Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / contrib / gcc-3.4 / gcc / cp / search.c
blobc227175b0ca1f2f6d23bc47505f7c851b67e6784
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
69 #define search_level stack_level
70 static struct search_level *search_stack;
72 struct vbase_info
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
81 static int is_subobject_of_p (tree, tree);
82 static tree dfs_check_overlap (tree, void *);
83 static tree dfs_no_overlap_yet (tree, int, void *);
84 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
85 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
86 static tree marked_pushdecls_p (tree, int, void *);
87 static tree unmarked_pushdecls_p (tree, int, void *);
88 static tree dfs_debug_unmarkedp (tree, int, void *);
89 static tree dfs_debug_mark (tree, void *);
90 static tree dfs_push_type_decls (tree, void *);
91 static tree dfs_push_decls (tree, void *);
92 static tree dfs_unuse_fields (tree, void *);
93 static tree add_conversions (tree, void *);
94 static int look_for_overrides_r (tree, tree);
95 static struct search_level *push_search_level (struct stack_level *,
96 struct obstack *);
97 static struct search_level *pop_search_level (struct stack_level *);
98 static tree bfs_walk (tree, tree (*) (tree, void *),
99 tree (*) (tree, int, void *), void *);
100 static tree lookup_field_queue_p (tree, int, void *);
101 static tree lookup_field_r (tree, void *);
102 static tree dfs_accessible_queue_p (tree, int, void *);
103 static tree dfs_accessible_p (tree, void *);
104 static tree dfs_access_in_type (tree, void *);
105 static access_kind access_in_type (tree, tree);
106 static int protected_accessible_p (tree, tree, tree);
107 static int friend_accessible_p (tree, tree, tree);
108 static void setup_class_bindings (tree, int);
109 static int template_self_reference_p (tree, tree);
110 static tree dfs_get_pure_virtuals (tree, void *);
112 /* Allocate a level of searching. */
114 static struct search_level *
115 push_search_level (struct stack_level *stack, struct obstack *obstack)
117 struct search_level tem;
119 tem.prev = stack;
120 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
123 /* Discard a level of search allocation. */
125 static struct search_level *
126 pop_search_level (struct stack_level *obstack)
128 struct search_level *stack = pop_stack_level (obstack);
130 return stack;
133 /* Variables for gathering statistics. */
134 #ifdef GATHER_STATISTICS
135 static int n_fields_searched;
136 static int n_calls_lookup_field, n_calls_lookup_field_1;
137 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
138 static int n_calls_get_base_type;
139 static int n_outer_fields_searched;
140 static int n_contexts_saved;
141 #endif /* GATHER_STATISTICS */
144 /* Worker for lookup_base. BINFO is the binfo we are searching at,
145 BASE is the RECORD_TYPE we are searching for. ACCESS is the
146 required access checks. IS_VIRTUAL indicates if BINFO is morally
147 virtual.
149 If BINFO is of the required type, then *BINFO_PTR is examined to
150 compare with any other instance of BASE we might have already
151 discovered. *BINFO_PTR is initialized and a base_kind return value
152 indicates what kind of base was located.
154 Otherwise BINFO's bases are searched. */
156 static base_kind
157 lookup_base_r (tree binfo, tree base, base_access access,
158 bool is_virtual, /* inside a virtual part */
159 tree *binfo_ptr)
161 int i;
162 tree bases, accesses;
163 base_kind found = bk_not_base;
165 if (same_type_p (BINFO_TYPE (binfo), base))
167 /* We have found a base. Check against what we have found
168 already. */
169 found = bk_same_type;
170 if (is_virtual)
171 found = bk_via_virtual;
173 if (!*binfo_ptr)
174 *binfo_ptr = binfo;
175 else if (binfo != *binfo_ptr)
177 if (access != ba_any)
178 *binfo_ptr = NULL;
179 else if (!is_virtual)
180 /* Prefer a non-virtual base. */
181 *binfo_ptr = binfo;
182 found = bk_ambig;
185 return found;
188 bases = BINFO_BASETYPES (binfo);
189 accesses = BINFO_BASEACCESSES (binfo);
190 if (!bases)
191 return bk_not_base;
193 for (i = TREE_VEC_LENGTH (bases); i--;)
195 tree base_binfo = TREE_VEC_ELT (bases, i);
196 base_kind bk;
198 bk = lookup_base_r (base_binfo, base,
199 access,
200 is_virtual || TREE_VIA_VIRTUAL (base_binfo),
201 binfo_ptr);
203 switch (bk)
205 case bk_ambig:
206 if (access != ba_any)
207 return bk;
208 found = bk;
209 break;
211 case bk_same_type:
212 bk = bk_proper_base;
213 /* FALLTHROUGH */
214 case bk_proper_base:
215 my_friendly_assert (found == bk_not_base, 20010723);
216 found = bk;
217 break;
219 case bk_via_virtual:
220 if (found != bk_ambig)
221 found = bk;
222 break;
224 case bk_not_base:
225 break;
227 default:
228 abort ();
231 return found;
234 /* Returns true if type BASE is accessible in T. (BASE is known to be
235 a (possibly non-proper) base class of T.) */
237 bool
238 accessible_base_p (tree t, tree base)
240 tree decl;
242 /* [class.access.base]
244 A base class is said to be accessible if an invented public
245 member of the base class is accessible.
247 If BASE is a non-proper base, this condition is trivially
248 true. */
249 if (same_type_p (t, base))
250 return true;
251 /* Rather than inventing a public member, we use the implicit
252 public typedef created in the scope of every class. */
253 decl = TYPE_FIELDS (base);
254 while (!DECL_SELF_REFERENCE_P (decl))
255 decl = TREE_CHAIN (decl);
256 while (ANON_AGGR_TYPE_P (t))
257 t = TYPE_CONTEXT (t);
258 return accessible_p (t, decl);
261 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
262 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
263 non-NULL, fill with information about what kind of base we
264 discovered.
266 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
267 not set in ACCESS, then an error is issued and error_mark_node is
268 returned. If the ba_quiet bit is set, then no error is issued and
269 NULL_TREE is returned. */
271 tree
272 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
274 tree binfo = NULL; /* The binfo we've found so far. */
275 tree t_binfo = NULL;
276 base_kind bk;
278 if (t == error_mark_node || base == error_mark_node)
280 if (kind_ptr)
281 *kind_ptr = bk_not_base;
282 return error_mark_node;
284 my_friendly_assert (TYPE_P (base), 20011127);
286 if (!TYPE_P (t))
288 t_binfo = t;
289 t = BINFO_TYPE (t);
291 else
292 t_binfo = TYPE_BINFO (t);
294 /* Ensure that the types are instantiated. */
295 t = complete_type (TYPE_MAIN_VARIANT (t));
296 base = complete_type (TYPE_MAIN_VARIANT (base));
298 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
300 /* Check that the base is unambiguous and accessible. */
301 if (access != ba_any)
302 switch (bk)
304 case bk_not_base:
305 break;
307 case bk_ambig:
308 binfo = NULL_TREE;
309 if (!(access & ba_quiet))
311 error ("`%T' is an ambiguous base of `%T'", base, t);
312 binfo = error_mark_node;
314 break;
316 default:
317 if ((access & ~ba_quiet) != ba_ignore
318 /* If BASE is incomplete, then BASE and TYPE are probably
319 the same, in which case BASE is accessible. If they
320 are not the same, then TYPE is invalid. In that case,
321 there's no need to issue another error here, and
322 there's no implicit typedef to use in the code that
323 follows, so we skip the check. */
324 && COMPLETE_TYPE_P (base)
325 && !accessible_base_p (t, base))
327 if (!(access & ba_quiet))
329 error ("`%T' is an inaccessible base of `%T'", base, t);
330 binfo = error_mark_node;
332 else
333 binfo = NULL_TREE;
334 bk = bk_inaccessible;
336 break;
339 if (kind_ptr)
340 *kind_ptr = bk;
342 return binfo;
345 /* Worker function for get_dynamic_cast_base_type. */
347 static int
348 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
349 tree *offset_ptr)
351 tree binfos, accesses;
352 int i, n_baselinks;
353 int worst = -2;
355 if (BINFO_TYPE (binfo) == subtype)
357 if (is_via_virtual)
358 return -1;
359 else
361 *offset_ptr = BINFO_OFFSET (binfo);
362 return 0;
366 binfos = BINFO_BASETYPES (binfo);
367 accesses = BINFO_BASEACCESSES (binfo);
368 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
369 for (i = 0; i < n_baselinks; i++)
371 tree base_binfo = TREE_VEC_ELT (binfos, i);
372 tree base_access = TREE_VEC_ELT (accesses, i);
373 int rval;
375 if (base_access != access_public_node)
376 continue;
377 rval = dynamic_cast_base_recurse
378 (subtype, base_binfo,
379 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
380 if (worst == -2)
381 worst = rval;
382 else if (rval >= 0)
383 worst = worst >= 0 ? -3 : worst;
384 else if (rval == -1)
385 worst = -1;
386 else if (rval == -3 && worst != -1)
387 worst = -3;
389 return worst;
392 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
393 started from is related to the required TARGET type, in order to optimize
394 the inheritance graph search. This information is independent of the
395 current context, and ignores private paths, hence get_base_distance is
396 inappropriate. Return a TREE specifying the base offset, BOFF.
397 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
398 and there are no public virtual SUBTYPE bases.
399 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
400 BOFF == -2, SUBTYPE is not a public base.
401 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
403 tree
404 get_dynamic_cast_base_type (tree subtype, tree target)
406 tree offset = NULL_TREE;
407 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
408 false, &offset);
410 if (!boff)
411 return offset;
412 offset = build_int_2 (boff, -1);
413 TREE_TYPE (offset) = ssizetype;
414 return offset;
417 /* Search for a member with name NAME in a multiple inheritance
418 lattice specified by TYPE. If it does not exist, return NULL_TREE.
419 If the member is ambiguously referenced, return `error_mark_node'.
420 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
421 true, type declarations are preferred. */
423 /* Do a 1-level search for NAME as a member of TYPE. The caller must
424 figure out whether it can access this field. (Since it is only one
425 level, this is reasonable.) */
427 tree
428 lookup_field_1 (tree type, tree name, bool want_type)
430 tree field;
432 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
433 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
434 || TREE_CODE (type) == TYPENAME_TYPE)
435 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
436 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
437 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
438 the code often worked even when we treated the index as a list
439 of fields!)
440 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
441 return NULL_TREE;
443 if (TYPE_NAME (type)
444 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
445 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
447 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
448 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
449 int i;
451 while (lo < hi)
453 i = (lo + hi) / 2;
455 #ifdef GATHER_STATISTICS
456 n_fields_searched++;
457 #endif /* GATHER_STATISTICS */
459 if (DECL_NAME (fields[i]) > name)
460 hi = i;
461 else if (DECL_NAME (fields[i]) < name)
462 lo = i + 1;
463 else
465 field = NULL_TREE;
467 /* We might have a nested class and a field with the
468 same name; we sorted them appropriately via
469 field_decl_cmp, so just look for the first or last
470 field with this name. */
471 if (want_type)
474 field = fields[i--];
475 while (i >= lo && DECL_NAME (fields[i]) == name);
476 if (TREE_CODE (field) != TYPE_DECL
477 && !DECL_CLASS_TEMPLATE_P (field))
478 field = NULL_TREE;
480 else
483 field = fields[i++];
484 while (i < hi && DECL_NAME (fields[i]) == name);
486 return field;
489 return NULL_TREE;
492 field = TYPE_FIELDS (type);
494 #ifdef GATHER_STATISTICS
495 n_calls_lookup_field_1++;
496 #endif /* GATHER_STATISTICS */
497 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
499 #ifdef GATHER_STATISTICS
500 n_fields_searched++;
501 #endif /* GATHER_STATISTICS */
502 my_friendly_assert (DECL_P (field), 0);
503 if (DECL_NAME (field) == NULL_TREE
504 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
506 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
507 if (temp)
508 return temp;
510 if (TREE_CODE (field) == USING_DECL)
511 /* For now, we're just treating member using declarations as
512 old ARM-style access declarations. Thus, there's no reason
513 to return a USING_DECL, and the rest of the compiler can't
514 handle it. Once the class is defined, these are purged
515 from TYPE_FIELDS anyhow; see handle_using_decl. */
516 continue;
518 if (DECL_NAME (field) == name
519 && (!want_type
520 || TREE_CODE (field) == TYPE_DECL
521 || DECL_CLASS_TEMPLATE_P (field)))
522 return field;
524 /* Not found. */
525 if (name == vptr_identifier)
527 /* Give the user what s/he thinks s/he wants. */
528 if (TYPE_POLYMORPHIC_P (type))
529 return TYPE_VFIELD (type);
531 return NULL_TREE;
534 /* There are a number of cases we need to be aware of here:
535 current_class_type current_function_decl
536 global NULL NULL
537 fn-local NULL SET
538 class-local SET NULL
539 class->fn SET SET
540 fn->class SET SET
542 Those last two make life interesting. If we're in a function which is
543 itself inside a class, we need decls to go into the fn's decls (our
544 second case below). But if we're in a class and the class itself is
545 inside a function, we need decls to go into the decls for the class. To
546 achieve this last goal, we must see if, when both current_class_ptr and
547 current_function_decl are set, the class was declared inside that
548 function. If so, we know to put the decls into the class's scope. */
550 tree
551 current_scope (void)
553 if (current_function_decl == NULL_TREE)
554 return current_class_type;
555 if (current_class_type == NULL_TREE)
556 return current_function_decl;
557 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
558 && same_type_p (DECL_CONTEXT (current_function_decl),
559 current_class_type))
560 || (DECL_FRIEND_CONTEXT (current_function_decl)
561 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
562 current_class_type)))
563 return current_function_decl;
565 return current_class_type;
568 /* Returns nonzero if we are currently in a function scope. Note
569 that this function returns zero if we are within a local class, but
570 not within a member function body of the local class. */
573 at_function_scope_p (void)
575 tree cs = current_scope ();
576 return cs && TREE_CODE (cs) == FUNCTION_DECL;
579 /* Returns true if the innermost active scope is a class scope. */
581 bool
582 at_class_scope_p (void)
584 tree cs = current_scope ();
585 return cs && TYPE_P (cs);
588 /* Returns true if the innermost active scope is a namespace scope. */
590 bool
591 at_namespace_scope_p (void)
593 /* We are in a namespace scope if we are not it a class scope or a
594 function scope. */
595 return !current_scope();
598 /* Return the scope of DECL, as appropriate when doing name-lookup. */
600 tree
601 context_for_name_lookup (tree decl)
603 /* [class.union]
605 For the purposes of name lookup, after the anonymous union
606 definition, the members of the anonymous union are considered to
607 have been defined in the scope in which the anonymous union is
608 declared. */
609 tree context = DECL_CONTEXT (decl);
611 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
612 context = TYPE_CONTEXT (context);
613 if (!context)
614 context = global_namespace;
616 return context;
619 /* The accessibility routines use BINFO_ACCESS for scratch space
620 during the computation of the accessibility of some declaration. */
622 #define BINFO_ACCESS(NODE) \
623 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
625 /* Set the access associated with NODE to ACCESS. */
627 #define SET_BINFO_ACCESS(NODE, ACCESS) \
628 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
629 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
631 /* Called from access_in_type via dfs_walk. Calculate the access to
632 DATA (which is really a DECL) in BINFO. */
634 static tree
635 dfs_access_in_type (tree binfo, void *data)
637 tree decl = (tree) data;
638 tree type = BINFO_TYPE (binfo);
639 access_kind access = ak_none;
641 if (context_for_name_lookup (decl) == type)
643 /* If we have descended to the scope of DECL, just note the
644 appropriate access. */
645 if (TREE_PRIVATE (decl))
646 access = ak_private;
647 else if (TREE_PROTECTED (decl))
648 access = ak_protected;
649 else
650 access = ak_public;
652 else
654 /* First, check for an access-declaration that gives us more
655 access to the DECL. The CONST_DECL for an enumeration
656 constant will not have DECL_LANG_SPECIFIC, and thus no
657 DECL_ACCESS. */
658 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
660 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
662 if (decl_access)
664 decl_access = TREE_VALUE (decl_access);
666 if (decl_access == access_public_node)
667 access = ak_public;
668 else if (decl_access == access_protected_node)
669 access = ak_protected;
670 else if (decl_access == access_private_node)
671 access = ak_private;
672 else
673 my_friendly_assert (false, 20030217);
677 if (!access)
679 int i;
680 int n_baselinks;
681 tree binfos, accesses;
683 /* Otherwise, scan our baseclasses, and pick the most favorable
684 access. */
685 binfos = BINFO_BASETYPES (binfo);
686 accesses = BINFO_BASEACCESSES (binfo);
687 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
688 for (i = 0; i < n_baselinks; ++i)
690 tree base_binfo = TREE_VEC_ELT (binfos, i);
691 tree base_access = TREE_VEC_ELT (accesses, i);
692 access_kind base_access_now = BINFO_ACCESS (base_binfo);
694 if (base_access_now == ak_none || base_access_now == ak_private)
695 /* If it was not accessible in the base, or only
696 accessible as a private member, we can't access it
697 all. */
698 base_access_now = ak_none;
699 else if (base_access == access_protected_node)
700 /* Public and protected members in the base become
701 protected here. */
702 base_access_now = ak_protected;
703 else if (base_access == access_private_node)
704 /* Public and protected members in the base become
705 private here. */
706 base_access_now = ak_private;
708 /* See if the new access, via this base, gives more
709 access than our previous best access. */
710 if (base_access_now != ak_none
711 && (access == ak_none || base_access_now < access))
713 access = base_access_now;
715 /* If the new access is public, we can't do better. */
716 if (access == ak_public)
717 break;
723 /* Note the access to DECL in TYPE. */
724 SET_BINFO_ACCESS (binfo, access);
726 /* Mark TYPE as visited so that if we reach it again we do not
727 duplicate our efforts here. */
728 BINFO_MARKED (binfo) = 1;
730 return NULL_TREE;
733 /* Return the access to DECL in TYPE. */
735 static access_kind
736 access_in_type (tree type, tree decl)
738 tree binfo = TYPE_BINFO (type);
740 /* We must take into account
742 [class.paths]
744 If a name can be reached by several paths through a multiple
745 inheritance graph, the access is that of the path that gives
746 most access.
748 The algorithm we use is to make a post-order depth-first traversal
749 of the base-class hierarchy. As we come up the tree, we annotate
750 each node with the most lenient access. */
751 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
752 dfs_walk (binfo, dfs_unmark, markedp, 0);
754 return BINFO_ACCESS (binfo);
757 /* Called from accessible_p via dfs_walk. */
759 static tree
760 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
762 tree binfo = BINFO_BASETYPE (derived, ix);
764 if (BINFO_MARKED (binfo))
765 return NULL_TREE;
767 /* If this class is inherited via private or protected inheritance,
768 then we can't see it, unless we are a friend of the derived class. */
769 if (BINFO_BASEACCESS (derived, ix) != access_public_node
770 && !is_friend (BINFO_TYPE (derived), current_scope ()))
771 return NULL_TREE;
773 return binfo;
776 /* Called from accessible_p via dfs_walk. */
778 static tree
779 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
781 access_kind access;
783 BINFO_MARKED (binfo) = 1;
784 access = BINFO_ACCESS (binfo);
785 if (access != ak_none
786 && is_friend (BINFO_TYPE (binfo), current_scope ()))
787 return binfo;
789 return NULL_TREE;
792 /* Returns nonzero if it is OK to access DECL through an object
793 indicated by BINFO in the context of DERIVED. */
795 static int
796 protected_accessible_p (tree decl, tree derived, tree binfo)
798 access_kind access;
800 /* We're checking this clause from [class.access.base]
802 m as a member of N is protected, and the reference occurs in a
803 member or friend of class N, or in a member or friend of a
804 class P derived from N, where m as a member of P is private or
805 protected.
807 Here DERIVED is a possible P and DECL is m. accessible_p will
808 iterate over various values of N, but the access to m in DERIVED
809 does not change.
811 Note that I believe that the passage above is wrong, and should read
812 "...is private or protected or public"; otherwise you get bizarre results
813 whereby a public using-decl can prevent you from accessing a protected
814 member of a base. (jason 2000/02/28) */
816 /* If DERIVED isn't derived from m's class, then it can't be a P. */
817 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
818 return 0;
820 access = access_in_type (derived, decl);
822 /* If m is inaccessible in DERIVED, then it's not a P. */
823 if (access == ak_none)
824 return 0;
826 /* [class.protected]
828 When a friend or a member function of a derived class references
829 a protected nonstatic member of a base class, an access check
830 applies in addition to those described earlier in clause
831 _class.access_) Except when forming a pointer to member
832 (_expr.unary.op_), the access must be through a pointer to,
833 reference to, or object of the derived class itself (or any class
834 derived from that class) (_expr.ref_). If the access is to form
835 a pointer to member, the nested-name-specifier shall name the
836 derived class (or any class derived from that class). */
837 if (DECL_NONSTATIC_MEMBER_P (decl))
839 /* We can tell through what the reference is occurring by
840 chasing BINFO up to the root. */
841 tree t = binfo;
842 while (BINFO_INHERITANCE_CHAIN (t))
843 t = BINFO_INHERITANCE_CHAIN (t);
845 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
846 return 0;
849 return 1;
852 /* Returns nonzero if SCOPE is a friend of a type which would be able
853 to access DECL through the object indicated by BINFO. */
855 static int
856 friend_accessible_p (tree scope, tree decl, tree binfo)
858 tree befriending_classes;
859 tree t;
861 if (!scope)
862 return 0;
864 if (TREE_CODE (scope) == FUNCTION_DECL
865 || DECL_FUNCTION_TEMPLATE_P (scope))
866 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
867 else if (TYPE_P (scope))
868 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
869 else
870 return 0;
872 for (t = befriending_classes; t; t = TREE_CHAIN (t))
873 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
874 return 1;
876 /* Nested classes are implicitly friends of their enclosing types, as
877 per core issue 45 (this is a change from the standard). */
878 if (TYPE_P (scope))
879 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
880 if (protected_accessible_p (decl, t, binfo))
881 return 1;
883 if (TREE_CODE (scope) == FUNCTION_DECL
884 || DECL_FUNCTION_TEMPLATE_P (scope))
886 /* Perhaps this SCOPE is a member of a class which is a
887 friend. */
888 if (DECL_CLASS_SCOPE_P (decl)
889 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
890 return 1;
892 /* Or an instantiation of something which is a friend. */
893 if (DECL_TEMPLATE_INFO (scope))
895 int ret;
896 /* Increment processing_template_decl to make sure that
897 dependent_type_p works correctly. */
898 ++processing_template_decl;
899 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
900 --processing_template_decl;
901 return ret;
904 else if (CLASSTYPE_TEMPLATE_INFO (scope))
906 int ret;
907 /* Increment processing_template_decl to make sure that
908 dependent_type_p works correctly. */
909 ++processing_template_decl;
910 ret = friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
911 --processing_template_decl;
912 return ret;
915 return 0;
918 /* DECL is a declaration from a base class of TYPE, which was the
919 class used to name DECL. Return nonzero if, in the current
920 context, DECL is accessible. If TYPE is actually a BINFO node,
921 then we can tell in what context the access is occurring by looking
922 at the most derived class along the path indicated by BINFO. */
924 int
925 accessible_p (tree type, tree decl)
927 tree binfo;
928 tree t;
929 tree scope;
930 access_kind access;
932 /* Nonzero if it's OK to access DECL if it has protected
933 accessibility in TYPE. */
934 int protected_ok = 0;
936 /* If this declaration is in a block or namespace scope, there's no
937 access control. */
938 if (!TYPE_P (context_for_name_lookup (decl)))
939 return 1;
941 /* There is no need to perform access checks inside a thunk. */
942 scope = current_scope ();
943 if (scope && DECL_THUNK_P (scope))
944 return 1;
946 /* In a template declaration, we cannot be sure whether the
947 particular specialization that is instantiated will be a friend
948 or not. Therefore, all access checks are deferred until
949 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
950 parameter list for a template (because we may see dependent types
951 in default arguments for template parameters), and access
952 checking should be performed in the outermost parameter list. */
953 if (processing_template_decl
954 && (!processing_template_parmlist || processing_template_decl > 1))
955 return 1;
957 if (!TYPE_P (type))
959 binfo = type;
960 type = BINFO_TYPE (type);
962 else
963 binfo = TYPE_BINFO (type);
965 /* [class.access.base]
967 A member m is accessible when named in class N if
969 --m as a member of N is public, or
971 --m as a member of N is private, and the reference occurs in a
972 member or friend of class N, or
974 --m as a member of N is protected, and the reference occurs in a
975 member or friend of class N, or in a member or friend of a
976 class P derived from N, where m as a member of P is private or
977 protected, or
979 --there exists a base class B of N that is accessible at the point
980 of reference, and m is accessible when named in class B.
982 We walk the base class hierarchy, checking these conditions. */
984 /* Figure out where the reference is occurring. Check to see if
985 DECL is private or protected in this scope, since that will
986 determine whether protected access is allowed. */
987 if (current_class_type)
988 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
990 /* Now, loop through the classes of which we are a friend. */
991 if (!protected_ok)
992 protected_ok = friend_accessible_p (scope, decl, binfo);
994 /* Standardize the binfo that access_in_type will use. We don't
995 need to know what path was chosen from this point onwards. */
996 binfo = TYPE_BINFO (type);
998 /* Compute the accessibility of DECL in the class hierarchy
999 dominated by type. */
1000 access = access_in_type (type, decl);
1001 if (access == ak_public
1002 || (access == ak_protected && protected_ok))
1003 return 1;
1004 else
1006 /* Walk the hierarchy again, looking for a base class that allows
1007 access. */
1008 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
1009 /* Clear any mark bits. Note that we have to walk the whole tree
1010 here, since we have aborted the previous walk from some point
1011 deep in the tree. */
1012 dfs_walk (binfo, dfs_unmark, 0, 0);
1014 return t != NULL_TREE;
1018 struct lookup_field_info {
1019 /* The type in which we're looking. */
1020 tree type;
1021 /* The name of the field for which we're looking. */
1022 tree name;
1023 /* If non-NULL, the current result of the lookup. */
1024 tree rval;
1025 /* The path to RVAL. */
1026 tree rval_binfo;
1027 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1028 candidates. */
1029 tree ambiguous;
1030 /* If nonzero, we are looking for types, not data members. */
1031 int want_type;
1032 /* If something went wrong, a message indicating what. */
1033 const char *errstr;
1036 /* Returns nonzero if BINFO is not hidden by the value found by the
1037 lookup so far. If BINFO is hidden, then there's no need to look in
1038 it. DATA is really a struct lookup_field_info. Called from
1039 lookup_field via breadth_first_search. */
1041 static tree
1042 lookup_field_queue_p (tree derived, int ix, void *data)
1044 tree binfo = BINFO_BASETYPE (derived, ix);
1045 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1047 /* Don't look for constructors or destructors in base classes. */
1048 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1049 return NULL_TREE;
1051 /* If this base class is hidden by the best-known value so far, we
1052 don't need to look. */
1053 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1054 return NULL_TREE;
1056 /* If this is a dependent base, don't look in it. */
1057 if (BINFO_DEPENDENT_BASE_P (binfo))
1058 return NULL_TREE;
1060 return binfo;
1063 /* Within the scope of a template class, you can refer to the to the
1064 current specialization with the name of the template itself. For
1065 example:
1067 template <typename T> struct S { S* sp; }
1069 Returns nonzero if DECL is such a declaration in a class TYPE. */
1071 static int
1072 template_self_reference_p (tree type, tree decl)
1074 return (CLASSTYPE_USE_TEMPLATE (type)
1075 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1076 && TREE_CODE (decl) == TYPE_DECL
1077 && DECL_ARTIFICIAL (decl)
1078 && DECL_NAME (decl) == constructor_name (type));
1081 /* Nonzero for a class member means that it is shared between all objects
1082 of that class.
1084 [class.member.lookup]:If the resulting set of declarations are not all
1085 from sub-objects of the same type, or the set has a nonstatic member
1086 and includes members from distinct sub-objects, there is an ambiguity
1087 and the program is ill-formed.
1089 This function checks that T contains no nonstatic members. */
1092 shared_member_p (tree t)
1094 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1095 || TREE_CODE (t) == CONST_DECL)
1096 return 1;
1097 if (is_overloaded_fn (t))
1099 for (; t; t = OVL_NEXT (t))
1101 tree fn = OVL_CURRENT (t);
1102 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1103 return 0;
1105 return 1;
1107 return 0;
1110 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1111 found as a base class and sub-object of the object denoted by
1112 BINFO. */
1114 static int
1115 is_subobject_of_p (tree parent, tree binfo)
1117 tree probe;
1119 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1121 if (probe == binfo)
1122 return 1;
1123 if (TREE_VIA_VIRTUAL (probe))
1124 return (purpose_member (BINFO_TYPE (probe),
1125 CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
1126 != NULL_TREE);
1128 return 0;
1131 /* DATA is really a struct lookup_field_info. Look for a field with
1132 the name indicated there in BINFO. If this function returns a
1133 non-NULL value it is the result of the lookup. Called from
1134 lookup_field via breadth_first_search. */
1136 static tree
1137 lookup_field_r (tree binfo, void *data)
1139 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1140 tree type = BINFO_TYPE (binfo);
1141 tree nval = NULL_TREE;
1143 /* First, look for a function. There can't be a function and a data
1144 member with the same name, and if there's a function and a type
1145 with the same name, the type is hidden by the function. */
1146 if (!lfi->want_type)
1148 int idx = lookup_fnfields_1 (type, lfi->name);
1149 if (idx >= 0)
1150 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1153 if (!nval)
1154 /* Look for a data member or type. */
1155 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1157 /* If there is no declaration with the indicated name in this type,
1158 then there's nothing to do. */
1159 if (!nval)
1160 return NULL_TREE;
1162 /* If we're looking up a type (as with an elaborated type specifier)
1163 we ignore all non-types we find. */
1164 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1165 && !DECL_CLASS_TEMPLATE_P (nval))
1167 if (lfi->name == TYPE_IDENTIFIER (type))
1169 /* If the aggregate has no user defined constructors, we allow
1170 it to have fields with the same name as the enclosing type.
1171 If we are looking for that name, find the corresponding
1172 TYPE_DECL. */
1173 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1174 if (DECL_NAME (nval) == lfi->name
1175 && TREE_CODE (nval) == TYPE_DECL)
1176 break;
1178 else
1179 nval = NULL_TREE;
1180 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1182 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1183 lfi->name);
1184 if (e != NULL)
1185 nval = TYPE_MAIN_DECL (e->type);
1186 else
1187 return NULL_TREE;
1191 /* You must name a template base class with a template-id. */
1192 if (!same_type_p (type, lfi->type)
1193 && template_self_reference_p (type, nval))
1194 return NULL_TREE;
1196 /* If the lookup already found a match, and the new value doesn't
1197 hide the old one, we might have an ambiguity. */
1198 if (lfi->rval_binfo
1199 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1202 if (nval == lfi->rval && shared_member_p (nval))
1203 /* The two things are really the same. */
1205 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1206 /* The previous value hides the new one. */
1208 else
1210 /* We have a real ambiguity. We keep a chain of all the
1211 candidates. */
1212 if (!lfi->ambiguous && lfi->rval)
1214 /* This is the first time we noticed an ambiguity. Add
1215 what we previously thought was a reasonable candidate
1216 to the list. */
1217 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1218 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1221 /* Add the new value. */
1222 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1223 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1224 lfi->errstr = "request for member `%D' is ambiguous";
1227 else
1229 lfi->rval = nval;
1230 lfi->rval_binfo = binfo;
1233 return NULL_TREE;
1236 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1237 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1238 FUNCTIONS, and OPTYPE respectively. */
1240 tree
1241 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1243 tree baselink;
1245 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1246 || TREE_CODE (functions) == TEMPLATE_DECL
1247 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1248 || TREE_CODE (functions) == OVERLOAD,
1249 20020730);
1250 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1251 my_friendly_assert (TREE_TYPE (functions), 20020805);
1253 baselink = make_node (BASELINK);
1254 TREE_TYPE (baselink) = TREE_TYPE (functions);
1255 BASELINK_BINFO (baselink) = binfo;
1256 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1257 BASELINK_FUNCTIONS (baselink) = functions;
1258 BASELINK_OPTYPE (baselink) = optype;
1260 return baselink;
1263 /* Look for a member named NAME in an inheritance lattice dominated by
1264 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1265 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1266 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1267 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1268 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1269 TREE_VALUEs are the list of ambiguous candidates.
1271 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1273 If nothing can be found return NULL_TREE and do not issue an error. */
1275 tree
1276 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1278 tree rval, rval_binfo = NULL_TREE;
1279 tree type = NULL_TREE, basetype_path = NULL_TREE;
1280 struct lookup_field_info lfi;
1282 /* rval_binfo is the binfo associated with the found member, note,
1283 this can be set with useful information, even when rval is not
1284 set, because it must deal with ALL members, not just non-function
1285 members. It is used for ambiguity checking and the hidden
1286 checks. Whereas rval is only set if a proper (not hidden)
1287 non-function member is found. */
1289 const char *errstr = 0;
1291 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1293 if (TREE_CODE (xbasetype) == TREE_VEC)
1295 type = BINFO_TYPE (xbasetype);
1296 basetype_path = xbasetype;
1298 else
1300 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1301 type = xbasetype;
1302 basetype_path = TYPE_BINFO (type);
1303 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1306 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1307 && IDENTIFIER_CLASS_VALUE (name))
1309 tree field = IDENTIFIER_CLASS_VALUE (name);
1310 if (! is_overloaded_fn (field)
1311 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1312 /* We're in the scope of this class, and the value has already
1313 been looked up. Just return the cached value. */
1314 return field;
1317 complete_type (type);
1319 #ifdef GATHER_STATISTICS
1320 n_calls_lookup_field++;
1321 #endif /* GATHER_STATISTICS */
1323 memset (&lfi, 0, sizeof (lfi));
1324 lfi.type = type;
1325 lfi.name = name;
1326 lfi.want_type = want_type;
1327 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1328 rval = lfi.rval;
1329 rval_binfo = lfi.rval_binfo;
1330 if (rval_binfo)
1331 type = BINFO_TYPE (rval_binfo);
1332 errstr = lfi.errstr;
1334 /* If we are not interested in ambiguities, don't report them;
1335 just return NULL_TREE. */
1336 if (!protect && lfi.ambiguous)
1337 return NULL_TREE;
1339 if (protect == 2)
1341 if (lfi.ambiguous)
1342 return lfi.ambiguous;
1343 else
1344 protect = 0;
1347 /* [class.access]
1349 In the case of overloaded function names, access control is
1350 applied to the function selected by overloaded resolution. */
1351 if (rval && protect && !is_overloaded_fn (rval))
1352 perform_or_defer_access_check (basetype_path, rval);
1354 if (errstr && protect)
1356 error (errstr, name, type);
1357 if (lfi.ambiguous)
1358 print_candidates (lfi.ambiguous);
1359 rval = error_mark_node;
1362 if (rval && is_overloaded_fn (rval))
1363 rval = build_baselink (rval_binfo, basetype_path, rval,
1364 (IDENTIFIER_TYPENAME_P (name)
1365 ? TREE_TYPE (name): NULL_TREE));
1366 return rval;
1369 /* Like lookup_member, except that if we find a function member we
1370 return NULL_TREE. */
1372 tree
1373 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1375 tree rval = lookup_member (xbasetype, name, protect, want_type);
1377 /* Ignore functions. */
1378 if (rval && BASELINK_P (rval))
1379 return NULL_TREE;
1381 return rval;
1384 /* Like lookup_member, except that if we find a non-function member we
1385 return NULL_TREE. */
1387 tree
1388 lookup_fnfields (tree xbasetype, tree name, int protect)
1390 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1392 /* Ignore non-functions. */
1393 if (rval && !BASELINK_P (rval))
1394 return NULL_TREE;
1396 return rval;
1399 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1400 corresponding to "operator TYPE ()", or -1 if there is no such
1401 operator. Only CLASS_TYPE itself is searched; this routine does
1402 not scan the base classes of CLASS_TYPE. */
1404 static int
1405 lookup_conversion_operator (tree class_type, tree type)
1407 int pass;
1408 int i;
1410 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1412 for (pass = 0; pass < 2; ++pass)
1413 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1414 i < TREE_VEC_LENGTH (methods);
1415 ++i)
1417 tree fn = TREE_VEC_ELT (methods, i);
1418 /* The size of the vector may have some unused slots at the
1419 end. */
1420 if (!fn)
1421 break;
1423 /* All the conversion operators come near the beginning of the
1424 class. Therefore, if FN is not a conversion operator, there
1425 is no matching conversion operator in CLASS_TYPE. */
1426 fn = OVL_CURRENT (fn);
1427 if (!DECL_CONV_FN_P (fn))
1428 break;
1430 if (pass == 0)
1432 /* On the first pass we only consider exact matches. If
1433 the types match, this slot is the one where the right
1434 conversion operators can be found. */
1435 if (TREE_CODE (fn) != TEMPLATE_DECL
1436 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1437 return i;
1439 else
1441 /* On the second pass we look for template conversion
1442 operators. It may be possible to instantiate the
1443 template to get the type desired. All of the template
1444 conversion operators share a slot. By looking for
1445 templates second we ensure that specializations are
1446 preferred over templates. */
1447 if (TREE_CODE (fn) == TEMPLATE_DECL)
1448 return i;
1452 return -1;
1455 /* TYPE is a class type. Return the index of the fields within
1456 the method vector with name NAME, or -1 is no such field exists. */
1459 lookup_fnfields_1 (tree type, tree name)
1461 tree method_vec;
1462 tree *methods;
1463 tree tmp;
1464 int i;
1465 int len;
1467 if (!CLASS_TYPE_P (type))
1468 return -1;
1470 method_vec = CLASSTYPE_METHOD_VEC (type);
1472 if (!method_vec)
1473 return -1;
1475 methods = &TREE_VEC_ELT (method_vec, 0);
1476 len = TREE_VEC_LENGTH (method_vec);
1478 #ifdef GATHER_STATISTICS
1479 n_calls_lookup_fnfields_1++;
1480 #endif /* GATHER_STATISTICS */
1482 /* Constructors are first... */
1483 if (name == ctor_identifier)
1484 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1485 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1486 /* and destructors are second. */
1487 if (name == dtor_identifier)
1488 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1489 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1490 if (IDENTIFIER_TYPENAME_P (name))
1491 return lookup_conversion_operator (type, TREE_TYPE (name));
1493 /* Skip the conversion operators. */
1494 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1495 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1496 i++;
1498 /* If the type is complete, use binary search. */
1499 if (COMPLETE_TYPE_P (type))
1501 int lo = i;
1502 int hi = len;
1504 while (lo < hi)
1506 i = (lo + hi) / 2;
1508 #ifdef GATHER_STATISTICS
1509 n_outer_fields_searched++;
1510 #endif /* GATHER_STATISTICS */
1512 tmp = methods[i];
1513 /* This slot may be empty; we allocate more slots than we
1514 need. In that case, the entry we're looking for is
1515 closer to the beginning of the list. */
1516 if (tmp)
1517 tmp = DECL_NAME (OVL_CURRENT (tmp));
1518 if (!tmp || tmp > name)
1519 hi = i;
1520 else if (tmp < name)
1521 lo = i + 1;
1522 else
1523 return i;
1526 else
1527 for (; i < len && methods[i]; ++i)
1529 #ifdef GATHER_STATISTICS
1530 n_outer_fields_searched++;
1531 #endif /* GATHER_STATISTICS */
1533 tmp = OVL_CURRENT (methods[i]);
1534 if (DECL_NAME (tmp) == name)
1535 return i;
1538 return -1;
1541 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1542 the class or namespace used to qualify the name. CONTEXT_CLASS is
1543 the class corresponding to the object in which DECL will be used.
1544 Return a possibly modified version of DECL that takes into account
1545 the CONTEXT_CLASS.
1547 In particular, consider an expression like `B::m' in the context of
1548 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1549 then the most derived class indicated by the BASELINK_BINFO will be
1550 `B', not `D'. This function makes that adjustment. */
1552 tree
1553 adjust_result_of_qualified_name_lookup (tree decl,
1554 tree qualifying_scope,
1555 tree context_class)
1557 if (context_class && CLASS_TYPE_P (qualifying_scope)
1558 && DERIVED_FROM_P (qualifying_scope, context_class)
1559 && BASELINK_P (decl))
1561 tree base;
1563 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1565 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1566 Because we do not yet know which function will be chosen by
1567 overload resolution, we cannot yet check either accessibility
1568 or ambiguity -- in either case, the choice of a static member
1569 function might make the usage valid. */
1570 base = lookup_base (context_class, qualifying_scope,
1571 ba_ignore | ba_quiet, NULL);
1572 if (base)
1574 BASELINK_ACCESS_BINFO (decl) = base;
1575 BASELINK_BINFO (decl)
1576 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1577 ba_ignore | ba_quiet,
1578 NULL);
1582 return decl;
1586 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1587 type in the hierarchy, in a breadth-first preorder traversal.
1588 If it ever returns a non-NULL value, that value is immediately
1589 returned and the walk is terminated. At each node, FN is passed a
1590 BINFO indicating the path from the currently visited base-class to
1591 TYPE. Before each base-class is walked QFN is called. If the
1592 value returned is nonzero, the base-class is walked; otherwise it
1593 is not. If QFN is NULL, it is treated as a function which always
1594 returns 1. Both FN and QFN are passed the DATA whenever they are
1595 called.
1597 Implementation notes: Uses a circular queue, which starts off on
1598 the stack but gets moved to the malloc arena if it needs to be
1599 enlarged. The underflow and overflow conditions are
1600 indistinguishable except by context: if head == tail and we just
1601 moved the head pointer, the queue is empty, but if we just moved
1602 the tail pointer, the queue is full.
1603 Start with enough room for ten concurrent base classes. That
1604 will be enough for most hierarchies. */
1605 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1607 static tree
1608 bfs_walk (tree binfo,
1609 tree (*fn) (tree, void *),
1610 tree (*qfn) (tree, int, void *),
1611 void *data)
1613 tree rval = NULL_TREE;
1615 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1616 /* A circular queue of the base classes of BINFO. These will be
1617 built up in breadth-first order, except where QFN prunes the
1618 search. */
1619 size_t head, tail;
1620 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1621 tree *base_buffer = bases_initial;
1623 head = tail = 0;
1624 base_buffer[tail++] = binfo;
1626 while (head != tail)
1628 int n_bases, ix;
1629 tree binfo = base_buffer[head++];
1630 if (head == base_buffer_size)
1631 head = 0;
1633 /* Is this the one we're looking for? If so, we're done. */
1634 rval = fn (binfo, data);
1635 if (rval)
1636 goto done;
1638 n_bases = BINFO_N_BASETYPES (binfo);
1639 for (ix = 0; ix != n_bases; ix++)
1641 tree base_binfo;
1643 if (qfn)
1644 base_binfo = (*qfn) (binfo, ix, data);
1645 else
1646 base_binfo = BINFO_BASETYPE (binfo, ix);
1648 if (base_binfo)
1650 base_buffer[tail++] = base_binfo;
1651 if (tail == base_buffer_size)
1652 tail = 0;
1653 if (tail == head)
1655 tree *new_buffer = xmalloc (2 * base_buffer_size
1656 * sizeof (tree));
1657 memcpy (&new_buffer[0], &base_buffer[0],
1658 tail * sizeof (tree));
1659 memcpy (&new_buffer[head + base_buffer_size],
1660 &base_buffer[head],
1661 (base_buffer_size - head) * sizeof (tree));
1662 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1663 free (base_buffer);
1664 base_buffer = new_buffer;
1665 head += base_buffer_size;
1666 base_buffer_size *= 2;
1672 done:
1673 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1674 free (base_buffer);
1675 return rval;
1678 /* Exactly like bfs_walk, except that a depth-first traversal is
1679 performed, and PREFN is called in preorder, while POSTFN is called
1680 in postorder. */
1682 tree
1683 dfs_walk_real (tree binfo,
1684 tree (*prefn) (tree, void *),
1685 tree (*postfn) (tree, void *),
1686 tree (*qfn) (tree, int, void *),
1687 void *data)
1689 tree rval = NULL_TREE;
1691 /* Call the pre-order walking function. */
1692 if (prefn)
1694 rval = (*prefn) (binfo, data);
1695 if (rval)
1696 return rval;
1699 /* Process the basetypes. */
1700 if (BINFO_BASETYPES (binfo))
1702 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1703 for (i = 0; i != n; i++)
1705 tree base_binfo;
1707 if (qfn)
1708 base_binfo = (*qfn) (binfo, i, data);
1709 else
1710 base_binfo = BINFO_BASETYPE (binfo, i);
1712 if (base_binfo)
1714 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1715 if (rval)
1716 return rval;
1721 /* Call the post-order walking function. */
1722 if (postfn)
1723 rval = (*postfn) (binfo, data);
1725 return rval;
1728 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1729 performed. */
1731 tree
1732 dfs_walk (tree binfo,
1733 tree (*fn) (tree, void *),
1734 tree (*qfn) (tree, int, void *),
1735 void *data)
1737 return dfs_walk_real (binfo, 0, fn, qfn, data);
1740 /* Check that virtual overrider OVERRIDER is acceptable for base function
1741 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1744 check_final_overrider (tree overrider, tree basefn)
1746 tree over_type = TREE_TYPE (overrider);
1747 tree base_type = TREE_TYPE (basefn);
1748 tree over_return = TREE_TYPE (over_type);
1749 tree base_return = TREE_TYPE (base_type);
1750 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1751 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1752 int fail = 0;
1754 if (same_type_p (base_return, over_return))
1755 /* OK */;
1756 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1757 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1758 && POINTER_TYPE_P (base_return)))
1760 /* Potentially covariant. */
1761 unsigned base_quals, over_quals;
1763 fail = !POINTER_TYPE_P (base_return);
1764 if (!fail)
1766 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1768 base_return = TREE_TYPE (base_return);
1769 over_return = TREE_TYPE (over_return);
1771 base_quals = cp_type_quals (base_return);
1772 over_quals = cp_type_quals (over_return);
1774 if ((base_quals & over_quals) != over_quals)
1775 fail = 1;
1777 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1779 tree binfo = lookup_base (over_return, base_return,
1780 ba_check | ba_quiet, NULL);
1782 if (!binfo)
1783 fail = 1;
1785 else if (!pedantic
1786 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1787 /* GNU extension, allow trivial pointer conversions such as
1788 converting to void *, or qualification conversion. */
1790 /* can_convert will permit user defined conversion from a
1791 (reference to) class type. We must reject them. */
1792 over_return = non_reference (TREE_TYPE (over_type));
1793 if (CLASS_TYPE_P (over_return))
1794 fail = 2;
1796 else
1797 fail = 2;
1799 else
1800 fail = 2;
1801 if (!fail)
1802 /* OK */;
1803 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1804 return 0;
1805 else
1807 if (fail == 1)
1809 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1810 cp_error_at (" overriding `%#D'", basefn);
1812 else
1814 cp_error_at ("conflicting return type specified for `%#D'",
1815 overrider);
1816 cp_error_at (" overriding `%#D'", basefn);
1818 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1819 DECL_CONTEXT (overrider));
1820 return 0;
1823 /* Check throw specifier is at least as strict. */
1824 if (!comp_except_specs (base_throw, over_throw, 0))
1826 if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1828 cp_error_at ("looser throw specifier for `%#F'", overrider);
1829 cp_error_at (" overriding `%#F'", basefn);
1830 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1831 DECL_CONTEXT (overrider));
1833 return 0;
1836 return 1;
1839 /* Given a class TYPE, and a function decl FNDECL, look for
1840 virtual functions in TYPE's hierarchy which FNDECL overrides.
1841 We do not look in TYPE itself, only its bases.
1843 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1844 find that it overrides anything.
1846 We check that every function which is overridden, is correctly
1847 overridden. */
1850 look_for_overrides (tree type, tree fndecl)
1852 tree binfo = TYPE_BINFO (type);
1853 tree basebinfos = BINFO_BASETYPES (binfo);
1854 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1855 int ix;
1856 int found = 0;
1858 for (ix = 0; ix != nbasebinfos; ix++)
1860 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1862 if (TYPE_POLYMORPHIC_P (basetype))
1863 found += look_for_overrides_r (basetype, fndecl);
1865 return found;
1868 /* Look in TYPE for virtual functions with the same signature as
1869 FNDECL. */
1871 tree
1872 look_for_overrides_here (tree type, tree fndecl)
1874 int ix;
1876 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1877 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1878 else
1879 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1880 if (ix >= 0)
1882 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1884 for (; fns; fns = OVL_NEXT (fns))
1886 tree fn = OVL_CURRENT (fns);
1888 if (!DECL_VIRTUAL_P (fn))
1889 /* Not a virtual. */;
1890 else if (DECL_CONTEXT (fn) != type)
1891 /* Introduced with a using declaration. */;
1892 else if (DECL_STATIC_FUNCTION_P (fndecl))
1894 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1895 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1896 if (compparms (TREE_CHAIN (btypes), dtypes))
1897 return fn;
1899 else if (same_signature_p (fndecl, fn))
1900 return fn;
1903 return NULL_TREE;
1906 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1907 TYPE itself and its bases. */
1909 static int
1910 look_for_overrides_r (tree type, tree fndecl)
1912 tree fn = look_for_overrides_here (type, fndecl);
1913 if (fn)
1915 if (DECL_STATIC_FUNCTION_P (fndecl))
1917 /* A static member function cannot match an inherited
1918 virtual member function. */
1919 cp_error_at ("`%#D' cannot be declared", fndecl);
1920 cp_error_at (" since `%#D' declared in base class", fn);
1922 else
1924 /* It's definitely virtual, even if not explicitly set. */
1925 DECL_VIRTUAL_P (fndecl) = 1;
1926 check_final_overrider (fndecl, fn);
1928 return 1;
1931 /* We failed to find one declared in this class. Look in its bases. */
1932 return look_for_overrides (type, fndecl);
1935 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1937 static tree
1938 dfs_get_pure_virtuals (tree binfo, void *data)
1940 tree type = (tree) data;
1942 /* We're not interested in primary base classes; the derived class
1943 of which they are a primary base will contain the information we
1944 need. */
1945 if (!BINFO_PRIMARY_P (binfo))
1947 tree virtuals;
1949 for (virtuals = BINFO_VIRTUALS (binfo);
1950 virtuals;
1951 virtuals = TREE_CHAIN (virtuals))
1952 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1953 CLASSTYPE_PURE_VIRTUALS (type)
1954 = tree_cons (NULL_TREE, BV_FN (virtuals),
1955 CLASSTYPE_PURE_VIRTUALS (type));
1958 BINFO_MARKED (binfo) = 1;
1960 return NULL_TREE;
1963 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1965 void
1966 get_pure_virtuals (tree type)
1968 tree vbases;
1970 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1971 is going to be overridden. */
1972 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1973 /* Now, run through all the bases which are not primary bases, and
1974 collect the pure virtual functions. We look at the vtable in
1975 each class to determine what pure virtual functions are present.
1976 (A primary base is not interesting because the derived class of
1977 which it is a primary base will contain vtable entries for the
1978 pure virtuals in the base class. */
1979 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1980 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1982 /* Put the pure virtuals in dfs order. */
1983 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1985 for (vbases = CLASSTYPE_VBASECLASSES (type);
1986 vbases;
1987 vbases = TREE_CHAIN (vbases))
1989 tree virtuals;
1991 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1992 virtuals;
1993 virtuals = TREE_CHAIN (virtuals))
1995 tree base_fndecl = BV_FN (virtuals);
1996 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1997 error ("`%#D' needs a final overrider", base_fndecl);
2002 /* DEPTH-FIRST SEARCH ROUTINES. */
2004 tree
2005 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2007 tree binfo = BINFO_BASETYPE (derived, ix);
2009 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
2012 tree
2013 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2015 tree binfo = BINFO_BASETYPE (derived, ix);
2017 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
2020 static tree
2021 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2023 tree binfo = BINFO_BASETYPE (derived, ix);
2025 return (!BINFO_DEPENDENT_BASE_P (binfo)
2026 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
2029 static tree
2030 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2032 tree binfo = BINFO_BASETYPE (derived, ix);
2034 return (!BINFO_DEPENDENT_BASE_P (binfo)
2035 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
2038 /* The worker functions for `dfs_walk'. These do not need to
2039 test anything (vis a vis marking) if they are paired with
2040 a predicate function (above). */
2042 tree
2043 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
2045 BINFO_MARKED (binfo) = 0;
2046 return NULL_TREE;
2050 /* Debug info for C++ classes can get very large; try to avoid
2051 emitting it everywhere.
2053 Note that this optimization wins even when the target supports
2054 BINCL (if only slightly), and reduces the amount of work for the
2055 linker. */
2057 void
2058 maybe_suppress_debug_info (tree t)
2060 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2061 does not support name references between translation units. It supports
2062 symbolic references between translation units, but only within a single
2063 executable or shared library.
2065 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2066 that the type was never defined, so we only get the members we
2067 actually define. */
2068 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2069 return;
2071 /* We might have set this earlier in cp_finish_decl. */
2072 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2074 /* If we already know how we're handling this class, handle debug info
2075 the same way. */
2076 if (CLASSTYPE_INTERFACE_KNOWN (t))
2078 if (CLASSTYPE_INTERFACE_ONLY (t))
2079 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2080 /* else don't set it. */
2082 /* If the class has a vtable, write out the debug info along with
2083 the vtable. */
2084 else if (TYPE_CONTAINS_VPTR_P (t))
2085 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2087 /* Otherwise, just emit the debug info normally. */
2090 /* Note that we want debugging information for a base class of a class
2091 whose vtable is being emitted. Normally, this would happen because
2092 calling the constructor for a derived class implies calling the
2093 constructors for all bases, which involve initializing the
2094 appropriate vptr with the vtable for the base class; but in the
2095 presence of optimization, this initialization may be optimized
2096 away, so we tell finish_vtable_vardecl that we want the debugging
2097 information anyway. */
2099 static tree
2100 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2102 tree t = BINFO_TYPE (binfo);
2104 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2106 return NULL_TREE;
2109 /* Returns BINFO if we haven't already noted that we want debugging
2110 info for this base class. */
2112 static tree
2113 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2115 tree binfo = BINFO_BASETYPE (derived, ix);
2117 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2118 ? binfo : NULL_TREE);
2121 /* Write out the debugging information for TYPE, whose vtable is being
2122 emitted. Also walk through our bases and note that we want to
2123 write out information for them. This avoids the problem of not
2124 writing any debug info for intermediate basetypes whose
2125 constructors, and thus the references to their vtables, and thus
2126 the vtables themselves, were optimized away. */
2128 void
2129 note_debug_info_needed (tree type)
2131 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2133 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2134 rest_of_type_compilation (type, toplevel_bindings_p ());
2137 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2140 /* Subroutines of push_class_decls (). */
2142 static void
2143 setup_class_bindings (tree name, int type_binding_p)
2145 tree type_binding = NULL_TREE;
2146 tree value_binding;
2148 /* If we've already done the lookup for this declaration, we're
2149 done. */
2150 if (IDENTIFIER_CLASS_VALUE (name))
2151 return;
2153 /* First, deal with the type binding. */
2154 if (type_binding_p)
2156 type_binding = lookup_member (current_class_type, name,
2157 /*protect=*/2, /*want_type=*/true);
2158 if (TREE_CODE (type_binding) == TREE_LIST
2159 && TREE_TYPE (type_binding) == error_mark_node)
2160 /* NAME is ambiguous. */
2161 push_class_level_binding (name, type_binding);
2162 else
2163 pushdecl_class_level (type_binding);
2166 /* Now, do the value binding. */
2167 value_binding = lookup_member (current_class_type, name,
2168 /*protect=*/2, /*want_type=*/false);
2170 if (type_binding_p
2171 && (TREE_CODE (value_binding) == TYPE_DECL
2172 || DECL_CLASS_TEMPLATE_P (value_binding)
2173 || (TREE_CODE (value_binding) == TREE_LIST
2174 && TREE_TYPE (value_binding) == error_mark_node
2175 && (TREE_CODE (TREE_VALUE (value_binding))
2176 == TYPE_DECL))))
2177 /* We found a type-binding, even when looking for a non-type
2178 binding. This means that we already processed this binding
2179 above. */;
2180 else if (value_binding)
2182 if (TREE_CODE (value_binding) == TREE_LIST
2183 && TREE_TYPE (value_binding) == error_mark_node)
2184 /* NAME is ambiguous. */
2185 push_class_level_binding (name, value_binding);
2186 else
2188 if (BASELINK_P (value_binding))
2189 /* NAME is some overloaded functions. */
2190 value_binding = BASELINK_FUNCTIONS (value_binding);
2191 /* Two conversion operators that convert to the same type
2192 may have different names. (See
2193 mangle_conv_op_name_for_type.) To avoid recording the
2194 same conversion operator declaration more than once we
2195 must check to see that the same operator was not already
2196 found under another name. */
2197 if (IDENTIFIER_TYPENAME_P (name)
2198 && is_overloaded_fn (value_binding))
2200 tree fns;
2201 for (fns = value_binding; fns; fns = OVL_NEXT (fns))
2202 if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
2203 return;
2205 pushdecl_class_level (value_binding);
2210 /* Push class-level declarations for any names appearing in BINFO that
2211 are TYPE_DECLS. */
2213 static tree
2214 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2216 tree type;
2217 tree fields;
2219 type = BINFO_TYPE (binfo);
2220 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2221 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2222 && !(!same_type_p (type, current_class_type)
2223 && template_self_reference_p (type, fields)))
2224 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2226 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2227 DERIVED_FROM_P, which calls get_base_distance. */
2228 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2230 return NULL_TREE;
2233 /* Push class-level declarations for any names appearing in BINFO that
2234 are not TYPE_DECLS. */
2236 static tree
2237 dfs_push_decls (tree binfo, void *data)
2239 tree type = BINFO_TYPE (binfo);
2240 tree method_vec;
2241 tree fields;
2243 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2244 if (DECL_NAME (fields)
2245 && TREE_CODE (fields) != TYPE_DECL
2246 && TREE_CODE (fields) != USING_DECL
2247 && !DECL_ARTIFICIAL (fields))
2248 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2249 else if (TREE_CODE (fields) == FIELD_DECL
2250 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2251 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2253 method_vec = (CLASS_TYPE_P (type)
2254 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2256 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2258 tree *methods;
2259 tree *end;
2261 /* Farm out constructors and destructors. */
2262 end = TREE_VEC_END (method_vec);
2264 for (methods = &TREE_VEC_ELT (method_vec, 2);
2265 methods < end && *methods;
2266 methods++)
2267 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2268 /*type_binding_p=*/0);
2271 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2273 return NULL_TREE;
2276 /* When entering the scope of a class, we cache all of the
2277 fields that that class provides within its inheritance
2278 lattice. Where ambiguities result, we mark them
2279 with `error_mark_node' so that if they are encountered
2280 without explicit qualification, we can emit an error
2281 message. */
2283 void
2284 push_class_decls (tree type)
2286 search_stack = push_search_level (search_stack, &search_obstack);
2288 /* Enter type declarations and mark. */
2289 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2291 /* Enter non-type declarations and unmark. */
2292 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2295 /* Here's a subroutine we need because C lacks lambdas. */
2297 static tree
2298 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2300 tree type = TREE_TYPE (binfo);
2301 tree fields;
2303 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2305 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2306 continue;
2308 TREE_USED (fields) = 0;
2309 if (DECL_NAME (fields) == NULL_TREE
2310 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2311 unuse_fields (TREE_TYPE (fields));
2314 return NULL_TREE;
2317 void
2318 unuse_fields (tree type)
2320 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2323 void
2324 pop_class_decls (void)
2326 /* We haven't pushed a search level when dealing with cached classes,
2327 so we'd better not try to pop it. */
2328 if (search_stack)
2329 search_stack = pop_search_level (search_stack);
2332 void
2333 print_search_statistics (void)
2335 #ifdef GATHER_STATISTICS
2336 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2337 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2338 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2339 n_outer_fields_searched, n_calls_lookup_fnfields);
2340 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2341 #else /* GATHER_STATISTICS */
2342 fprintf (stderr, "no search statistics\n");
2343 #endif /* GATHER_STATISTICS */
2346 void
2347 init_search_processing (void)
2349 gcc_obstack_init (&search_obstack);
2352 void
2353 reinit_search_statistics (void)
2355 #ifdef GATHER_STATISTICS
2356 n_fields_searched = 0;
2357 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2358 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2359 n_calls_get_base_type = 0;
2360 n_outer_fields_searched = 0;
2361 n_contexts_saved = 0;
2362 #endif /* GATHER_STATISTICS */
2365 static tree
2366 add_conversions (tree binfo, void *data)
2368 int i;
2369 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2370 tree *conversions = (tree *) data;
2372 /* Some builtin types have no method vector, not even an empty one. */
2373 if (!method_vec)
2374 return NULL_TREE;
2376 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2378 tree tmp = TREE_VEC_ELT (method_vec, i);
2379 tree name;
2381 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2382 break;
2384 name = DECL_NAME (OVL_CURRENT (tmp));
2386 /* Make sure we don't already have this conversion. */
2387 if (! IDENTIFIER_MARKED (name))
2389 tree t;
2391 /* Make sure that we do not already have a conversion
2392 operator for this type. Merely checking the NAME is not
2393 enough because two conversion operators to the same type
2394 may not have the same NAME. */
2395 for (t = *conversions; t; t = TREE_CHAIN (t))
2397 tree fn;
2398 for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
2399 if (same_type_p (TREE_TYPE (name),
2400 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
2401 break;
2402 if (fn)
2403 break;
2405 if (!t)
2407 *conversions = tree_cons (binfo, tmp, *conversions);
2408 IDENTIFIER_MARKED (name) = 1;
2412 return NULL_TREE;
2415 /* Return a TREE_LIST containing all the non-hidden user-defined
2416 conversion functions for TYPE (and its base-classes). The
2417 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2418 containing the conversion functions. The TREE_PURPOSE is the BINFO
2419 from which the conversion functions in this node were selected. */
2421 tree
2422 lookup_conversions (tree type)
2424 tree t;
2425 tree conversions = NULL_TREE;
2427 complete_type (type);
2428 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2430 for (t = conversions; t; t = TREE_CHAIN (t))
2431 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2433 return conversions;
2436 struct overlap_info
2438 tree compare_type;
2439 int found_overlap;
2442 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2443 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2445 static tree
2446 dfs_check_overlap (tree empty_binfo, void *data)
2448 struct overlap_info *oi = (struct overlap_info *) data;
2449 tree binfo;
2450 for (binfo = TYPE_BINFO (oi->compare_type);
2452 binfo = BINFO_BASETYPE (binfo, 0))
2454 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2456 oi->found_overlap = 1;
2457 break;
2459 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2460 break;
2463 return NULL_TREE;
2466 /* Trivial function to stop base traversal when we find something. */
2468 static tree
2469 dfs_no_overlap_yet (tree derived, int ix, void *data)
2471 tree binfo = BINFO_BASETYPE (derived, ix);
2472 struct overlap_info *oi = (struct overlap_info *) data;
2474 return !oi->found_overlap ? binfo : NULL_TREE;
2477 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2478 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2481 types_overlap_p (tree empty_type, tree next_type)
2483 struct overlap_info oi;
2485 if (! IS_AGGR_TYPE (next_type))
2486 return 0;
2487 oi.compare_type = next_type;
2488 oi.found_overlap = 0;
2489 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2490 dfs_no_overlap_yet, &oi);
2491 return oi.found_overlap;
2494 /* Given a vtable VAR, determine which of the inherited classes the vtable
2495 inherits (in a loose sense) functions from.
2497 FIXME: This does not work with the new ABI. */
2499 tree
2500 binfo_for_vtable (tree var)
2502 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2503 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2504 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2505 int i;
2507 for (i = 0; i < n_baseclasses; i++)
2509 tree base_binfo = TREE_VEC_ELT (binfos, i);
2510 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2511 return base_binfo;
2514 /* If no secondary base classes matched, return the primary base, if
2515 there is one. */
2516 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2517 return get_primary_binfo (main_binfo);
2519 return main_binfo;
2522 /* Returns the binfo of the first direct or indirect virtual base derived
2523 from BINFO, or NULL if binfo is not via virtual. */
2525 tree
2526 binfo_from_vbase (tree binfo)
2528 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2530 if (TREE_VIA_VIRTUAL (binfo))
2531 return binfo;
2533 return NULL_TREE;
2536 /* Returns the binfo of the first direct or indirect virtual base derived
2537 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2538 via virtual. */
2540 tree
2541 binfo_via_virtual (tree binfo, tree limit)
2543 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2544 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2546 if (TREE_VIA_VIRTUAL (binfo))
2547 return binfo;
2549 return NULL_TREE;
2552 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2553 Find the equivalent binfo within whatever graph HERE is located.
2554 This is the inverse of original_binfo. */
2556 tree
2557 copied_binfo (tree binfo, tree here)
2559 tree result = NULL_TREE;
2561 if (TREE_VIA_VIRTUAL (binfo))
2563 tree t;
2565 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2566 t = BINFO_INHERITANCE_CHAIN (t))
2567 continue;
2569 result = purpose_member (BINFO_TYPE (binfo),
2570 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2571 result = TREE_VALUE (result);
2573 else if (BINFO_INHERITANCE_CHAIN (binfo))
2575 tree base_binfos;
2576 int ix, n;
2578 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2579 base_binfos = BINFO_BASETYPES (base_binfos);
2580 n = TREE_VEC_LENGTH (base_binfos);
2581 for (ix = 0; ix != n; ix++)
2583 tree base = TREE_VEC_ELT (base_binfos, ix);
2585 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2587 result = base;
2588 break;
2592 else
2594 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2595 result = here;
2598 my_friendly_assert (result, 20030202);
2599 return result;
2602 /* BINFO is some base binfo of HERE, within some other
2603 hierarchy. Return the equivalent binfo, but in the hierarchy
2604 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2605 is not a base binfo of HERE, returns NULL_TREE. */
2607 tree
2608 original_binfo (tree binfo, tree here)
2610 tree result = NULL;
2612 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2613 result = here;
2614 else if (TREE_VIA_VIRTUAL (binfo))
2616 result = purpose_member (BINFO_TYPE (binfo),
2617 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2618 if (result)
2619 result = TREE_VALUE (result);
2621 else if (BINFO_INHERITANCE_CHAIN (binfo))
2623 tree base_binfos;
2625 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2626 if (base_binfos)
2628 int ix, n;
2630 base_binfos = BINFO_BASETYPES (base_binfos);
2631 n = TREE_VEC_LENGTH (base_binfos);
2632 for (ix = 0; ix != n; ix++)
2634 tree base = TREE_VEC_ELT (base_binfos, ix);
2636 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2638 result = base;
2639 break;
2645 return result;