Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / contrib / gcc-3.4 / gcc / config / i386 / i386.h
blob8a912d5f1d1c749bb477ce07d9eca6f591e2feb3
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Define the specific costs for a given cpu */
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
89 extern const struct processor_costs *ix86_cost;
91 /* Run-time compilation parameters selecting different hardware subsets. */
93 extern int target_flags;
95 /* Macros used in the machine description to test the flags. */
97 /* configure can arrange to make this 2, to force a 486. */
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_SSE3 0x00010000 /* Support SSE3 regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
132 /* Unused: 0x03e0000 */
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
223 #define TUNEMASK (1 << ix86_tune)
224 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
225 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
226 extern const int x86_branch_hints, x86_unroll_strlen;
227 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
228 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
229 extern const int x86_use_cltd, x86_read_modify_write;
230 extern const int x86_read_modify, x86_split_long_moves;
231 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
232 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
233 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
234 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
235 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
236 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
237 extern const int x86_epilogue_using_move, x86_decompose_lea;
238 extern const int x86_arch_always_fancy_math_387, x86_shift1;
239 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
240 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
241 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
242 extern const int x86_inter_unit_moves;
243 extern int x86_prefetch_sse;
245 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
246 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
247 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
248 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
249 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
250 /* For sane SSE instruction set generation we need fcomi instruction. It is
251 safe to enable all CMOVE instructions. */
252 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
253 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
254 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
255 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
256 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
257 #define TARGET_MOVX (x86_movx & TUNEMASK)
258 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
259 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
260 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
261 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
262 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
263 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
264 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
265 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
266 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
267 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
268 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
269 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
270 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
271 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
272 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
273 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
274 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
275 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
276 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
277 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
278 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
279 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
280 (x86_sse_partial_reg_dependency & TUNEMASK)
281 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
283 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
284 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
286 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
287 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
288 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
289 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
290 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
291 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
292 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
293 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
294 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
295 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
297 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
299 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
300 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
302 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
304 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
305 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
306 #define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
307 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
308 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
309 && (ix86_fpmath & FPMATH_387))
310 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
311 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
312 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
314 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
316 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
318 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
319 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
321 /* WARNING: Do not mark empty strings for translation, as calling
322 gettext on an empty string does NOT return an empty
323 string. */
326 #define TARGET_SWITCHES \
327 { { "80387", MASK_80387, N_("Use hardware fp") }, \
328 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
329 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
330 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
332 { "386", 0, "" /*Deprecated.*/}, \
333 { "486", 0, "" /*Deprecated.*/}, \
334 { "pentium", 0, "" /*Deprecated.*/}, \
335 { "pentiumpro", 0, "" /*Deprecated.*/}, \
336 { "pni", 0, "" /*Deprecated.*/}, \
337 { "no-pni", 0, "" /*Deprecated.*/}, \
338 { "intel-syntax", 0, "" /*Deprecated.*/}, \
339 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
340 { "rtd", MASK_RTD, \
341 N_("Alternate calling convention") }, \
342 { "no-rtd", -MASK_RTD, \
343 N_("Use normal calling convention") }, \
344 { "align-double", MASK_ALIGN_DOUBLE, \
345 N_("Align some doubles on dword boundary") }, \
346 { "no-align-double", -MASK_ALIGN_DOUBLE, \
347 N_("Align doubles on word boundary") }, \
348 { "svr3-shlib", MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .bss") }, \
350 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
351 N_("Uninitialized locals in .data") }, \
352 { "ieee-fp", MASK_IEEE_FP, \
353 N_("Use IEEE math for fp comparisons") }, \
354 { "no-ieee-fp", -MASK_IEEE_FP, \
355 N_("Do not use IEEE math for fp comparisons") }, \
356 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
357 N_("Return values of functions in FPU registers") }, \
358 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
359 N_("Do not return values of functions in FPU registers")}, \
360 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
361 N_("Do not generate sin, cos, sqrt for FPU") }, \
362 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
363 N_("Generate sin, cos, sqrt for FPU")}, \
364 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
365 N_("Omit the frame pointer in leaf functions") }, \
366 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
367 { "stack-arg-probe", MASK_STACK_PROBE, \
368 N_("Enable stack probing") }, \
369 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
370 { "windows", 0, 0 /* undocumented */ }, \
371 { "dll", 0, 0 /* undocumented */ }, \
372 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
373 N_("Align destination of the string operations") }, \
374 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
375 N_("Do not align destination of the string operations") }, \
376 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
377 N_("Inline all known string operations") }, \
378 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
379 N_("Do not inline all known string operations") }, \
380 { "push-args", -MASK_NO_PUSH_ARGS, \
381 N_("Use push instructions to save outgoing arguments") }, \
382 { "no-push-args", MASK_NO_PUSH_ARGS, \
383 N_("Do not use push instructions to save outgoing arguments") }, \
384 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Use push instructions to save outgoing arguments") }, \
386 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
387 N_("Do not use push instructions to save outgoing arguments") }, \
388 { "mmx", MASK_MMX, \
389 N_("Support MMX built-in functions") }, \
390 { "no-mmx", -MASK_MMX, \
391 N_("Do not support MMX built-in functions") }, \
392 { "3dnow", MASK_3DNOW, \
393 N_("Support 3DNow! built-in functions") }, \
394 { "no-3dnow", -MASK_3DNOW, \
395 N_("Do not support 3DNow! built-in functions") }, \
396 { "sse", MASK_SSE, \
397 N_("Support MMX and SSE built-in functions and code generation") }, \
398 { "no-sse", -MASK_SSE, \
399 N_("Do not support MMX and SSE built-in functions and code generation") },\
400 { "sse2", MASK_SSE2, \
401 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "no-sse2", -MASK_SSE2, \
403 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
404 { "sse3", MASK_SSE3, \
405 N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
406 { "no-sse3", -MASK_SSE3, \
407 N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
408 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 16") }, \
410 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
411 N_("sizeof(long double) is 12") }, \
412 { "64", MASK_64BIT, \
413 N_("Generate 64bit x86-64 code") }, \
414 { "32", -MASK_64BIT, \
415 N_("Generate 32bit i386 code") }, \
416 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use native (MS) bitfield layout") }, \
418 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
419 N_("Use gcc default bitfield layout") }, \
420 { "red-zone", -MASK_NO_RED_ZONE, \
421 N_("Use red-zone in the x86-64 code") }, \
422 { "no-red-zone", MASK_NO_RED_ZONE, \
423 N_("Do not use red-zone in the x86-64 code") }, \
424 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Use direct references against %gs when accessing tls data") }, \
426 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
427 N_("Do not use direct references against %gs when accessing tls data") }, \
428 SUBTARGET_SWITCHES \
429 { "", \
430 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
431 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
433 #ifndef TARGET_64BIT_DEFAULT
434 #define TARGET_64BIT_DEFAULT 0
435 #endif
436 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
437 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
438 #endif
440 /* Once GDB has been enhanced to deal with functions without frame
441 pointers, we can change this to allow for elimination of
442 the frame pointer in leaf functions. */
443 #define TARGET_DEFAULT 0
445 /* This is not really a target flag, but is done this way so that
446 it's analogous to similar code for Mach-O on PowerPC. darwin.h
447 redefines this to 1. */
448 #define TARGET_MACHO 0
450 /* Subtargets may reset this to 1 in order to enable 96-bit long double
451 with the rounding mode forced to 53 bits. */
452 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
454 /* This macro is similar to `TARGET_SWITCHES' but defines names of
455 command options that have values. Its definition is an
456 initializer with a subgrouping for each command option.
458 Each subgrouping contains a string constant, that defines the
459 fixed part of the option name, and the address of a variable. The
460 variable, type `char *', is set to the variable part of the given
461 option if the fixed part matches. The actual option name is made
462 by appending `-m' to the specified name. */
463 #define TARGET_OPTIONS \
464 { { "tune=", &ix86_tune_string, \
465 N_("Schedule code for given CPU"), 0}, \
466 { "fpmath=", &ix86_fpmath_string, \
467 N_("Generate floating point mathematics using given instruction set"), 0},\
468 { "arch=", &ix86_arch_string, \
469 N_("Generate code for given CPU"), 0}, \
470 { "regparm=", &ix86_regparm_string, \
471 N_("Number of registers used to pass integer arguments"), 0},\
472 { "align-loops=", &ix86_align_loops_string, \
473 N_("Loop code aligned to this power of 2"), 0}, \
474 { "align-jumps=", &ix86_align_jumps_string, \
475 N_("Jump targets are aligned to this power of 2"), 0}, \
476 { "align-functions=", &ix86_align_funcs_string, \
477 N_("Function starts are aligned to this power of 2"), 0}, \
478 { "preferred-stack-boundary=", \
479 &ix86_preferred_stack_boundary_string, \
480 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
481 { "branch-cost=", &ix86_branch_cost_string, \
482 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
483 { "cmodel=", &ix86_cmodel_string, \
484 N_("Use given x86-64 code model"), 0}, \
485 { "debug-arg", &ix86_debug_arg_string, \
486 "" /* Undocumented. */, 0}, \
487 { "debug-addr", &ix86_debug_addr_string, \
488 "" /* Undocumented. */, 0}, \
489 { "asm=", &ix86_asm_string, \
490 N_("Use given assembler dialect"), 0}, \
491 { "tls-dialect=", &ix86_tls_dialect_string, \
492 N_("Use given thread-local storage dialect"), 0}, \
493 SUBTARGET_OPTIONS \
496 /* Sometimes certain combinations of command options do not make
497 sense on a particular target machine. You can define a macro
498 `OVERRIDE_OPTIONS' to take account of this. This macro, if
499 defined, is executed once just after all the command options have
500 been parsed.
502 Don't use this macro to turn on various extra optimizations for
503 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
505 #define OVERRIDE_OPTIONS override_options ()
507 /* These are meant to be redefined in the host dependent files */
508 #define SUBTARGET_SWITCHES
509 #define SUBTARGET_OPTIONS
511 /* Define this to change the optimizations performed by default. */
512 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
513 optimization_options ((LEVEL), (SIZE))
515 /* Support for configure-time defaults of some command line options. */
516 #define OPTION_DEFAULT_SPECS \
517 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
518 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
519 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
521 /* Specs for the compiler proper */
523 #ifndef CC1_CPU_SPEC
524 #define CC1_CPU_SPEC "\
525 %{!mtune*: \
526 %{m386:mtune=i386 \
527 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
528 %{m486:-mtune=i486 \
529 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
530 %{mpentium:-mtune=pentium \
531 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
532 %{mpentiumpro:-mtune=pentiumpro \
533 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
534 %{mcpu=*:-mtune=%* \
535 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
536 %<mcpu=* \
537 %{mpni:-msse3 \
538 %n`-mpni' is deprecated. Use `-msse3' instead.\n} \
539 %{mno-pni:-mno-sse3 \
540 %n`-mno-pni' is deprecated. Use `-mno-sse3' instead.\n} \
541 %{mintel-syntax:-masm=intel \
542 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
543 %{mno-intel-syntax:-masm=att \
544 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
545 #endif
547 /* Target CPU builtins. */
548 #define TARGET_CPU_CPP_BUILTINS() \
549 do \
551 size_t arch_len = strlen (ix86_arch_string); \
552 size_t tune_len = strlen (ix86_tune_string); \
553 int last_arch_char = ix86_arch_string[arch_len - 1]; \
554 int last_tune_char = ix86_tune_string[tune_len - 1]; \
556 if (TARGET_64BIT) \
558 builtin_assert ("cpu=x86_64"); \
559 builtin_assert ("machine=x86_64"); \
560 builtin_define ("__amd64"); \
561 builtin_define ("__amd64__"); \
562 builtin_define ("__x86_64"); \
563 builtin_define ("__x86_64__"); \
565 else \
567 builtin_assert ("cpu=i386"); \
568 builtin_assert ("machine=i386"); \
569 builtin_define_std ("i386"); \
572 /* Built-ins based on -mtune= (or -march= if no \
573 -mtune= given). */ \
574 if (TARGET_386) \
575 builtin_define ("__tune_i386__"); \
576 else if (TARGET_486) \
577 builtin_define ("__tune_i486__"); \
578 else if (TARGET_PENTIUM) \
580 builtin_define ("__tune_i586__"); \
581 builtin_define ("__tune_pentium__"); \
582 if (last_tune_char == 'x') \
583 builtin_define ("__tune_pentium_mmx__"); \
585 else if (TARGET_PENTIUMPRO) \
587 builtin_define ("__tune_i686__"); \
588 builtin_define ("__tune_pentiumpro__"); \
589 switch (last_tune_char) \
591 case '3': \
592 builtin_define ("__tune_pentium3__"); \
593 /* FALLTHRU */ \
594 case '2': \
595 builtin_define ("__tune_pentium2__"); \
596 break; \
599 else if (TARGET_K6) \
601 builtin_define ("__tune_k6__"); \
602 if (last_tune_char == '2') \
603 builtin_define ("__tune_k6_2__"); \
604 else if (last_tune_char == '3') \
605 builtin_define ("__tune_k6_3__"); \
607 else if (TARGET_ATHLON) \
609 builtin_define ("__tune_athlon__"); \
610 /* Only plain "athlon" lacks SSE. */ \
611 if (last_tune_char != 'n') \
612 builtin_define ("__tune_athlon_sse__"); \
614 else if (TARGET_K8) \
615 builtin_define ("__tune_k8__"); \
616 else if (TARGET_PENTIUM4) \
617 builtin_define ("__tune_pentium4__"); \
619 if (TARGET_MMX) \
620 builtin_define ("__MMX__"); \
621 if (TARGET_3DNOW) \
622 builtin_define ("__3dNOW__"); \
623 if (TARGET_3DNOW_A) \
624 builtin_define ("__3dNOW_A__"); \
625 if (TARGET_SSE) \
626 builtin_define ("__SSE__"); \
627 if (TARGET_SSE2) \
628 builtin_define ("__SSE2__"); \
629 if (TARGET_SSE3) \
631 builtin_define ("__SSE3__"); \
632 builtin_define ("__PNI__"); \
634 if (TARGET_SSE_MATH && TARGET_SSE) \
635 builtin_define ("__SSE_MATH__"); \
636 if (TARGET_SSE_MATH && TARGET_SSE2) \
637 builtin_define ("__SSE2_MATH__"); \
639 /* Built-ins based on -march=. */ \
640 if (ix86_arch == PROCESSOR_I486) \
642 builtin_define ("__i486"); \
643 builtin_define ("__i486__"); \
645 else if (ix86_arch == PROCESSOR_PENTIUM) \
647 builtin_define ("__i586"); \
648 builtin_define ("__i586__"); \
649 builtin_define ("__pentium"); \
650 builtin_define ("__pentium__"); \
651 if (last_arch_char == 'x') \
652 builtin_define ("__pentium_mmx__"); \
654 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
656 builtin_define ("__i686"); \
657 builtin_define ("__i686__"); \
658 builtin_define ("__pentiumpro"); \
659 builtin_define ("__pentiumpro__"); \
661 else if (ix86_arch == PROCESSOR_K6) \
664 builtin_define ("__k6"); \
665 builtin_define ("__k6__"); \
666 if (last_arch_char == '2') \
667 builtin_define ("__k6_2__"); \
668 else if (last_arch_char == '3') \
669 builtin_define ("__k6_3__"); \
671 else if (ix86_arch == PROCESSOR_ATHLON) \
673 builtin_define ("__athlon"); \
674 builtin_define ("__athlon__"); \
675 /* Only plain "athlon" lacks SSE. */ \
676 if (last_arch_char != 'n') \
677 builtin_define ("__athlon_sse__"); \
679 else if (ix86_arch == PROCESSOR_K8) \
681 builtin_define ("__k8"); \
682 builtin_define ("__k8__"); \
684 else if (ix86_arch == PROCESSOR_PENTIUM4) \
686 builtin_define ("__pentium4"); \
687 builtin_define ("__pentium4__"); \
690 while (0)
692 #define TARGET_CPU_DEFAULT_i386 0
693 #define TARGET_CPU_DEFAULT_i486 1
694 #define TARGET_CPU_DEFAULT_pentium 2
695 #define TARGET_CPU_DEFAULT_pentium_mmx 3
696 #define TARGET_CPU_DEFAULT_pentiumpro 4
697 #define TARGET_CPU_DEFAULT_pentium2 5
698 #define TARGET_CPU_DEFAULT_pentium3 6
699 #define TARGET_CPU_DEFAULT_pentium4 7
700 #define TARGET_CPU_DEFAULT_k6 8
701 #define TARGET_CPU_DEFAULT_k6_2 9
702 #define TARGET_CPU_DEFAULT_k6_3 10
703 #define TARGET_CPU_DEFAULT_athlon 11
704 #define TARGET_CPU_DEFAULT_athlon_sse 12
705 #define TARGET_CPU_DEFAULT_k8 13
706 #define TARGET_CPU_DEFAULT_pentium_m 14
707 #define TARGET_CPU_DEFAULT_prescott 15
708 #define TARGET_CPU_DEFAULT_nocona 16
710 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
711 "pentiumpro", "pentium2", "pentium3", \
712 "pentium4", "k6", "k6-2", "k6-3",\
713 "athlon", "athlon-4", "k8", \
714 "pentium-m", "prescott", "nocona"}
716 #ifndef CC1_SPEC
717 #define CC1_SPEC "%(cc1_cpu) "
718 #endif
720 /* This macro defines names of additional specifications to put in the
721 specs that can be used in various specifications like CC1_SPEC. Its
722 definition is an initializer with a subgrouping for each command option.
724 Each subgrouping contains a string constant, that defines the
725 specification name, and a string constant that used by the GCC driver
726 program.
728 Do not define this macro if it does not need to do anything. */
730 #ifndef SUBTARGET_EXTRA_SPECS
731 #define SUBTARGET_EXTRA_SPECS
732 #endif
734 #define EXTRA_SPECS \
735 { "cc1_cpu", CC1_CPU_SPEC }, \
736 SUBTARGET_EXTRA_SPECS
738 /* target machine storage layout */
740 #define LONG_DOUBLE_TYPE_SIZE 96
742 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
743 FPU, assume that the fpcw is set to extended precision; when using
744 only SSE, rounding is correct; when using both SSE and the FPU,
745 the rounding precision is indeterminate, since either may be chosen
746 apparently at random. */
747 #define TARGET_FLT_EVAL_METHOD \
748 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
750 #define SHORT_TYPE_SIZE 16
751 #define INT_TYPE_SIZE 32
752 #define FLOAT_TYPE_SIZE 32
753 #define LONG_TYPE_SIZE BITS_PER_WORD
754 #define MAX_WCHAR_TYPE_SIZE 32
755 #define DOUBLE_TYPE_SIZE 64
756 #define LONG_LONG_TYPE_SIZE 64
758 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
759 #define MAX_BITS_PER_WORD 64
760 #define MAX_LONG_TYPE_SIZE 64
761 #else
762 #define MAX_BITS_PER_WORD 32
763 #define MAX_LONG_TYPE_SIZE 32
764 #endif
766 /* Define this if most significant byte of a word is the lowest numbered. */
767 /* That is true on the 80386. */
769 #define BITS_BIG_ENDIAN 0
771 /* Define this if most significant byte of a word is the lowest numbered. */
772 /* That is not true on the 80386. */
773 #define BYTES_BIG_ENDIAN 0
775 /* Define this if most significant word of a multiword number is the lowest
776 numbered. */
777 /* Not true for 80386 */
778 #define WORDS_BIG_ENDIAN 0
780 /* Width of a word, in units (bytes). */
781 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
782 #ifdef IN_LIBGCC2
783 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
784 #else
785 #define MIN_UNITS_PER_WORD 4
786 #endif
788 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
789 #define PARM_BOUNDARY BITS_PER_WORD
791 /* Boundary (in *bits*) on which stack pointer should be aligned. */
792 #define STACK_BOUNDARY BITS_PER_WORD
794 /* Boundary (in *bits*) on which the stack pointer prefers to be
795 aligned; the compiler cannot rely on having this alignment. */
796 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
798 /* As of July 2001, many runtimes to not align the stack properly when
799 entering main. This causes expand_main_function to forcibly align
800 the stack, which results in aligned frames for functions called from
801 main, though it does nothing for the alignment of main itself. */
802 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
803 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
805 /* Minimum allocation boundary for the code of a function. */
806 #define FUNCTION_BOUNDARY 8
808 /* C++ stores the virtual bit in the lowest bit of function pointers. */
809 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
811 /* Alignment of field after `int : 0' in a structure. */
813 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
815 /* Minimum size in bits of the largest boundary to which any
816 and all fundamental data types supported by the hardware
817 might need to be aligned. No data type wants to be aligned
818 rounder than this.
820 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
821 and Pentium Pro XFmode values at 128 bit boundaries. */
823 #define BIGGEST_ALIGNMENT 128
825 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
826 #define ALIGN_MODE_128(MODE) \
827 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
829 /* The published ABIs say that doubles should be aligned on word
830 boundaries, so lower the alignment for structure fields unless
831 -malign-double is set. */
833 /* ??? Blah -- this macro is used directly by libobjc. Since it
834 supports no vector modes, cut out the complexity and fall back
835 on BIGGEST_FIELD_ALIGNMENT. */
836 #ifdef IN_TARGET_LIBS
837 #ifdef __x86_64__
838 #define BIGGEST_FIELD_ALIGNMENT 128
839 #else
840 #define BIGGEST_FIELD_ALIGNMENT 32
841 #endif
842 #else
843 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
844 x86_field_alignment (FIELD, COMPUTED)
845 #endif
847 /* If defined, a C expression to compute the alignment given to a
848 constant that is being placed in memory. EXP is the constant
849 and ALIGN is the alignment that the object would ordinarily have.
850 The value of this macro is used instead of that alignment to align
851 the object.
853 If this macro is not defined, then ALIGN is used.
855 The typical use of this macro is to increase alignment for string
856 constants to be word aligned so that `strcpy' calls that copy
857 constants can be done inline. */
859 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
861 /* If defined, a C expression to compute the alignment for a static
862 variable. TYPE is the data type, and ALIGN is the alignment that
863 the object would ordinarily have. The value of this macro is used
864 instead of that alignment to align the object.
866 If this macro is not defined, then ALIGN is used.
868 One use of this macro is to increase alignment of medium-size
869 data to make it all fit in fewer cache lines. Another is to
870 cause character arrays to be word-aligned so that `strcpy' calls
871 that copy constants to character arrays can be done inline. */
873 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
875 /* If defined, a C expression to compute the alignment for a local
876 variable. TYPE is the data type, and ALIGN is the alignment that
877 the object would ordinarily have. The value of this macro is used
878 instead of that alignment to align the object.
880 If this macro is not defined, then ALIGN is used.
882 One use of this macro is to increase alignment of medium-size
883 data to make it all fit in fewer cache lines. */
885 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
887 /* If defined, a C expression that gives the alignment boundary, in
888 bits, of an argument with the specified mode and type. If it is
889 not defined, `PARM_BOUNDARY' is used for all arguments. */
891 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
892 ix86_function_arg_boundary ((MODE), (TYPE))
894 /* Set this nonzero if move instructions will actually fail to work
895 when given unaligned data. */
896 #define STRICT_ALIGNMENT 0
898 /* If bit field type is int, don't let it cross an int,
899 and give entire struct the alignment of an int. */
900 /* Required on the 386 since it doesn't have bit-field insns. */
901 #define PCC_BITFIELD_TYPE_MATTERS 1
903 /* Standard register usage. */
905 /* This processor has special stack-like registers. See reg-stack.c
906 for details. */
908 #define STACK_REGS
909 #define IS_STACK_MODE(MODE) \
910 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
912 /* Number of actual hardware registers.
913 The hardware registers are assigned numbers for the compiler
914 from 0 to just below FIRST_PSEUDO_REGISTER.
915 All registers that the compiler knows about must be given numbers,
916 even those that are not normally considered general registers.
918 In the 80386 we give the 8 general purpose registers the numbers 0-7.
919 We number the floating point registers 8-15.
920 Note that registers 0-7 can be accessed as a short or int,
921 while only 0-3 may be used with byte `mov' instructions.
923 Reg 16 does not correspond to any hardware register, but instead
924 appears in the RTL as an argument pointer prior to reload, and is
925 eliminated during reloading in favor of either the stack or frame
926 pointer. */
928 #define FIRST_PSEUDO_REGISTER 53
930 /* Number of hardware registers that go into the DWARF-2 unwind info.
931 If not defined, equals FIRST_PSEUDO_REGISTER. */
933 #define DWARF_FRAME_REGISTERS 17
935 /* 1 for registers that have pervasive standard uses
936 and are not available for the register allocator.
937 On the 80386, the stack pointer is such, as is the arg pointer.
939 The value is a mask - bit 1 is set for fixed registers
940 for 32bit target, while 2 is set for fixed registers for 64bit.
941 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
943 #define FIXED_REGISTERS \
944 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
945 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
946 /*arg,flags,fpsr,dir,frame*/ \
947 3, 3, 3, 3, 3, \
948 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
949 0, 0, 0, 0, 0, 0, 0, 0, \
950 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
951 0, 0, 0, 0, 0, 0, 0, 0, \
952 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
953 1, 1, 1, 1, 1, 1, 1, 1, \
954 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
955 1, 1, 1, 1, 1, 1, 1, 1}
958 /* 1 for registers not available across function calls.
959 These must include the FIXED_REGISTERS and also any
960 registers that can be used without being saved.
961 The latter must include the registers where values are returned
962 and the register where structure-value addresses are passed.
963 Aside from that, you can include as many other registers as you like.
965 The value is a mask - bit 1 is set for call used
966 for 32bit target, while 2 is set for call used for 64bit.
967 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
969 #define CALL_USED_REGISTERS \
970 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
971 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
972 /*arg,flags,fpsr,dir,frame*/ \
973 3, 3, 3, 3, 3, \
974 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
975 3, 3, 3, 3, 3, 3, 3, 3, \
976 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
977 3, 3, 3, 3, 3, 3, 3, 3, \
978 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
979 3, 3, 3, 3, 1, 1, 1, 1, \
980 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
981 3, 3, 3, 3, 3, 3, 3, 3} \
983 /* Order in which to allocate registers. Each register must be
984 listed once, even those in FIXED_REGISTERS. List frame pointer
985 late and fixed registers last. Note that, in general, we prefer
986 registers listed in CALL_USED_REGISTERS, keeping the others
987 available for storage of persistent values.
989 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
990 so this is just empty initializer for array. */
992 #define REG_ALLOC_ORDER \
993 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
994 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
995 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
996 48, 49, 50, 51, 52 }
998 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
999 to be rearranged based on a particular function. When using sse math,
1000 we want to allocate SSE before x87 registers and vice vera. */
1002 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1005 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1006 #define CONDITIONAL_REGISTER_USAGE \
1007 do { \
1008 int i; \
1009 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1011 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
1012 call_used_regs[i] = (call_used_regs[i] \
1013 & (TARGET_64BIT ? 2 : 1)) != 0; \
1015 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1017 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1018 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1020 if (! TARGET_MMX) \
1022 int i; \
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1024 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1025 fixed_regs[i] = call_used_regs[i] = 1; \
1027 if (! TARGET_SSE) \
1029 int i; \
1030 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1031 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1032 fixed_regs[i] = call_used_regs[i] = 1; \
1034 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1036 int i; \
1037 HARD_REG_SET x; \
1038 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1040 if (TEST_HARD_REG_BIT (x, i)) \
1041 fixed_regs[i] = call_used_regs[i] = 1; \
1043 } while (0)
1045 /* Return number of consecutive hard regs needed starting at reg REGNO
1046 to hold something of mode MODE.
1047 This is ordinarily the length in words of a value of mode MODE
1048 but can be less for certain modes in special long registers.
1050 Actually there are no two word move instructions for consecutive
1051 registers. And only registers 0-3 may have mov byte instructions
1052 applied to them.
1055 #define HARD_REGNO_NREGS(REGNO, MODE) \
1056 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1057 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1058 : ((MODE) == XFmode \
1059 ? (TARGET_64BIT ? 2 : 3) \
1060 : (MODE) == XCmode \
1061 ? (TARGET_64BIT ? 4 : 6) \
1062 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1064 #define VALID_SSE2_REG_MODE(MODE) \
1065 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1066 || (MODE) == V2DImode || (MODE) == DFmode)
1068 #define VALID_SSE_REG_MODE(MODE) \
1069 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1070 || (MODE) == SFmode || (MODE) == TFmode)
1072 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1073 ((MODE) == V2SFmode || (MODE) == SFmode)
1075 #define VALID_MMX_REG_MODE(MODE) \
1076 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1077 || (MODE) == V2SImode || (MODE) == SImode)
1079 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1080 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1081 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1082 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1084 #define VALID_FP_MODE_P(MODE) \
1085 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1086 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1088 #define VALID_INT_MODE_P(MODE) \
1089 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1090 || (MODE) == DImode \
1091 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1092 || (MODE) == CDImode \
1093 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1094 || (MODE) == TFmode || (MODE) == TCmode)))
1096 /* Return true for modes passed in SSE registers. */
1097 #define SSE_REG_MODE_P(MODE) \
1098 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1099 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1100 || (MODE) == V4SFmode || (MODE) == V4SImode)
1102 /* Return true for modes passed in MMX registers. */
1103 #define MMX_REG_MODE_P(MODE) \
1104 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1105 || (MODE) == V2SFmode)
1107 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1109 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1110 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1112 /* Value is 1 if it is a good idea to tie two pseudo registers
1113 when one has mode MODE1 and one has mode MODE2.
1114 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1115 for any hard reg, then this must be 0 for correct output. */
1117 #define MODES_TIEABLE_P(MODE1, MODE2) \
1118 ((MODE1) == (MODE2) \
1119 || (((MODE1) == HImode || (MODE1) == SImode \
1120 || ((MODE1) == QImode \
1121 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1122 || ((MODE1) == DImode && TARGET_64BIT)) \
1123 && ((MODE2) == HImode || (MODE2) == SImode \
1124 || ((MODE2) == QImode \
1125 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1126 || ((MODE2) == DImode && TARGET_64BIT))))
1128 /* It is possible to write patterns to move flags; but until someone
1129 does it, */
1130 #define AVOID_CCMODE_COPIES
1132 /* Specify the modes required to caller save a given hard regno.
1133 We do this on i386 to prevent flags from being saved at all.
1135 Kill any attempts to combine saving of modes. */
1137 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1138 (CC_REGNO_P (REGNO) ? VOIDmode \
1139 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1140 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1141 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1142 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1143 : (MODE))
1144 /* Specify the registers used for certain standard purposes.
1145 The values of these macros are register numbers. */
1147 /* on the 386 the pc register is %eip, and is not usable as a general
1148 register. The ordinary mov instructions won't work */
1149 /* #define PC_REGNUM */
1151 /* Register to use for pushing function arguments. */
1152 #define STACK_POINTER_REGNUM 7
1154 /* Base register for access to local variables of the function. */
1155 #define HARD_FRAME_POINTER_REGNUM 6
1157 /* Base register for access to local variables of the function. */
1158 #define FRAME_POINTER_REGNUM 20
1160 /* First floating point reg */
1161 #define FIRST_FLOAT_REG 8
1163 /* First & last stack-like regs */
1164 #define FIRST_STACK_REG FIRST_FLOAT_REG
1165 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1167 #define FLAGS_REG 17
1168 #define FPSR_REG 18
1169 #define DIRFLAG_REG 19
1171 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1172 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1174 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1175 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1177 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1178 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1180 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1181 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1183 /* Value should be nonzero if functions must have frame pointers.
1184 Zero means the frame pointer need not be set up (and parms
1185 may be accessed via the stack pointer) in functions that seem suitable.
1186 This is computed in `reload', in reload1.c. */
1187 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1189 /* Override this in other tm.h files to cope with various OS losage
1190 requiring a frame pointer. */
1191 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1192 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1193 #endif
1195 /* Make sure we can access arbitrary call frames. */
1196 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1198 /* Base register for access to arguments of the function. */
1199 #define ARG_POINTER_REGNUM 16
1201 /* Register in which static-chain is passed to a function.
1202 We do use ECX as static chain register for 32 bit ABI. On the
1203 64bit ABI, ECX is an argument register, so we use R10 instead. */
1204 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1206 /* Register to hold the addressing base for position independent
1207 code access to data items. We don't use PIC pointer for 64bit
1208 mode. Define the regnum to dummy value to prevent gcc from
1209 pessimizing code dealing with EBX.
1211 To avoid clobbering a call-saved register unnecessarily, we renumber
1212 the pic register when possible. The change is visible after the
1213 prologue has been emitted. */
1215 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1217 #define PIC_OFFSET_TABLE_REGNUM \
1218 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1219 : reload_completed ? REGNO (pic_offset_table_rtx) \
1220 : REAL_PIC_OFFSET_TABLE_REGNUM)
1222 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1224 /* Register in which address to store a structure value
1225 arrives in the function. On the 386, the prologue
1226 copies this from the stack to register %eax. */
1227 #define STRUCT_VALUE_INCOMING 0
1229 /* Place in which caller passes the structure value address.
1230 0 means push the value on the stack like an argument. */
1231 #define STRUCT_VALUE 0
1233 /* A C expression which can inhibit the returning of certain function
1234 values in registers, based on the type of value. A nonzero value
1235 says to return the function value in memory, just as large
1236 structures are always returned. Here TYPE will be a C expression
1237 of type `tree', representing the data type of the value.
1239 Note that values of mode `BLKmode' must be explicitly handled by
1240 this macro. Also, the option `-fpcc-struct-return' takes effect
1241 regardless of this macro. On most systems, it is possible to
1242 leave the macro undefined; this causes a default definition to be
1243 used, whose value is the constant 1 for `BLKmode' values, and 0
1244 otherwise.
1246 Do not use this macro to indicate that structures and unions
1247 should always be returned in memory. You should instead use
1248 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1250 #define RETURN_IN_MEMORY(TYPE) \
1251 ix86_return_in_memory (TYPE)
1253 /* This is overridden by <cygwin.h>. */
1254 #define MS_AGGREGATE_RETURN 0
1257 /* Define the classes of registers for register constraints in the
1258 machine description. Also define ranges of constants.
1260 One of the classes must always be named ALL_REGS and include all hard regs.
1261 If there is more than one class, another class must be named NO_REGS
1262 and contain no registers.
1264 The name GENERAL_REGS must be the name of a class (or an alias for
1265 another name such as ALL_REGS). This is the class of registers
1266 that is allowed by "g" or "r" in a register constraint.
1267 Also, registers outside this class are allocated only when
1268 instructions express preferences for them.
1270 The classes must be numbered in nondecreasing order; that is,
1271 a larger-numbered class must never be contained completely
1272 in a smaller-numbered class.
1274 For any two classes, it is very desirable that there be another
1275 class that represents their union.
1277 It might seem that class BREG is unnecessary, since no useful 386
1278 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1279 and the "b" register constraint is useful in asms for syscalls.
1281 The flags and fpsr registers are in no class. */
1283 enum reg_class
1285 NO_REGS,
1286 AREG, DREG, CREG, BREG, SIREG, DIREG,
1287 AD_REGS, /* %eax/%edx for DImode */
1288 Q_REGS, /* %eax %ebx %ecx %edx */
1289 NON_Q_REGS, /* %esi %edi %ebp %esp */
1290 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1291 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1292 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1293 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1294 FLOAT_REGS,
1295 SSE_REGS,
1296 MMX_REGS,
1297 FP_TOP_SSE_REGS,
1298 FP_SECOND_SSE_REGS,
1299 FLOAT_SSE_REGS,
1300 FLOAT_INT_REGS,
1301 INT_SSE_REGS,
1302 FLOAT_INT_SSE_REGS,
1303 ALL_REGS, LIM_REG_CLASSES
1306 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1308 #define INTEGER_CLASS_P(CLASS) \
1309 reg_class_subset_p ((CLASS), GENERAL_REGS)
1310 #define FLOAT_CLASS_P(CLASS) \
1311 reg_class_subset_p ((CLASS), FLOAT_REGS)
1312 #define SSE_CLASS_P(CLASS) \
1313 reg_class_subset_p ((CLASS), SSE_REGS)
1314 #define MMX_CLASS_P(CLASS) \
1315 reg_class_subset_p ((CLASS), MMX_REGS)
1316 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1317 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1318 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1319 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1320 #define MAYBE_SSE_CLASS_P(CLASS) \
1321 reg_classes_intersect_p (SSE_REGS, (CLASS))
1322 #define MAYBE_MMX_CLASS_P(CLASS) \
1323 reg_classes_intersect_p (MMX_REGS, (CLASS))
1325 #define Q_CLASS_P(CLASS) \
1326 reg_class_subset_p ((CLASS), Q_REGS)
1328 /* Give names of register classes as strings for dump file. */
1330 #define REG_CLASS_NAMES \
1331 { "NO_REGS", \
1332 "AREG", "DREG", "CREG", "BREG", \
1333 "SIREG", "DIREG", \
1334 "AD_REGS", \
1335 "Q_REGS", "NON_Q_REGS", \
1336 "INDEX_REGS", \
1337 "LEGACY_REGS", \
1338 "GENERAL_REGS", \
1339 "FP_TOP_REG", "FP_SECOND_REG", \
1340 "FLOAT_REGS", \
1341 "SSE_REGS", \
1342 "MMX_REGS", \
1343 "FP_TOP_SSE_REGS", \
1344 "FP_SECOND_SSE_REGS", \
1345 "FLOAT_SSE_REGS", \
1346 "FLOAT_INT_REGS", \
1347 "INT_SSE_REGS", \
1348 "FLOAT_INT_SSE_REGS", \
1349 "ALL_REGS" }
1351 /* Define which registers fit in which classes.
1352 This is an initializer for a vector of HARD_REG_SET
1353 of length N_REG_CLASSES. */
1355 #define REG_CLASS_CONTENTS \
1356 { { 0x00, 0x0 }, \
1357 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1358 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1359 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1360 { 0x03, 0x0 }, /* AD_REGS */ \
1361 { 0x0f, 0x0 }, /* Q_REGS */ \
1362 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1363 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1364 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1365 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1366 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1367 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1368 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1369 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1370 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1371 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1372 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1373 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1374 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1375 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1376 { 0xffffffff,0x1fffff } \
1379 /* The same information, inverted:
1380 Return the class number of the smallest class containing
1381 reg number REGNO. This could be a conditional expression
1382 or could index an array. */
1384 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1386 /* When defined, the compiler allows registers explicitly used in the
1387 rtl to be used as spill registers but prevents the compiler from
1388 extending the lifetime of these registers. */
1390 #define SMALL_REGISTER_CLASSES 1
1392 #define QI_REG_P(X) \
1393 (REG_P (X) && REGNO (X) < 4)
1395 #define GENERAL_REGNO_P(N) \
1396 ((N) < 8 || REX_INT_REGNO_P (N))
1398 #define GENERAL_REG_P(X) \
1399 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1401 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1403 #define NON_QI_REG_P(X) \
1404 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1406 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1407 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1409 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1410 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1411 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1412 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1414 #define SSE_REGNO_P(N) \
1415 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1416 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1418 #define REX_SSE_REGNO_P(N) \
1419 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1421 #define SSE_REGNO(N) \
1422 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1423 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1425 #define SSE_FLOAT_MODE_P(MODE) \
1426 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1428 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1429 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1431 #define STACK_REG_P(XOP) \
1432 (REG_P (XOP) && \
1433 REGNO (XOP) >= FIRST_STACK_REG && \
1434 REGNO (XOP) <= LAST_STACK_REG)
1436 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1438 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1440 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1441 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1443 /* The class value for index registers, and the one for base regs. */
1445 #define INDEX_REG_CLASS INDEX_REGS
1446 #define BASE_REG_CLASS GENERAL_REGS
1448 /* Get reg_class from a letter such as appears in the machine description. */
1450 #define REG_CLASS_FROM_LETTER(C) \
1451 ((C) == 'r' ? GENERAL_REGS : \
1452 (C) == 'R' ? LEGACY_REGS : \
1453 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1454 (C) == 'Q' ? Q_REGS : \
1455 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1456 ? FLOAT_REGS \
1457 : NO_REGS) : \
1458 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1459 ? FP_TOP_REG \
1460 : NO_REGS) : \
1461 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1462 ? FP_SECOND_REG \
1463 : NO_REGS) : \
1464 (C) == 'a' ? AREG : \
1465 (C) == 'b' ? BREG : \
1466 (C) == 'c' ? CREG : \
1467 (C) == 'd' ? DREG : \
1468 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1469 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1470 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1471 (C) == 'A' ? AD_REGS : \
1472 (C) == 'D' ? DIREG : \
1473 (C) == 'S' ? SIREG : NO_REGS)
1475 /* The letters I, J, K, L and M in a register constraint string
1476 can be used to stand for particular ranges of immediate operands.
1477 This macro defines what the ranges are.
1478 C is the letter, and VALUE is a constant value.
1479 Return 1 if VALUE is in the range specified by C.
1481 I is for non-DImode shifts.
1482 J is for DImode shifts.
1483 K is for signed imm8 operands.
1484 L is for andsi as zero-extending move.
1485 M is for shifts that can be executed by the "lea" opcode.
1486 N is for immediate operands for out/in instructions (0-255)
1489 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1490 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1491 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1492 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1493 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1494 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1495 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1496 : 0)
1498 /* Similar, but for floating constants, and defining letters G and H.
1499 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1500 TARGET_387 isn't set, because the stack register converter may need to
1501 load 0.0 into the function value register. */
1503 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1504 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1505 : 0)
1507 /* A C expression that defines the optional machine-dependent
1508 constraint letters that can be used to segregate specific types of
1509 operands, usually memory references, for the target machine. Any
1510 letter that is not elsewhere defined and not matched by
1511 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1512 be defined.
1514 If it is required for a particular target machine, it should
1515 return 1 if VALUE corresponds to the operand type represented by
1516 the constraint letter C. If C is not defined as an extra
1517 constraint, the value returned should be 0 regardless of VALUE. */
1519 #define EXTRA_CONSTRAINT(VALUE, D) \
1520 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1521 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1522 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1523 : 0)
1525 /* Place additional restrictions on the register class to use when it
1526 is necessary to be able to hold a value of mode MODE in a reload
1527 register for which class CLASS would ordinarily be used. */
1529 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1530 ((MODE) == QImode && !TARGET_64BIT \
1531 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1532 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1533 ? Q_REGS : (CLASS))
1535 /* Given an rtx X being reloaded into a reg required to be
1536 in class CLASS, return the class of reg to actually use.
1537 In general this is just CLASS; but on some machines
1538 in some cases it is preferable to use a more restrictive class.
1539 On the 80386 series, we prevent floating constants from being
1540 reloaded into floating registers (since no move-insn can do that)
1541 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1543 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1544 QImode must go into class Q_REGS.
1545 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1546 movdf to do mem-to-mem moves through integer regs. */
1548 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1549 ix86_preferred_reload_class ((X), (CLASS))
1551 /* If we are copying between general and FP registers, we need a memory
1552 location. The same is true for SSE and MMX registers. */
1553 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1554 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1556 /* QImode spills from non-QI registers need a scratch. This does not
1557 happen often -- the only example so far requires an uninitialized
1558 pseudo. */
1560 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1561 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1562 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1563 ? Q_REGS : NO_REGS)
1565 /* Return the maximum number of consecutive registers
1566 needed to represent mode MODE in a register of class CLASS. */
1567 /* On the 80386, this is the size of MODE in words,
1568 except in the FP regs, where a single reg is always enough. */
1569 #define CLASS_MAX_NREGS(CLASS, MODE) \
1570 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1571 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1572 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1573 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1575 /* A C expression whose value is nonzero if pseudos that have been
1576 assigned to registers of class CLASS would likely be spilled
1577 because registers of CLASS are needed for spill registers.
1579 The default value of this macro returns 1 if CLASS has exactly one
1580 register and zero otherwise. On most machines, this default
1581 should be used. Only define this macro to some other expression
1582 if pseudo allocated by `local-alloc.c' end up in memory because
1583 their hard registers were needed for spill registers. If this
1584 macro returns nonzero for those classes, those pseudos will only
1585 be allocated by `global.c', which knows how to reallocate the
1586 pseudo to another register. If there would not be another
1587 register available for reallocation, you should not change the
1588 definition of this macro since the only effect of such a
1589 definition would be to slow down register allocation. */
1591 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1592 (((CLASS) == AREG) \
1593 || ((CLASS) == DREG) \
1594 || ((CLASS) == CREG) \
1595 || ((CLASS) == BREG) \
1596 || ((CLASS) == AD_REGS) \
1597 || ((CLASS) == SIREG) \
1598 || ((CLASS) == DIREG) \
1599 || ((CLASS) == FP_TOP_REG) \
1600 || ((CLASS) == FP_SECOND_REG))
1602 /* Return a class of registers that cannot change FROM mode to TO mode.
1604 x87 registers can't do subreg as all values are reformated to extended
1605 precision. XMM registers does not support with nonzero offsets equal
1606 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1607 determine these, prohibit all nonparadoxical subregs changing size. */
1609 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1610 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1611 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1612 || MAYBE_MMX_CLASS_P (CLASS) \
1613 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1614 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1616 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1617 to automatically clobber for all asms.
1619 We do this in the new i386 backend to maintain source compatibility
1620 with the old cc0-based compiler. */
1622 #define MD_ASM_CLOBBERS(CLOBBERS) \
1623 do { \
1624 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1625 (CLOBBERS)); \
1626 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1627 (CLOBBERS)); \
1628 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1629 (CLOBBERS)); \
1630 } while (0)
1632 /* Stack layout; function entry, exit and calling. */
1634 /* Define this if pushing a word on the stack
1635 makes the stack pointer a smaller address. */
1636 #define STACK_GROWS_DOWNWARD
1638 /* Define this if the nominal address of the stack frame
1639 is at the high-address end of the local variables;
1640 that is, each additional local variable allocated
1641 goes at a more negative offset in the frame. */
1642 #define FRAME_GROWS_DOWNWARD
1644 /* Offset within stack frame to start allocating local variables at.
1645 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1646 first local allocated. Otherwise, it is the offset to the BEGINNING
1647 of the first local allocated. */
1648 #define STARTING_FRAME_OFFSET 0
1650 /* If we generate an insn to push BYTES bytes,
1651 this says how many the stack pointer really advances by.
1652 On 386 pushw decrements by exactly 2 no matter what the position was.
1653 On the 386 there is no pushb; we use pushw instead, and this
1654 has the effect of rounding up to 2.
1656 For 64bit ABI we round up to 8 bytes.
1659 #define PUSH_ROUNDING(BYTES) \
1660 (TARGET_64BIT \
1661 ? (((BYTES) + 7) & (-8)) \
1662 : (((BYTES) + 1) & (-2)))
1664 /* If defined, the maximum amount of space required for outgoing arguments will
1665 be computed and placed into the variable
1666 `current_function_outgoing_args_size'. No space will be pushed onto the
1667 stack for each call; instead, the function prologue should increase the stack
1668 frame size by this amount. */
1670 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1672 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1673 instructions to pass outgoing arguments. */
1675 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1677 /* We want the stack and args grow in opposite directions, even if
1678 PUSH_ARGS is 0. */
1679 #define PUSH_ARGS_REVERSED 1
1681 /* Offset of first parameter from the argument pointer register value. */
1682 #define FIRST_PARM_OFFSET(FNDECL) 0
1684 /* Define this macro if functions should assume that stack space has been
1685 allocated for arguments even when their values are passed in registers.
1687 The value of this macro is the size, in bytes, of the area reserved for
1688 arguments passed in registers for the function represented by FNDECL.
1690 This space can be allocated by the caller, or be a part of the
1691 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1692 which. */
1693 #define REG_PARM_STACK_SPACE(FNDECL) 0
1695 /* Define as a C expression that evaluates to nonzero if we do not know how
1696 to pass TYPE solely in registers. The file expr.h defines a
1697 definition that is usually appropriate, refer to expr.h for additional
1698 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1699 computed in the stack and then loaded into a register. */
1700 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1702 /* Value is the number of bytes of arguments automatically
1703 popped when returning from a subroutine call.
1704 FUNDECL is the declaration node of the function (as a tree),
1705 FUNTYPE is the data type of the function (as a tree),
1706 or for a library call it is an identifier node for the subroutine name.
1707 SIZE is the number of bytes of arguments passed on the stack.
1709 On the 80386, the RTD insn may be used to pop them if the number
1710 of args is fixed, but if the number is variable then the caller
1711 must pop them all. RTD can't be used for library calls now
1712 because the library is compiled with the Unix compiler.
1713 Use of RTD is a selectable option, since it is incompatible with
1714 standard Unix calling sequences. If the option is not selected,
1715 the caller must always pop the args.
1717 The attribute stdcall is equivalent to RTD on a per module basis. */
1719 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1720 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1722 /* Define how to find the value returned by a function.
1723 VALTYPE is the data type of the value (as a tree).
1724 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1725 otherwise, FUNC is 0. */
1726 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1727 ix86_function_value (VALTYPE)
1729 #define FUNCTION_VALUE_REGNO_P(N) \
1730 ix86_function_value_regno_p (N)
1732 /* Define how to find the value returned by a library function
1733 assuming the value has mode MODE. */
1735 #define LIBCALL_VALUE(MODE) \
1736 ix86_libcall_value (MODE)
1738 /* Define the size of the result block used for communication between
1739 untyped_call and untyped_return. The block contains a DImode value
1740 followed by the block used by fnsave and frstor. */
1742 #define APPLY_RESULT_SIZE (8+108)
1744 /* 1 if N is a possible register number for function argument passing. */
1745 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1747 /* Define a data type for recording info about an argument list
1748 during the scan of that argument list. This data type should
1749 hold all necessary information about the function itself
1750 and about the args processed so far, enough to enable macros
1751 such as FUNCTION_ARG to determine where the next arg should go. */
1753 typedef struct ix86_args {
1754 int words; /* # words passed so far */
1755 int nregs; /* # registers available for passing */
1756 int regno; /* next available register number */
1757 int fastcall; /* fastcall calling convention is used */
1758 int sse_words; /* # sse words passed so far */
1759 int sse_nregs; /* # sse registers available for passing */
1760 int warn_sse; /* True when we want to warn about SSE ABI. */
1761 int warn_mmx; /* True when we want to warn about MMX ABI. */
1762 int sse_regno; /* next available sse register number */
1763 int mmx_words; /* # mmx words passed so far */
1764 int mmx_nregs; /* # mmx registers available for passing */
1765 int mmx_regno; /* next available mmx register number */
1766 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1767 } CUMULATIVE_ARGS;
1769 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1770 for a call to a function whose data type is FNTYPE.
1771 For a library call, FNTYPE is 0. */
1773 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1774 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1776 /* Update the data in CUM to advance over an argument
1777 of mode MODE and data type TYPE.
1778 (TYPE is null for libcalls where that information may not be available.) */
1780 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1781 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1783 /* Define where to put the arguments to a function.
1784 Value is zero to push the argument on the stack,
1785 or a hard register in which to store the argument.
1787 MODE is the argument's machine mode.
1788 TYPE is the data type of the argument (as a tree).
1789 This is null for libcalls where that information may
1790 not be available.
1791 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1792 the preceding args and about the function being called.
1793 NAMED is nonzero if this argument is a named parameter
1794 (otherwise it is an extra parameter matching an ellipsis). */
1796 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1797 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1799 /* For an arg passed partly in registers and partly in memory,
1800 this is the number of registers used.
1801 For args passed entirely in registers or entirely in memory, zero. */
1803 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1805 /* A C expression that indicates when an argument must be passed by
1806 reference. If nonzero for an argument, a copy of that argument is
1807 made in memory and a pointer to the argument is passed instead of
1808 the argument itself. The pointer is passed in whatever way is
1809 appropriate for passing a pointer to that type. */
1811 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1812 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1814 /* Perform any needed actions needed for a function that is receiving a
1815 variable number of arguments.
1817 CUM is as above.
1819 MODE and TYPE are the mode and type of the current parameter.
1821 PRETEND_SIZE is a variable that should be set to the amount of stack
1822 that must be pushed by the prolog to pretend that our caller pushed
1825 Normally, this macro will push all remaining incoming registers on the
1826 stack and set PRETEND_SIZE to the length of the registers pushed. */
1828 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1829 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1830 (NO_RTL))
1832 /* Implement `va_start' for varargs and stdarg. */
1833 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1834 ix86_va_start (VALIST, NEXTARG)
1836 /* Implement `va_arg'. */
1837 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1838 ix86_va_arg ((VALIST), (TYPE))
1840 #define TARGET_ASM_FILE_END ix86_file_end
1841 #define NEED_INDICATE_EXEC_STACK 0
1843 /* Output assembler code to FILE to increment profiler label # LABELNO
1844 for profiling a function entry. */
1846 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1848 #define MCOUNT_NAME "_mcount"
1850 #define PROFILE_COUNT_REGISTER "edx"
1852 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1853 the stack pointer does not matter. The value is tested only in
1854 functions that have frame pointers.
1855 No definition is equivalent to always zero. */
1856 /* Note on the 386 it might be more efficient not to define this since
1857 we have to restore it ourselves from the frame pointer, in order to
1858 use pop */
1860 #define EXIT_IGNORE_STACK 1
1862 /* Output assembler code for a block containing the constant parts
1863 of a trampoline, leaving space for the variable parts. */
1865 /* On the 386, the trampoline contains two instructions:
1866 mov #STATIC,ecx
1867 jmp FUNCTION
1868 The trampoline is generated entirely at runtime. The operand of JMP
1869 is the address of FUNCTION relative to the instruction following the
1870 JMP (which is 5 bytes long). */
1872 /* Length in units of the trampoline for entering a nested function. */
1874 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1876 /* Emit RTL insns to initialize the variable parts of a trampoline.
1877 FNADDR is an RTX for the address of the function's pure code.
1878 CXT is an RTX for the static chain value for the function. */
1880 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1881 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1883 /* Definitions for register eliminations.
1885 This is an array of structures. Each structure initializes one pair
1886 of eliminable registers. The "from" register number is given first,
1887 followed by "to". Eliminations of the same "from" register are listed
1888 in order of preference.
1890 There are two registers that can always be eliminated on the i386.
1891 The frame pointer and the arg pointer can be replaced by either the
1892 hard frame pointer or to the stack pointer, depending upon the
1893 circumstances. The hard frame pointer is not used before reload and
1894 so it is not eligible for elimination. */
1896 #define ELIMINABLE_REGS \
1897 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1898 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1899 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1900 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1902 /* Given FROM and TO register numbers, say whether this elimination is
1903 allowed. Frame pointer elimination is automatically handled.
1905 All other eliminations are valid. */
1907 #define CAN_ELIMINATE(FROM, TO) \
1908 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1910 /* Define the offset between two registers, one to be eliminated, and the other
1911 its replacement, at the start of a routine. */
1913 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1914 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1916 /* Addressing modes, and classification of registers for them. */
1918 /* Macros to check register numbers against specific register classes. */
1920 /* These assume that REGNO is a hard or pseudo reg number.
1921 They give nonzero only if REGNO is a hard reg of the suitable class
1922 or a pseudo reg currently allocated to a suitable hard reg.
1923 Since they use reg_renumber, they are safe only once reg_renumber
1924 has been allocated, which happens in local-alloc.c. */
1926 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1927 ((REGNO) < STACK_POINTER_REGNUM \
1928 || (REGNO >= FIRST_REX_INT_REG \
1929 && (REGNO) <= LAST_REX_INT_REG) \
1930 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1931 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1932 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1934 #define REGNO_OK_FOR_BASE_P(REGNO) \
1935 ((REGNO) <= STACK_POINTER_REGNUM \
1936 || (REGNO) == ARG_POINTER_REGNUM \
1937 || (REGNO) == FRAME_POINTER_REGNUM \
1938 || (REGNO >= FIRST_REX_INT_REG \
1939 && (REGNO) <= LAST_REX_INT_REG) \
1940 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1941 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1942 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1944 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1945 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1946 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1947 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1949 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1950 and check its validity for a certain class.
1951 We have two alternate definitions for each of them.
1952 The usual definition accepts all pseudo regs; the other rejects
1953 them unless they have been allocated suitable hard regs.
1954 The symbol REG_OK_STRICT causes the latter definition to be used.
1956 Most source files want to accept pseudo regs in the hope that
1957 they will get allocated to the class that the insn wants them to be in.
1958 Source files for reload pass need to be strict.
1959 After reload, it makes no difference, since pseudo regs have
1960 been eliminated by then. */
1963 /* Non strict versions, pseudos are ok */
1964 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1965 (REGNO (X) < STACK_POINTER_REGNUM \
1966 || (REGNO (X) >= FIRST_REX_INT_REG \
1967 && REGNO (X) <= LAST_REX_INT_REG) \
1968 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1970 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1971 (REGNO (X) <= STACK_POINTER_REGNUM \
1972 || REGNO (X) == ARG_POINTER_REGNUM \
1973 || REGNO (X) == FRAME_POINTER_REGNUM \
1974 || (REGNO (X) >= FIRST_REX_INT_REG \
1975 && REGNO (X) <= LAST_REX_INT_REG) \
1976 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1978 /* Strict versions, hard registers only */
1979 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1980 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1982 #ifndef REG_OK_STRICT
1983 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1984 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1986 #else
1987 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1988 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1989 #endif
1991 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1992 that is a valid memory address for an instruction.
1993 The MODE argument is the machine mode for the MEM expression
1994 that wants to use this address.
1996 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1997 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1999 See legitimize_pic_address in i386.c for details as to what
2000 constitutes a legitimate address when -fpic is used. */
2002 #define MAX_REGS_PER_ADDRESS 2
2004 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2006 /* Nonzero if the constant value X is a legitimate general operand.
2007 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2009 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2011 #ifdef REG_OK_STRICT
2012 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2013 do { \
2014 if (legitimate_address_p ((MODE), (X), 1)) \
2015 goto ADDR; \
2016 } while (0)
2018 #else
2019 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2020 do { \
2021 if (legitimate_address_p ((MODE), (X), 0)) \
2022 goto ADDR; \
2023 } while (0)
2025 #endif
2027 /* If defined, a C expression to determine the base term of address X.
2028 This macro is used in only one place: `find_base_term' in alias.c.
2030 It is always safe for this macro to not be defined. It exists so
2031 that alias analysis can understand machine-dependent addresses.
2033 The typical use of this macro is to handle addresses containing
2034 a label_ref or symbol_ref within an UNSPEC. */
2036 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
2038 /* Try machine-dependent ways of modifying an illegitimate address
2039 to be legitimate. If we find one, return the new, valid address.
2040 This macro is used in only one place: `memory_address' in explow.c.
2042 OLDX is the address as it was before break_out_memory_refs was called.
2043 In some cases it is useful to look at this to decide what needs to be done.
2045 MODE and WIN are passed so that this macro can use
2046 GO_IF_LEGITIMATE_ADDRESS.
2048 It is always safe for this macro to do nothing. It exists to recognize
2049 opportunities to optimize the output.
2051 For the 80386, we handle X+REG by loading X into a register R and
2052 using R+REG. R will go in a general reg and indexing will be used.
2053 However, if REG is a broken-out memory address or multiplication,
2054 nothing needs to be done because REG can certainly go in a general reg.
2056 When -fpic is used, special handling is needed for symbolic references.
2057 See comments by legitimize_pic_address in i386.c for details. */
2059 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2060 do { \
2061 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2062 if (memory_address_p ((MODE), (X))) \
2063 goto WIN; \
2064 } while (0)
2066 #define REWRITE_ADDRESS(X) rewrite_address (X)
2068 /* Nonzero if the constant value X is a legitimate general operand
2069 when generating PIC code. It is given that flag_pic is on and
2070 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2072 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2074 #define SYMBOLIC_CONST(X) \
2075 (GET_CODE (X) == SYMBOL_REF \
2076 || GET_CODE (X) == LABEL_REF \
2077 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2079 /* Go to LABEL if ADDR (a legitimate address expression)
2080 has an effect that depends on the machine mode it is used for.
2081 On the 80386, only postdecrement and postincrement address depend thus
2082 (the amount of decrement or increment being the length of the operand). */
2083 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2084 do { \
2085 if (GET_CODE (ADDR) == POST_INC \
2086 || GET_CODE (ADDR) == POST_DEC) \
2087 goto LABEL; \
2088 } while (0)
2090 /* Codes for all the SSE/MMX builtins. */
2091 enum ix86_builtins
2093 IX86_BUILTIN_ADDPS,
2094 IX86_BUILTIN_ADDSS,
2095 IX86_BUILTIN_DIVPS,
2096 IX86_BUILTIN_DIVSS,
2097 IX86_BUILTIN_MULPS,
2098 IX86_BUILTIN_MULSS,
2099 IX86_BUILTIN_SUBPS,
2100 IX86_BUILTIN_SUBSS,
2102 IX86_BUILTIN_CMPEQPS,
2103 IX86_BUILTIN_CMPLTPS,
2104 IX86_BUILTIN_CMPLEPS,
2105 IX86_BUILTIN_CMPGTPS,
2106 IX86_BUILTIN_CMPGEPS,
2107 IX86_BUILTIN_CMPNEQPS,
2108 IX86_BUILTIN_CMPNLTPS,
2109 IX86_BUILTIN_CMPNLEPS,
2110 IX86_BUILTIN_CMPNGTPS,
2111 IX86_BUILTIN_CMPNGEPS,
2112 IX86_BUILTIN_CMPORDPS,
2113 IX86_BUILTIN_CMPUNORDPS,
2114 IX86_BUILTIN_CMPNEPS,
2115 IX86_BUILTIN_CMPEQSS,
2116 IX86_BUILTIN_CMPLTSS,
2117 IX86_BUILTIN_CMPLESS,
2118 IX86_BUILTIN_CMPNEQSS,
2119 IX86_BUILTIN_CMPNLTSS,
2120 IX86_BUILTIN_CMPNLESS,
2121 IX86_BUILTIN_CMPORDSS,
2122 IX86_BUILTIN_CMPUNORDSS,
2123 IX86_BUILTIN_CMPNESS,
2125 IX86_BUILTIN_COMIEQSS,
2126 IX86_BUILTIN_COMILTSS,
2127 IX86_BUILTIN_COMILESS,
2128 IX86_BUILTIN_COMIGTSS,
2129 IX86_BUILTIN_COMIGESS,
2130 IX86_BUILTIN_COMINEQSS,
2131 IX86_BUILTIN_UCOMIEQSS,
2132 IX86_BUILTIN_UCOMILTSS,
2133 IX86_BUILTIN_UCOMILESS,
2134 IX86_BUILTIN_UCOMIGTSS,
2135 IX86_BUILTIN_UCOMIGESS,
2136 IX86_BUILTIN_UCOMINEQSS,
2138 IX86_BUILTIN_CVTPI2PS,
2139 IX86_BUILTIN_CVTPS2PI,
2140 IX86_BUILTIN_CVTSI2SS,
2141 IX86_BUILTIN_CVTSI642SS,
2142 IX86_BUILTIN_CVTSS2SI,
2143 IX86_BUILTIN_CVTSS2SI64,
2144 IX86_BUILTIN_CVTTPS2PI,
2145 IX86_BUILTIN_CVTTSS2SI,
2146 IX86_BUILTIN_CVTTSS2SI64,
2148 IX86_BUILTIN_MAXPS,
2149 IX86_BUILTIN_MAXSS,
2150 IX86_BUILTIN_MINPS,
2151 IX86_BUILTIN_MINSS,
2153 IX86_BUILTIN_LOADAPS,
2154 IX86_BUILTIN_LOADUPS,
2155 IX86_BUILTIN_STOREAPS,
2156 IX86_BUILTIN_STOREUPS,
2157 IX86_BUILTIN_LOADSS,
2158 IX86_BUILTIN_STORESS,
2159 IX86_BUILTIN_MOVSS,
2161 IX86_BUILTIN_MOVHLPS,
2162 IX86_BUILTIN_MOVLHPS,
2163 IX86_BUILTIN_LOADHPS,
2164 IX86_BUILTIN_LOADLPS,
2165 IX86_BUILTIN_STOREHPS,
2166 IX86_BUILTIN_STORELPS,
2168 IX86_BUILTIN_MASKMOVQ,
2169 IX86_BUILTIN_MOVMSKPS,
2170 IX86_BUILTIN_PMOVMSKB,
2172 IX86_BUILTIN_MOVNTPS,
2173 IX86_BUILTIN_MOVNTQ,
2175 IX86_BUILTIN_LOADDQA,
2176 IX86_BUILTIN_LOADDQU,
2177 IX86_BUILTIN_STOREDQA,
2178 IX86_BUILTIN_STOREDQU,
2179 IX86_BUILTIN_MOVQ,
2180 IX86_BUILTIN_LOADD,
2181 IX86_BUILTIN_STORED,
2183 IX86_BUILTIN_CLRTI,
2185 IX86_BUILTIN_PACKSSWB,
2186 IX86_BUILTIN_PACKSSDW,
2187 IX86_BUILTIN_PACKUSWB,
2189 IX86_BUILTIN_PADDB,
2190 IX86_BUILTIN_PADDW,
2191 IX86_BUILTIN_PADDD,
2192 IX86_BUILTIN_PADDQ,
2193 IX86_BUILTIN_PADDSB,
2194 IX86_BUILTIN_PADDSW,
2195 IX86_BUILTIN_PADDUSB,
2196 IX86_BUILTIN_PADDUSW,
2197 IX86_BUILTIN_PSUBB,
2198 IX86_BUILTIN_PSUBW,
2199 IX86_BUILTIN_PSUBD,
2200 IX86_BUILTIN_PSUBQ,
2201 IX86_BUILTIN_PSUBSB,
2202 IX86_BUILTIN_PSUBSW,
2203 IX86_BUILTIN_PSUBUSB,
2204 IX86_BUILTIN_PSUBUSW,
2206 IX86_BUILTIN_PAND,
2207 IX86_BUILTIN_PANDN,
2208 IX86_BUILTIN_POR,
2209 IX86_BUILTIN_PXOR,
2211 IX86_BUILTIN_PAVGB,
2212 IX86_BUILTIN_PAVGW,
2214 IX86_BUILTIN_PCMPEQB,
2215 IX86_BUILTIN_PCMPEQW,
2216 IX86_BUILTIN_PCMPEQD,
2217 IX86_BUILTIN_PCMPGTB,
2218 IX86_BUILTIN_PCMPGTW,
2219 IX86_BUILTIN_PCMPGTD,
2221 IX86_BUILTIN_PEXTRW,
2222 IX86_BUILTIN_PINSRW,
2224 IX86_BUILTIN_PMADDWD,
2226 IX86_BUILTIN_PMAXSW,
2227 IX86_BUILTIN_PMAXUB,
2228 IX86_BUILTIN_PMINSW,
2229 IX86_BUILTIN_PMINUB,
2231 IX86_BUILTIN_PMULHUW,
2232 IX86_BUILTIN_PMULHW,
2233 IX86_BUILTIN_PMULLW,
2235 IX86_BUILTIN_PSADBW,
2236 IX86_BUILTIN_PSHUFW,
2238 IX86_BUILTIN_PSLLW,
2239 IX86_BUILTIN_PSLLD,
2240 IX86_BUILTIN_PSLLQ,
2241 IX86_BUILTIN_PSRAW,
2242 IX86_BUILTIN_PSRAD,
2243 IX86_BUILTIN_PSRLW,
2244 IX86_BUILTIN_PSRLD,
2245 IX86_BUILTIN_PSRLQ,
2246 IX86_BUILTIN_PSLLWI,
2247 IX86_BUILTIN_PSLLDI,
2248 IX86_BUILTIN_PSLLQI,
2249 IX86_BUILTIN_PSRAWI,
2250 IX86_BUILTIN_PSRADI,
2251 IX86_BUILTIN_PSRLWI,
2252 IX86_BUILTIN_PSRLDI,
2253 IX86_BUILTIN_PSRLQI,
2255 IX86_BUILTIN_PUNPCKHBW,
2256 IX86_BUILTIN_PUNPCKHWD,
2257 IX86_BUILTIN_PUNPCKHDQ,
2258 IX86_BUILTIN_PUNPCKLBW,
2259 IX86_BUILTIN_PUNPCKLWD,
2260 IX86_BUILTIN_PUNPCKLDQ,
2262 IX86_BUILTIN_SHUFPS,
2264 IX86_BUILTIN_RCPPS,
2265 IX86_BUILTIN_RCPSS,
2266 IX86_BUILTIN_RSQRTPS,
2267 IX86_BUILTIN_RSQRTSS,
2268 IX86_BUILTIN_SQRTPS,
2269 IX86_BUILTIN_SQRTSS,
2271 IX86_BUILTIN_UNPCKHPS,
2272 IX86_BUILTIN_UNPCKLPS,
2274 IX86_BUILTIN_ANDPS,
2275 IX86_BUILTIN_ANDNPS,
2276 IX86_BUILTIN_ORPS,
2277 IX86_BUILTIN_XORPS,
2279 IX86_BUILTIN_EMMS,
2280 IX86_BUILTIN_LDMXCSR,
2281 IX86_BUILTIN_STMXCSR,
2282 IX86_BUILTIN_SFENCE,
2284 /* 3DNow! Original */
2285 IX86_BUILTIN_FEMMS,
2286 IX86_BUILTIN_PAVGUSB,
2287 IX86_BUILTIN_PF2ID,
2288 IX86_BUILTIN_PFACC,
2289 IX86_BUILTIN_PFADD,
2290 IX86_BUILTIN_PFCMPEQ,
2291 IX86_BUILTIN_PFCMPGE,
2292 IX86_BUILTIN_PFCMPGT,
2293 IX86_BUILTIN_PFMAX,
2294 IX86_BUILTIN_PFMIN,
2295 IX86_BUILTIN_PFMUL,
2296 IX86_BUILTIN_PFRCP,
2297 IX86_BUILTIN_PFRCPIT1,
2298 IX86_BUILTIN_PFRCPIT2,
2299 IX86_BUILTIN_PFRSQIT1,
2300 IX86_BUILTIN_PFRSQRT,
2301 IX86_BUILTIN_PFSUB,
2302 IX86_BUILTIN_PFSUBR,
2303 IX86_BUILTIN_PI2FD,
2304 IX86_BUILTIN_PMULHRW,
2306 /* 3DNow! Athlon Extensions */
2307 IX86_BUILTIN_PF2IW,
2308 IX86_BUILTIN_PFNACC,
2309 IX86_BUILTIN_PFPNACC,
2310 IX86_BUILTIN_PI2FW,
2311 IX86_BUILTIN_PSWAPDSI,
2312 IX86_BUILTIN_PSWAPDSF,
2314 IX86_BUILTIN_SSE_ZERO,
2315 IX86_BUILTIN_MMX_ZERO,
2317 /* SSE2 */
2318 IX86_BUILTIN_ADDPD,
2319 IX86_BUILTIN_ADDSD,
2320 IX86_BUILTIN_DIVPD,
2321 IX86_BUILTIN_DIVSD,
2322 IX86_BUILTIN_MULPD,
2323 IX86_BUILTIN_MULSD,
2324 IX86_BUILTIN_SUBPD,
2325 IX86_BUILTIN_SUBSD,
2327 IX86_BUILTIN_CMPEQPD,
2328 IX86_BUILTIN_CMPLTPD,
2329 IX86_BUILTIN_CMPLEPD,
2330 IX86_BUILTIN_CMPGTPD,
2331 IX86_BUILTIN_CMPGEPD,
2332 IX86_BUILTIN_CMPNEQPD,
2333 IX86_BUILTIN_CMPNLTPD,
2334 IX86_BUILTIN_CMPNLEPD,
2335 IX86_BUILTIN_CMPNGTPD,
2336 IX86_BUILTIN_CMPNGEPD,
2337 IX86_BUILTIN_CMPORDPD,
2338 IX86_BUILTIN_CMPUNORDPD,
2339 IX86_BUILTIN_CMPNEPD,
2340 IX86_BUILTIN_CMPEQSD,
2341 IX86_BUILTIN_CMPLTSD,
2342 IX86_BUILTIN_CMPLESD,
2343 IX86_BUILTIN_CMPNEQSD,
2344 IX86_BUILTIN_CMPNLTSD,
2345 IX86_BUILTIN_CMPNLESD,
2346 IX86_BUILTIN_CMPORDSD,
2347 IX86_BUILTIN_CMPUNORDSD,
2348 IX86_BUILTIN_CMPNESD,
2350 IX86_BUILTIN_COMIEQSD,
2351 IX86_BUILTIN_COMILTSD,
2352 IX86_BUILTIN_COMILESD,
2353 IX86_BUILTIN_COMIGTSD,
2354 IX86_BUILTIN_COMIGESD,
2355 IX86_BUILTIN_COMINEQSD,
2356 IX86_BUILTIN_UCOMIEQSD,
2357 IX86_BUILTIN_UCOMILTSD,
2358 IX86_BUILTIN_UCOMILESD,
2359 IX86_BUILTIN_UCOMIGTSD,
2360 IX86_BUILTIN_UCOMIGESD,
2361 IX86_BUILTIN_UCOMINEQSD,
2363 IX86_BUILTIN_MAXPD,
2364 IX86_BUILTIN_MAXSD,
2365 IX86_BUILTIN_MINPD,
2366 IX86_BUILTIN_MINSD,
2368 IX86_BUILTIN_ANDPD,
2369 IX86_BUILTIN_ANDNPD,
2370 IX86_BUILTIN_ORPD,
2371 IX86_BUILTIN_XORPD,
2373 IX86_BUILTIN_SQRTPD,
2374 IX86_BUILTIN_SQRTSD,
2376 IX86_BUILTIN_UNPCKHPD,
2377 IX86_BUILTIN_UNPCKLPD,
2379 IX86_BUILTIN_SHUFPD,
2381 IX86_BUILTIN_LOADAPD,
2382 IX86_BUILTIN_LOADUPD,
2383 IX86_BUILTIN_STOREAPD,
2384 IX86_BUILTIN_STOREUPD,
2385 IX86_BUILTIN_LOADSD,
2386 IX86_BUILTIN_STORESD,
2387 IX86_BUILTIN_MOVSD,
2389 IX86_BUILTIN_LOADHPD,
2390 IX86_BUILTIN_LOADLPD,
2391 IX86_BUILTIN_STOREHPD,
2392 IX86_BUILTIN_STORELPD,
2394 IX86_BUILTIN_CVTDQ2PD,
2395 IX86_BUILTIN_CVTDQ2PS,
2397 IX86_BUILTIN_CVTPD2DQ,
2398 IX86_BUILTIN_CVTPD2PI,
2399 IX86_BUILTIN_CVTPD2PS,
2400 IX86_BUILTIN_CVTTPD2DQ,
2401 IX86_BUILTIN_CVTTPD2PI,
2403 IX86_BUILTIN_CVTPI2PD,
2404 IX86_BUILTIN_CVTSI2SD,
2405 IX86_BUILTIN_CVTSI642SD,
2407 IX86_BUILTIN_CVTSD2SI,
2408 IX86_BUILTIN_CVTSD2SI64,
2409 IX86_BUILTIN_CVTSD2SS,
2410 IX86_BUILTIN_CVTSS2SD,
2411 IX86_BUILTIN_CVTTSD2SI,
2412 IX86_BUILTIN_CVTTSD2SI64,
2414 IX86_BUILTIN_CVTPS2DQ,
2415 IX86_BUILTIN_CVTPS2PD,
2416 IX86_BUILTIN_CVTTPS2DQ,
2418 IX86_BUILTIN_MOVNTI,
2419 IX86_BUILTIN_MOVNTPD,
2420 IX86_BUILTIN_MOVNTDQ,
2422 IX86_BUILTIN_SETPD1,
2423 IX86_BUILTIN_SETPD,
2424 IX86_BUILTIN_CLRPD,
2425 IX86_BUILTIN_SETRPD,
2426 IX86_BUILTIN_LOADPD1,
2427 IX86_BUILTIN_LOADRPD,
2428 IX86_BUILTIN_STOREPD1,
2429 IX86_BUILTIN_STORERPD,
2431 /* SSE2 MMX */
2432 IX86_BUILTIN_MASKMOVDQU,
2433 IX86_BUILTIN_MOVMSKPD,
2434 IX86_BUILTIN_PMOVMSKB128,
2435 IX86_BUILTIN_MOVQ2DQ,
2436 IX86_BUILTIN_MOVDQ2Q,
2438 IX86_BUILTIN_PACKSSWB128,
2439 IX86_BUILTIN_PACKSSDW128,
2440 IX86_BUILTIN_PACKUSWB128,
2442 IX86_BUILTIN_PADDB128,
2443 IX86_BUILTIN_PADDW128,
2444 IX86_BUILTIN_PADDD128,
2445 IX86_BUILTIN_PADDQ128,
2446 IX86_BUILTIN_PADDSB128,
2447 IX86_BUILTIN_PADDSW128,
2448 IX86_BUILTIN_PADDUSB128,
2449 IX86_BUILTIN_PADDUSW128,
2450 IX86_BUILTIN_PSUBB128,
2451 IX86_BUILTIN_PSUBW128,
2452 IX86_BUILTIN_PSUBD128,
2453 IX86_BUILTIN_PSUBQ128,
2454 IX86_BUILTIN_PSUBSB128,
2455 IX86_BUILTIN_PSUBSW128,
2456 IX86_BUILTIN_PSUBUSB128,
2457 IX86_BUILTIN_PSUBUSW128,
2459 IX86_BUILTIN_PAND128,
2460 IX86_BUILTIN_PANDN128,
2461 IX86_BUILTIN_POR128,
2462 IX86_BUILTIN_PXOR128,
2464 IX86_BUILTIN_PAVGB128,
2465 IX86_BUILTIN_PAVGW128,
2467 IX86_BUILTIN_PCMPEQB128,
2468 IX86_BUILTIN_PCMPEQW128,
2469 IX86_BUILTIN_PCMPEQD128,
2470 IX86_BUILTIN_PCMPGTB128,
2471 IX86_BUILTIN_PCMPGTW128,
2472 IX86_BUILTIN_PCMPGTD128,
2474 IX86_BUILTIN_PEXTRW128,
2475 IX86_BUILTIN_PINSRW128,
2477 IX86_BUILTIN_PMADDWD128,
2479 IX86_BUILTIN_PMAXSW128,
2480 IX86_BUILTIN_PMAXUB128,
2481 IX86_BUILTIN_PMINSW128,
2482 IX86_BUILTIN_PMINUB128,
2484 IX86_BUILTIN_PMULUDQ,
2485 IX86_BUILTIN_PMULUDQ128,
2486 IX86_BUILTIN_PMULHUW128,
2487 IX86_BUILTIN_PMULHW128,
2488 IX86_BUILTIN_PMULLW128,
2490 IX86_BUILTIN_PSADBW128,
2491 IX86_BUILTIN_PSHUFHW,
2492 IX86_BUILTIN_PSHUFLW,
2493 IX86_BUILTIN_PSHUFD,
2495 IX86_BUILTIN_PSLLW128,
2496 IX86_BUILTIN_PSLLD128,
2497 IX86_BUILTIN_PSLLQ128,
2498 IX86_BUILTIN_PSRAW128,
2499 IX86_BUILTIN_PSRAD128,
2500 IX86_BUILTIN_PSRLW128,
2501 IX86_BUILTIN_PSRLD128,
2502 IX86_BUILTIN_PSRLQ128,
2503 IX86_BUILTIN_PSLLDQI128,
2504 IX86_BUILTIN_PSLLWI128,
2505 IX86_BUILTIN_PSLLDI128,
2506 IX86_BUILTIN_PSLLQI128,
2507 IX86_BUILTIN_PSRAWI128,
2508 IX86_BUILTIN_PSRADI128,
2509 IX86_BUILTIN_PSRLDQI128,
2510 IX86_BUILTIN_PSRLWI128,
2511 IX86_BUILTIN_PSRLDI128,
2512 IX86_BUILTIN_PSRLQI128,
2514 IX86_BUILTIN_PUNPCKHBW128,
2515 IX86_BUILTIN_PUNPCKHWD128,
2516 IX86_BUILTIN_PUNPCKHDQ128,
2517 IX86_BUILTIN_PUNPCKHQDQ128,
2518 IX86_BUILTIN_PUNPCKLBW128,
2519 IX86_BUILTIN_PUNPCKLWD128,
2520 IX86_BUILTIN_PUNPCKLDQ128,
2521 IX86_BUILTIN_PUNPCKLQDQ128,
2523 IX86_BUILTIN_CLFLUSH,
2524 IX86_BUILTIN_MFENCE,
2525 IX86_BUILTIN_LFENCE,
2527 /* Prescott New Instructions. */
2528 IX86_BUILTIN_ADDSUBPS,
2529 IX86_BUILTIN_HADDPS,
2530 IX86_BUILTIN_HSUBPS,
2531 IX86_BUILTIN_MOVSHDUP,
2532 IX86_BUILTIN_MOVSLDUP,
2533 IX86_BUILTIN_ADDSUBPD,
2534 IX86_BUILTIN_HADDPD,
2535 IX86_BUILTIN_HSUBPD,
2536 IX86_BUILTIN_LOADDDUP,
2537 IX86_BUILTIN_MOVDDUP,
2538 IX86_BUILTIN_LDDQU,
2540 IX86_BUILTIN_MONITOR,
2541 IX86_BUILTIN_MWAIT,
2543 IX86_BUILTIN_MAX
2546 /* Max number of args passed in registers. If this is more than 3, we will
2547 have problems with ebx (register #4), since it is a caller save register and
2548 is also used as the pic register in ELF. So for now, don't allow more than
2549 3 registers to be passed in registers. */
2551 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2553 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2555 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2558 /* Specify the machine mode that this machine uses
2559 for the index in the tablejump instruction. */
2560 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2562 /* Define as C expression which evaluates to nonzero if the tablejump
2563 instruction expects the table to contain offsets from the address of the
2564 table.
2565 Do not define this if the table should contain absolute addresses. */
2566 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2568 /* Define this as 1 if `char' should by default be signed; else as 0. */
2569 #define DEFAULT_SIGNED_CHAR 1
2571 /* Number of bytes moved into a data cache for a single prefetch operation. */
2572 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2574 /* Number of prefetch operations that can be done in parallel. */
2575 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2577 /* Max number of bytes we can move from memory to memory
2578 in one reasonably fast instruction. */
2579 #define MOVE_MAX 16
2581 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2582 move efficiently, as opposed to MOVE_MAX which is the maximum
2583 number of bytes we can move with a single instruction. */
2584 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2586 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2587 move-instruction pairs, we will do a movstr or libcall instead.
2588 Increasing the value will always make code faster, but eventually
2589 incurs high cost in increased code size.
2591 If you don't define this, a reasonable default is used. */
2593 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2595 /* Define if shifts truncate the shift count
2596 which implies one can omit a sign-extension or zero-extension
2597 of a shift count. */
2598 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2600 /* #define SHIFT_COUNT_TRUNCATED */
2602 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2603 is done just by pretending it is already truncated. */
2604 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2606 /* When a prototype says `char' or `short', really pass an `int'.
2607 (The 386 can't easily push less than an int.) */
2609 #define PROMOTE_PROTOTYPES 1
2611 /* A macro to update M and UNSIGNEDP when an object whose type is
2612 TYPE and which has the specified mode and signedness is to be
2613 stored in a register. This macro is only called when TYPE is a
2614 scalar type.
2616 On i386 it is sometimes useful to promote HImode and QImode
2617 quantities to SImode. The choice depends on target type. */
2619 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2620 do { \
2621 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2622 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2623 (MODE) = SImode; \
2624 } while (0)
2626 /* Specify the machine mode that pointers have.
2627 After generation of rtl, the compiler makes no further distinction
2628 between pointers and any other objects of this machine mode. */
2629 #define Pmode (TARGET_64BIT ? DImode : SImode)
2631 /* A function address in a call instruction
2632 is a byte address (for indexing purposes)
2633 so give the MEM rtx a byte's mode. */
2634 #define FUNCTION_MODE QImode
2636 /* A C expression for the cost of moving data from a register in class FROM to
2637 one in class TO. The classes are expressed using the enumeration values
2638 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2639 interpreted relative to that.
2641 It is not required that the cost always equal 2 when FROM is the same as TO;
2642 on some machines it is expensive to move between registers if they are not
2643 general registers. */
2645 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2646 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2648 /* A C expression for the cost of moving data of mode M between a
2649 register and memory. A value of 2 is the default; this cost is
2650 relative to those in `REGISTER_MOVE_COST'.
2652 If moving between registers and memory is more expensive than
2653 between two registers, you should define this macro to express the
2654 relative cost. */
2656 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2657 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2659 /* A C expression for the cost of a branch instruction. A value of 1
2660 is the default; other values are interpreted relative to that. */
2662 #define BRANCH_COST ix86_branch_cost
2664 /* Define this macro as a C expression which is nonzero if accessing
2665 less than a word of memory (i.e. a `char' or a `short') is no
2666 faster than accessing a word of memory, i.e., if such access
2667 require more than one instruction or if there is no difference in
2668 cost between byte and (aligned) word loads.
2670 When this macro is not defined, the compiler will access a field by
2671 finding the smallest containing object; when it is defined, a
2672 fullword load will be used if alignment permits. Unless bytes
2673 accesses are faster than word accesses, using word accesses is
2674 preferable since it may eliminate subsequent memory access if
2675 subsequent accesses occur to other fields in the same word of the
2676 structure, but to different bytes. */
2678 #define SLOW_BYTE_ACCESS 0
2680 /* Nonzero if access to memory by shorts is slow and undesirable. */
2681 #define SLOW_SHORT_ACCESS 0
2683 /* Define this macro to be the value 1 if unaligned accesses have a
2684 cost many times greater than aligned accesses, for example if they
2685 are emulated in a trap handler.
2687 When this macro is nonzero, the compiler will act as if
2688 `STRICT_ALIGNMENT' were nonzero when generating code for block
2689 moves. This can cause significantly more instructions to be
2690 produced. Therefore, do not set this macro nonzero if unaligned
2691 accesses only add a cycle or two to the time for a memory access.
2693 If the value of this macro is always zero, it need not be defined. */
2695 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2697 /* Define this macro if it is as good or better to call a constant
2698 function address than to call an address kept in a register.
2700 Desirable on the 386 because a CALL with a constant address is
2701 faster than one with a register address. */
2703 #define NO_FUNCTION_CSE
2705 /* Define this macro if it is as good or better for a function to call
2706 itself with an explicit address than to call an address kept in a
2707 register. */
2709 #define NO_RECURSIVE_FUNCTION_CSE
2711 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2712 return the mode to be used for the comparison.
2714 For floating-point equality comparisons, CCFPEQmode should be used.
2715 VOIDmode should be used in all other cases.
2717 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2718 possible, to allow for more combinations. */
2720 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2722 /* Return nonzero if MODE implies a floating point inequality can be
2723 reversed. */
2725 #define REVERSIBLE_CC_MODE(MODE) 1
2727 /* A C expression whose value is reversed condition code of the CODE for
2728 comparison done in CC_MODE mode. */
2729 #define REVERSE_CONDITION(CODE, MODE) \
2730 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2731 : reverse_condition_maybe_unordered (CODE))
2734 /* Control the assembler format that we output, to the extent
2735 this does not vary between assemblers. */
2737 /* How to refer to registers in assembler output.
2738 This sequence is indexed by compiler's hard-register-number (see above). */
2740 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2741 For non floating point regs, the following are the HImode names.
2743 For float regs, the stack top is sometimes referred to as "%st(0)"
2744 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2746 #define HI_REGISTER_NAMES \
2747 {"ax","dx","cx","bx","si","di","bp","sp", \
2748 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2749 "argp", "flags", "fpsr", "dirflag", "frame", \
2750 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2751 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2752 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2753 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2755 #define REGISTER_NAMES HI_REGISTER_NAMES
2757 /* Table of additional register names to use in user input. */
2759 #define ADDITIONAL_REGISTER_NAMES \
2760 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2761 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2762 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2763 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2764 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2765 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2766 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2767 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2769 /* Note we are omitting these since currently I don't know how
2770 to get gcc to use these, since they want the same but different
2771 number as al, and ax.
2774 #define QI_REGISTER_NAMES \
2775 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2777 /* These parallel the array above, and can be used to access bits 8:15
2778 of regs 0 through 3. */
2780 #define QI_HIGH_REGISTER_NAMES \
2781 {"ah", "dh", "ch", "bh", }
2783 /* How to renumber registers for dbx and gdb. */
2785 #define DBX_REGISTER_NUMBER(N) \
2786 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2788 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2789 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2790 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2792 /* Before the prologue, RA is at 0(%esp). */
2793 #define INCOMING_RETURN_ADDR_RTX \
2794 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2796 /* After the prologue, RA is at -4(AP) in the current frame. */
2797 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2798 ((COUNT) == 0 \
2799 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2800 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2802 /* PC is dbx register 8; let's use that column for RA. */
2803 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2805 /* Before the prologue, the top of the frame is at 4(%esp). */
2806 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2808 /* Describe how we implement __builtin_eh_return. */
2809 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2810 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2813 /* Select a format to encode pointers in exception handling data. CODE
2814 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2815 true if the symbol may be affected by dynamic relocations.
2817 ??? All x86 object file formats are capable of representing this.
2818 After all, the relocation needed is the same as for the call insn.
2819 Whether or not a particular assembler allows us to enter such, I
2820 guess we'll have to see. */
2821 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2822 (flag_pic \
2823 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2824 : DW_EH_PE_absptr)
2826 /* This is how to output an insn to push a register on the stack.
2827 It need not be very fast code. */
2829 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2830 do { \
2831 if (TARGET_64BIT) \
2832 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2833 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2834 else \
2835 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2836 } while (0)
2838 /* This is how to output an insn to pop a register from the stack.
2839 It need not be very fast code. */
2841 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2842 do { \
2843 if (TARGET_64BIT) \
2844 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2845 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2846 else \
2847 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2848 } while (0)
2850 /* This is how to output an element of a case-vector that is absolute. */
2852 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2853 ix86_output_addr_vec_elt ((FILE), (VALUE))
2855 /* This is how to output an element of a case-vector that is relative. */
2857 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2858 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2860 /* Under some conditions we need jump tables in the text section, because
2861 the assembler cannot handle label differences between sections. */
2863 #define JUMP_TABLES_IN_TEXT_SECTION \
2864 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2866 /* A C statement that outputs an address constant appropriate to
2867 for DWARF debugging. */
2869 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2870 i386_dwarf_output_addr_const ((FILE), (X))
2872 /* Emit a dtp-relative reference to a TLS variable. */
2874 #ifdef HAVE_AS_TLS
2875 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2876 i386_output_dwarf_dtprel (FILE, SIZE, X)
2877 #endif
2879 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2880 and switch back. For x86 we do this only to save a few bytes that
2881 would otherwise be unused in the text section. */
2882 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2883 asm (SECTION_OP "\n\t" \
2884 "call " USER_LABEL_PREFIX #FUNC "\n" \
2885 TEXT_SECTION_ASM_OP);
2887 /* Print operand X (an rtx) in assembler syntax to file FILE.
2888 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2889 Effect of various CODE letters is described in i386.c near
2890 print_operand function. */
2892 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2893 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2895 #define PRINT_OPERAND(FILE, X, CODE) \
2896 print_operand ((FILE), (X), (CODE))
2898 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2899 print_operand_address ((FILE), (ADDR))
2901 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2902 do { \
2903 if (! output_addr_const_extra (FILE, (X))) \
2904 goto FAIL; \
2905 } while (0);
2907 /* a letter which is not needed by the normal asm syntax, which
2908 we can use for operand syntax in the extended asm */
2910 #define ASM_OPERAND_LETTER '#'
2911 #define RET return ""
2912 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2914 /* Define the codes that are matched by predicates in i386.c. */
2916 #define PREDICATE_CODES \
2917 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2918 SYMBOL_REF, LABEL_REF, CONST}}, \
2919 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2920 SYMBOL_REF, LABEL_REF, CONST}}, \
2921 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2922 SYMBOL_REF, LABEL_REF, CONST}}, \
2923 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2924 SYMBOL_REF, LABEL_REF, CONST}}, \
2925 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2926 SYMBOL_REF, LABEL_REF, CONST}}, \
2927 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2928 SYMBOL_REF, LABEL_REF, CONST}}, \
2929 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2930 SYMBOL_REF, LABEL_REF}}, \
2931 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2932 {"const_int_1_31_operand", {CONST_INT}}, \
2933 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2934 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2935 LABEL_REF, SUBREG, REG, MEM}}, \
2936 {"pic_symbolic_operand", {CONST}}, \
2937 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2938 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2939 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2940 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2941 {"const1_operand", {CONST_INT}}, \
2942 {"const248_operand", {CONST_INT}}, \
2943 {"const_0_to_3_operand", {CONST_INT}}, \
2944 {"const_0_to_7_operand", {CONST_INT}}, \
2945 {"const_0_to_15_operand", {CONST_INT}}, \
2946 {"const_0_to_255_operand", {CONST_INT}}, \
2947 {"incdec_operand", {CONST_INT}}, \
2948 {"mmx_reg_operand", {REG}}, \
2949 {"reg_no_sp_operand", {SUBREG, REG}}, \
2950 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2951 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2952 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2953 {"index_register_operand", {SUBREG, REG}}, \
2954 {"flags_reg_operand", {REG}}, \
2955 {"q_regs_operand", {SUBREG, REG}}, \
2956 {"non_q_regs_operand", {SUBREG, REG}}, \
2957 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2958 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2959 GE, UNGE, LTGT, UNEQ}}, \
2960 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2961 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2962 }}, \
2963 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2964 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2965 UNGE, UNGT, LTGT, UNEQ }}, \
2966 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2967 GE, UNGE, LTGT, UNEQ}}, \
2968 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2969 {"ext_register_operand", {SUBREG, REG}}, \
2970 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2971 {"mult_operator", {MULT}}, \
2972 {"div_operator", {DIV}}, \
2973 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2974 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2975 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2976 LSHIFTRT, ROTATERT}}, \
2977 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2978 {"memory_displacement_operand", {MEM}}, \
2979 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2980 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2981 {"long_memory_operand", {MEM}}, \
2982 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2983 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2984 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2985 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2986 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2987 {"any_fp_register_operand", {REG}}, \
2988 {"register_and_not_any_fp_reg_operand", {REG}}, \
2989 {"fp_register_operand", {REG}}, \
2990 {"register_and_not_fp_reg_operand", {REG}}, \
2991 {"zero_extended_scalar_load_operand", {MEM}}, \
2992 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2993 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2994 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}}, \
2995 {"compare_operator", {COMPARE}},
2997 /* A list of predicates that do special things with modes, and so
2998 should not elicit warnings for VOIDmode match_operand. */
3000 #define SPECIAL_MODE_PREDICATES \
3001 "ext_register_operand",
3003 /* Which processor to schedule for. The cpu attribute defines a list that
3004 mirrors this list, so changes to i386.md must be made at the same time. */
3006 enum processor_type
3008 PROCESSOR_I386, /* 80386 */
3009 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3010 PROCESSOR_PENTIUM,
3011 PROCESSOR_PENTIUMPRO,
3012 PROCESSOR_K6,
3013 PROCESSOR_ATHLON,
3014 PROCESSOR_PENTIUM4,
3015 PROCESSOR_K8,
3016 PROCESSOR_max
3019 extern enum processor_type ix86_tune;
3020 extern const char *ix86_tune_string;
3022 extern enum processor_type ix86_arch;
3023 extern const char *ix86_arch_string;
3025 enum fpmath_unit
3027 FPMATH_387 = 1,
3028 FPMATH_SSE = 2
3031 extern enum fpmath_unit ix86_fpmath;
3032 extern const char *ix86_fpmath_string;
3034 enum tls_dialect
3036 TLS_DIALECT_GNU,
3037 TLS_DIALECT_SUN
3040 extern enum tls_dialect ix86_tls_dialect;
3041 extern const char *ix86_tls_dialect_string;
3043 enum cmodel {
3044 CM_32, /* The traditional 32-bit ABI. */
3045 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3046 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3047 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3048 CM_LARGE, /* No assumptions. */
3049 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3052 extern enum cmodel ix86_cmodel;
3053 extern const char *ix86_cmodel_string;
3055 /* Size of the RED_ZONE area. */
3056 #define RED_ZONE_SIZE 128
3057 /* Reserved area of the red zone for temporaries. */
3058 #define RED_ZONE_RESERVE 8
3060 enum asm_dialect {
3061 ASM_ATT,
3062 ASM_INTEL
3065 extern const char *ix86_asm_string;
3066 extern enum asm_dialect ix86_asm_dialect;
3068 extern int ix86_regparm;
3069 extern const char *ix86_regparm_string;
3071 extern int ix86_preferred_stack_boundary;
3072 extern const char *ix86_preferred_stack_boundary_string;
3074 extern int ix86_branch_cost;
3075 extern const char *ix86_branch_cost_string;
3077 extern const char *ix86_debug_arg_string;
3078 extern const char *ix86_debug_addr_string;
3080 /* Obsoleted by -f options. Remove before 3.2 ships. */
3081 extern const char *ix86_align_loops_string;
3082 extern const char *ix86_align_jumps_string;
3083 extern const char *ix86_align_funcs_string;
3085 /* Smallest class containing REGNO. */
3086 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3088 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3089 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3091 /* To properly truncate FP values into integers, we need to set i387 control
3092 word. We can't emit proper mode switching code before reload, as spills
3093 generated by reload may truncate values incorrectly, but we still can avoid
3094 redundant computation of new control word by the mode switching pass.
3095 The fldcw instructions are still emitted redundantly, but this is probably
3096 not going to be noticeable problem, as most CPUs do have fast path for
3097 the sequence.
3099 The machinery is to emit simple truncation instructions and split them
3100 before reload to instructions having USEs of two memory locations that
3101 are filled by this code to old and new control word.
3103 Post-reload pass may be later used to eliminate the redundant fildcw if
3104 needed. */
3106 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3108 /* Define this macro if the port needs extra instructions inserted
3109 for mode switching in an optimizing compilation. */
3111 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3113 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3114 initializer for an array of integers. Each initializer element N
3115 refers to an entity that needs mode switching, and specifies the
3116 number of different modes that might need to be set for this
3117 entity. The position of the initializer in the initializer -
3118 starting counting at zero - determines the integer that is used to
3119 refer to the mode-switched entity in question. */
3121 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3123 /* ENTITY is an integer specifying a mode-switched entity. If
3124 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3125 return an integer value not larger than the corresponding element
3126 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3127 must be switched into prior to the execution of INSN. */
3129 #define MODE_NEEDED(ENTITY, I) \
3130 (GET_CODE (I) == CALL_INSN \
3131 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3132 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3133 ? FP_CW_UNINITIALIZED \
3134 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3135 ? FP_CW_ANY \
3136 : FP_CW_STORED)
3138 /* This macro specifies the order in which modes for ENTITY are
3139 processed. 0 is the highest priority. */
3141 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3143 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3144 is the set of hard registers live at the point where the insn(s)
3145 are to be inserted. */
3147 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3148 ((MODE) == FP_CW_STORED \
3149 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3150 assign_386_stack_local (HImode, 2)), 0\
3151 : 0)
3153 /* Avoid renaming of stack registers, as doing so in combination with
3154 scheduling just increases amount of live registers at time and in
3155 the turn amount of fxch instructions needed.
3157 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3159 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3160 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3163 #define DLL_IMPORT_EXPORT_PREFIX '#'
3165 #define FASTCALL_PREFIX '@'
3167 struct machine_function GTY(())
3169 struct stack_local_entry *stack_locals;
3170 const char *some_ld_name;
3171 int save_varrargs_registers;
3172 int accesses_prev_frame;
3173 int optimize_mode_switching;
3174 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3175 determine the style used. */
3176 int use_fast_prologue_epilogue;
3177 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3178 for. */
3179 int use_fast_prologue_epilogue_nregs;
3182 #define ix86_stack_locals (cfun->machine->stack_locals)
3183 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3184 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3186 /* Control behavior of x86_file_start. */
3187 #define X86_FILE_START_VERSION_DIRECTIVE false
3188 #define X86_FILE_START_FLTUSED false
3191 Local variables:
3192 version-control: t
3193 End: