Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / contrib / gcc-3.4 / gcc / final.c
blobdd5b64ec53f56206acc4d2b5a47f9e0a2b852716
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
772 if (max_labelno != max_label_num ())
774 int old = max_labelno;
775 int n_labels;
776 int n_old_labels;
778 max_labelno = max_label_num ();
780 n_labels = max_labelno - min_labelno + 1;
781 n_old_labels = old - min_labelno + 1;
783 label_align = xrealloc (label_align,
784 n_labels * sizeof (struct label_alignment));
786 /* Range of labels grows monotonically in the function. Abort here
787 means that the initialization of array got lost. */
788 if (n_old_labels > n_labels)
789 abort ();
791 memset (label_align + n_old_labels, 0,
792 (n_labels - n_old_labels) * sizeof (struct label_alignment));
795 /* Initialize label_align and set up uid_shuid to be strictly
796 monotonically rising with insn order. */
797 /* We use max_log here to keep track of the maximum alignment we want to
798 impose on the next CODE_LABEL (or the current one if we are processing
799 the CODE_LABEL itself). */
801 max_log = 0;
802 max_skip = 0;
804 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
806 int log;
808 INSN_SHUID (insn) = i++;
809 if (INSN_P (insn))
811 /* reorg might make the first insn of a loop being run once only,
812 and delete the label in front of it. Then we want to apply
813 the loop alignment to the new label created by reorg, which
814 is separated by the former loop start insn from the
815 NOTE_INSN_LOOP_BEG. */
817 else if (GET_CODE (insn) == CODE_LABEL)
819 rtx next;
821 /* Merge in alignments computed by compute_alignments. */
822 log = LABEL_TO_ALIGNMENT (insn);
823 if (max_log < log)
825 max_log = log;
826 max_skip = LABEL_TO_MAX_SKIP (insn);
829 log = LABEL_ALIGN (insn);
830 if (max_log < log)
832 max_log = log;
833 max_skip = LABEL_ALIGN_MAX_SKIP;
835 next = NEXT_INSN (insn);
836 /* ADDR_VECs only take room if read-only data goes into the text
837 section. */
838 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
839 if (next && GET_CODE (next) == JUMP_INSN)
841 rtx nextbody = PATTERN (next);
842 if (GET_CODE (nextbody) == ADDR_VEC
843 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
845 log = ADDR_VEC_ALIGN (next);
846 if (max_log < log)
848 max_log = log;
849 max_skip = LABEL_ALIGN_MAX_SKIP;
853 LABEL_TO_ALIGNMENT (insn) = max_log;
854 LABEL_TO_MAX_SKIP (insn) = max_skip;
855 max_log = 0;
856 max_skip = 0;
858 else if (GET_CODE (insn) == BARRIER)
860 rtx label;
862 for (label = insn; label && ! INSN_P (label);
863 label = NEXT_INSN (label))
864 if (GET_CODE (label) == CODE_LABEL)
866 log = LABEL_ALIGN_AFTER_BARRIER (insn);
867 if (max_log < log)
869 max_log = log;
870 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
872 break;
876 #ifdef HAVE_ATTR_length
878 /* Allocate the rest of the arrays. */
879 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
880 insn_lengths_max_uid = max_uid;
881 /* Syntax errors can lead to labels being outside of the main insn stream.
882 Initialize insn_addresses, so that we get reproducible results. */
883 INSN_ADDRESSES_ALLOC (max_uid);
885 varying_length = xcalloc (max_uid, sizeof (char));
887 /* Initialize uid_align. We scan instructions
888 from end to start, and keep in align_tab[n] the last seen insn
889 that does an alignment of at least n+1, i.e. the successor
890 in the alignment chain for an insn that does / has a known
891 alignment of n. */
892 uid_align = xcalloc (max_uid, sizeof *uid_align);
894 for (i = MAX_CODE_ALIGN; --i >= 0;)
895 align_tab[i] = NULL_RTX;
896 seq = get_last_insn ();
897 for (; seq; seq = PREV_INSN (seq))
899 int uid = INSN_UID (seq);
900 int log;
901 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
902 uid_align[uid] = align_tab[0];
903 if (log)
905 /* Found an alignment label. */
906 uid_align[uid] = align_tab[log];
907 for (i = log - 1; i >= 0; i--)
908 align_tab[i] = seq;
911 #ifdef CASE_VECTOR_SHORTEN_MODE
912 if (optimize)
914 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
915 label fields. */
917 int min_shuid = INSN_SHUID (get_insns ()) - 1;
918 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
919 int rel;
921 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
923 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
924 int len, i, min, max, insn_shuid;
925 int min_align;
926 addr_diff_vec_flags flags;
928 if (GET_CODE (insn) != JUMP_INSN
929 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
930 continue;
931 pat = PATTERN (insn);
932 len = XVECLEN (pat, 1);
933 if (len <= 0)
934 abort ();
935 min_align = MAX_CODE_ALIGN;
936 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
938 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
939 int shuid = INSN_SHUID (lab);
940 if (shuid < min)
942 min = shuid;
943 min_lab = lab;
945 if (shuid > max)
947 max = shuid;
948 max_lab = lab;
950 if (min_align > LABEL_TO_ALIGNMENT (lab))
951 min_align = LABEL_TO_ALIGNMENT (lab);
953 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
954 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
955 insn_shuid = INSN_SHUID (insn);
956 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
957 flags.min_align = min_align;
958 flags.base_after_vec = rel > insn_shuid;
959 flags.min_after_vec = min > insn_shuid;
960 flags.max_after_vec = max > insn_shuid;
961 flags.min_after_base = min > rel;
962 flags.max_after_base = max > rel;
963 ADDR_DIFF_VEC_FLAGS (pat) = flags;
966 #endif /* CASE_VECTOR_SHORTEN_MODE */
968 /* Compute initial lengths, addresses, and varying flags for each insn. */
969 for (insn_current_address = 0, insn = first;
970 insn != 0;
971 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
973 uid = INSN_UID (insn);
975 insn_lengths[uid] = 0;
977 if (GET_CODE (insn) == CODE_LABEL)
979 int log = LABEL_TO_ALIGNMENT (insn);
980 if (log)
982 int align = 1 << log;
983 int new_address = (insn_current_address + align - 1) & -align;
984 insn_lengths[uid] = new_address - insn_current_address;
988 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
990 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
991 || GET_CODE (insn) == CODE_LABEL)
992 continue;
993 if (INSN_DELETED_P (insn))
994 continue;
996 body = PATTERN (insn);
997 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
999 /* This only takes room if read-only data goes into the text
1000 section. */
1001 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1002 insn_lengths[uid] = (XVECLEN (body,
1003 GET_CODE (body) == ADDR_DIFF_VEC)
1004 * GET_MODE_SIZE (GET_MODE (body)));
1005 /* Alignment is handled by ADDR_VEC_ALIGN. */
1007 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1008 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1009 else if (GET_CODE (body) == SEQUENCE)
1011 int i;
1012 int const_delay_slots;
1013 #ifdef DELAY_SLOTS
1014 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1015 #else
1016 const_delay_slots = 0;
1017 #endif
1018 /* Inside a delay slot sequence, we do not do any branch shortening
1019 if the shortening could change the number of delay slots
1020 of the branch. */
1021 for (i = 0; i < XVECLEN (body, 0); i++)
1023 rtx inner_insn = XVECEXP (body, 0, i);
1024 int inner_uid = INSN_UID (inner_insn);
1025 int inner_length;
1027 if (GET_CODE (body) == ASM_INPUT
1028 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1029 inner_length = (asm_insn_count (PATTERN (inner_insn))
1030 * insn_default_length (inner_insn));
1031 else
1032 inner_length = insn_default_length (inner_insn);
1034 insn_lengths[inner_uid] = inner_length;
1035 if (const_delay_slots)
1037 if ((varying_length[inner_uid]
1038 = insn_variable_length_p (inner_insn)) != 0)
1039 varying_length[uid] = 1;
1040 INSN_ADDRESSES (inner_uid) = (insn_current_address
1041 + insn_lengths[uid]);
1043 else
1044 varying_length[inner_uid] = 0;
1045 insn_lengths[uid] += inner_length;
1048 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1050 insn_lengths[uid] = insn_default_length (insn);
1051 varying_length[uid] = insn_variable_length_p (insn);
1054 /* If needed, do any adjustment. */
1055 #ifdef ADJUST_INSN_LENGTH
1056 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1057 if (insn_lengths[uid] < 0)
1058 fatal_insn ("negative insn length", insn);
1059 #endif
1062 /* Now loop over all the insns finding varying length insns. For each,
1063 get the current insn length. If it has changed, reflect the change.
1064 When nothing changes for a full pass, we are done. */
1066 while (something_changed)
1068 something_changed = 0;
1069 insn_current_align = MAX_CODE_ALIGN - 1;
1070 for (insn_current_address = 0, insn = first;
1071 insn != 0;
1072 insn = NEXT_INSN (insn))
1074 int new_length;
1075 #ifdef ADJUST_INSN_LENGTH
1076 int tmp_length;
1077 #endif
1078 int length_align;
1080 uid = INSN_UID (insn);
1082 if (GET_CODE (insn) == CODE_LABEL)
1084 int log = LABEL_TO_ALIGNMENT (insn);
1085 if (log > insn_current_align)
1087 int align = 1 << log;
1088 int new_address= (insn_current_address + align - 1) & -align;
1089 insn_lengths[uid] = new_address - insn_current_address;
1090 insn_current_align = log;
1091 insn_current_address = new_address;
1093 else
1094 insn_lengths[uid] = 0;
1095 INSN_ADDRESSES (uid) = insn_current_address;
1096 continue;
1099 length_align = INSN_LENGTH_ALIGNMENT (insn);
1100 if (length_align < insn_current_align)
1101 insn_current_align = length_align;
1103 insn_last_address = INSN_ADDRESSES (uid);
1104 INSN_ADDRESSES (uid) = insn_current_address;
1106 #ifdef CASE_VECTOR_SHORTEN_MODE
1107 if (optimize && GET_CODE (insn) == JUMP_INSN
1108 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1110 rtx body = PATTERN (insn);
1111 int old_length = insn_lengths[uid];
1112 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1113 rtx min_lab = XEXP (XEXP (body, 2), 0);
1114 rtx max_lab = XEXP (XEXP (body, 3), 0);
1115 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1116 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1117 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1118 rtx prev;
1119 int rel_align = 0;
1120 addr_diff_vec_flags flags;
1122 /* Avoid automatic aggregate initialization. */
1123 flags = ADDR_DIFF_VEC_FLAGS (body);
1125 /* Try to find a known alignment for rel_lab. */
1126 for (prev = rel_lab;
1127 prev
1128 && ! insn_lengths[INSN_UID (prev)]
1129 && ! (varying_length[INSN_UID (prev)] & 1);
1130 prev = PREV_INSN (prev))
1131 if (varying_length[INSN_UID (prev)] & 2)
1133 rel_align = LABEL_TO_ALIGNMENT (prev);
1134 break;
1137 /* See the comment on addr_diff_vec_flags in rtl.h for the
1138 meaning of the flags values. base: REL_LAB vec: INSN */
1139 /* Anything after INSN has still addresses from the last
1140 pass; adjust these so that they reflect our current
1141 estimate for this pass. */
1142 if (flags.base_after_vec)
1143 rel_addr += insn_current_address - insn_last_address;
1144 if (flags.min_after_vec)
1145 min_addr += insn_current_address - insn_last_address;
1146 if (flags.max_after_vec)
1147 max_addr += insn_current_address - insn_last_address;
1148 /* We want to know the worst case, i.e. lowest possible value
1149 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1150 its offset is positive, and we have to be wary of code shrink;
1151 otherwise, it is negative, and we have to be vary of code
1152 size increase. */
1153 if (flags.min_after_base)
1155 /* If INSN is between REL_LAB and MIN_LAB, the size
1156 changes we are about to make can change the alignment
1157 within the observed offset, therefore we have to break
1158 it up into two parts that are independent. */
1159 if (! flags.base_after_vec && flags.min_after_vec)
1161 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1162 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1164 else
1165 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1167 else
1169 if (flags.base_after_vec && ! flags.min_after_vec)
1171 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1172 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1174 else
1175 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1177 /* Likewise, determine the highest lowest possible value
1178 for the offset of MAX_LAB. */
1179 if (flags.max_after_base)
1181 if (! flags.base_after_vec && flags.max_after_vec)
1183 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1184 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1186 else
1187 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1189 else
1191 if (flags.base_after_vec && ! flags.max_after_vec)
1193 max_addr += align_fuzz (max_lab, insn, 0, 0);
1194 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1196 else
1197 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1199 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1200 max_addr - rel_addr,
1201 body));
1202 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1204 insn_lengths[uid]
1205 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1206 insn_current_address += insn_lengths[uid];
1207 if (insn_lengths[uid] != old_length)
1208 something_changed = 1;
1211 continue;
1213 #endif /* CASE_VECTOR_SHORTEN_MODE */
1215 if (! (varying_length[uid]))
1217 if (GET_CODE (insn) == INSN
1218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1220 int i;
1222 body = PATTERN (insn);
1223 for (i = 0; i < XVECLEN (body, 0); i++)
1225 rtx inner_insn = XVECEXP (body, 0, i);
1226 int inner_uid = INSN_UID (inner_insn);
1228 INSN_ADDRESSES (inner_uid) = insn_current_address;
1230 insn_current_address += insn_lengths[inner_uid];
1233 else
1234 insn_current_address += insn_lengths[uid];
1236 continue;
1239 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1241 int i;
1243 body = PATTERN (insn);
1244 new_length = 0;
1245 for (i = 0; i < XVECLEN (body, 0); i++)
1247 rtx inner_insn = XVECEXP (body, 0, i);
1248 int inner_uid = INSN_UID (inner_insn);
1249 int inner_length;
1251 INSN_ADDRESSES (inner_uid) = insn_current_address;
1253 /* insn_current_length returns 0 for insns with a
1254 non-varying length. */
1255 if (! varying_length[inner_uid])
1256 inner_length = insn_lengths[inner_uid];
1257 else
1258 inner_length = insn_current_length (inner_insn);
1260 if (inner_length != insn_lengths[inner_uid])
1262 insn_lengths[inner_uid] = inner_length;
1263 something_changed = 1;
1265 insn_current_address += insn_lengths[inner_uid];
1266 new_length += inner_length;
1269 else
1271 new_length = insn_current_length (insn);
1272 insn_current_address += new_length;
1275 #ifdef ADJUST_INSN_LENGTH
1276 /* If needed, do any adjustment. */
1277 tmp_length = new_length;
1278 ADJUST_INSN_LENGTH (insn, new_length);
1279 insn_current_address += (new_length - tmp_length);
1280 #endif
1282 if (new_length != insn_lengths[uid])
1284 insn_lengths[uid] = new_length;
1285 something_changed = 1;
1288 /* For a non-optimizing compile, do only a single pass. */
1289 if (!optimize)
1290 break;
1293 free (varying_length);
1295 #endif /* HAVE_ATTR_length */
1298 #ifdef HAVE_ATTR_length
1299 /* Given the body of an INSN known to be generated by an ASM statement, return
1300 the number of machine instructions likely to be generated for this insn.
1301 This is used to compute its length. */
1303 static int
1304 asm_insn_count (rtx body)
1306 const char *template;
1307 int count = 1;
1309 if (GET_CODE (body) == ASM_INPUT)
1310 template = XSTR (body, 0);
1311 else
1312 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1314 for (; *template; template++)
1315 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1316 count++;
1318 return count;
1320 #endif
1322 /* Output assembler code for the start of a function,
1323 and initialize some of the variables in this file
1324 for the new function. The label for the function and associated
1325 assembler pseudo-ops have already been output in `assemble_start_function'.
1327 FIRST is the first insn of the rtl for the function being compiled.
1328 FILE is the file to write assembler code to.
1329 OPTIMIZE is nonzero if we should eliminate redundant
1330 test and compare insns. */
1332 void
1333 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1334 int optimize ATTRIBUTE_UNUSED)
1336 block_depth = 0;
1338 this_is_asm_operands = 0;
1340 last_filename = locator_file (prologue_locator);
1341 last_linenum = locator_line (prologue_locator);
1343 high_block_linenum = high_function_linenum = last_linenum;
1345 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1347 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1348 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1349 dwarf2out_begin_prologue (0, NULL);
1350 #endif
1352 #ifdef LEAF_REG_REMAP
1353 if (current_function_uses_only_leaf_regs)
1354 leaf_renumber_regs (first);
1355 #endif
1357 /* The Sun386i and perhaps other machines don't work right
1358 if the profiling code comes after the prologue. */
1359 #ifdef PROFILE_BEFORE_PROLOGUE
1360 if (current_function_profile)
1361 profile_function (file);
1362 #endif /* PROFILE_BEFORE_PROLOGUE */
1364 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1365 if (dwarf2out_do_frame ())
1366 dwarf2out_frame_debug (NULL_RTX);
1367 #endif
1369 /* If debugging, assign block numbers to all of the blocks in this
1370 function. */
1371 if (write_symbols)
1373 remove_unnecessary_notes ();
1374 reemit_insn_block_notes ();
1375 number_blocks (current_function_decl);
1376 /* We never actually put out begin/end notes for the top-level
1377 block in the function. But, conceptually, that block is
1378 always needed. */
1379 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1382 /* First output the function prologue: code to set up the stack frame. */
1383 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1385 /* If the machine represents the prologue as RTL, the profiling code must
1386 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1387 #ifdef HAVE_prologue
1388 if (! HAVE_prologue)
1389 #endif
1390 profile_after_prologue (file);
1393 static void
1394 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1396 #ifndef PROFILE_BEFORE_PROLOGUE
1397 if (current_function_profile)
1398 profile_function (file);
1399 #endif /* not PROFILE_BEFORE_PROLOGUE */
1402 static void
1403 profile_function (FILE *file ATTRIBUTE_UNUSED)
1405 #ifndef NO_PROFILE_COUNTERS
1406 # define NO_PROFILE_COUNTERS 0
1407 #endif
1408 #if defined(ASM_OUTPUT_REG_PUSH)
1409 int sval = current_function_returns_struct;
1410 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1411 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1412 int cxt = current_function_needs_context;
1413 #endif
1414 #endif /* ASM_OUTPUT_REG_PUSH */
1416 if (! NO_PROFILE_COUNTERS)
1418 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1419 data_section ();
1420 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1421 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1422 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1425 function_section (current_function_decl);
1427 #if defined(ASM_OUTPUT_REG_PUSH)
1428 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1429 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1430 #endif
1432 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1433 if (cxt)
1434 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1435 #else
1436 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1439 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1441 #endif
1442 #endif
1444 FUNCTION_PROFILER (file, current_function_funcdef_no);
1446 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1447 if (cxt)
1448 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1449 #else
1450 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1453 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1455 #endif
1456 #endif
1458 #if defined(ASM_OUTPUT_REG_PUSH)
1459 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
1460 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1461 #endif
1464 /* Output assembler code for the end of a function.
1465 For clarity, args are same as those of `final_start_function'
1466 even though not all of them are needed. */
1468 void
1469 final_end_function (void)
1471 app_disable ();
1473 (*debug_hooks->end_function) (high_function_linenum);
1475 /* Finally, output the function epilogue:
1476 code to restore the stack frame and return to the caller. */
1477 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1479 /* And debug output. */
1480 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1482 #if defined (DWARF2_UNWIND_INFO)
1483 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1484 && dwarf2out_do_frame ())
1485 dwarf2out_end_epilogue (last_linenum, last_filename);
1486 #endif
1489 /* Output assembler code for some insns: all or part of a function.
1490 For description of args, see `final_start_function', above.
1492 PRESCAN is 1 if we are not really outputting,
1493 just scanning as if we were outputting.
1494 Prescanning deletes and rearranges insns just like ordinary output.
1495 PRESCAN is -2 if we are outputting after having prescanned.
1496 In this case, don't try to delete or rearrange insns
1497 because that has already been done.
1498 Prescanning is done only on certain machines. */
1500 void
1501 final (rtx first, FILE *file, int optimize, int prescan)
1503 rtx insn;
1504 int max_uid = 0;
1505 int seen = 0;
1507 last_ignored_compare = 0;
1509 #ifdef SDB_DEBUGGING_INFO
1510 /* When producing SDB debugging info, delete troublesome line number
1511 notes from inlined functions in other files as well as duplicate
1512 line number notes. */
1513 if (write_symbols == SDB_DEBUG)
1515 rtx last = 0;
1516 for (insn = first; insn; insn = NEXT_INSN (insn))
1517 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1519 if ((RTX_INTEGRATED_P (insn)
1520 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1521 || (last != 0
1522 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1523 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1525 delete_insn (insn); /* Use delete_note. */
1526 continue;
1528 last = insn;
1531 #endif
1533 for (insn = first; insn; insn = NEXT_INSN (insn))
1535 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1536 max_uid = INSN_UID (insn);
1537 #ifdef HAVE_cc0
1538 /* If CC tracking across branches is enabled, record the insn which
1539 jumps to each branch only reached from one place. */
1540 if (optimize && GET_CODE (insn) == JUMP_INSN)
1542 rtx lab = JUMP_LABEL (insn);
1543 if (lab && LABEL_NUSES (lab) == 1)
1545 LABEL_REFS (lab) = insn;
1548 #endif
1551 init_recog ();
1553 CC_STATUS_INIT;
1555 /* Output the insns. */
1556 for (insn = NEXT_INSN (first); insn;)
1558 #ifdef HAVE_ATTR_length
1559 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1561 /* This can be triggered by bugs elsewhere in the compiler if
1562 new insns are created after init_insn_lengths is called. */
1563 if (GET_CODE (insn) == NOTE)
1564 insn_current_address = -1;
1565 else
1566 abort ();
1568 else
1569 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1570 #endif /* HAVE_ATTR_length */
1572 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1576 const char *
1577 get_insn_template (int code, rtx insn)
1579 switch (insn_data[code].output_format)
1581 case INSN_OUTPUT_FORMAT_SINGLE:
1582 return insn_data[code].output.single;
1583 case INSN_OUTPUT_FORMAT_MULTI:
1584 return insn_data[code].output.multi[which_alternative];
1585 case INSN_OUTPUT_FORMAT_FUNCTION:
1586 if (insn == NULL)
1587 abort ();
1588 return (*insn_data[code].output.function) (recog_data.operand, insn);
1590 default:
1591 abort ();
1595 /* Emit the appropriate declaration for an alternate-entry-point
1596 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1597 LABEL_KIND != LABEL_NORMAL.
1599 The case fall-through in this function is intentional. */
1600 static void
1601 output_alternate_entry_point (FILE *file, rtx insn)
1603 const char *name = LABEL_NAME (insn);
1605 switch (LABEL_KIND (insn))
1607 case LABEL_WEAK_ENTRY:
1608 #ifdef ASM_WEAKEN_LABEL
1609 ASM_WEAKEN_LABEL (file, name);
1610 #endif
1611 case LABEL_GLOBAL_ENTRY:
1612 (*targetm.asm_out.globalize_label) (file, name);
1613 case LABEL_STATIC_ENTRY:
1614 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1615 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1616 #endif
1617 ASM_OUTPUT_LABEL (file, name);
1618 break;
1620 case LABEL_NORMAL:
1621 default:
1622 abort ();
1626 /* The final scan for one insn, INSN.
1627 Args are same as in `final', except that INSN
1628 is the insn being scanned.
1629 Value returned is the next insn to be scanned.
1631 NOPEEPHOLES is the flag to disallow peephole processing (currently
1632 used for within delayed branch sequence output).
1634 SEEN is used to track the end of the prologue, for emitting
1635 debug information. We force the emission of a line note after
1636 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1637 at the beginning of the second basic block, whichever comes
1638 first. */
1641 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1642 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1643 int *seen)
1645 #ifdef HAVE_cc0
1646 rtx set;
1647 #endif
1649 insn_counter++;
1651 /* Ignore deleted insns. These can occur when we split insns (due to a
1652 template of "#") while not optimizing. */
1653 if (INSN_DELETED_P (insn))
1654 return NEXT_INSN (insn);
1656 switch (GET_CODE (insn))
1658 case NOTE:
1659 if (prescan > 0)
1660 break;
1662 switch (NOTE_LINE_NUMBER (insn))
1664 case NOTE_INSN_DELETED:
1665 case NOTE_INSN_LOOP_BEG:
1666 case NOTE_INSN_LOOP_END:
1667 case NOTE_INSN_LOOP_END_TOP_COND:
1668 case NOTE_INSN_LOOP_CONT:
1669 case NOTE_INSN_LOOP_VTOP:
1670 case NOTE_INSN_FUNCTION_END:
1671 case NOTE_INSN_REPEATED_LINE_NUMBER:
1672 case NOTE_INSN_EXPECTED_VALUE:
1673 break;
1675 case NOTE_INSN_BASIC_BLOCK:
1676 #ifdef IA64_UNWIND_INFO
1677 IA64_UNWIND_EMIT (asm_out_file, insn);
1678 #endif
1679 if (flag_debug_asm)
1680 fprintf (asm_out_file, "\t%s basic block %d\n",
1681 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1683 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1685 *seen |= SEEN_EMITTED;
1686 last_filename = NULL;
1688 else
1689 *seen |= SEEN_BB;
1691 break;
1693 case NOTE_INSN_EH_REGION_BEG:
1694 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1695 NOTE_EH_HANDLER (insn));
1696 break;
1698 case NOTE_INSN_EH_REGION_END:
1699 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1700 NOTE_EH_HANDLER (insn));
1701 break;
1703 case NOTE_INSN_PROLOGUE_END:
1704 (*targetm.asm_out.function_end_prologue) (file);
1705 profile_after_prologue (file);
1707 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1709 *seen |= SEEN_EMITTED;
1710 last_filename = NULL;
1712 else
1713 *seen |= SEEN_NOTE;
1715 break;
1717 case NOTE_INSN_EPILOGUE_BEG:
1718 (*targetm.asm_out.function_begin_epilogue) (file);
1719 break;
1721 case NOTE_INSN_FUNCTION_BEG:
1722 app_disable ();
1723 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1725 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1727 *seen |= SEEN_EMITTED;
1728 last_filename = NULL;
1730 else
1731 *seen |= SEEN_NOTE;
1733 break;
1735 case NOTE_INSN_BLOCK_BEG:
1736 if (debug_info_level == DINFO_LEVEL_NORMAL
1737 || debug_info_level == DINFO_LEVEL_VERBOSE
1738 || write_symbols == DWARF_DEBUG
1739 || write_symbols == DWARF2_DEBUG
1740 || write_symbols == VMS_AND_DWARF2_DEBUG
1741 || write_symbols == VMS_DEBUG)
1743 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1745 app_disable ();
1746 ++block_depth;
1747 high_block_linenum = last_linenum;
1749 /* Output debugging info about the symbol-block beginning. */
1750 (*debug_hooks->begin_block) (last_linenum, n);
1752 /* Mark this block as output. */
1753 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1755 break;
1757 case NOTE_INSN_BLOCK_END:
1758 if (debug_info_level == DINFO_LEVEL_NORMAL
1759 || debug_info_level == DINFO_LEVEL_VERBOSE
1760 || write_symbols == DWARF_DEBUG
1761 || write_symbols == DWARF2_DEBUG
1762 || write_symbols == VMS_AND_DWARF2_DEBUG
1763 || write_symbols == VMS_DEBUG)
1765 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1767 app_disable ();
1769 /* End of a symbol-block. */
1770 --block_depth;
1771 if (block_depth < 0)
1772 abort ();
1774 (*debug_hooks->end_block) (high_block_linenum, n);
1776 break;
1778 case NOTE_INSN_DELETED_LABEL:
1779 /* Emit the label. We may have deleted the CODE_LABEL because
1780 the label could be proved to be unreachable, though still
1781 referenced (in the form of having its address taken. */
1782 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1783 break;
1785 case 0:
1786 break;
1788 default:
1789 if (NOTE_LINE_NUMBER (insn) <= 0)
1790 abort ();
1791 break;
1793 break;
1795 case BARRIER:
1796 #if defined (DWARF2_UNWIND_INFO)
1797 if (dwarf2out_do_frame ())
1798 dwarf2out_frame_debug (insn);
1799 #endif
1800 break;
1802 case CODE_LABEL:
1803 /* The target port might emit labels in the output function for
1804 some insn, e.g. sh.c output_branchy_insn. */
1805 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1807 int align = LABEL_TO_ALIGNMENT (insn);
1808 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1809 int max_skip = LABEL_TO_MAX_SKIP (insn);
1810 #endif
1812 if (align && NEXT_INSN (insn))
1814 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1815 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1816 #else
1817 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1818 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1819 #else
1820 ASM_OUTPUT_ALIGN (file, align);
1821 #endif
1822 #endif
1825 #ifdef HAVE_cc0
1826 CC_STATUS_INIT;
1827 /* If this label is reached from only one place, set the condition
1828 codes from the instruction just before the branch. */
1830 /* Disabled because some insns set cc_status in the C output code
1831 and NOTICE_UPDATE_CC alone can set incorrect status. */
1832 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1834 rtx jump = LABEL_REFS (insn);
1835 rtx barrier = prev_nonnote_insn (insn);
1836 rtx prev;
1837 /* If the LABEL_REFS field of this label has been set to point
1838 at a branch, the predecessor of the branch is a regular
1839 insn, and that branch is the only way to reach this label,
1840 set the condition codes based on the branch and its
1841 predecessor. */
1842 if (barrier && GET_CODE (barrier) == BARRIER
1843 && jump && GET_CODE (jump) == JUMP_INSN
1844 && (prev = prev_nonnote_insn (jump))
1845 && GET_CODE (prev) == INSN)
1847 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1848 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1851 #endif
1852 if (prescan > 0)
1853 break;
1855 if (LABEL_NAME (insn))
1856 (*debug_hooks->label) (insn);
1858 if (app_on)
1860 fputs (ASM_APP_OFF, file);
1861 app_on = 0;
1863 if (NEXT_INSN (insn) != 0
1864 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1866 rtx nextbody = PATTERN (NEXT_INSN (insn));
1868 /* If this label is followed by a jump-table,
1869 make sure we put the label in the read-only section. Also
1870 possibly write the label and jump table together. */
1872 if (GET_CODE (nextbody) == ADDR_VEC
1873 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1875 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1876 /* In this case, the case vector is being moved by the
1877 target, so don't output the label at all. Leave that
1878 to the back end macros. */
1879 #else
1880 if (! JUMP_TABLES_IN_TEXT_SECTION)
1882 int log_align;
1884 readonly_data_section ();
1886 #ifdef ADDR_VEC_ALIGN
1887 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1888 #else
1889 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1890 #endif
1891 ASM_OUTPUT_ALIGN (file, log_align);
1893 else
1894 function_section (current_function_decl);
1896 #ifdef ASM_OUTPUT_CASE_LABEL
1897 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1898 NEXT_INSN (insn));
1899 #else
1900 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1901 #endif
1902 #endif
1903 break;
1906 if (LABEL_ALT_ENTRY_P (insn))
1907 output_alternate_entry_point (file, insn);
1908 else
1909 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1910 break;
1912 default:
1914 rtx body = PATTERN (insn);
1915 int insn_code_number;
1916 const char *template;
1917 rtx note;
1919 /* An INSN, JUMP_INSN or CALL_INSN.
1920 First check for special kinds that recog doesn't recognize. */
1922 if (GET_CODE (body) == USE /* These are just declarations. */
1923 || GET_CODE (body) == CLOBBER)
1924 break;
1926 #ifdef HAVE_cc0
1927 /* If there is a REG_CC_SETTER note on this insn, it means that
1928 the setting of the condition code was done in the delay slot
1929 of the insn that branched here. So recover the cc status
1930 from the insn that set it. */
1932 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1933 if (note)
1935 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1936 cc_prev_status = cc_status;
1938 #endif
1940 /* Detect insns that are really jump-tables
1941 and output them as such. */
1943 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1945 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1946 int vlen, idx;
1947 #endif
1949 if (prescan > 0)
1950 break;
1952 if (app_on)
1954 fputs (ASM_APP_OFF, file);
1955 app_on = 0;
1958 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1959 if (GET_CODE (body) == ADDR_VEC)
1961 #ifdef ASM_OUTPUT_ADDR_VEC
1962 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1963 #else
1964 abort ();
1965 #endif
1967 else
1969 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1970 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1971 #else
1972 abort ();
1973 #endif
1975 #else
1976 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1977 for (idx = 0; idx < vlen; idx++)
1979 if (GET_CODE (body) == ADDR_VEC)
1981 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1982 ASM_OUTPUT_ADDR_VEC_ELT
1983 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1984 #else
1985 abort ();
1986 #endif
1988 else
1990 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1991 ASM_OUTPUT_ADDR_DIFF_ELT
1992 (file,
1993 body,
1994 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
1995 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
1996 #else
1997 abort ();
1998 #endif
2001 #ifdef ASM_OUTPUT_CASE_END
2002 ASM_OUTPUT_CASE_END (file,
2003 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2004 insn);
2005 #endif
2006 #endif
2008 function_section (current_function_decl);
2010 break;
2012 /* Output this line note if it is the first or the last line
2013 note in a row. */
2014 if (notice_source_line (insn))
2016 (*debug_hooks->source_line) (last_linenum, last_filename);
2019 if (GET_CODE (body) == ASM_INPUT)
2021 const char *string = XSTR (body, 0);
2023 /* There's no telling what that did to the condition codes. */
2024 CC_STATUS_INIT;
2025 if (prescan > 0)
2026 break;
2028 if (string[0])
2030 if (! app_on)
2032 fputs (ASM_APP_ON, file);
2033 app_on = 1;
2035 fprintf (asm_out_file, "\t%s\n", string);
2037 break;
2040 /* Detect `asm' construct with operands. */
2041 if (asm_noperands (body) >= 0)
2043 unsigned int noperands = asm_noperands (body);
2044 rtx *ops = alloca (noperands * sizeof (rtx));
2045 const char *string;
2047 /* There's no telling what that did to the condition codes. */
2048 CC_STATUS_INIT;
2049 if (prescan > 0)
2050 break;
2052 /* Get out the operand values. */
2053 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2054 /* Inhibit aborts on what would otherwise be compiler bugs. */
2055 insn_noperands = noperands;
2056 this_is_asm_operands = insn;
2058 #ifdef FINAL_PRESCAN_INSN
2059 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2060 #endif
2062 /* Output the insn using them. */
2063 if (string[0])
2065 if (! app_on)
2067 fputs (ASM_APP_ON, file);
2068 app_on = 1;
2070 output_asm_insn (string, ops);
2073 this_is_asm_operands = 0;
2074 break;
2077 if (prescan <= 0 && app_on)
2079 fputs (ASM_APP_OFF, file);
2080 app_on = 0;
2083 if (GET_CODE (body) == SEQUENCE)
2085 /* A delayed-branch sequence */
2086 int i;
2087 rtx next;
2089 if (prescan > 0)
2090 break;
2091 final_sequence = body;
2093 /* Record the delay slots' frame information before the branch.
2094 This is needed for delayed calls: see execute_cfa_program(). */
2095 #if defined (DWARF2_UNWIND_INFO)
2096 if (dwarf2out_do_frame ())
2097 for (i = 1; i < XVECLEN (body, 0); i++)
2098 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2099 #endif
2101 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2102 force the restoration of a comparison that was previously
2103 thought unnecessary. If that happens, cancel this sequence
2104 and cause that insn to be restored. */
2106 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2107 if (next != XVECEXP (body, 0, 1))
2109 final_sequence = 0;
2110 return next;
2113 for (i = 1; i < XVECLEN (body, 0); i++)
2115 rtx insn = XVECEXP (body, 0, i);
2116 rtx next = NEXT_INSN (insn);
2117 /* We loop in case any instruction in a delay slot gets
2118 split. */
2120 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2121 while (insn != next);
2123 #ifdef DBR_OUTPUT_SEQEND
2124 DBR_OUTPUT_SEQEND (file);
2125 #endif
2126 final_sequence = 0;
2128 /* If the insn requiring the delay slot was a CALL_INSN, the
2129 insns in the delay slot are actually executed before the
2130 called function. Hence we don't preserve any CC-setting
2131 actions in these insns and the CC must be marked as being
2132 clobbered by the function. */
2133 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2135 CC_STATUS_INIT;
2137 break;
2140 /* We have a real machine instruction as rtl. */
2142 body = PATTERN (insn);
2144 #ifdef HAVE_cc0
2145 set = single_set (insn);
2147 /* Check for redundant test and compare instructions
2148 (when the condition codes are already set up as desired).
2149 This is done only when optimizing; if not optimizing,
2150 it should be possible for the user to alter a variable
2151 with the debugger in between statements
2152 and the next statement should reexamine the variable
2153 to compute the condition codes. */
2155 if (optimize)
2157 if (set
2158 && GET_CODE (SET_DEST (set)) == CC0
2159 && insn != last_ignored_compare)
2161 if (GET_CODE (SET_SRC (set)) == SUBREG)
2162 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2163 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2165 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2166 XEXP (SET_SRC (set), 0)
2167 = alter_subreg (&XEXP (SET_SRC (set), 0));
2168 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2169 XEXP (SET_SRC (set), 1)
2170 = alter_subreg (&XEXP (SET_SRC (set), 1));
2172 if ((cc_status.value1 != 0
2173 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2174 || (cc_status.value2 != 0
2175 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2177 /* Don't delete insn if it has an addressing side-effect. */
2178 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2179 /* or if anything in it is volatile. */
2180 && ! volatile_refs_p (PATTERN (insn)))
2182 /* We don't really delete the insn; just ignore it. */
2183 last_ignored_compare = insn;
2184 break;
2189 #endif
2191 #ifndef STACK_REGS
2192 /* Don't bother outputting obvious no-ops, even without -O.
2193 This optimization is fast and doesn't interfere with debugging.
2194 Don't do this if the insn is in a delay slot, since this
2195 will cause an improper number of delay insns to be written. */
2196 if (final_sequence == 0
2197 && prescan >= 0
2198 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2199 && GET_CODE (SET_SRC (body)) == REG
2200 && GET_CODE (SET_DEST (body)) == REG
2201 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2202 break;
2203 #endif
2205 #ifdef HAVE_cc0
2206 /* If this is a conditional branch, maybe modify it
2207 if the cc's are in a nonstandard state
2208 so that it accomplishes the same thing that it would
2209 do straightforwardly if the cc's were set up normally. */
2211 if (cc_status.flags != 0
2212 && GET_CODE (insn) == JUMP_INSN
2213 && GET_CODE (body) == SET
2214 && SET_DEST (body) == pc_rtx
2215 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2216 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2217 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2218 /* This is done during prescan; it is not done again
2219 in final scan when prescan has been done. */
2220 && prescan >= 0)
2222 /* This function may alter the contents of its argument
2223 and clear some of the cc_status.flags bits.
2224 It may also return 1 meaning condition now always true
2225 or -1 meaning condition now always false
2226 or 2 meaning condition nontrivial but altered. */
2227 int result = alter_cond (XEXP (SET_SRC (body), 0));
2228 /* If condition now has fixed value, replace the IF_THEN_ELSE
2229 with its then-operand or its else-operand. */
2230 if (result == 1)
2231 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2232 if (result == -1)
2233 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2235 /* The jump is now either unconditional or a no-op.
2236 If it has become a no-op, don't try to output it.
2237 (It would not be recognized.) */
2238 if (SET_SRC (body) == pc_rtx)
2240 delete_insn (insn);
2241 break;
2243 else if (GET_CODE (SET_SRC (body)) == RETURN)
2244 /* Replace (set (pc) (return)) with (return). */
2245 PATTERN (insn) = body = SET_SRC (body);
2247 /* Rerecognize the instruction if it has changed. */
2248 if (result != 0)
2249 INSN_CODE (insn) = -1;
2252 /* Make same adjustments to instructions that examine the
2253 condition codes without jumping and instructions that
2254 handle conditional moves (if this machine has either one). */
2256 if (cc_status.flags != 0
2257 && set != 0)
2259 rtx cond_rtx, then_rtx, else_rtx;
2261 if (GET_CODE (insn) != JUMP_INSN
2262 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2264 cond_rtx = XEXP (SET_SRC (set), 0);
2265 then_rtx = XEXP (SET_SRC (set), 1);
2266 else_rtx = XEXP (SET_SRC (set), 2);
2268 else
2270 cond_rtx = SET_SRC (set);
2271 then_rtx = const_true_rtx;
2272 else_rtx = const0_rtx;
2275 switch (GET_CODE (cond_rtx))
2277 case GTU:
2278 case GT:
2279 case LTU:
2280 case LT:
2281 case GEU:
2282 case GE:
2283 case LEU:
2284 case LE:
2285 case EQ:
2286 case NE:
2288 int result;
2289 if (XEXP (cond_rtx, 0) != cc0_rtx)
2290 break;
2291 result = alter_cond (cond_rtx);
2292 if (result == 1)
2293 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2294 else if (result == -1)
2295 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2296 else if (result == 2)
2297 INSN_CODE (insn) = -1;
2298 if (SET_DEST (set) == SET_SRC (set))
2299 delete_insn (insn);
2301 break;
2303 default:
2304 break;
2308 #endif
2310 #ifdef HAVE_peephole
2311 /* Do machine-specific peephole optimizations if desired. */
2313 if (optimize && !flag_no_peephole && !nopeepholes)
2315 rtx next = peephole (insn);
2316 /* When peepholing, if there were notes within the peephole,
2317 emit them before the peephole. */
2318 if (next != 0 && next != NEXT_INSN (insn))
2320 rtx prev = PREV_INSN (insn);
2322 for (note = NEXT_INSN (insn); note != next;
2323 note = NEXT_INSN (note))
2324 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2326 /* In case this is prescan, put the notes
2327 in proper position for later rescan. */
2328 note = NEXT_INSN (insn);
2329 PREV_INSN (note) = prev;
2330 NEXT_INSN (prev) = note;
2331 NEXT_INSN (PREV_INSN (next)) = insn;
2332 PREV_INSN (insn) = PREV_INSN (next);
2333 NEXT_INSN (insn) = next;
2334 PREV_INSN (next) = insn;
2337 /* PEEPHOLE might have changed this. */
2338 body = PATTERN (insn);
2340 #endif
2342 /* Try to recognize the instruction.
2343 If successful, verify that the operands satisfy the
2344 constraints for the instruction. Crash if they don't,
2345 since `reload' should have changed them so that they do. */
2347 insn_code_number = recog_memoized (insn);
2348 cleanup_subreg_operands (insn);
2350 /* Dump the insn in the assembly for debugging. */
2351 if (flag_dump_rtl_in_asm)
2353 print_rtx_head = ASM_COMMENT_START;
2354 print_rtl_single (asm_out_file, insn);
2355 print_rtx_head = "";
2358 if (! constrain_operands_cached (1))
2359 fatal_insn_not_found (insn);
2361 /* Some target machines need to prescan each insn before
2362 it is output. */
2364 #ifdef FINAL_PRESCAN_INSN
2365 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2366 #endif
2368 #ifdef HAVE_conditional_execution
2369 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2370 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2371 else
2372 current_insn_predicate = NULL_RTX;
2373 #endif
2375 #ifdef HAVE_cc0
2376 cc_prev_status = cc_status;
2378 /* Update `cc_status' for this instruction.
2379 The instruction's output routine may change it further.
2380 If the output routine for a jump insn needs to depend
2381 on the cc status, it should look at cc_prev_status. */
2383 NOTICE_UPDATE_CC (body, insn);
2384 #endif
2386 current_output_insn = debug_insn = insn;
2388 #if defined (DWARF2_UNWIND_INFO)
2389 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2390 dwarf2out_frame_debug (insn);
2391 #endif
2393 /* Find the proper template for this insn. */
2394 template = get_insn_template (insn_code_number, insn);
2396 /* If the C code returns 0, it means that it is a jump insn
2397 which follows a deleted test insn, and that test insn
2398 needs to be reinserted. */
2399 if (template == 0)
2401 rtx prev;
2403 if (prev_nonnote_insn (insn) != last_ignored_compare)
2404 abort ();
2406 /* We have already processed the notes between the setter and
2407 the user. Make sure we don't process them again, this is
2408 particularly important if one of the notes is a block
2409 scope note or an EH note. */
2410 for (prev = insn;
2411 prev != last_ignored_compare;
2412 prev = PREV_INSN (prev))
2414 if (GET_CODE (prev) == NOTE)
2415 delete_insn (prev); /* Use delete_note. */
2418 return prev;
2421 /* If the template is the string "#", it means that this insn must
2422 be split. */
2423 if (template[0] == '#' && template[1] == '\0')
2425 rtx new = try_split (body, insn, 0);
2427 /* If we didn't split the insn, go away. */
2428 if (new == insn && PATTERN (new) == body)
2429 fatal_insn ("could not split insn", insn);
2431 #ifdef HAVE_ATTR_length
2432 /* This instruction should have been split in shorten_branches,
2433 to ensure that we would have valid length info for the
2434 splitees. */
2435 abort ();
2436 #endif
2438 return new;
2441 if (prescan > 0)
2442 break;
2444 #ifdef IA64_UNWIND_INFO
2445 IA64_UNWIND_EMIT (asm_out_file, insn);
2446 #endif
2447 /* Output assembler code from the template. */
2449 output_asm_insn (template, recog_data.operand);
2451 /* If necessary, report the effect that the instruction has on
2452 the unwind info. We've already done this for delay slots
2453 and call instructions. */
2454 #if defined (DWARF2_UNWIND_INFO)
2455 if (GET_CODE (insn) == INSN
2456 #if !defined (HAVE_prologue)
2457 && !ACCUMULATE_OUTGOING_ARGS
2458 #endif
2459 && final_sequence == 0
2460 && dwarf2out_do_frame ())
2461 dwarf2out_frame_debug (insn);
2462 #endif
2464 #if 0
2465 /* It's not at all clear why we did this and doing so used to
2466 interfere with tests that used REG_WAS_0 notes, which are
2467 now gone, so let's try with this out. */
2469 /* Mark this insn as having been output. */
2470 INSN_DELETED_P (insn) = 1;
2471 #endif
2473 /* Emit information for vtable gc. */
2474 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2476 current_output_insn = debug_insn = 0;
2479 return NEXT_INSN (insn);
2482 /* Output debugging info to the assembler file FILE
2483 based on the NOTE-insn INSN, assumed to be a line number. */
2485 static bool
2486 notice_source_line (rtx insn)
2488 const char *filename = insn_file (insn);
2489 int linenum = insn_line (insn);
2491 if (filename && (filename != last_filename || last_linenum != linenum))
2493 last_filename = filename;
2494 last_linenum = linenum;
2495 high_block_linenum = MAX (last_linenum, high_block_linenum);
2496 high_function_linenum = MAX (last_linenum, high_function_linenum);
2497 return true;
2499 return false;
2502 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2503 directly to the desired hard register. */
2505 void
2506 cleanup_subreg_operands (rtx insn)
2508 int i;
2509 extract_insn_cached (insn);
2510 for (i = 0; i < recog_data.n_operands; i++)
2512 /* The following test cannot use recog_data.operand when testing
2513 for a SUBREG: the underlying object might have been changed
2514 already if we are inside a match_operator expression that
2515 matches the else clause. Instead we test the underlying
2516 expression directly. */
2517 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2518 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2519 else if (GET_CODE (recog_data.operand[i]) == PLUS
2520 || GET_CODE (recog_data.operand[i]) == MULT
2521 || GET_CODE (recog_data.operand[i]) == MEM)
2522 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2525 for (i = 0; i < recog_data.n_dups; i++)
2527 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2528 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2529 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2530 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2531 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2532 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2536 /* If X is a SUBREG, replace it with a REG or a MEM,
2537 based on the thing it is a subreg of. */
2540 alter_subreg (rtx *xp)
2542 rtx x = *xp;
2543 rtx y = SUBREG_REG (x);
2545 /* simplify_subreg does not remove subreg from volatile references.
2546 We are required to. */
2547 if (GET_CODE (y) == MEM)
2548 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2549 else
2551 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2552 SUBREG_BYTE (x));
2554 if (new != 0)
2555 *xp = new;
2556 /* Simplify_subreg can't handle some REG cases, but we have to. */
2557 else if (GET_CODE (y) == REG)
2559 unsigned int regno = subreg_hard_regno (x, 1);
2560 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2562 else
2563 abort ();
2566 return *xp;
2569 /* Do alter_subreg on all the SUBREGs contained in X. */
2571 static rtx
2572 walk_alter_subreg (rtx *xp)
2574 rtx x = *xp;
2575 switch (GET_CODE (x))
2577 case PLUS:
2578 case MULT:
2579 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2580 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2581 break;
2583 case MEM:
2584 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2585 break;
2587 case SUBREG:
2588 return alter_subreg (xp);
2590 default:
2591 break;
2594 return *xp;
2597 #ifdef HAVE_cc0
2599 /* Given BODY, the body of a jump instruction, alter the jump condition
2600 as required by the bits that are set in cc_status.flags.
2601 Not all of the bits there can be handled at this level in all cases.
2603 The value is normally 0.
2604 1 means that the condition has become always true.
2605 -1 means that the condition has become always false.
2606 2 means that COND has been altered. */
2608 static int
2609 alter_cond (rtx cond)
2611 int value = 0;
2613 if (cc_status.flags & CC_REVERSED)
2615 value = 2;
2616 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2619 if (cc_status.flags & CC_INVERTED)
2621 value = 2;
2622 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2625 if (cc_status.flags & CC_NOT_POSITIVE)
2626 switch (GET_CODE (cond))
2628 case LE:
2629 case LEU:
2630 case GEU:
2631 /* Jump becomes unconditional. */
2632 return 1;
2634 case GT:
2635 case GTU:
2636 case LTU:
2637 /* Jump becomes no-op. */
2638 return -1;
2640 case GE:
2641 PUT_CODE (cond, EQ);
2642 value = 2;
2643 break;
2645 case LT:
2646 PUT_CODE (cond, NE);
2647 value = 2;
2648 break;
2650 default:
2651 break;
2654 if (cc_status.flags & CC_NOT_NEGATIVE)
2655 switch (GET_CODE (cond))
2657 case GE:
2658 case GEU:
2659 /* Jump becomes unconditional. */
2660 return 1;
2662 case LT:
2663 case LTU:
2664 /* Jump becomes no-op. */
2665 return -1;
2667 case LE:
2668 case LEU:
2669 PUT_CODE (cond, EQ);
2670 value = 2;
2671 break;
2673 case GT:
2674 case GTU:
2675 PUT_CODE (cond, NE);
2676 value = 2;
2677 break;
2679 default:
2680 break;
2683 if (cc_status.flags & CC_NO_OVERFLOW)
2684 switch (GET_CODE (cond))
2686 case GEU:
2687 /* Jump becomes unconditional. */
2688 return 1;
2690 case LEU:
2691 PUT_CODE (cond, EQ);
2692 value = 2;
2693 break;
2695 case GTU:
2696 PUT_CODE (cond, NE);
2697 value = 2;
2698 break;
2700 case LTU:
2701 /* Jump becomes no-op. */
2702 return -1;
2704 default:
2705 break;
2708 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2709 switch (GET_CODE (cond))
2711 default:
2712 abort ();
2714 case NE:
2715 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2716 value = 2;
2717 break;
2719 case EQ:
2720 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2721 value = 2;
2722 break;
2725 if (cc_status.flags & CC_NOT_SIGNED)
2726 /* The flags are valid if signed condition operators are converted
2727 to unsigned. */
2728 switch (GET_CODE (cond))
2730 case LE:
2731 PUT_CODE (cond, LEU);
2732 value = 2;
2733 break;
2735 case LT:
2736 PUT_CODE (cond, LTU);
2737 value = 2;
2738 break;
2740 case GT:
2741 PUT_CODE (cond, GTU);
2742 value = 2;
2743 break;
2745 case GE:
2746 PUT_CODE (cond, GEU);
2747 value = 2;
2748 break;
2750 default:
2751 break;
2754 return value;
2756 #endif
2758 /* Report inconsistency between the assembler template and the operands.
2759 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2761 void
2762 output_operand_lossage (const char *msgid, ...)
2764 char *fmt_string;
2765 char *new_message;
2766 const char *pfx_str;
2767 va_list ap;
2769 va_start (ap, msgid);
2771 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2772 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2773 vasprintf (&new_message, fmt_string, ap);
2775 if (this_is_asm_operands)
2776 error_for_asm (this_is_asm_operands, "%s", new_message);
2777 else
2778 internal_error ("%s", new_message);
2780 free (fmt_string);
2781 free (new_message);
2782 va_end (ap);
2785 /* Output of assembler code from a template, and its subroutines. */
2787 /* Annotate the assembly with a comment describing the pattern and
2788 alternative used. */
2790 static void
2791 output_asm_name (void)
2793 if (debug_insn)
2795 int num = INSN_CODE (debug_insn);
2796 fprintf (asm_out_file, "\t%s %d\t%s",
2797 ASM_COMMENT_START, INSN_UID (debug_insn),
2798 insn_data[num].name);
2799 if (insn_data[num].n_alternatives > 1)
2800 fprintf (asm_out_file, "/%d", which_alternative + 1);
2801 #ifdef HAVE_ATTR_length
2802 fprintf (asm_out_file, "\t[length = %d]",
2803 get_attr_length (debug_insn));
2804 #endif
2805 /* Clear this so only the first assembler insn
2806 of any rtl insn will get the special comment for -dp. */
2807 debug_insn = 0;
2811 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2812 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2813 corresponds to the address of the object and 0 if to the object. */
2815 static tree
2816 get_mem_expr_from_op (rtx op, int *paddressp)
2818 tree expr;
2819 int inner_addressp;
2821 *paddressp = 0;
2823 if (GET_CODE (op) == REG)
2824 return REG_EXPR (op);
2825 else if (GET_CODE (op) != MEM)
2826 return 0;
2828 if (MEM_EXPR (op) != 0)
2829 return MEM_EXPR (op);
2831 /* Otherwise we have an address, so indicate it and look at the address. */
2832 *paddressp = 1;
2833 op = XEXP (op, 0);
2835 /* First check if we have a decl for the address, then look at the right side
2836 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2837 But don't allow the address to itself be indirect. */
2838 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2839 return expr;
2840 else if (GET_CODE (op) == PLUS
2841 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2842 return expr;
2844 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2845 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2846 op = XEXP (op, 0);
2848 expr = get_mem_expr_from_op (op, &inner_addressp);
2849 return inner_addressp ? 0 : expr;
2852 /* Output operand names for assembler instructions. OPERANDS is the
2853 operand vector, OPORDER is the order to write the operands, and NOPS
2854 is the number of operands to write. */
2856 static void
2857 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2859 int wrote = 0;
2860 int i;
2862 for (i = 0; i < nops; i++)
2864 int addressp;
2865 rtx op = operands[oporder[i]];
2866 tree expr = get_mem_expr_from_op (op, &addressp);
2868 fprintf (asm_out_file, "%c%s",
2869 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2870 wrote = 1;
2871 if (expr)
2873 fprintf (asm_out_file, "%s",
2874 addressp ? "*" : "");
2875 print_mem_expr (asm_out_file, expr);
2876 wrote = 1;
2878 else if (REG_P (op) && ORIGINAL_REGNO (op)
2879 && ORIGINAL_REGNO (op) != REGNO (op))
2880 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2884 /* Output text from TEMPLATE to the assembler output file,
2885 obeying %-directions to substitute operands taken from
2886 the vector OPERANDS.
2888 %N (for N a digit) means print operand N in usual manner.
2889 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2890 and print the label name with no punctuation.
2891 %cN means require operand N to be a constant
2892 and print the constant expression with no punctuation.
2893 %aN means expect operand N to be a memory address
2894 (not a memory reference!) and print a reference
2895 to that address.
2896 %nN means expect operand N to be a constant
2897 and print a constant expression for minus the value
2898 of the operand, with no other punctuation. */
2900 void
2901 output_asm_insn (const char *template, rtx *operands)
2903 const char *p;
2904 int c;
2905 #ifdef ASSEMBLER_DIALECT
2906 int dialect = 0;
2907 #endif
2908 int oporder[MAX_RECOG_OPERANDS];
2909 char opoutput[MAX_RECOG_OPERANDS];
2910 int ops = 0;
2912 /* An insn may return a null string template
2913 in a case where no assembler code is needed. */
2914 if (*template == 0)
2915 return;
2917 memset (opoutput, 0, sizeof opoutput);
2918 p = template;
2919 putc ('\t', asm_out_file);
2921 #ifdef ASM_OUTPUT_OPCODE
2922 ASM_OUTPUT_OPCODE (asm_out_file, p);
2923 #endif
2925 while ((c = *p++))
2926 switch (c)
2928 case '\n':
2929 if (flag_verbose_asm)
2930 output_asm_operand_names (operands, oporder, ops);
2931 if (flag_print_asm_name)
2932 output_asm_name ();
2934 ops = 0;
2935 memset (opoutput, 0, sizeof opoutput);
2937 putc (c, asm_out_file);
2938 #ifdef ASM_OUTPUT_OPCODE
2939 while ((c = *p) == '\t')
2941 putc (c, asm_out_file);
2942 p++;
2944 ASM_OUTPUT_OPCODE (asm_out_file, p);
2945 #endif
2946 break;
2948 #ifdef ASSEMBLER_DIALECT
2949 case '{':
2951 int i;
2953 if (dialect)
2954 output_operand_lossage ("nested assembly dialect alternatives");
2955 else
2956 dialect = 1;
2958 /* If we want the first dialect, do nothing. Otherwise, skip
2959 DIALECT_NUMBER of strings ending with '|'. */
2960 for (i = 0; i < dialect_number; i++)
2962 while (*p && *p != '}' && *p++ != '|')
2964 if (*p == '}')
2965 break;
2966 if (*p == '|')
2967 p++;
2970 if (*p == '\0')
2971 output_operand_lossage ("unterminated assembly dialect alternative");
2973 break;
2975 case '|':
2976 if (dialect)
2978 /* Skip to close brace. */
2981 if (*p == '\0')
2983 output_operand_lossage ("unterminated assembly dialect alternative");
2984 break;
2987 while (*p++ != '}');
2988 dialect = 0;
2990 else
2991 putc (c, asm_out_file);
2992 break;
2994 case '}':
2995 if (! dialect)
2996 putc (c, asm_out_file);
2997 dialect = 0;
2998 break;
2999 #endif
3001 case '%':
3002 /* %% outputs a single %. */
3003 if (*p == '%')
3005 p++;
3006 putc (c, asm_out_file);
3008 /* %= outputs a number which is unique to each insn in the entire
3009 compilation. This is useful for making local labels that are
3010 referred to more than once in a given insn. */
3011 else if (*p == '=')
3013 p++;
3014 fprintf (asm_out_file, "%d", insn_counter);
3016 /* % followed by a letter and some digits
3017 outputs an operand in a special way depending on the letter.
3018 Letters `acln' are implemented directly.
3019 Other letters are passed to `output_operand' so that
3020 the PRINT_OPERAND macro can define them. */
3021 else if (ISALPHA (*p))
3023 int letter = *p++;
3024 c = atoi (p);
3026 if (! ISDIGIT (*p))
3027 output_operand_lossage ("operand number missing after %%-letter");
3028 else if (this_is_asm_operands
3029 && (c < 0 || (unsigned int) c >= insn_noperands))
3030 output_operand_lossage ("operand number out of range");
3031 else if (letter == 'l')
3032 output_asm_label (operands[c]);
3033 else if (letter == 'a')
3034 output_address (operands[c]);
3035 else if (letter == 'c')
3037 if (CONSTANT_ADDRESS_P (operands[c]))
3038 output_addr_const (asm_out_file, operands[c]);
3039 else
3040 output_operand (operands[c], 'c');
3042 else if (letter == 'n')
3044 if (GET_CODE (operands[c]) == CONST_INT)
3045 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3046 - INTVAL (operands[c]));
3047 else
3049 putc ('-', asm_out_file);
3050 output_addr_const (asm_out_file, operands[c]);
3053 else
3054 output_operand (operands[c], letter);
3056 if (!opoutput[c])
3057 oporder[ops++] = c;
3058 opoutput[c] = 1;
3060 while (ISDIGIT (c = *p))
3061 p++;
3063 /* % followed by a digit outputs an operand the default way. */
3064 else if (ISDIGIT (*p))
3066 c = atoi (p);
3067 if (this_is_asm_operands
3068 && (c < 0 || (unsigned int) c >= insn_noperands))
3069 output_operand_lossage ("operand number out of range");
3070 else
3071 output_operand (operands[c], 0);
3073 if (!opoutput[c])
3074 oporder[ops++] = c;
3075 opoutput[c] = 1;
3077 while (ISDIGIT (c = *p))
3078 p++;
3080 /* % followed by punctuation: output something for that
3081 punctuation character alone, with no operand.
3082 The PRINT_OPERAND macro decides what is actually done. */
3083 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3084 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3085 output_operand (NULL_RTX, *p++);
3086 #endif
3087 else
3088 output_operand_lossage ("invalid %%-code");
3089 break;
3091 default:
3092 putc (c, asm_out_file);
3095 /* Write out the variable names for operands, if we know them. */
3096 if (flag_verbose_asm)
3097 output_asm_operand_names (operands, oporder, ops);
3098 if (flag_print_asm_name)
3099 output_asm_name ();
3101 putc ('\n', asm_out_file);
3104 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3106 void
3107 output_asm_label (rtx x)
3109 char buf[256];
3111 if (GET_CODE (x) == LABEL_REF)
3112 x = XEXP (x, 0);
3113 if (GET_CODE (x) == CODE_LABEL
3114 || (GET_CODE (x) == NOTE
3115 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3116 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3117 else
3118 output_operand_lossage ("`%%l' operand isn't a label");
3120 assemble_name (asm_out_file, buf);
3123 /* Print operand X using machine-dependent assembler syntax.
3124 The macro PRINT_OPERAND is defined just to control this function.
3125 CODE is a non-digit that preceded the operand-number in the % spec,
3126 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3127 between the % and the digits.
3128 When CODE is a non-letter, X is 0.
3130 The meanings of the letters are machine-dependent and controlled
3131 by PRINT_OPERAND. */
3133 static void
3134 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3136 if (x && GET_CODE (x) == SUBREG)
3137 x = alter_subreg (&x);
3139 /* If X is a pseudo-register, abort now rather than writing trash to the
3140 assembler file. */
3142 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3143 abort ();
3145 PRINT_OPERAND (asm_out_file, x, code);
3148 /* Print a memory reference operand for address X
3149 using machine-dependent assembler syntax.
3150 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3152 void
3153 output_address (rtx x)
3155 walk_alter_subreg (&x);
3156 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3159 /* Print an integer constant expression in assembler syntax.
3160 Addition and subtraction are the only arithmetic
3161 that may appear in these expressions. */
3163 void
3164 output_addr_const (FILE *file, rtx x)
3166 char buf[256];
3168 restart:
3169 switch (GET_CODE (x))
3171 case PC:
3172 putc ('.', file);
3173 break;
3175 case SYMBOL_REF:
3176 #ifdef ASM_OUTPUT_SYMBOL_REF
3177 ASM_OUTPUT_SYMBOL_REF (file, x);
3178 #else
3179 assemble_name (file, XSTR (x, 0));
3180 #endif
3181 break;
3183 case LABEL_REF:
3184 x = XEXP (x, 0);
3185 /* Fall through. */
3186 case CODE_LABEL:
3187 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3188 #ifdef ASM_OUTPUT_LABEL_REF
3189 ASM_OUTPUT_LABEL_REF (file, buf);
3190 #else
3191 assemble_name (file, buf);
3192 #endif
3193 break;
3195 case CONST_INT:
3196 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3197 break;
3199 case CONST:
3200 /* This used to output parentheses around the expression,
3201 but that does not work on the 386 (either ATT or BSD assembler). */
3202 output_addr_const (file, XEXP (x, 0));
3203 break;
3205 case CONST_DOUBLE:
3206 if (GET_MODE (x) == VOIDmode)
3208 /* We can use %d if the number is one word and positive. */
3209 if (CONST_DOUBLE_HIGH (x))
3210 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3211 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3212 else if (CONST_DOUBLE_LOW (x) < 0)
3213 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3214 else
3215 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3217 else
3218 /* We can't handle floating point constants;
3219 PRINT_OPERAND must handle them. */
3220 output_operand_lossage ("floating constant misused");
3221 break;
3223 case PLUS:
3224 /* Some assemblers need integer constants to appear last (eg masm). */
3225 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3227 output_addr_const (file, XEXP (x, 1));
3228 if (INTVAL (XEXP (x, 0)) >= 0)
3229 fprintf (file, "+");
3230 output_addr_const (file, XEXP (x, 0));
3232 else
3234 output_addr_const (file, XEXP (x, 0));
3235 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3236 || INTVAL (XEXP (x, 1)) >= 0)
3237 fprintf (file, "+");
3238 output_addr_const (file, XEXP (x, 1));
3240 break;
3242 case MINUS:
3243 /* Avoid outputting things like x-x or x+5-x,
3244 since some assemblers can't handle that. */
3245 x = simplify_subtraction (x);
3246 if (GET_CODE (x) != MINUS)
3247 goto restart;
3249 output_addr_const (file, XEXP (x, 0));
3250 fprintf (file, "-");
3251 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3252 || GET_CODE (XEXP (x, 1)) == PC
3253 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3254 output_addr_const (file, XEXP (x, 1));
3255 else
3257 fputs (targetm.asm_out.open_paren, file);
3258 output_addr_const (file, XEXP (x, 1));
3259 fputs (targetm.asm_out.close_paren, file);
3261 break;
3263 case ZERO_EXTEND:
3264 case SIGN_EXTEND:
3265 case SUBREG:
3266 output_addr_const (file, XEXP (x, 0));
3267 break;
3269 default:
3270 #ifdef OUTPUT_ADDR_CONST_EXTRA
3271 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3272 break;
3274 fail:
3275 #endif
3276 output_operand_lossage ("invalid expression as operand");
3280 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3281 %R prints the value of REGISTER_PREFIX.
3282 %L prints the value of LOCAL_LABEL_PREFIX.
3283 %U prints the value of USER_LABEL_PREFIX.
3284 %I prints the value of IMMEDIATE_PREFIX.
3285 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3286 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3288 We handle alternate assembler dialects here, just like output_asm_insn. */
3290 void
3291 asm_fprintf (FILE *file, const char *p, ...)
3293 char buf[10];
3294 char *q, c;
3295 va_list argptr;
3297 va_start (argptr, p);
3299 buf[0] = '%';
3301 while ((c = *p++))
3302 switch (c)
3304 #ifdef ASSEMBLER_DIALECT
3305 case '{':
3307 int i;
3309 /* If we want the first dialect, do nothing. Otherwise, skip
3310 DIALECT_NUMBER of strings ending with '|'. */
3311 for (i = 0; i < dialect_number; i++)
3313 while (*p && *p++ != '|')
3316 if (*p == '|')
3317 p++;
3320 break;
3322 case '|':
3323 /* Skip to close brace. */
3324 while (*p && *p++ != '}')
3326 break;
3328 case '}':
3329 break;
3330 #endif
3332 case '%':
3333 c = *p++;
3334 q = &buf[1];
3335 while (strchr ("-+ #0", c))
3337 *q++ = c;
3338 c = *p++;
3340 while (ISDIGIT (c) || c == '.')
3342 *q++ = c;
3343 c = *p++;
3345 switch (c)
3347 case '%':
3348 putc ('%', file);
3349 break;
3351 case 'd': case 'i': case 'u':
3352 case 'x': case 'X': case 'o':
3353 case 'c':
3354 *q++ = c;
3355 *q = 0;
3356 fprintf (file, buf, va_arg (argptr, int));
3357 break;
3359 case 'w':
3360 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3361 'o' cases, but we do not check for those cases. It
3362 means that the value is a HOST_WIDE_INT, which may be
3363 either `long' or `long long'. */
3364 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3365 q += strlen (HOST_WIDE_INT_PRINT);
3366 *q++ = *p++;
3367 *q = 0;
3368 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3369 break;
3371 case 'l':
3372 *q++ = c;
3373 #ifdef HAVE_LONG_LONG
3374 if (*p == 'l')
3376 *q++ = *p++;
3377 *q++ = *p++;
3378 *q = 0;
3379 fprintf (file, buf, va_arg (argptr, long long));
3381 else
3382 #endif
3384 *q++ = *p++;
3385 *q = 0;
3386 fprintf (file, buf, va_arg (argptr, long));
3389 break;
3391 case 's':
3392 *q++ = c;
3393 *q = 0;
3394 fprintf (file, buf, va_arg (argptr, char *));
3395 break;
3397 case 'O':
3398 #ifdef ASM_OUTPUT_OPCODE
3399 ASM_OUTPUT_OPCODE (asm_out_file, p);
3400 #endif
3401 break;
3403 case 'R':
3404 #ifdef REGISTER_PREFIX
3405 fprintf (file, "%s", REGISTER_PREFIX);
3406 #endif
3407 break;
3409 case 'I':
3410 #ifdef IMMEDIATE_PREFIX
3411 fprintf (file, "%s", IMMEDIATE_PREFIX);
3412 #endif
3413 break;
3415 case 'L':
3416 #ifdef LOCAL_LABEL_PREFIX
3417 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3418 #endif
3419 break;
3421 case 'U':
3422 fputs (user_label_prefix, file);
3423 break;
3425 #ifdef ASM_FPRINTF_EXTENSIONS
3426 /* Uppercase letters are reserved for general use by asm_fprintf
3427 and so are not available to target specific code. In order to
3428 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3429 they are defined here. As they get turned into real extensions
3430 to asm_fprintf they should be removed from this list. */
3431 case 'A': case 'B': case 'C': case 'D': case 'E':
3432 case 'F': case 'G': case 'H': case 'J': case 'K':
3433 case 'M': case 'N': case 'P': case 'Q': case 'S':
3434 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3435 break;
3437 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3438 #endif
3439 default:
3440 abort ();
3442 break;
3444 default:
3445 putc (c, file);
3447 va_end (argptr);
3450 /* Split up a CONST_DOUBLE or integer constant rtx
3451 into two rtx's for single words,
3452 storing in *FIRST the word that comes first in memory in the target
3453 and in *SECOND the other. */
3455 void
3456 split_double (rtx value, rtx *first, rtx *second)
3458 if (GET_CODE (value) == CONST_INT)
3460 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3462 /* In this case the CONST_INT holds both target words.
3463 Extract the bits from it into two word-sized pieces.
3464 Sign extend each half to HOST_WIDE_INT. */
3465 unsigned HOST_WIDE_INT low, high;
3466 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3468 /* Set sign_bit to the most significant bit of a word. */
3469 sign_bit = 1;
3470 sign_bit <<= BITS_PER_WORD - 1;
3472 /* Set mask so that all bits of the word are set. We could
3473 have used 1 << BITS_PER_WORD instead of basing the
3474 calculation on sign_bit. However, on machines where
3475 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3476 compiler warning, even though the code would never be
3477 executed. */
3478 mask = sign_bit << 1;
3479 mask--;
3481 /* Set sign_extend as any remaining bits. */
3482 sign_extend = ~mask;
3484 /* Pick the lower word and sign-extend it. */
3485 low = INTVAL (value);
3486 low &= mask;
3487 if (low & sign_bit)
3488 low |= sign_extend;
3490 /* Pick the higher word, shifted to the least significant
3491 bits, and sign-extend it. */
3492 high = INTVAL (value);
3493 high >>= BITS_PER_WORD - 1;
3494 high >>= 1;
3495 high &= mask;
3496 if (high & sign_bit)
3497 high |= sign_extend;
3499 /* Store the words in the target machine order. */
3500 if (WORDS_BIG_ENDIAN)
3502 *first = GEN_INT (high);
3503 *second = GEN_INT (low);
3505 else
3507 *first = GEN_INT (low);
3508 *second = GEN_INT (high);
3511 else
3513 /* The rule for using CONST_INT for a wider mode
3514 is that we regard the value as signed.
3515 So sign-extend it. */
3516 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3517 if (WORDS_BIG_ENDIAN)
3519 *first = high;
3520 *second = value;
3522 else
3524 *first = value;
3525 *second = high;
3529 else if (GET_CODE (value) != CONST_DOUBLE)
3531 if (WORDS_BIG_ENDIAN)
3533 *first = const0_rtx;
3534 *second = value;
3536 else
3538 *first = value;
3539 *second = const0_rtx;
3542 else if (GET_MODE (value) == VOIDmode
3543 /* This is the old way we did CONST_DOUBLE integers. */
3544 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3546 /* In an integer, the words are defined as most and least significant.
3547 So order them by the target's convention. */
3548 if (WORDS_BIG_ENDIAN)
3550 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3551 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3553 else
3555 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3556 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3559 else
3561 REAL_VALUE_TYPE r;
3562 long l[2];
3563 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3565 /* Note, this converts the REAL_VALUE_TYPE to the target's
3566 format, splits up the floating point double and outputs
3567 exactly 32 bits of it into each of l[0] and l[1] --
3568 not necessarily BITS_PER_WORD bits. */
3569 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3571 /* If 32 bits is an entire word for the target, but not for the host,
3572 then sign-extend on the host so that the number will look the same
3573 way on the host that it would on the target. See for instance
3574 simplify_unary_operation. The #if is needed to avoid compiler
3575 warnings. */
3577 #if HOST_BITS_PER_LONG > 32
3578 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3580 if (l[0] & ((long) 1 << 31))
3581 l[0] |= ((long) (-1) << 32);
3582 if (l[1] & ((long) 1 << 31))
3583 l[1] |= ((long) (-1) << 32);
3585 #endif
3587 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3588 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3592 /* Return nonzero if this function has no function calls. */
3595 leaf_function_p (void)
3597 rtx insn;
3598 rtx link;
3600 if (current_function_profile || profile_arc_flag)
3601 return 0;
3603 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3605 if (GET_CODE (insn) == CALL_INSN
3606 && ! SIBLING_CALL_P (insn))
3607 return 0;
3608 if (GET_CODE (insn) == INSN
3609 && GET_CODE (PATTERN (insn)) == SEQUENCE
3610 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3611 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3612 return 0;
3614 for (link = current_function_epilogue_delay_list;
3615 link;
3616 link = XEXP (link, 1))
3618 insn = XEXP (link, 0);
3620 if (GET_CODE (insn) == CALL_INSN
3621 && ! SIBLING_CALL_P (insn))
3622 return 0;
3623 if (GET_CODE (insn) == INSN
3624 && GET_CODE (PATTERN (insn)) == SEQUENCE
3625 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3626 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3627 return 0;
3630 return 1;
3633 /* Return 1 if branch is a forward branch.
3634 Uses insn_shuid array, so it works only in the final pass. May be used by
3635 output templates to customary add branch prediction hints.
3638 final_forward_branch_p (rtx insn)
3640 int insn_id, label_id;
3641 if (!uid_shuid)
3642 abort ();
3643 insn_id = INSN_SHUID (insn);
3644 label_id = INSN_SHUID (JUMP_LABEL (insn));
3645 /* We've hit some insns that does not have id information available. */
3646 if (!insn_id || !label_id)
3647 abort ();
3648 return insn_id < label_id;
3651 /* On some machines, a function with no call insns
3652 can run faster if it doesn't create its own register window.
3653 When output, the leaf function should use only the "output"
3654 registers. Ordinarily, the function would be compiled to use
3655 the "input" registers to find its arguments; it is a candidate
3656 for leaf treatment if it uses only the "input" registers.
3657 Leaf function treatment means renumbering so the function
3658 uses the "output" registers instead. */
3660 #ifdef LEAF_REGISTERS
3662 /* Return 1 if this function uses only the registers that can be
3663 safely renumbered. */
3666 only_leaf_regs_used (void)
3668 int i;
3669 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3672 if ((regs_ever_live[i] || global_regs[i])
3673 && ! permitted_reg_in_leaf_functions[i])
3674 return 0;
3676 if (current_function_uses_pic_offset_table
3677 && pic_offset_table_rtx != 0
3678 && GET_CODE (pic_offset_table_rtx) == REG
3679 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3680 return 0;
3682 return 1;
3685 /* Scan all instructions and renumber all registers into those
3686 available in leaf functions. */
3688 static void
3689 leaf_renumber_regs (rtx first)
3691 rtx insn;
3693 /* Renumber only the actual patterns.
3694 The reg-notes can contain frame pointer refs,
3695 and renumbering them could crash, and should not be needed. */
3696 for (insn = first; insn; insn = NEXT_INSN (insn))
3697 if (INSN_P (insn))
3698 leaf_renumber_regs_insn (PATTERN (insn));
3699 for (insn = current_function_epilogue_delay_list;
3700 insn;
3701 insn = XEXP (insn, 1))
3702 if (INSN_P (XEXP (insn, 0)))
3703 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3706 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3707 available in leaf functions. */
3709 void
3710 leaf_renumber_regs_insn (rtx in_rtx)
3712 int i, j;
3713 const char *format_ptr;
3715 if (in_rtx == 0)
3716 return;
3718 /* Renumber all input-registers into output-registers.
3719 renumbered_regs would be 1 for an output-register;
3720 they */
3722 if (GET_CODE (in_rtx) == REG)
3724 int newreg;
3726 /* Don't renumber the same reg twice. */
3727 if (in_rtx->used)
3728 return;
3730 newreg = REGNO (in_rtx);
3731 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3732 to reach here as part of a REG_NOTE. */
3733 if (newreg >= FIRST_PSEUDO_REGISTER)
3735 in_rtx->used = 1;
3736 return;
3738 newreg = LEAF_REG_REMAP (newreg);
3739 if (newreg < 0)
3740 abort ();
3741 regs_ever_live[REGNO (in_rtx)] = 0;
3742 regs_ever_live[newreg] = 1;
3743 REGNO (in_rtx) = newreg;
3744 in_rtx->used = 1;
3747 if (INSN_P (in_rtx))
3749 /* Inside a SEQUENCE, we find insns.
3750 Renumber just the patterns of these insns,
3751 just as we do for the top-level insns. */
3752 leaf_renumber_regs_insn (PATTERN (in_rtx));
3753 return;
3756 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3758 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3759 switch (*format_ptr++)
3761 case 'e':
3762 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3763 break;
3765 case 'E':
3766 if (NULL != XVEC (in_rtx, i))
3768 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3769 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3771 break;
3773 case 'S':
3774 case 's':
3775 case '0':
3776 case 'i':
3777 case 'w':
3778 case 'n':
3779 case 'u':
3780 break;
3782 default:
3783 abort ();
3786 #endif
3789 /* When -gused is used, emit debug info for only used symbols. But in
3790 addition to the standard intercepted debug_hooks there are some direct
3791 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3792 Those routines may also be called from a higher level intercepted routine. So
3793 to prevent recording data for an inner call to one of these for an intercept,
3794 we maintain an intercept nesting counter (debug_nesting). We only save the
3795 intercepted arguments if the nesting is 1. */
3796 int debug_nesting = 0;
3798 static tree *symbol_queue;
3799 int symbol_queue_index = 0;
3800 static int symbol_queue_size = 0;
3802 /* Generate the symbols for any queued up type symbols we encountered
3803 while generating the type info for some originally used symbol.
3804 This might generate additional entries in the queue. Only when
3805 the nesting depth goes to 0 is this routine called. */
3807 void
3808 debug_flush_symbol_queue (void)
3810 int i;
3812 /* Make sure that additionally queued items are not flushed
3813 prematurely. */
3815 ++debug_nesting;
3817 for (i = 0; i < symbol_queue_index; ++i)
3819 /* If we pushed queued symbols then such symbols are must be
3820 output no matter what anyone else says. Specifically,
3821 we need to make sure dbxout_symbol() thinks the symbol was
3822 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3823 which may be set for outside reasons. */
3824 int saved_tree_used = TREE_USED (symbol_queue[i]);
3825 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3826 TREE_USED (symbol_queue[i]) = 1;
3827 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3829 #ifdef DBX_DEBUGGING_INFO
3830 dbxout_symbol (symbol_queue[i], 0);
3831 #endif
3833 TREE_USED (symbol_queue[i]) = saved_tree_used;
3834 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3837 symbol_queue_index = 0;
3838 --debug_nesting;
3841 /* Queue a type symbol needed as part of the definition of a decl
3842 symbol. These symbols are generated when debug_flush_symbol_queue()
3843 is called. */
3845 void
3846 debug_queue_symbol (tree decl)
3848 if (symbol_queue_index >= symbol_queue_size)
3850 symbol_queue_size += 10;
3851 symbol_queue = xrealloc (symbol_queue,
3852 symbol_queue_size * sizeof (tree));
3855 symbol_queue[symbol_queue_index++] = decl;
3858 /* Free symbol queue. */
3859 void
3860 debug_free_queue (void)
3862 if (symbol_queue)
3864 free (symbol_queue);
3865 symbol_queue = NULL;
3866 symbol_queue_size = 0;