return;
1907 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1909 r_idt.rd_limit = sizeof(idt0) - 1;
1911 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1912 if (tmp == 0)
1913 panic("kmem_alloc returned 0");
1914 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1915 panic("kmem_alloc returned non-page-aligned memory");
1916 /* Put the first seven entries in the lower page */
1917 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1918 bcopy(idt, new_idt, sizeof(idt0));
1919 r_idt.rd_base = (int)new_idt;
1920 lidt(&r_idt);
1921 idt = new_idt;
1922 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1923 VM_PROT_READ, FALSE) != KERN_SUCCESS)
1924 panic("vm_map_protect failed");
1925 return;
1927 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1930 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1932 lp->lwp_md.md_regs->tf_rip = addr;
1933 return (0);
1937 ptrace_single_step(struct lwp *lp)
1939 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1940 return (0);
1944 fill_regs(struct lwp *lp, struct reg *regs)
1946 struct pcb *pcb;
1947 struct trapframe *tp;
1949 tp = lp->lwp_md.md_regs;
1950 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1952 pcb = lp->lwp_thread->td_pcb;
1953 return (0);
1957 set_regs(struct lwp *lp, struct reg *regs)
1959 struct pcb *pcb;
1960 struct trapframe *tp;
1962 tp = lp->lwp_md.md_regs;
1963 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1964 !CS_SECURE(regs->r_cs))
1965 return (EINVAL);
1966 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1967 pcb = lp->lwp_thread->td_pcb;
1968 return (0);
1971 #ifndef CPU_DISABLE_SSE
1972 static void
1973 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1975 struct env87 *penv_87 = &sv_87->sv_env;
1976 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1977 int i;
1979 /* FPU control/status */
1980 penv_87->en_cw = penv_xmm->en_cw;
1981 penv_87->en_sw = penv_xmm->en_sw;
1982 penv_87->en_tw = penv_xmm->en_tw;
1983 penv_87->en_fip = penv_xmm->en_fip;
1984 penv_87->en_fcs = penv_xmm->en_fcs;
1985 penv_87->en_opcode = penv_xmm->en_opcode;
1986 penv_87->en_foo = penv_xmm->en_foo;
1987 penv_87->en_fos = penv_xmm->en_fos;
1989 /* FPU registers */
1990 for (i = 0; i < 8; ++i)
1991 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1993 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1996 static void
1997 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1999 struct env87 *penv_87 = &sv_87->sv_env;
2000 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2001 int i;
2003 /* FPU control/status */
2004 penv_xmm->en_cw = penv_87->en_cw;
2005 penv_xmm->en_sw = penv_87->en_sw;
2006 penv_xmm->en_tw = penv_87->en_tw;
2007 penv_xmm->en_fip = penv_87->en_fip;
2008 penv_xmm->en_fcs = penv_87->en_fcs;
2009 penv_xmm->en_opcode = penv_87->en_opcode;
2010 penv_xmm->en_foo = penv_87->en_foo;
2011 penv_xmm->en_fos = penv_87->en_fos;
2013 /* FPU registers */
2014 for (i = 0; i < 8; ++i)
2015 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2017 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2019 #endif /* CPU_DISABLE_SSE */
2022 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2024 #ifndef CPU_DISABLE_SSE
2025 if (cpu_fxsr) {
2026 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2027 (struct save87 *)fpregs);
2028 return (0);
2030 #endif /* CPU_DISABLE_SSE */
2031 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2032 return (0);
2036 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2038 #ifndef CPU_DISABLE_SSE
2039 if (cpu_fxsr) {
2040 set_fpregs_xmm((struct save87 *)fpregs,
2041 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2042 return (0);
2044 #endif /* CPU_DISABLE_SSE */
2045 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2046 return (0);
2050 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2052 if (lp == NULL) {
2053 dbregs->dr[0] = rdr0();
2054 dbregs->dr[1] = rdr1();
2055 dbregs->dr[2] = rdr2();
2056 dbregs->dr[3] = rdr3();
2057 dbregs->dr[4] = rdr4();
2058 dbregs->dr[5] = rdr5();
2059 dbregs->dr[6] = rdr6();
2060 dbregs->dr[7] = rdr7();
2061 } else {
2062 struct pcb *pcb;
2064 pcb = lp->lwp_thread->td_pcb;
2065 dbregs->dr[0] = pcb->pcb_dr0;
2066 dbregs->dr[1] = pcb->pcb_dr1;
2067 dbregs->dr[2] = pcb->pcb_dr2;
2068 dbregs->dr[3] = pcb->pcb_dr3;
2069 dbregs->dr[4] = 0;
2070 dbregs->dr[5] = 0;
2071 dbregs->dr[6] = pcb->pcb_dr6;
2072 dbregs->dr[7] = pcb->pcb_dr7;
2074 return (0);
2078 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2080 if (lp == NULL) {
2081 load_dr0(dbregs->dr[0]);
2082 load_dr1(dbregs->dr[1]);
2083 load_dr2(dbregs->dr[2]);
2084 load_dr3(dbregs->dr[3]);
2085 load_dr4(dbregs->dr[4]);
2086 load_dr5(dbregs->dr[5]);
2087 load_dr6(dbregs->dr[6]);
2088 load_dr7(dbregs->dr[7]);
2089 } else {
2090 struct pcb *pcb;
2091 struct ucred *ucred;
2092 int i;
2093 uint64_t mask1, mask2;
2096 * Don't let an illegal value for dr7 get set. Specifically,
2097 * check for undefined settings. Setting these bit patterns
2098 * result in undefined behaviour and can lead to an unexpected
2099 * TRCTRAP.
2101 /* JG this loop looks unreadable */
2102 /* Check 4 2-bit fields for invalid patterns.
2103 * These fields are R/Wi, for i = 0..3
2105 /* Is 10 in LENi allowed when running in compatibility mode? */
2106 /* Pattern 10 in R/Wi might be used to indicate
2107 * breakpoint on I/O. Further analysis should be
2108 * carried to decide if it is safe and useful to
2109 * provide access to that capability
2111 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2112 i++, mask1 <<= 4, mask2 <<= 4)
2113 if ((dbregs->dr[7] & mask1) == mask2)
2114 return (EINVAL);
2116 pcb = lp->lwp_thread->td_pcb;
2117 ucred = lp->lwp_proc->p_ucred;
2120 * Don't let a process set a breakpoint that is not within the
2121 * process's address space. If a process could do this, it
2122 * could halt the system by setting a breakpoint in the kernel
2123 * (if ddb was enabled). Thus, we need to check to make sure
2124 * that no breakpoints are being enabled for addresses outside
2125 * process's address space, unless, perhaps, we were called by
2126 * uid 0.
2128 * XXX - what about when the watched area of the user's
2129 * address space is written into from within the kernel
2130 * ... wouldn't that still cause a breakpoint to be generated
2131 * from within kernel mode?
2134 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2135 if (dbregs->dr[7] & 0x3) {
2136 /* dr0 is enabled */
2137 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2138 return (EINVAL);
2141 if (dbregs->dr[7] & (0x3<<2)) {
2142 /* dr1 is enabled */
2143 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2144 return (EINVAL);
2147 if (dbregs->dr[7] & (0x3<<4)) {
2148 /* dr2 is enabled */
2149 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2150 return (EINVAL);
2153 if (dbregs->dr[7] & (0x3<<6)) {
2154 /* dr3 is enabled */
2155 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2156 return (EINVAL);
2160 pcb->pcb_dr0 = dbregs->dr[0];
2161 pcb->pcb_dr1 = dbregs->dr[1];
2162 pcb->pcb_dr2 = dbregs->dr[2];
2163 pcb->pcb_dr3 = dbregs->dr[3];
2164 pcb->pcb_dr6 = dbregs->dr[6];
2165 pcb->pcb_dr7 = dbregs->dr[7];
2167 pcb->pcb_flags |= PCB_DBREGS;
2170 return (0);
2174 * Return > 0 if a hardware breakpoint has been hit, and the
2175 * breakpoint was in user space. Return 0, otherwise.
2178 user_dbreg_trap(void)
2180 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2181 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2182 int nbp; /* number of breakpoints that triggered */
2183 caddr_t addr[4]; /* breakpoint addresses */
2184 int i;
2186 dr7 = rdr7();
2187 if ((dr7 & 0xff) == 0) {
2189 * all GE and LE bits in the dr7 register are zero,
2190 * thus the trap couldn't have been caused by the
2191 * hardware debug registers
2193 return 0;
2196 nbp = 0;
2197 dr6 = rdr6();
2198 bp = dr6 & 0xf;
2200 if (bp == 0) {
2202 * None of the breakpoint bits are set meaning this
2203 * trap was not caused by any of the debug registers
2205 return 0;
2209 * at least one of the breakpoints were hit, check to see
2210 * which ones and if any of them are user space addresses
2213 if (bp & 0x01) {
2214 addr[nbp++] = (caddr_t)rdr0();
2216 if (bp & 0x02) {
2217 addr[nbp++] = (caddr_t)rdr1();
2219 if (bp & 0x04) {
2220 addr[nbp++] = (caddr_t)rdr2();
2222 if (bp & 0x08) {
2223 addr[nbp++] = (caddr_t)rdr3();
2226 for (i=0; i<nbp; i++) {
2227 if (addr[i] <
2228 (caddr_t)VM_MAX_USER_ADDRESS) {
2230 * addr[i] is in user space
2232 return nbp;
2237 * None of the breakpoints are in user space.
2239 return 0;
2243 #ifndef DDB
2244 void
2245 Debugger(const char *msg)
2247 kprintf("Debugger(\"%s\") called.\n", msg);
2249 #endif /* no DDB */
2251 #ifdef DDB
2254 * Provide inb() and outb() as functions. They are normally only
2255 * available as macros calling inlined functions, thus cannot be
2256 * called inside DDB.
2258 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2261 #undef inb
2262 #undef outb
2264 /* silence compiler warnings */
2265 u_char inb(u_int);
2266 void outb(u_int, u_char);
2268 u_char
2269 inb(u_int port)
2271 u_char data;
2273 * We use %%dx and not %1 here because i/o is done at %dx and not at
2274 * %edx, while gcc generates inferior code (movw instead of movl)
2275 * if we tell it to load (u_short) port.
2277 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2278 return (data);
2281 void
2282 outb(u_int port, u_char data)
2284 u_char al;
2286 * Use an unnecessary assignment to help gcc's register allocator.
2287 * This make a large difference for gcc-1.40 and a tiny difference
2288 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2289 * best results. gcc-2.6.0 can't handle this.
2291 al = data;
2292 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2295 #endif /* DDB */
2299 #include "opt_cpu.h"
2303 * initialize all the SMP locks
2306 /* critical region when masking or unmasking interupts */
2307 struct spinlock_deprecated imen_spinlock;
2309 /* Make FAST_INTR() routines sequential */
2310 struct spinlock_deprecated fast_intr_spinlock;
2312 /* critical region for old style disable_intr/enable_intr */
2313 struct spinlock_deprecated mpintr_spinlock;
2315 /* critical region around INTR() routines */
2316 struct spinlock_deprecated intr_spinlock;
2318 /* lock region used by kernel profiling */
2319 struct spinlock_deprecated mcount_spinlock;
2321 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2322 struct spinlock_deprecated com_spinlock;
2324 /* locks kernel kprintfs */
2325 struct spinlock_deprecated cons_spinlock;
2327 /* lock regions around the clock hardware */
2328 struct spinlock_deprecated clock_spinlock;
2330 /* lock around the MP rendezvous */
2331 struct spinlock_deprecated smp_rv_spinlock;
2333 static void
2334 init_locks(void)
2337 * mp_lock = 0; BSP already owns the MP lock
2340 * Get the initial mp_lock with a count of 1 for the BSP.
2341 * This uses a LOGICAL cpu ID, ie BSP == 0.
2343 #ifdef SMP
2344 cpu_get_initial_mplock();
2345 #endif
2346 /* DEPRECATED */
2347 spin_lock_init(&mcount_spinlock);
2348 spin_lock_init(&fast_intr_spinlock);
2349 spin_lock_init(&intr_spinlock);
2350 spin_lock_init(&mpintr_spinlock);
2351 spin_lock_init(&imen_spinlock);
2352 spin_lock_init(&smp_rv_spinlock);
2353 spin_lock_init(&com_spinlock);
2354 spin_lock_init(&clock_spinlock);
2355 spin_lock_init(&cons_spinlock);
2357 /* our token pool needs to work early */
2358 lwkt_token_pool_init();