Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / contrib / gcc-3.4 / libstdc++-v3 / include / bits / stl_list.h
blobafb118bb31e54fd4e12bc596097ba78e5d130aab
1 // List implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_list.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _LIST_H
62 #define _LIST_H 1
64 #include <bits/concept_check.h>
66 namespace _GLIBCXX_STD
68 // Supporting structures are split into common and templated types; the
69 // latter publicly inherits from the former in an effort to reduce code
70 // duplication. This results in some "needless" static_cast'ing later on,
71 // but it's all safe downcasting.
73 /// @if maint Common part of a node in the %list. @endif
74 struct _List_node_base
76 _List_node_base* _M_next; ///< Self-explanatory
77 _List_node_base* _M_prev; ///< Self-explanatory
79 static void
80 swap(_List_node_base& __x, _List_node_base& __y);
82 void
83 transfer(_List_node_base * const __first,
84 _List_node_base * const __last);
86 void
87 reverse();
89 void
90 hook(_List_node_base * const __position);
92 void
93 unhook();
96 /// @if maint An actual node in the %list. @endif
97 template<typename _Tp>
98 struct _List_node : public _List_node_base
100 _Tp _M_data; ///< User's data.
104 * @brief A list::iterator.
106 * @if maint
107 * All the functions are op overloads.
108 * @endif
110 template<typename _Tp>
111 struct _List_iterator
113 typedef _List_iterator<_Tp> _Self;
114 typedef _List_node<_Tp> _Node;
116 typedef ptrdiff_t difference_type;
117 typedef bidirectional_iterator_tag iterator_category;
118 typedef _Tp value_type;
119 typedef _Tp* pointer;
120 typedef _Tp& reference;
122 _List_iterator()
123 : _M_node() { }
125 _List_iterator(_List_node_base* __x)
126 : _M_node(__x) { }
128 // Must downcast from List_node_base to _List_node to get to _M_data.
129 reference
130 operator*() const
131 { return static_cast<_Node*>(_M_node)->_M_data; }
133 pointer
134 operator->() const
135 { return &static_cast<_Node*>(_M_node)->_M_data; }
137 _Self&
138 operator++()
140 _M_node = _M_node->_M_next;
141 return *this;
144 _Self
145 operator++(int)
147 _Self __tmp = *this;
148 _M_node = _M_node->_M_next;
149 return __tmp;
152 _Self&
153 operator--()
155 _M_node = _M_node->_M_prev;
156 return *this;
159 _Self
160 operator--(int)
162 _Self __tmp = *this;
163 _M_node = _M_node->_M_prev;
164 return __tmp;
167 bool
168 operator==(const _Self& __x) const
169 { return _M_node == __x._M_node; }
171 bool
172 operator!=(const _Self& __x) const
173 { return _M_node != __x._M_node; }
175 // The only member points to the %list element.
176 _List_node_base* _M_node;
180 * @brief A list::const_iterator.
182 * @if maint
183 * All the functions are op overloads.
184 * @endif
186 template<typename _Tp>
187 struct _List_const_iterator
189 typedef _List_const_iterator<_Tp> _Self;
190 typedef const _List_node<_Tp> _Node;
191 typedef _List_iterator<_Tp> iterator;
193 typedef ptrdiff_t difference_type;
194 typedef bidirectional_iterator_tag iterator_category;
195 typedef _Tp value_type;
196 typedef const _Tp* pointer;
197 typedef const _Tp& reference;
199 _List_const_iterator()
200 : _M_node() { }
202 _List_const_iterator(const _List_node_base* __x)
203 : _M_node(__x) { }
205 _List_const_iterator(const iterator& __x)
206 : _M_node(__x._M_node) { }
208 // Must downcast from List_node_base to _List_node to get to
209 // _M_data.
210 reference
211 operator*() const
212 { return static_cast<_Node*>(_M_node)->_M_data; }
214 pointer
215 operator->() const
216 { return &static_cast<_Node*>(_M_node)->_M_data; }
218 _Self&
219 operator++()
221 _M_node = _M_node->_M_next;
222 return *this;
225 _Self
226 operator++(int)
228 _Self __tmp = *this;
229 _M_node = _M_node->_M_next;
230 return __tmp;
233 _Self&
234 operator--()
236 _M_node = _M_node->_M_prev;
237 return *this;
240 _Self
241 operator--(int)
243 _Self __tmp = *this;
244 _M_node = _M_node->_M_prev;
245 return __tmp;
248 bool
249 operator==(const _Self& __x) const
250 { return _M_node == __x._M_node; }
252 bool
253 operator!=(const _Self& __x) const
254 { return _M_node != __x._M_node; }
256 // The only member points to the %list element.
257 const _List_node_base* _M_node;
260 template<typename _Val>
261 inline bool
262 operator==(const _List_iterator<_Val>& __x,
263 const _List_const_iterator<_Val>& __y)
264 { return __x._M_node == __y._M_node; }
266 template<typename _Val>
267 inline bool
268 operator!=(const _List_iterator<_Val>& __x,
269 const _List_const_iterator<_Val>& __y)
270 { return __x._M_node != __y._M_node; }
274 * @if maint
275 * See bits/stl_deque.h's _Deque_base for an explanation.
276 * @endif
278 template<typename _Tp, typename _Alloc>
279 class _List_base
281 protected:
282 // NOTA BENE
283 // The stored instance is not actually of "allocator_type"'s
284 // type. Instead we rebind the type to
285 // Allocator<List_node<Tp>>, which according to [20.1.5]/4
286 // should probably be the same. List_node<Tp> is not the same
287 // size as Tp (it's two pointers larger), and specializations on
288 // Tp may go unused because List_node<Tp> is being bound
289 // instead.
291 // We put this to the test in the constructors and in
292 // get_allocator, where we use conversions between
293 // allocator_type and _Node_Alloc_type. The conversion is
294 // required by table 32 in [20.1.5].
295 typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
297 _Node_Alloc_type;
299 struct _List_impl
300 : public _Node_Alloc_type {
301 _List_node_base _M_node;
302 _List_impl (const _Node_Alloc_type& __a)
303 : _Node_Alloc_type(__a)
307 _List_impl _M_impl;
309 _List_node<_Tp>*
310 _M_get_node()
311 { return _M_impl._Node_Alloc_type::allocate(1); }
313 void
314 _M_put_node(_List_node<_Tp>* __p)
315 { _M_impl._Node_Alloc_type::deallocate(__p, 1); }
317 public:
318 typedef _Alloc allocator_type;
320 allocator_type
321 get_allocator() const
322 { return allocator_type(*static_cast<const _Node_Alloc_type*>(&this->_M_impl)); }
324 _List_base(const allocator_type& __a)
325 : _M_impl(__a)
326 { _M_init(); }
328 // This is what actually destroys the list.
329 ~_List_base()
330 { _M_clear(); }
332 void
333 _M_clear();
335 void
336 _M_init()
338 this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
339 this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
344 * @brief A standard container with linear time access to elements,
345 * and fixed time insertion/deletion at any point in the sequence.
347 * @ingroup Containers
348 * @ingroup Sequences
350 * Meets the requirements of a <a href="tables.html#65">container</a>, a
351 * <a href="tables.html#66">reversible container</a>, and a
352 * <a href="tables.html#67">sequence</a>, including the
353 * <a href="tables.html#68">optional sequence requirements</a> with the
354 * %exception of @c at and @c operator[].
356 * This is a @e doubly @e linked %list. Traversal up and down the
357 * %list requires linear time, but adding and removing elements (or
358 * @e nodes) is done in constant time, regardless of where the
359 * change takes place. Unlike std::vector and std::deque,
360 * random-access iterators are not provided, so subscripting ( @c
361 * [] ) access is not allowed. For algorithms which only need
362 * sequential access, this lack makes no difference.
364 * Also unlike the other standard containers, std::list provides
365 * specialized algorithms %unique to linked lists, such as
366 * splicing, sorting, and in-place reversal.
368 * @if maint
369 * A couple points on memory allocation for list<Tp>:
371 * First, we never actually allocate a Tp, we allocate
372 * List_node<Tp>'s and trust [20.1.5]/4 to DTRT. This is to ensure
373 * that after elements from %list<X,Alloc1> are spliced into
374 * %list<X,Alloc2>, destroying the memory of the second %list is a
375 * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
377 * Second, a %list conceptually represented as
378 * @code
379 * A <---> B <---> C <---> D
380 * @endcode
381 * is actually circular; a link exists between A and D. The %list
382 * class holds (as its only data member) a private list::iterator
383 * pointing to @e D, not to @e A! To get to the head of the %list,
384 * we start at the tail and move forward by one. When this member
385 * iterator's next/previous pointers refer to itself, the %list is
386 * %empty. @endif
388 template<typename _Tp, typename _Alloc = allocator<_Tp> >
389 class list : protected _List_base<_Tp, _Alloc>
391 // concept requirements
392 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
394 typedef _List_base<_Tp, _Alloc> _Base;
396 public:
397 typedef _Tp value_type;
398 typedef typename _Alloc::pointer pointer;
399 typedef typename _Alloc::const_pointer const_pointer;
400 typedef typename _Alloc::reference reference;
401 typedef typename _Alloc::const_reference const_reference;
402 typedef _List_iterator<_Tp> iterator;
403 typedef _List_const_iterator<_Tp> const_iterator;
404 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
405 typedef std::reverse_iterator<iterator> reverse_iterator;
406 typedef size_t size_type;
407 typedef ptrdiff_t difference_type;
408 typedef typename _Base::allocator_type allocator_type;
410 protected:
411 // Note that pointers-to-_Node's can be ctor-converted to
412 // iterator types.
413 typedef _List_node<_Tp> _Node;
415 /** @if maint
416 * One data member plus two memory-handling functions. If the
417 * _Alloc type requires separate instances, then one of those
418 * will also be included, accumulated from the topmost parent.
419 * @endif
421 using _Base::_M_impl;
422 using _Base::_M_put_node;
423 using _Base::_M_get_node;
426 * @if maint
427 * @param x An instance of user data.
429 * Allocates space for a new node and constructs a copy of @a x in it.
430 * @endif
432 _Node*
433 _M_create_node(const value_type& __x)
435 _Node* __p = this->_M_get_node();
438 std::_Construct(&__p->_M_data, __x);
440 catch(...)
442 _M_put_node(__p);
443 __throw_exception_again;
445 return __p;
449 * @if maint
450 * Allocates space for a new node and default-constructs a new
451 * instance of @c value_type in it.
452 * @endif
454 _Node*
455 _M_create_node()
457 _Node* __p = this->_M_get_node();
460 std::_Construct(&__p->_M_data);
462 catch(...)
464 _M_put_node(__p);
465 __throw_exception_again;
467 return __p;
470 public:
471 // [23.2.2.1] construct/copy/destroy
472 // (assign() and get_allocator() are also listed in this section)
474 * @brief Default constructor creates no elements.
476 explicit
477 list(const allocator_type& __a = allocator_type())
478 : _Base(__a) { }
481 * @brief Create a %list with copies of an exemplar element.
482 * @param n The number of elements to initially create.
483 * @param value An element to copy.
485 * This constructor fills the %list with @a n copies of @a value.
487 list(size_type __n, const value_type& __value,
488 const allocator_type& __a = allocator_type())
489 : _Base(__a)
490 { this->insert(begin(), __n, __value); }
493 * @brief Create a %list with default elements.
494 * @param n The number of elements to initially create.
496 * This constructor fills the %list with @a n copies of a
497 * default-constructed element.
499 explicit
500 list(size_type __n)
501 : _Base(allocator_type())
502 { this->insert(begin(), __n, value_type()); }
505 * @brief %List copy constructor.
506 * @param x A %list of identical element and allocator types.
508 * The newly-created %list uses a copy of the allocation object used
509 * by @a x.
511 list(const list& __x)
512 : _Base(__x.get_allocator())
513 { this->insert(begin(), __x.begin(), __x.end()); }
516 * @brief Builds a %list from a range.
517 * @param first An input iterator.
518 * @param last An input iterator.
520 * Create a %list consisting of copies of the elements from
521 * [@a first,@a last). This is linear in N (where N is
522 * distance(@a first,@a last)).
524 * @if maint
525 * We don't need any dispatching tricks here, because insert does all of
526 * that anyway.
527 * @endif
529 template<typename _InputIterator>
530 list(_InputIterator __first, _InputIterator __last,
531 const allocator_type& __a = allocator_type())
532 : _Base(__a)
533 { this->insert(begin(), __first, __last); }
536 * No explicit dtor needed as the _Base dtor takes care of
537 * things. The _Base dtor only erases the elements, and note
538 * that if the elements themselves are pointers, the pointed-to
539 * memory is not touched in any way. Managing the pointer is
540 * the user's responsibilty.
544 * @brief %List assignment operator.
545 * @param x A %list of identical element and allocator types.
547 * All the elements of @a x are copied, but unlike the copy
548 * constructor, the allocator object is not copied.
550 list&
551 operator=(const list& __x);
554 * @brief Assigns a given value to a %list.
555 * @param n Number of elements to be assigned.
556 * @param val Value to be assigned.
558 * This function fills a %list with @a n copies of the given
559 * value. Note that the assignment completely changes the %list
560 * and that the resulting %list's size is the same as the number
561 * of elements assigned. Old data may be lost.
563 void
564 assign(size_type __n, const value_type& __val)
565 { _M_fill_assign(__n, __val); }
568 * @brief Assigns a range to a %list.
569 * @param first An input iterator.
570 * @param last An input iterator.
572 * This function fills a %list with copies of the elements in the
573 * range [@a first,@a last).
575 * Note that the assignment completely changes the %list and
576 * that the resulting %list's size is the same as the number of
577 * elements assigned. Old data may be lost.
579 template<typename _InputIterator>
580 void
581 assign(_InputIterator __first, _InputIterator __last)
583 // Check whether it's an integral type. If so, it's not an iterator.
584 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
585 _M_assign_dispatch(__first, __last, _Integral());
588 /// Get a copy of the memory allocation object.
589 allocator_type
590 get_allocator() const
591 { return _Base::get_allocator(); }
593 // iterators
595 * Returns a read/write iterator that points to the first element in the
596 * %list. Iteration is done in ordinary element order.
598 iterator
599 begin()
600 { return this->_M_impl._M_node._M_next; }
603 * Returns a read-only (constant) iterator that points to the
604 * first element in the %list. Iteration is done in ordinary
605 * element order.
607 const_iterator
608 begin() const
609 { return this->_M_impl._M_node._M_next; }
612 * Returns a read/write iterator that points one past the last
613 * element in the %list. Iteration is done in ordinary element
614 * order.
616 iterator
617 end() { return &this->_M_impl._M_node; }
620 * Returns a read-only (constant) iterator that points one past
621 * the last element in the %list. Iteration is done in ordinary
622 * element order.
624 const_iterator
625 end() const
626 { return &this->_M_impl._M_node; }
629 * Returns a read/write reverse iterator that points to the last
630 * element in the %list. Iteration is done in reverse element
631 * order.
633 reverse_iterator
634 rbegin()
635 { return reverse_iterator(end()); }
638 * Returns a read-only (constant) reverse iterator that points to
639 * the last element in the %list. Iteration is done in reverse
640 * element order.
642 const_reverse_iterator
643 rbegin() const
644 { return const_reverse_iterator(end()); }
647 * Returns a read/write reverse iterator that points to one
648 * before the first element in the %list. Iteration is done in
649 * reverse element order.
651 reverse_iterator
652 rend()
653 { return reverse_iterator(begin()); }
656 * Returns a read-only (constant) reverse iterator that points to one
657 * before the first element in the %list. Iteration is done in reverse
658 * element order.
660 const_reverse_iterator
661 rend() const
662 { return const_reverse_iterator(begin()); }
664 // [23.2.2.2] capacity
666 * Returns true if the %list is empty. (Thus begin() would equal
667 * end().)
669 bool
670 empty() const
671 { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
673 /** Returns the number of elements in the %list. */
674 size_type
675 size() const
676 { return std::distance(begin(), end()); }
678 /** Returns the size() of the largest possible %list. */
679 size_type
680 max_size() const
681 { return size_type(-1); }
684 * @brief Resizes the %list to the specified number of elements.
685 * @param new_size Number of elements the %list should contain.
686 * @param x Data with which new elements should be populated.
688 * This function will %resize the %list to the specified number
689 * of elements. If the number is smaller than the %list's
690 * current size the %list is truncated, otherwise the %list is
691 * extended and new elements are populated with given data.
693 void
694 resize(size_type __new_size, const value_type& __x);
697 * @brief Resizes the %list to the specified number of elements.
698 * @param new_size Number of elements the %list should contain.
700 * This function will resize the %list to the specified number of
701 * elements. If the number is smaller than the %list's current
702 * size the %list is truncated, otherwise the %list is extended
703 * and new elements are default-constructed.
705 void
706 resize(size_type __new_size)
707 { this->resize(__new_size, value_type()); }
709 // element access
711 * Returns a read/write reference to the data at the first
712 * element of the %list.
714 reference
715 front()
716 { return *begin(); }
719 * Returns a read-only (constant) reference to the data at the first
720 * element of the %list.
722 const_reference
723 front() const
724 { return *begin(); }
727 * Returns a read/write reference to the data at the last element
728 * of the %list.
730 reference
731 back()
732 { return *(--end()); }
735 * Returns a read-only (constant) reference to the data at the last
736 * element of the %list.
738 const_reference
739 back() const
740 { return *(--end()); }
742 // [23.2.2.3] modifiers
744 * @brief Add data to the front of the %list.
745 * @param x Data to be added.
747 * This is a typical stack operation. The function creates an
748 * element at the front of the %list and assigns the given data
749 * to it. Due to the nature of a %list this operation can be
750 * done in constant time, and does not invalidate iterators and
751 * references.
753 void
754 push_front(const value_type& __x)
755 { this->_M_insert(begin(), __x); }
758 * @brief Removes first element.
760 * This is a typical stack operation. It shrinks the %list by
761 * one. Due to the nature of a %list this operation can be done
762 * in constant time, and only invalidates iterators/references to
763 * the element being removed.
765 * Note that no data is returned, and if the first element's data
766 * is needed, it should be retrieved before pop_front() is
767 * called.
769 void
770 pop_front()
771 { this->_M_erase(begin()); }
774 * @brief Add data to the end of the %list.
775 * @param x Data to be added.
777 * This is a typical stack operation. The function creates an
778 * element at the end of the %list and assigns the given data to
779 * it. Due to the nature of a %list this operation can be done
780 * in constant time, and does not invalidate iterators and
781 * references.
783 void
784 push_back(const value_type& __x)
785 { this->_M_insert(end(), __x); }
788 * @brief Removes last element.
790 * This is a typical stack operation. It shrinks the %list by
791 * one. Due to the nature of a %list this operation can be done
792 * in constant time, and only invalidates iterators/references to
793 * the element being removed.
795 * Note that no data is returned, and if the last element's data
796 * is needed, it should be retrieved before pop_back() is called.
798 void
799 pop_back()
800 { this->_M_erase(this->_M_impl._M_node._M_prev); }
803 * @brief Inserts given value into %list before specified iterator.
804 * @param position An iterator into the %list.
805 * @param x Data to be inserted.
806 * @return An iterator that points to the inserted data.
808 * This function will insert a copy of the given value before
809 * the specified location. Due to the nature of a %list this
810 * operation can be done in constant time, and does not
811 * invalidate iterators and references.
813 iterator
814 insert(iterator __position, const value_type& __x);
817 * @brief Inserts a number of copies of given data into the %list.
818 * @param position An iterator into the %list.
819 * @param n Number of elements to be inserted.
820 * @param x Data to be inserted.
822 * This function will insert a specified number of copies of the
823 * given data before the location specified by @a position.
825 * Due to the nature of a %list this operation can be done in
826 * constant time, and does not invalidate iterators and
827 * references.
829 void
830 insert(iterator __position, size_type __n, const value_type& __x)
831 { _M_fill_insert(__position, __n, __x); }
834 * @brief Inserts a range into the %list.
835 * @param position An iterator into the %list.
836 * @param first An input iterator.
837 * @param last An input iterator.
839 * This function will insert copies of the data in the range [@a
840 * first,@a last) into the %list before the location specified by
841 * @a position.
843 * Due to the nature of a %list this operation can be done in
844 * constant time, and does not invalidate iterators and
845 * references.
847 template<typename _InputIterator>
848 void
849 insert(iterator __position, _InputIterator __first,
850 _InputIterator __last)
852 // Check whether it's an integral type. If so, it's not an iterator.
853 typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
854 _M_insert_dispatch(__position, __first, __last, _Integral());
858 * @brief Remove element at given position.
859 * @param position Iterator pointing to element to be erased.
860 * @return An iterator pointing to the next element (or end()).
862 * This function will erase the element at the given position and thus
863 * shorten the %list by one.
865 * Due to the nature of a %list this operation can be done in
866 * constant time, and only invalidates iterators/references to
867 * the element being removed. The user is also cautioned that
868 * this function only erases the element, and that if the element
869 * is itself a pointer, the pointed-to memory is not touched in
870 * any way. Managing the pointer is the user's responsibilty.
872 iterator
873 erase(iterator __position);
876 * @brief Remove a range of elements.
877 * @param first Iterator pointing to the first element to be erased.
878 * @param last Iterator pointing to one past the last element to be
879 * erased.
880 * @return An iterator pointing to the element pointed to by @a last
881 * prior to erasing (or end()).
883 * This function will erase the elements in the range @a
884 * [first,last) and shorten the %list accordingly.
886 * Due to the nature of a %list this operation can be done in
887 * constant time, and only invalidates iterators/references to
888 * the element being removed. The user is also cautioned that
889 * this function only erases the elements, and that if the
890 * elements themselves are pointers, the pointed-to memory is not
891 * touched in any way. Managing the pointer is the user's
892 * responsibilty.
894 iterator
895 erase(iterator __first, iterator __last)
897 while (__first != __last)
898 __first = erase(__first);
899 return __last;
903 * @brief Swaps data with another %list.
904 * @param x A %list of the same element and allocator types.
906 * This exchanges the elements between two lists in constant
907 * time. Note that the global std::swap() function is
908 * specialized such that std::swap(l1,l2) will feed to this
909 * function.
911 void
912 swap(list& __x)
913 { _List_node_base::swap(this->_M_impl._M_node,__x._M_impl._M_node); }
916 * Erases all the elements. Note that this function only erases
917 * the elements, and that if the elements themselves are
918 * pointers, the pointed-to memory is not touched in any way.
919 * Managing the pointer is the user's responsibilty.
921 void
922 clear()
924 _Base::_M_clear();
925 _Base::_M_init();
928 // [23.2.2.4] list operations
930 * @brief Insert contents of another %list.
931 * @param position Iterator referencing the element to insert before.
932 * @param x Source list.
934 * The elements of @a x are inserted in constant time in front of
935 * the element referenced by @a position. @a x becomes an empty
936 * list.
938 void
939 splice(iterator __position, list& __x)
941 if (!__x.empty())
942 this->_M_transfer(__position, __x.begin(), __x.end());
946 * @brief Insert element from another %list.
947 * @param position Iterator referencing the element to insert before.
948 * @param x Source list.
949 * @param i Iterator referencing the element to move.
951 * Removes the element in list @a x referenced by @a i and
952 * inserts it into the current list before @a position.
954 void
955 splice(iterator __position, list&, iterator __i)
957 iterator __j = __i;
958 ++__j;
959 if (__position == __i || __position == __j)
960 return;
961 this->_M_transfer(__position, __i, __j);
965 * @brief Insert range from another %list.
966 * @param position Iterator referencing the element to insert before.
967 * @param x Source list.
968 * @param first Iterator referencing the start of range in x.
969 * @param last Iterator referencing the end of range in x.
971 * Removes elements in the range [first,last) and inserts them
972 * before @a position in constant time.
974 * Undefined if @a position is in [first,last).
976 void
977 splice(iterator __position, list&, iterator __first, iterator __last)
979 if (__first != __last)
980 this->_M_transfer(__position, __first, __last);
984 * @brief Remove all elements equal to value.
985 * @param value The value to remove.
987 * Removes every element in the list equal to @a value.
988 * Remaining elements stay in list order. Note that this
989 * function only erases the elements, and that if the elements
990 * themselves are pointers, the pointed-to memory is not
991 * touched in any way. Managing the pointer is the user's
992 * responsibilty.
994 void
995 remove(const _Tp& __value);
998 * @brief Remove all elements satisfying a predicate.
999 * @param Predicate Unary predicate function or object.
1001 * Removes every element in the list for which the predicate
1002 * returns true. Remaining elements stay in list order. Note
1003 * that this function only erases the elements, and that if the
1004 * elements themselves are pointers, the pointed-to memory is
1005 * not touched in any way. Managing the pointer is the user's
1006 * responsibilty.
1008 template<typename _Predicate>
1009 void
1010 remove_if(_Predicate);
1013 * @brief Remove consecutive duplicate elements.
1015 * For each consecutive set of elements with the same value,
1016 * remove all but the first one. Remaining elements stay in
1017 * list order. Note that this function only erases the
1018 * elements, and that if the elements themselves are pointers,
1019 * the pointed-to memory is not touched in any way. Managing
1020 * the pointer is the user's responsibilty.
1022 void
1023 unique();
1026 * @brief Remove consecutive elements satisfying a predicate.
1027 * @param BinaryPredicate Binary predicate function or object.
1029 * For each consecutive set of elements [first,last) that
1030 * satisfy predicate(first,i) where i is an iterator in
1031 * [first,last), remove all but the first one. Remaining
1032 * elements stay in list order. Note that this function only
1033 * erases the elements, and that if the elements themselves are
1034 * pointers, the pointed-to memory is not touched in any way.
1035 * Managing the pointer is the user's responsibilty.
1037 template<typename _BinaryPredicate>
1038 void
1039 unique(_BinaryPredicate);
1042 * @brief Merge sorted lists.
1043 * @param x Sorted list to merge.
1045 * Assumes that both @a x and this list are sorted according to
1046 * operator<(). Merges elements of @a x into this list in
1047 * sorted order, leaving @a x empty when complete. Elements in
1048 * this list precede elements in @a x that are equal.
1050 void
1051 merge(list& __x);
1054 * @brief Merge sorted lists according to comparison function.
1055 * @param x Sorted list to merge.
1056 * @param StrictWeakOrdering Comparison function definining
1057 * sort order.
1059 * Assumes that both @a x and this list are sorted according to
1060 * StrictWeakOrdering. Merges elements of @a x into this list
1061 * in sorted order, leaving @a x empty when complete. Elements
1062 * in this list precede elements in @a x that are equivalent
1063 * according to StrictWeakOrdering().
1065 template<typename _StrictWeakOrdering>
1066 void
1067 merge(list&, _StrictWeakOrdering);
1070 * @brief Reverse the elements in list.
1072 * Reverse the order of elements in the list in linear time.
1074 void
1075 reverse()
1076 { this->_M_impl._M_node.reverse(); }
1079 * @brief Sort the elements.
1081 * Sorts the elements of this list in NlogN time. Equivalent
1082 * elements remain in list order.
1084 void
1085 sort();
1088 * @brief Sort the elements according to comparison function.
1090 * Sorts the elements of this list in NlogN time. Equivalent
1091 * elements remain in list order.
1093 template<typename _StrictWeakOrdering>
1094 void
1095 sort(_StrictWeakOrdering);
1097 protected:
1098 // Internal assign functions follow.
1100 // Called by the range assign to implement [23.1.1]/9
1101 template<typename _Integer>
1102 void
1103 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1105 _M_fill_assign(static_cast<size_type>(__n),
1106 static_cast<value_type>(__val));
1109 // Called by the range assign to implement [23.1.1]/9
1110 template<typename _InputIterator>
1111 void
1112 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1113 __false_type);
1115 // Called by assign(n,t), and the range assign when it turns out
1116 // to be the same thing.
1117 void
1118 _M_fill_assign(size_type __n, const value_type& __val);
1121 // Internal insert functions follow.
1123 // Called by the range insert to implement [23.1.1]/9
1124 template<typename _Integer>
1125 void
1126 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
1127 __true_type)
1129 _M_fill_insert(__pos, static_cast<size_type>(__n),
1130 static_cast<value_type>(__x));
1133 // Called by the range insert to implement [23.1.1]/9
1134 template<typename _InputIterator>
1135 void
1136 _M_insert_dispatch(iterator __pos,
1137 _InputIterator __first, _InputIterator __last,
1138 __false_type)
1140 for ( ; __first != __last; ++__first)
1141 _M_insert(__pos, *__first);
1144 // Called by insert(p,n,x), and the range insert when it turns out
1145 // to be the same thing.
1146 void
1147 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x)
1149 for ( ; __n > 0; --__n)
1150 _M_insert(__pos, __x);
1154 // Moves the elements from [first,last) before position.
1155 void
1156 _M_transfer(iterator __position, iterator __first, iterator __last)
1157 { __position._M_node->transfer(__first._M_node,__last._M_node); }
1159 // Inserts new element at position given and with value given.
1160 void
1161 _M_insert(iterator __position, const value_type& __x)
1163 _Node* __tmp = _M_create_node(__x);
1164 __tmp->hook(__position._M_node);
1167 // Erases element at position given.
1168 void
1169 _M_erase(iterator __position)
1171 __position._M_node->unhook();
1172 _Node* __n = static_cast<_Node*>(__position._M_node);
1173 std::_Destroy(&__n->_M_data);
1174 _M_put_node(__n);
1179 * @brief List equality comparison.
1180 * @param x A %list.
1181 * @param y A %list of the same type as @a x.
1182 * @return True iff the size and elements of the lists are equal.
1184 * This is an equivalence relation. It is linear in the size of
1185 * the lists. Lists are considered equivalent if their sizes are
1186 * equal, and if corresponding elements compare equal.
1188 template<typename _Tp, typename _Alloc>
1189 inline bool
1190 operator==(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1192 typedef typename list<_Tp,_Alloc>::const_iterator const_iterator;
1193 const_iterator __end1 = __x.end();
1194 const_iterator __end2 = __y.end();
1196 const_iterator __i1 = __x.begin();
1197 const_iterator __i2 = __y.begin();
1198 while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1200 ++__i1;
1201 ++__i2;
1203 return __i1 == __end1 && __i2 == __end2;
1207 * @brief List ordering relation.
1208 * @param x A %list.
1209 * @param y A %list of the same type as @a x.
1210 * @return True iff @a x is lexicographically less than @a y.
1212 * This is a total ordering relation. It is linear in the size of the
1213 * lists. The elements must be comparable with @c <.
1215 * See std::lexicographical_compare() for how the determination is made.
1217 template<typename _Tp, typename _Alloc>
1218 inline bool
1219 operator<(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1220 { return std::lexicographical_compare(__x.begin(), __x.end(),
1221 __y.begin(), __y.end()); }
1223 /// Based on operator==
1224 template<typename _Tp, typename _Alloc>
1225 inline bool
1226 operator!=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1227 { return !(__x == __y); }
1229 /// Based on operator<
1230 template<typename _Tp, typename _Alloc>
1231 inline bool
1232 operator>(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1233 { return __y < __x; }
1235 /// Based on operator<
1236 template<typename _Tp, typename _Alloc>
1237 inline bool
1238 operator<=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1239 { return !(__y < __x); }
1241 /// Based on operator<
1242 template<typename _Tp, typename _Alloc>
1243 inline bool
1244 operator>=(const list<_Tp,_Alloc>& __x, const list<_Tp,_Alloc>& __y)
1245 { return !(__x < __y); }
1247 /// See std::list::swap().
1248 template<typename _Tp, typename _Alloc>
1249 inline void
1250 swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1251 { __x.swap(__y); }
1252 } // namespace std
1254 #endif /* _LIST_H */