Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / contrib / gcc-3.4 / gcc / alias.c
blob5cce5e4d16f79f577a3b848c7a2ce6f99f876b6a
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
47 /* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
52 struct S { int i; double d; };
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
57 like:
58 struct S
59 / \
60 / \
61 |/_ _\|
62 int double
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
70 past immediate descendants, however, since we propagate all
71 grandchildren up one level.
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
77 struct alias_set_entry GTY(())
79 /* The alias set number, as stored in MEM_ALIAS_SET. */
80 HOST_WIDE_INT alias_set;
82 /* The children of the alias set. These are not just the immediate
83 children, but, in fact, all descendants. So, if we have:
85 struct T { struct S s; float f; }
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree GTY((param1_is (int), param2_is (int))) children;
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
93 int has_zero_child;
95 typedef struct alias_set_entry *alias_set_entry;
97 static int rtx_equal_for_memref_p (rtx, rtx);
98 static rtx find_symbolic_term (rtx);
99 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
100 static void record_set (rtx, rtx, void *);
101 static int base_alias_check (rtx, rtx, enum machine_mode,
102 enum machine_mode);
103 static rtx find_base_value (rtx);
104 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
105 static int insert_subset_children (splay_tree_node, void*);
106 static tree find_base_decl (tree);
107 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
108 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
109 int (*) (rtx, int));
110 static int aliases_everything_p (rtx);
111 static bool nonoverlapping_component_refs_p (tree, tree);
112 static tree decl_for_component_ref (tree);
113 static rtx adjust_offset_for_component_ref (tree, rtx);
114 static int nonoverlapping_memrefs_p (rtx, rtx);
115 static int write_dependence_p (rtx, rtx, int, int);
117 static int nonlocal_mentioned_p_1 (rtx *, void *);
118 static int nonlocal_mentioned_p (rtx);
119 static int nonlocal_referenced_p_1 (rtx *, void *);
120 static int nonlocal_referenced_p (rtx);
121 static int nonlocal_set_p_1 (rtx *, void *);
122 static int nonlocal_set_p (rtx);
123 static void memory_modified_1 (rtx, rtx, void *);
125 /* Set up all info needed to perform alias analysis on memory references. */
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
133 not legal ANSI C. */
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
145 of the first set.
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
160 static GTY(()) varray_type reg_base_value;
161 static rtx *new_reg_base_value;
163 /* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
165 array. */
166 static GTY((deletable (""))) varray_type old_reg_base_value;
168 /* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
172 #define REG_BASE_VALUE(X) \
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
176 /* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
180 The length of this array is REG_BASE_VALUE_SIZE.
182 Because this array contains only pseudo registers it has no effect
183 after reload. */
184 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
185 unsigned GTY(()) int alias_invariant_size;
187 /* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in init_alias_analysis,
189 and does not change until end_alias_analysis is called. */
190 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
192 /* Indicates number of valid entries in reg_known_value. */
193 static GTY(()) unsigned int reg_known_value_size;
195 /* Vector recording for each reg_known_value whether it is due to a
196 REG_EQUIV note. Future passes (viz., reload) may replace the
197 pseudo with the equivalent expression and so we account for the
198 dependences that would be introduced if that happens.
200 The REG_EQUIV notes created in assign_parms may mention the arg
201 pointer, and there are explicit insns in the RTL that modify the
202 arg pointer. Thus we must ensure that such insns don't get
203 scheduled across each other because that would invalidate the
204 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
205 wrong, but solving the problem in the scheduler will likely give
206 better code, so we do it here. */
207 static bool *reg_known_equiv_p;
209 /* True when scanning insns from the start of the rtl to the
210 NOTE_INSN_FUNCTION_BEG note. */
211 static bool copying_arguments;
213 /* The splay-tree used to store the various alias set entries. */
214 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
216 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
217 such an entry, or NULL otherwise. */
219 static inline alias_set_entry
220 get_alias_set_entry (HOST_WIDE_INT alias_set)
222 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
225 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
226 the two MEMs cannot alias each other. */
228 static inline int
229 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
231 #ifdef ENABLE_CHECKING
232 /* Perform a basic sanity check. Namely, that there are no alias sets
233 if we're not using strict aliasing. This helps to catch bugs
234 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
235 where a MEM is allocated in some way other than by the use of
236 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
237 use alias sets to indicate that spilled registers cannot alias each
238 other, we might need to remove this check. */
239 if (! flag_strict_aliasing
240 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
241 abort ();
242 #endif
244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
247 /* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
250 static int
251 insert_subset_children (splay_tree_node node, void *data)
253 splay_tree_insert ((splay_tree) data, node->key, node->value);
255 return 0;
258 /* Return 1 if the two specified alias sets may conflict. */
261 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
263 alias_set_entry ase;
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1 == 0 || set2 == 0
268 /* If the two alias sets are the same, they may alias. */
269 || set1 == set2)
270 return 1;
272 /* See if the first alias set is a subset of the second. */
273 ase = get_alias_set_entry (set1);
274 if (ase != 0
275 && (ase->has_zero_child
276 || splay_tree_lookup (ase->children,
277 (splay_tree_key) set2)))
278 return 1;
280 /* Now do the same, but with the alias sets reversed. */
281 ase = get_alias_set_entry (set2);
282 if (ase != 0
283 && (ase->has_zero_child
284 || splay_tree_lookup (ase->children,
285 (splay_tree_key) set1)))
286 return 1;
288 /* The two alias sets are distinct and neither one is the
289 child of the other. Therefore, they cannot alias. */
290 return 0;
293 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
294 has any readonly fields. If any of the fields have types that
295 contain readonly fields, return true as well. */
298 readonly_fields_p (tree type)
300 tree field;
302 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
303 && TREE_CODE (type) != QUAL_UNION_TYPE)
304 return 0;
306 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
307 if (TREE_CODE (field) == FIELD_DECL
308 && (TREE_READONLY (field)
309 || readonly_fields_p (TREE_TYPE (field))))
310 return 1;
312 return 0;
315 /* Return 1 if any MEM object of type T1 will always conflict (using the
316 dependency routines in this file) with any MEM object of type T2.
317 This is used when allocating temporary storage. If T1 and/or T2 are
318 NULL_TREE, it means we know nothing about the storage. */
321 objects_must_conflict_p (tree t1, tree t2)
323 HOST_WIDE_INT set1, set2;
325 /* If neither has a type specified, we don't know if they'll conflict
326 because we may be using them to store objects of various types, for
327 example the argument and local variables areas of inlined functions. */
328 if (t1 == 0 && t2 == 0)
329 return 0;
331 /* If one or the other has readonly fields or is readonly,
332 then they may not conflict. */
333 if ((t1 != 0 && readonly_fields_p (t1))
334 || (t2 != 0 && readonly_fields_p (t2))
335 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
336 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
337 return 0;
339 /* If they are the same type, they must conflict. */
340 if (t1 == t2
341 /* Likewise if both are volatile. */
342 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
343 return 1;
345 set1 = t1 ? get_alias_set (t1) : 0;
346 set2 = t2 ? get_alias_set (t2) : 0;
348 /* Otherwise they conflict if they have no alias set or the same. We
349 can't simply use alias_sets_conflict_p here, because we must make
350 sure that every subtype of t1 will conflict with every subtype of
351 t2 for which a pair of subobjects of these respective subtypes
352 overlaps on the stack. */
353 return set1 == 0 || set2 == 0 || set1 == set2;
356 /* T is an expression with pointer type. Find the DECL on which this
357 expression is based. (For example, in `a[i]' this would be `a'.)
358 If there is no such DECL, or a unique decl cannot be determined,
359 NULL_TREE is returned. */
361 static tree
362 find_base_decl (tree t)
364 tree d0, d1, d2;
366 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
367 return 0;
369 /* If this is a declaration, return it. */
370 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
371 return t;
373 /* Handle general expressions. It would be nice to deal with
374 COMPONENT_REFs here. If we could tell that `a' and `b' were the
375 same, then `a->f' and `b->f' are also the same. */
376 switch (TREE_CODE_CLASS (TREE_CODE (t)))
378 case '1':
379 return find_base_decl (TREE_OPERAND (t, 0));
381 case '2':
382 /* Return 0 if found in neither or both are the same. */
383 d0 = find_base_decl (TREE_OPERAND (t, 0));
384 d1 = find_base_decl (TREE_OPERAND (t, 1));
385 if (d0 == d1)
386 return d0;
387 else if (d0 == 0)
388 return d1;
389 else if (d1 == 0)
390 return d0;
391 else
392 return 0;
394 case '3':
395 d0 = find_base_decl (TREE_OPERAND (t, 0));
396 d1 = find_base_decl (TREE_OPERAND (t, 1));
397 d2 = find_base_decl (TREE_OPERAND (t, 2));
399 /* Set any nonzero values from the last, then from the first. */
400 if (d1 == 0) d1 = d2;
401 if (d0 == 0) d0 = d1;
402 if (d1 == 0) d1 = d0;
403 if (d2 == 0) d2 = d1;
405 /* At this point all are nonzero or all are zero. If all three are the
406 same, return it. Otherwise, return zero. */
407 return (d0 == d1 && d1 == d2) ? d0 : 0;
409 default:
410 return 0;
414 /* Return 1 if all the nested component references handled by
415 get_inner_reference in T are such that we can address the object in T. */
418 can_address_p (tree t)
420 /* If we're at the end, it is vacuously addressable. */
421 if (! handled_component_p (t))
422 return 1;
424 /* Bitfields are never addressable. */
425 else if (TREE_CODE (t) == BIT_FIELD_REF)
426 return 0;
428 /* Fields are addressable unless they are marked as nonaddressable or
429 the containing type has alias set 0. */
430 else if (TREE_CODE (t) == COMPONENT_REF
431 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
432 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
433 && can_address_p (TREE_OPERAND (t, 0)))
434 return 1;
436 /* Likewise for arrays. */
437 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
438 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
439 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
440 && can_address_p (TREE_OPERAND (t, 0)))
441 return 1;
443 return 0;
446 /* Return the alias set for T, which may be either a type or an
447 expression. Call language-specific routine for help, if needed. */
449 HOST_WIDE_INT
450 get_alias_set (tree t)
452 HOST_WIDE_INT set;
454 /* If we're not doing any alias analysis, just assume everything
455 aliases everything else. Also return 0 if this or its type is
456 an error. */
457 if (! flag_strict_aliasing || t == error_mark_node
458 || (! TYPE_P (t)
459 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
460 return 0;
462 /* We can be passed either an expression or a type. This and the
463 language-specific routine may make mutually-recursive calls to each other
464 to figure out what to do. At each juncture, we see if this is a tree
465 that the language may need to handle specially. First handle things that
466 aren't types. */
467 if (! TYPE_P (t))
469 tree inner = t;
470 tree placeholder_ptr = 0;
472 /* Remove any nops, then give the language a chance to do
473 something with this tree before we look at it. */
474 STRIP_NOPS (t);
475 set = (*lang_hooks.get_alias_set) (t);
476 if (set != -1)
477 return set;
479 /* First see if the actual object referenced is an INDIRECT_REF from a
480 restrict-qualified pointer or a "void *". Replace
481 PLACEHOLDER_EXPRs. */
482 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
483 || handled_component_p (inner))
485 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
486 inner = find_placeholder (inner, &placeholder_ptr);
487 else
488 inner = TREE_OPERAND (inner, 0);
490 STRIP_NOPS (inner);
493 /* Check for accesses through restrict-qualified pointers. */
494 if (TREE_CODE (inner) == INDIRECT_REF)
496 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
498 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
500 /* If we haven't computed the actual alias set, do it now. */
501 if (DECL_POINTER_ALIAS_SET (decl) == -2)
503 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
505 /* No two restricted pointers can point at the same thing.
506 However, a restricted pointer can point at the same thing
507 as an unrestricted pointer, if that unrestricted pointer
508 is based on the restricted pointer. So, we make the
509 alias set for the restricted pointer a subset of the
510 alias set for the type pointed to by the type of the
511 decl. */
512 HOST_WIDE_INT pointed_to_alias_set
513 = get_alias_set (pointed_to_type);
515 if (pointed_to_alias_set == 0)
516 /* It's not legal to make a subset of alias set zero. */
517 DECL_POINTER_ALIAS_SET (decl) = 0;
518 else if (AGGREGATE_TYPE_P (pointed_to_type))
519 /* For an aggregate, we must treat the restricted
520 pointer the same as an ordinary pointer. If we
521 were to make the type pointed to by the
522 restricted pointer a subset of the pointed-to
523 type, then we would believe that other subsets
524 of the pointed-to type (such as fields of that
525 type) do not conflict with the type pointed to
526 by the restricted pointer. */
527 DECL_POINTER_ALIAS_SET (decl)
528 = pointed_to_alias_set;
529 else
531 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
532 record_alias_subset (pointed_to_alias_set,
533 DECL_POINTER_ALIAS_SET (decl));
537 /* We use the alias set indicated in the declaration. */
538 return DECL_POINTER_ALIAS_SET (decl);
541 /* If we have an INDIRECT_REF via a void pointer, we don't
542 know anything about what that might alias. */
543 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
544 return 0;
547 /* Otherwise, pick up the outermost object that we could have a pointer
548 to, processing conversion and PLACEHOLDER_EXPR as above. */
549 placeholder_ptr = 0;
550 while (TREE_CODE (t) == PLACEHOLDER_EXPR
551 || (handled_component_p (t) && ! can_address_p (t)))
553 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
554 t = find_placeholder (t, &placeholder_ptr);
555 else
556 t = TREE_OPERAND (t, 0);
558 STRIP_NOPS (t);
561 /* If we've already determined the alias set for a decl, just return
562 it. This is necessary for C++ anonymous unions, whose component
563 variables don't look like union members (boo!). */
564 if (TREE_CODE (t) == VAR_DECL
565 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
566 return MEM_ALIAS_SET (DECL_RTL (t));
568 /* Now all we care about is the type. */
569 t = TREE_TYPE (t);
572 /* Variant qualifiers don't affect the alias set, so get the main
573 variant. If this is a type with a known alias set, return it. */
574 t = TYPE_MAIN_VARIANT (t);
575 if (TYPE_ALIAS_SET_KNOWN_P (t))
576 return TYPE_ALIAS_SET (t);
578 /* See if the language has special handling for this type. */
579 set = (*lang_hooks.get_alias_set) (t);
580 if (set != -1)
581 return set;
583 /* There are no objects of FUNCTION_TYPE, so there's no point in
584 using up an alias set for them. (There are, of course, pointers
585 and references to functions, but that's different.) */
586 else if (TREE_CODE (t) == FUNCTION_TYPE)
587 set = 0;
589 /* Unless the language specifies otherwise, let vector types alias
590 their components. This avoids some nasty type punning issues in
591 normal usage. And indeed lets vectors be treated more like an
592 array slice. */
593 else if (TREE_CODE (t) == VECTOR_TYPE)
594 set = get_alias_set (TREE_TYPE (t));
596 else
597 /* Otherwise make a new alias set for this type. */
598 set = new_alias_set ();
600 TYPE_ALIAS_SET (t) = set;
602 /* If this is an aggregate type, we must record any component aliasing
603 information. */
604 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
605 record_component_aliases (t);
607 return set;
610 /* Return a brand-new alias set. */
612 static GTY(()) HOST_WIDE_INT last_alias_set;
614 HOST_WIDE_INT
615 new_alias_set (void)
617 if (flag_strict_aliasing)
619 if (!alias_sets)
620 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
621 else
622 VARRAY_GROW (alias_sets, last_alias_set + 2);
623 return ++last_alias_set;
625 else
626 return 0;
629 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
630 not everything that aliases SUPERSET also aliases SUBSET. For example,
631 in C, a store to an `int' can alias a load of a structure containing an
632 `int', and vice versa. But it can't alias a load of a 'double' member
633 of the same structure. Here, the structure would be the SUPERSET and
634 `int' the SUBSET. This relationship is also described in the comment at
635 the beginning of this file.
637 This function should be called only once per SUPERSET/SUBSET pair.
639 It is illegal for SUPERSET to be zero; everything is implicitly a
640 subset of alias set zero. */
642 void
643 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
645 alias_set_entry superset_entry;
646 alias_set_entry subset_entry;
648 /* It is possible in complex type situations for both sets to be the same,
649 in which case we can ignore this operation. */
650 if (superset == subset)
651 return;
653 if (superset == 0)
654 abort ();
656 superset_entry = get_alias_set_entry (superset);
657 if (superset_entry == 0)
659 /* Create an entry for the SUPERSET, so that we have a place to
660 attach the SUBSET. */
661 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
662 superset_entry->alias_set = superset;
663 superset_entry->children
664 = splay_tree_new_ggc (splay_tree_compare_ints);
665 superset_entry->has_zero_child = 0;
666 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
669 if (subset == 0)
670 superset_entry->has_zero_child = 1;
671 else
673 subset_entry = get_alias_set_entry (subset);
674 /* If there is an entry for the subset, enter all of its children
675 (if they are not already present) as children of the SUPERSET. */
676 if (subset_entry)
678 if (subset_entry->has_zero_child)
679 superset_entry->has_zero_child = 1;
681 splay_tree_foreach (subset_entry->children, insert_subset_children,
682 superset_entry->children);
685 /* Enter the SUBSET itself as a child of the SUPERSET. */
686 splay_tree_insert (superset_entry->children,
687 (splay_tree_key) subset, 0);
691 /* Record that component types of TYPE, if any, are part of that type for
692 aliasing purposes. For record types, we only record component types
693 for fields that are marked addressable. For array types, we always
694 record the component types, so the front end should not call this
695 function if the individual component aren't addressable. */
697 void
698 record_component_aliases (tree type)
700 HOST_WIDE_INT superset = get_alias_set (type);
701 tree field;
703 if (superset == 0)
704 return;
706 switch (TREE_CODE (type))
708 case ARRAY_TYPE:
709 if (! TYPE_NONALIASED_COMPONENT (type))
710 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
711 break;
713 case RECORD_TYPE:
714 case UNION_TYPE:
715 case QUAL_UNION_TYPE:
716 /* Recursively record aliases for the base classes, if there are any. */
717 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
719 int i;
720 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
722 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
723 record_alias_subset (superset,
724 get_alias_set (BINFO_TYPE (binfo)));
727 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
728 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
729 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
730 break;
732 case COMPLEX_TYPE:
733 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
734 break;
736 default:
737 break;
741 /* Allocate an alias set for use in storing and reading from the varargs
742 spill area. */
744 static GTY(()) HOST_WIDE_INT varargs_set = -1;
746 HOST_WIDE_INT
747 get_varargs_alias_set (void)
749 if (varargs_set == -1)
750 varargs_set = new_alias_set ();
752 return varargs_set;
755 /* Likewise, but used for the fixed portions of the frame, e.g., register
756 save areas. */
758 static GTY(()) HOST_WIDE_INT frame_set = -1;
760 HOST_WIDE_INT
761 get_frame_alias_set (void)
763 if (frame_set == -1)
764 frame_set = new_alias_set ();
766 return frame_set;
769 /* Inside SRC, the source of a SET, find a base address. */
771 static rtx
772 find_base_value (rtx src)
774 unsigned int regno;
776 switch (GET_CODE (src))
778 case SYMBOL_REF:
779 case LABEL_REF:
780 return src;
782 case REG:
783 regno = REGNO (src);
784 /* At the start of a function, argument registers have known base
785 values which may be lost later. Returning an ADDRESS
786 expression here allows optimization based on argument values
787 even when the argument registers are used for other purposes. */
788 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
789 return new_reg_base_value[regno];
791 /* If a pseudo has a known base value, return it. Do not do this
792 for non-fixed hard regs since it can result in a circular
793 dependency chain for registers which have values at function entry.
795 The test above is not sufficient because the scheduler may move
796 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
797 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
798 && regno < VARRAY_SIZE (reg_base_value))
800 /* If we're inside init_alias_analysis, use new_reg_base_value
801 to reduce the number of relaxation iterations. */
802 if (new_reg_base_value && new_reg_base_value[regno]
803 && REG_N_SETS (regno) == 1)
804 return new_reg_base_value[regno];
806 if (VARRAY_RTX (reg_base_value, regno))
807 return VARRAY_RTX (reg_base_value, regno);
810 return 0;
812 case MEM:
813 /* Check for an argument passed in memory. Only record in the
814 copying-arguments block; it is too hard to track changes
815 otherwise. */
816 if (copying_arguments
817 && (XEXP (src, 0) == arg_pointer_rtx
818 || (GET_CODE (XEXP (src, 0)) == PLUS
819 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
820 return gen_rtx_ADDRESS (VOIDmode, src);
821 return 0;
823 case CONST:
824 src = XEXP (src, 0);
825 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
826 break;
828 /* ... fall through ... */
830 case PLUS:
831 case MINUS:
833 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
835 /* If either operand is a REG that is a known pointer, then it
836 is the base. */
837 if (REG_P (src_0) && REG_POINTER (src_0))
838 return find_base_value (src_0);
839 if (REG_P (src_1) && REG_POINTER (src_1))
840 return find_base_value (src_1);
842 /* If either operand is a REG, then see if we already have
843 a known value for it. */
844 if (REG_P (src_0))
846 temp = find_base_value (src_0);
847 if (temp != 0)
848 src_0 = temp;
851 if (REG_P (src_1))
853 temp = find_base_value (src_1);
854 if (temp!= 0)
855 src_1 = temp;
858 /* If either base is named object or a special address
859 (like an argument or stack reference), then use it for the
860 base term. */
861 if (src_0 != 0
862 && (GET_CODE (src_0) == SYMBOL_REF
863 || GET_CODE (src_0) == LABEL_REF
864 || (GET_CODE (src_0) == ADDRESS
865 && GET_MODE (src_0) != VOIDmode)))
866 return src_0;
868 if (src_1 != 0
869 && (GET_CODE (src_1) == SYMBOL_REF
870 || GET_CODE (src_1) == LABEL_REF
871 || (GET_CODE (src_1) == ADDRESS
872 && GET_MODE (src_1) != VOIDmode)))
873 return src_1;
875 /* Guess which operand is the base address:
876 If either operand is a symbol, then it is the base. If
877 either operand is a CONST_INT, then the other is the base. */
878 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
879 return find_base_value (src_0);
880 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
881 return find_base_value (src_1);
883 return 0;
886 case LO_SUM:
887 /* The standard form is (lo_sum reg sym) so look only at the
888 second operand. */
889 return find_base_value (XEXP (src, 1));
891 case AND:
892 /* If the second operand is constant set the base
893 address to the first operand. */
894 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
895 return find_base_value (XEXP (src, 0));
896 return 0;
898 case TRUNCATE:
899 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
900 break;
901 /* Fall through. */
902 case HIGH:
903 case PRE_INC:
904 case PRE_DEC:
905 case POST_INC:
906 case POST_DEC:
907 case PRE_MODIFY:
908 case POST_MODIFY:
909 return find_base_value (XEXP (src, 0));
911 case ZERO_EXTEND:
912 case SIGN_EXTEND: /* used for NT/Alpha pointers */
914 rtx temp = find_base_value (XEXP (src, 0));
916 if (temp != 0 && CONSTANT_P (temp))
917 temp = convert_memory_address (Pmode, temp);
919 return temp;
922 default:
923 break;
926 return 0;
929 /* Called from init_alias_analysis indirectly through note_stores. */
931 /* While scanning insns to find base values, reg_seen[N] is nonzero if
932 register N has been set in this function. */
933 static char *reg_seen;
935 /* Addresses which are known not to alias anything else are identified
936 by a unique integer. */
937 static int unique_id;
939 static void
940 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
942 unsigned regno;
943 rtx src;
944 int n;
946 if (GET_CODE (dest) != REG)
947 return;
949 regno = REGNO (dest);
951 if (regno >= VARRAY_SIZE (reg_base_value))
952 abort ();
954 /* If this spans multiple hard registers, then we must indicate that every
955 register has an unusable value. */
956 if (regno < FIRST_PSEUDO_REGISTER)
957 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
958 else
959 n = 1;
960 if (n != 1)
962 while (--n >= 0)
964 reg_seen[regno + n] = 1;
965 new_reg_base_value[regno + n] = 0;
967 return;
970 if (set)
972 /* A CLOBBER wipes out any old value but does not prevent a previously
973 unset register from acquiring a base address (i.e. reg_seen is not
974 set). */
975 if (GET_CODE (set) == CLOBBER)
977 new_reg_base_value[regno] = 0;
978 return;
980 src = SET_SRC (set);
982 else
984 if (reg_seen[regno])
986 new_reg_base_value[regno] = 0;
987 return;
989 reg_seen[regno] = 1;
990 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
991 GEN_INT (unique_id++));
992 return;
995 /* This is not the first set. If the new value is not related to the
996 old value, forget the base value. Note that the following code is
997 not detected:
998 extern int x, y; int *p = &x; p += (&y-&x);
999 ANSI C does not allow computing the difference of addresses
1000 of distinct top level objects. */
1001 if (new_reg_base_value[regno])
1002 switch (GET_CODE (src))
1004 case LO_SUM:
1005 case MINUS:
1006 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1007 new_reg_base_value[regno] = 0;
1008 break;
1009 case PLUS:
1010 /* If the value we add in the PLUS is also a valid base value,
1011 this might be the actual base value, and the original value
1012 an index. */
1014 rtx other = NULL_RTX;
1016 if (XEXP (src, 0) == dest)
1017 other = XEXP (src, 1);
1018 else if (XEXP (src, 1) == dest)
1019 other = XEXP (src, 0);
1021 if (! other || find_base_value (other))
1022 new_reg_base_value[regno] = 0;
1023 break;
1025 case AND:
1026 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1027 new_reg_base_value[regno] = 0;
1028 break;
1029 default:
1030 new_reg_base_value[regno] = 0;
1031 break;
1033 /* If this is the first set of a register, record the value. */
1034 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1035 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1036 new_reg_base_value[regno] = find_base_value (src);
1038 reg_seen[regno] = 1;
1041 /* Called from loop optimization when a new pseudo-register is
1042 created. It indicates that REGNO is being set to VAL. f INVARIANT
1043 is true then this value also describes an invariant relationship
1044 which can be used to deduce that two registers with unknown values
1045 are different. */
1047 void
1048 record_base_value (unsigned int regno, rtx val, int invariant)
1050 if (invariant && alias_invariant && regno < alias_invariant_size)
1051 alias_invariant[regno] = val;
1053 if (regno >= VARRAY_SIZE (reg_base_value))
1054 VARRAY_GROW (reg_base_value, max_reg_num ());
1056 if (GET_CODE (val) == REG)
1058 VARRAY_RTX (reg_base_value, regno)
1059 = REG_BASE_VALUE (val);
1060 return;
1062 VARRAY_RTX (reg_base_value, regno)
1063 = find_base_value (val);
1066 /* Clear alias info for a register. This is used if an RTL transformation
1067 changes the value of a register. This is used in flow by AUTO_INC_DEC
1068 optimizations. We don't need to clear reg_base_value, since flow only
1069 changes the offset. */
1071 void
1072 clear_reg_alias_info (rtx reg)
1074 unsigned int regno = REGNO (reg);
1076 if (regno >= FIRST_PSEUDO_REGISTER)
1078 regno -= FIRST_PSEUDO_REGISTER;
1079 if (regno < reg_known_value_size)
1081 reg_known_value[regno] = reg;
1082 reg_known_equiv_p[regno] = false;
1087 /* If a value is known for REGNO, return it. */
1089 rtx
1090 get_reg_known_value (unsigned int regno)
1092 if (regno >= FIRST_PSEUDO_REGISTER)
1094 regno -= FIRST_PSEUDO_REGISTER;
1095 if (regno < reg_known_value_size)
1096 return reg_known_value[regno];
1098 return NULL;
1101 /* Set it. */
1103 static void
1104 set_reg_known_value (unsigned int regno, rtx val)
1106 if (regno >= FIRST_PSEUDO_REGISTER)
1108 regno -= FIRST_PSEUDO_REGISTER;
1109 if (regno < reg_known_value_size)
1110 reg_known_value[regno] = val;
1114 /* Similarly for reg_known_equiv_p. */
1116 bool
1117 get_reg_known_equiv_p (unsigned int regno)
1119 if (regno >= FIRST_PSEUDO_REGISTER)
1121 regno -= FIRST_PSEUDO_REGISTER;
1122 if (regno < reg_known_value_size)
1123 return reg_known_equiv_p[regno];
1125 return false;
1128 static void
1129 set_reg_known_equiv_p (unsigned int regno, bool val)
1131 if (regno >= FIRST_PSEUDO_REGISTER)
1133 regno -= FIRST_PSEUDO_REGISTER;
1134 if (regno < reg_known_value_size)
1135 reg_known_equiv_p[regno] = val;
1140 /* Returns a canonical version of X, from the point of view alias
1141 analysis. (For example, if X is a MEM whose address is a register,
1142 and the register has a known value (say a SYMBOL_REF), then a MEM
1143 whose address is the SYMBOL_REF is returned.) */
1146 canon_rtx (rtx x)
1148 /* Recursively look for equivalences. */
1149 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1151 rtx t = get_reg_known_value (REGNO (x));
1152 if (t == x)
1153 return x;
1154 if (t)
1155 return canon_rtx (t);
1158 if (GET_CODE (x) == PLUS)
1160 rtx x0 = canon_rtx (XEXP (x, 0));
1161 rtx x1 = canon_rtx (XEXP (x, 1));
1163 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1165 if (GET_CODE (x0) == CONST_INT)
1166 return plus_constant (x1, INTVAL (x0));
1167 else if (GET_CODE (x1) == CONST_INT)
1168 return plus_constant (x0, INTVAL (x1));
1169 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1173 /* This gives us much better alias analysis when called from
1174 the loop optimizer. Note we want to leave the original
1175 MEM alone, but need to return the canonicalized MEM with
1176 all the flags with their original values. */
1177 else if (GET_CODE (x) == MEM)
1178 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1180 return x;
1183 /* Return 1 if X and Y are identical-looking rtx's.
1184 Expect that X and Y has been already canonicalized.
1186 We use the data in reg_known_value above to see if two registers with
1187 different numbers are, in fact, equivalent. */
1189 static int
1190 rtx_equal_for_memref_p (rtx x, rtx y)
1192 int i;
1193 int j;
1194 enum rtx_code code;
1195 const char *fmt;
1197 if (x == 0 && y == 0)
1198 return 1;
1199 if (x == 0 || y == 0)
1200 return 0;
1202 if (x == y)
1203 return 1;
1205 code = GET_CODE (x);
1206 /* Rtx's of different codes cannot be equal. */
1207 if (code != GET_CODE (y))
1208 return 0;
1210 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1211 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1213 if (GET_MODE (x) != GET_MODE (y))
1214 return 0;
1216 /* Some RTL can be compared without a recursive examination. */
1217 switch (code)
1219 case REG:
1220 return REGNO (x) == REGNO (y);
1222 case LABEL_REF:
1223 return XEXP (x, 0) == XEXP (y, 0);
1225 case SYMBOL_REF:
1226 return XSTR (x, 0) == XSTR (y, 0);
1228 case VALUE:
1229 case CONST_INT:
1230 case CONST_DOUBLE:
1231 /* There's no need to compare the contents of CONST_DOUBLEs or
1232 CONST_INTs because pointer equality is a good enough
1233 comparison for these nodes. */
1234 return 0;
1236 case ADDRESSOF:
1237 return (XINT (x, 1) == XINT (y, 1)
1238 && rtx_equal_for_memref_p (XEXP (x, 0),
1239 XEXP (y, 0)));
1241 default:
1242 break;
1245 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1246 if (code == PLUS)
1247 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1248 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1249 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1250 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1251 /* For commutative operations, the RTX match if the operand match in any
1252 order. Also handle the simple binary and unary cases without a loop. */
1253 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1255 rtx xop0 = canon_rtx (XEXP (x, 0));
1256 rtx yop0 = canon_rtx (XEXP (y, 0));
1257 rtx yop1 = canon_rtx (XEXP (y, 1));
1259 return ((rtx_equal_for_memref_p (xop0, yop0)
1260 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1261 || (rtx_equal_for_memref_p (xop0, yop1)
1262 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1264 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1266 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1267 canon_rtx (XEXP (y, 0)))
1268 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1269 canon_rtx (XEXP (y, 1))));
1271 else if (GET_RTX_CLASS (code) == '1')
1272 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1273 canon_rtx (XEXP (y, 0)));
1275 /* Compare the elements. If any pair of corresponding elements
1276 fail to match, return 0 for the whole things.
1278 Limit cases to types which actually appear in addresses. */
1280 fmt = GET_RTX_FORMAT (code);
1281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1283 switch (fmt[i])
1285 case 'i':
1286 if (XINT (x, i) != XINT (y, i))
1287 return 0;
1288 break;
1290 case 'E':
1291 /* Two vectors must have the same length. */
1292 if (XVECLEN (x, i) != XVECLEN (y, i))
1293 return 0;
1295 /* And the corresponding elements must match. */
1296 for (j = 0; j < XVECLEN (x, i); j++)
1297 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1298 canon_rtx (XVECEXP (y, i, j))) == 0)
1299 return 0;
1300 break;
1302 case 'e':
1303 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1304 canon_rtx (XEXP (y, i))) == 0)
1305 return 0;
1306 break;
1308 /* This can happen for asm operands. */
1309 case 's':
1310 if (strcmp (XSTR (x, i), XSTR (y, i)))
1311 return 0;
1312 break;
1314 /* This can happen for an asm which clobbers memory. */
1315 case '0':
1316 break;
1318 /* It is believed that rtx's at this level will never
1319 contain anything but integers and other rtx's,
1320 except for within LABEL_REFs and SYMBOL_REFs. */
1321 default:
1322 abort ();
1325 return 1;
1328 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1329 X and return it, or return 0 if none found. */
1331 static rtx
1332 find_symbolic_term (rtx x)
1334 int i;
1335 enum rtx_code code;
1336 const char *fmt;
1338 code = GET_CODE (x);
1339 if (code == SYMBOL_REF || code == LABEL_REF)
1340 return x;
1341 if (GET_RTX_CLASS (code) == 'o')
1342 return 0;
1344 fmt = GET_RTX_FORMAT (code);
1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1347 rtx t;
1349 if (fmt[i] == 'e')
1351 t = find_symbolic_term (XEXP (x, i));
1352 if (t != 0)
1353 return t;
1355 else if (fmt[i] == 'E')
1356 break;
1358 return 0;
1362 find_base_term (rtx x)
1364 cselib_val *val;
1365 struct elt_loc_list *l;
1367 #if defined (FIND_BASE_TERM)
1368 /* Try machine-dependent ways to find the base term. */
1369 x = FIND_BASE_TERM (x);
1370 #endif
1372 switch (GET_CODE (x))
1374 case REG:
1375 return REG_BASE_VALUE (x);
1377 case TRUNCATE:
1378 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1379 return 0;
1380 /* Fall through. */
1381 case HIGH:
1382 case PRE_INC:
1383 case PRE_DEC:
1384 case POST_INC:
1385 case POST_DEC:
1386 case PRE_MODIFY:
1387 case POST_MODIFY:
1388 return find_base_term (XEXP (x, 0));
1390 case ZERO_EXTEND:
1391 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1393 rtx temp = find_base_term (XEXP (x, 0));
1395 if (temp != 0 && CONSTANT_P (temp))
1396 temp = convert_memory_address (Pmode, temp);
1398 return temp;
1401 case VALUE:
1402 val = CSELIB_VAL_PTR (x);
1403 if (!val)
1404 return 0;
1405 for (l = val->locs; l; l = l->next)
1406 if ((x = find_base_term (l->loc)) != 0)
1407 return x;
1408 return 0;
1410 case CONST:
1411 x = XEXP (x, 0);
1412 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1413 return 0;
1414 /* Fall through. */
1415 case LO_SUM:
1416 case PLUS:
1417 case MINUS:
1419 rtx tmp1 = XEXP (x, 0);
1420 rtx tmp2 = XEXP (x, 1);
1422 /* This is a little bit tricky since we have to determine which of
1423 the two operands represents the real base address. Otherwise this
1424 routine may return the index register instead of the base register.
1426 That may cause us to believe no aliasing was possible, when in
1427 fact aliasing is possible.
1429 We use a few simple tests to guess the base register. Additional
1430 tests can certainly be added. For example, if one of the operands
1431 is a shift or multiply, then it must be the index register and the
1432 other operand is the base register. */
1434 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1435 return find_base_term (tmp2);
1437 /* If either operand is known to be a pointer, then use it
1438 to determine the base term. */
1439 if (REG_P (tmp1) && REG_POINTER (tmp1))
1440 return find_base_term (tmp1);
1442 if (REG_P (tmp2) && REG_POINTER (tmp2))
1443 return find_base_term (tmp2);
1445 /* Neither operand was known to be a pointer. Go ahead and find the
1446 base term for both operands. */
1447 tmp1 = find_base_term (tmp1);
1448 tmp2 = find_base_term (tmp2);
1450 /* If either base term is named object or a special address
1451 (like an argument or stack reference), then use it for the
1452 base term. */
1453 if (tmp1 != 0
1454 && (GET_CODE (tmp1) == SYMBOL_REF
1455 || GET_CODE (tmp1) == LABEL_REF
1456 || (GET_CODE (tmp1) == ADDRESS
1457 && GET_MODE (tmp1) != VOIDmode)))
1458 return tmp1;
1460 if (tmp2 != 0
1461 && (GET_CODE (tmp2) == SYMBOL_REF
1462 || GET_CODE (tmp2) == LABEL_REF
1463 || (GET_CODE (tmp2) == ADDRESS
1464 && GET_MODE (tmp2) != VOIDmode)))
1465 return tmp2;
1467 /* We could not determine which of the two operands was the
1468 base register and which was the index. So we can determine
1469 nothing from the base alias check. */
1470 return 0;
1473 case AND:
1474 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1475 return find_base_term (XEXP (x, 0));
1476 return 0;
1478 case SYMBOL_REF:
1479 case LABEL_REF:
1480 return x;
1482 case ADDRESSOF:
1483 return REG_BASE_VALUE (frame_pointer_rtx);
1485 default:
1486 return 0;
1490 /* Return 0 if the addresses X and Y are known to point to different
1491 objects, 1 if they might be pointers to the same object. */
1493 static int
1494 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1495 enum machine_mode y_mode)
1497 rtx x_base = find_base_term (x);
1498 rtx y_base = find_base_term (y);
1500 /* If the address itself has no known base see if a known equivalent
1501 value has one. If either address still has no known base, nothing
1502 is known about aliasing. */
1503 if (x_base == 0)
1505 rtx x_c;
1507 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1508 return 1;
1510 x_base = find_base_term (x_c);
1511 if (x_base == 0)
1512 return 1;
1515 if (y_base == 0)
1517 rtx y_c;
1518 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1519 return 1;
1521 y_base = find_base_term (y_c);
1522 if (y_base == 0)
1523 return 1;
1526 /* If the base addresses are equal nothing is known about aliasing. */
1527 if (rtx_equal_p (x_base, y_base))
1528 return 1;
1530 /* The base addresses of the read and write are different expressions.
1531 If they are both symbols and they are not accessed via AND, there is
1532 no conflict. We can bring knowledge of object alignment into play
1533 here. For example, on alpha, "char a, b;" can alias one another,
1534 though "char a; long b;" cannot. */
1535 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1537 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1538 return 1;
1539 if (GET_CODE (x) == AND
1540 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1541 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1542 return 1;
1543 if (GET_CODE (y) == AND
1544 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1545 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1546 return 1;
1547 /* Differing symbols never alias. */
1548 return 0;
1551 /* If one address is a stack reference there can be no alias:
1552 stack references using different base registers do not alias,
1553 a stack reference can not alias a parameter, and a stack reference
1554 can not alias a global. */
1555 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1556 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1557 return 0;
1559 if (! flag_argument_noalias)
1560 return 1;
1562 if (flag_argument_noalias > 1)
1563 return 0;
1565 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1566 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1569 /* Convert the address X into something we can use. This is done by returning
1570 it unchanged unless it is a value; in the latter case we call cselib to get
1571 a more useful rtx. */
1574 get_addr (rtx x)
1576 cselib_val *v;
1577 struct elt_loc_list *l;
1579 if (GET_CODE (x) != VALUE)
1580 return x;
1581 v = CSELIB_VAL_PTR (x);
1582 if (v)
1584 for (l = v->locs; l; l = l->next)
1585 if (CONSTANT_P (l->loc))
1586 return l->loc;
1587 for (l = v->locs; l; l = l->next)
1588 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1589 return l->loc;
1590 if (v->locs)
1591 return v->locs->loc;
1593 return x;
1596 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1597 where SIZE is the size in bytes of the memory reference. If ADDR
1598 is not modified by the memory reference then ADDR is returned. */
1601 addr_side_effect_eval (rtx addr, int size, int n_refs)
1603 int offset = 0;
1605 switch (GET_CODE (addr))
1607 case PRE_INC:
1608 offset = (n_refs + 1) * size;
1609 break;
1610 case PRE_DEC:
1611 offset = -(n_refs + 1) * size;
1612 break;
1613 case POST_INC:
1614 offset = n_refs * size;
1615 break;
1616 case POST_DEC:
1617 offset = -n_refs * size;
1618 break;
1620 default:
1621 return addr;
1624 if (offset)
1625 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1626 GEN_INT (offset));
1627 else
1628 addr = XEXP (addr, 0);
1629 addr = canon_rtx (addr);
1631 return addr;
1634 /* Return nonzero if X and Y (memory addresses) could reference the
1635 same location in memory. C is an offset accumulator. When
1636 C is nonzero, we are testing aliases between X and Y + C.
1637 XSIZE is the size in bytes of the X reference,
1638 similarly YSIZE is the size in bytes for Y.
1639 Expect that canon_rtx has been already called for X and Y.
1641 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1642 referenced (the reference was BLKmode), so make the most pessimistic
1643 assumptions.
1645 If XSIZE or YSIZE is negative, we may access memory outside the object
1646 being referenced as a side effect. This can happen when using AND to
1647 align memory references, as is done on the Alpha.
1649 Nice to notice that varying addresses cannot conflict with fp if no
1650 local variables had their addresses taken, but that's too hard now. */
1652 static int
1653 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1655 if (GET_CODE (x) == VALUE)
1656 x = get_addr (x);
1657 if (GET_CODE (y) == VALUE)
1658 y = get_addr (y);
1659 if (GET_CODE (x) == HIGH)
1660 x = XEXP (x, 0);
1661 else if (GET_CODE (x) == LO_SUM)
1662 x = XEXP (x, 1);
1663 else
1664 x = addr_side_effect_eval (x, xsize, 0);
1665 if (GET_CODE (y) == HIGH)
1666 y = XEXP (y, 0);
1667 else if (GET_CODE (y) == LO_SUM)
1668 y = XEXP (y, 1);
1669 else
1670 y = addr_side_effect_eval (y, ysize, 0);
1672 if (rtx_equal_for_memref_p (x, y))
1674 if (xsize <= 0 || ysize <= 0)
1675 return 1;
1676 if (c >= 0 && xsize > c)
1677 return 1;
1678 if (c < 0 && ysize+c > 0)
1679 return 1;
1680 return 0;
1683 /* This code used to check for conflicts involving stack references and
1684 globals but the base address alias code now handles these cases. */
1686 if (GET_CODE (x) == PLUS)
1688 /* The fact that X is canonicalized means that this
1689 PLUS rtx is canonicalized. */
1690 rtx x0 = XEXP (x, 0);
1691 rtx x1 = XEXP (x, 1);
1693 if (GET_CODE (y) == PLUS)
1695 /* The fact that Y is canonicalized means that this
1696 PLUS rtx is canonicalized. */
1697 rtx y0 = XEXP (y, 0);
1698 rtx y1 = XEXP (y, 1);
1700 if (rtx_equal_for_memref_p (x1, y1))
1701 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1702 if (rtx_equal_for_memref_p (x0, y0))
1703 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1704 if (GET_CODE (x1) == CONST_INT)
1706 if (GET_CODE (y1) == CONST_INT)
1707 return memrefs_conflict_p (xsize, x0, ysize, y0,
1708 c - INTVAL (x1) + INTVAL (y1));
1709 else
1710 return memrefs_conflict_p (xsize, x0, ysize, y,
1711 c - INTVAL (x1));
1713 else if (GET_CODE (y1) == CONST_INT)
1714 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1716 return 1;
1718 else if (GET_CODE (x1) == CONST_INT)
1719 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1721 else if (GET_CODE (y) == PLUS)
1723 /* The fact that Y is canonicalized means that this
1724 PLUS rtx is canonicalized. */
1725 rtx y0 = XEXP (y, 0);
1726 rtx y1 = XEXP (y, 1);
1728 if (GET_CODE (y1) == CONST_INT)
1729 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1730 else
1731 return 1;
1734 if (GET_CODE (x) == GET_CODE (y))
1735 switch (GET_CODE (x))
1737 case MULT:
1739 /* Handle cases where we expect the second operands to be the
1740 same, and check only whether the first operand would conflict
1741 or not. */
1742 rtx x0, y0;
1743 rtx x1 = canon_rtx (XEXP (x, 1));
1744 rtx y1 = canon_rtx (XEXP (y, 1));
1745 if (! rtx_equal_for_memref_p (x1, y1))
1746 return 1;
1747 x0 = canon_rtx (XEXP (x, 0));
1748 y0 = canon_rtx (XEXP (y, 0));
1749 if (rtx_equal_for_memref_p (x0, y0))
1750 return (xsize == 0 || ysize == 0
1751 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1753 /* Can't properly adjust our sizes. */
1754 if (GET_CODE (x1) != CONST_INT)
1755 return 1;
1756 xsize /= INTVAL (x1);
1757 ysize /= INTVAL (x1);
1758 c /= INTVAL (x1);
1759 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1762 case REG:
1763 /* Are these registers known not to be equal? */
1764 if (alias_invariant)
1766 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1767 rtx i_x, i_y; /* invariant relationships of X and Y */
1769 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1770 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1772 if (i_x == 0 && i_y == 0)
1773 break;
1775 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1776 ysize, i_y ? i_y : y, c))
1777 return 0;
1779 break;
1781 default:
1782 break;
1785 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1786 as an access with indeterminate size. Assume that references
1787 besides AND are aligned, so if the size of the other reference is
1788 at least as large as the alignment, assume no other overlap. */
1789 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1791 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1792 xsize = -1;
1793 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1795 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1797 /* ??? If we are indexing far enough into the array/structure, we
1798 may yet be able to determine that we can not overlap. But we
1799 also need to that we are far enough from the end not to overlap
1800 a following reference, so we do nothing with that for now. */
1801 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1802 ysize = -1;
1803 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1806 if (GET_CODE (x) == ADDRESSOF)
1808 if (y == frame_pointer_rtx
1809 || GET_CODE (y) == ADDRESSOF)
1810 return xsize <= 0 || ysize <= 0;
1812 if (GET_CODE (y) == ADDRESSOF)
1814 if (x == frame_pointer_rtx)
1815 return xsize <= 0 || ysize <= 0;
1818 if (CONSTANT_P (x))
1820 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1822 c += (INTVAL (y) - INTVAL (x));
1823 return (xsize <= 0 || ysize <= 0
1824 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1827 if (GET_CODE (x) == CONST)
1829 if (GET_CODE (y) == CONST)
1830 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1831 ysize, canon_rtx (XEXP (y, 0)), c);
1832 else
1833 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1834 ysize, y, c);
1836 if (GET_CODE (y) == CONST)
1837 return memrefs_conflict_p (xsize, x, ysize,
1838 canon_rtx (XEXP (y, 0)), c);
1840 if (CONSTANT_P (y))
1841 return (xsize <= 0 || ysize <= 0
1842 || (rtx_equal_for_memref_p (x, y)
1843 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1845 return 1;
1847 return 1;
1850 /* Functions to compute memory dependencies.
1852 Since we process the insns in execution order, we can build tables
1853 to keep track of what registers are fixed (and not aliased), what registers
1854 are varying in known ways, and what registers are varying in unknown
1855 ways.
1857 If both memory references are volatile, then there must always be a
1858 dependence between the two references, since their order can not be
1859 changed. A volatile and non-volatile reference can be interchanged
1860 though.
1862 A MEM_IN_STRUCT reference at a non-AND varying address can never
1863 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1864 also must allow AND addresses, because they may generate accesses
1865 outside the object being referenced. This is used to generate
1866 aligned addresses from unaligned addresses, for instance, the alpha
1867 storeqi_unaligned pattern. */
1869 /* Read dependence: X is read after read in MEM takes place. There can
1870 only be a dependence here if both reads are volatile. */
1873 read_dependence (rtx mem, rtx x)
1875 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1878 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1879 MEM2 is a reference to a structure at a varying address, or returns
1880 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1881 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1882 to decide whether or not an address may vary; it should return
1883 nonzero whenever variation is possible.
1884 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1886 static rtx
1887 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1888 rtx mem2_addr,
1889 int (*varies_p) (rtx, int))
1891 if (! flag_strict_aliasing)
1892 return NULL_RTX;
1894 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1895 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1896 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1897 varying address. */
1898 return mem1;
1900 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1901 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1902 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1903 varying address. */
1904 return mem2;
1906 return NULL_RTX;
1909 /* Returns nonzero if something about the mode or address format MEM1
1910 indicates that it might well alias *anything*. */
1912 static int
1913 aliases_everything_p (rtx mem)
1915 if (GET_CODE (XEXP (mem, 0)) == AND)
1916 /* If the address is an AND, its very hard to know at what it is
1917 actually pointing. */
1918 return 1;
1920 return 0;
1923 /* Return true if we can determine that the fields referenced cannot
1924 overlap for any pair of objects. */
1926 static bool
1927 nonoverlapping_component_refs_p (tree x, tree y)
1929 tree fieldx, fieldy, typex, typey, orig_y;
1933 /* The comparison has to be done at a common type, since we don't
1934 know how the inheritance hierarchy works. */
1935 orig_y = y;
1938 fieldx = TREE_OPERAND (x, 1);
1939 typex = DECL_FIELD_CONTEXT (fieldx);
1941 y = orig_y;
1944 fieldy = TREE_OPERAND (y, 1);
1945 typey = DECL_FIELD_CONTEXT (fieldy);
1947 if (typex == typey)
1948 goto found;
1950 y = TREE_OPERAND (y, 0);
1952 while (y && TREE_CODE (y) == COMPONENT_REF);
1954 x = TREE_OPERAND (x, 0);
1956 while (x && TREE_CODE (x) == COMPONENT_REF);
1958 /* Never found a common type. */
1959 return false;
1961 found:
1962 /* If we're left with accessing different fields of a structure,
1963 then no overlap. */
1964 if (TREE_CODE (typex) == RECORD_TYPE
1965 && fieldx != fieldy)
1966 return true;
1968 /* The comparison on the current field failed. If we're accessing
1969 a very nested structure, look at the next outer level. */
1970 x = TREE_OPERAND (x, 0);
1971 y = TREE_OPERAND (y, 0);
1973 while (x && y
1974 && TREE_CODE (x) == COMPONENT_REF
1975 && TREE_CODE (y) == COMPONENT_REF);
1977 return false;
1980 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1982 static tree
1983 decl_for_component_ref (tree x)
1987 x = TREE_OPERAND (x, 0);
1989 while (x && TREE_CODE (x) == COMPONENT_REF);
1991 return x && DECL_P (x) ? x : NULL_TREE;
1994 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1995 offset of the field reference. */
1997 static rtx
1998 adjust_offset_for_component_ref (tree x, rtx offset)
2000 HOST_WIDE_INT ioffset;
2002 if (! offset)
2003 return NULL_RTX;
2005 ioffset = INTVAL (offset);
2008 tree field = TREE_OPERAND (x, 1);
2010 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2011 return NULL_RTX;
2012 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2013 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2014 / BITS_PER_UNIT));
2016 x = TREE_OPERAND (x, 0);
2018 while (x && TREE_CODE (x) == COMPONENT_REF);
2020 return GEN_INT (ioffset);
2023 /* Return nonzero if we can determine the exprs corresponding to memrefs
2024 X and Y and they do not overlap. */
2026 static int
2027 nonoverlapping_memrefs_p (rtx x, rtx y)
2029 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2030 rtx rtlx, rtly;
2031 rtx basex, basey;
2032 rtx moffsetx, moffsety;
2033 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2035 /* Unless both have exprs, we can't tell anything. */
2036 if (exprx == 0 || expry == 0)
2037 return 0;
2039 /* If both are field references, we may be able to determine something. */
2040 if (TREE_CODE (exprx) == COMPONENT_REF
2041 && TREE_CODE (expry) == COMPONENT_REF
2042 && nonoverlapping_component_refs_p (exprx, expry))
2043 return 1;
2045 /* If the field reference test failed, look at the DECLs involved. */
2046 moffsetx = MEM_OFFSET (x);
2047 if (TREE_CODE (exprx) == COMPONENT_REF)
2049 tree t = decl_for_component_ref (exprx);
2050 if (! t)
2051 return 0;
2052 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2053 exprx = t;
2055 else if (TREE_CODE (exprx) == INDIRECT_REF)
2057 exprx = TREE_OPERAND (exprx, 0);
2058 if (flag_argument_noalias < 2
2059 || TREE_CODE (exprx) != PARM_DECL)
2060 return 0;
2063 moffsety = MEM_OFFSET (y);
2064 if (TREE_CODE (expry) == COMPONENT_REF)
2066 tree t = decl_for_component_ref (expry);
2067 if (! t)
2068 return 0;
2069 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2070 expry = t;
2072 else if (TREE_CODE (expry) == INDIRECT_REF)
2074 expry = TREE_OPERAND (expry, 0);
2075 if (flag_argument_noalias < 2
2076 || TREE_CODE (expry) != PARM_DECL)
2077 return 0;
2080 if (! DECL_P (exprx) || ! DECL_P (expry))
2081 return 0;
2083 rtlx = DECL_RTL (exprx);
2084 rtly = DECL_RTL (expry);
2086 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2087 can't overlap unless they are the same because we never reuse that part
2088 of the stack frame used for locals for spilled pseudos. */
2089 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2090 && ! rtx_equal_p (rtlx, rtly))
2091 return 1;
2093 /* Get the base and offsets of both decls. If either is a register, we
2094 know both are and are the same, so use that as the base. The only
2095 we can avoid overlap is if we can deduce that they are nonoverlapping
2096 pieces of that decl, which is very rare. */
2097 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2098 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2099 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2101 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2102 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2103 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2105 /* If the bases are different, we know they do not overlap if both
2106 are constants or if one is a constant and the other a pointer into the
2107 stack frame. Otherwise a different base means we can't tell if they
2108 overlap or not. */
2109 if (! rtx_equal_p (basex, basey))
2110 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2111 || (CONSTANT_P (basex) && REG_P (basey)
2112 && REGNO_PTR_FRAME_P (REGNO (basey)))
2113 || (CONSTANT_P (basey) && REG_P (basex)
2114 && REGNO_PTR_FRAME_P (REGNO (basex))));
2116 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2117 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2118 : -1);
2119 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2120 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2121 -1);
2123 /* If we have an offset for either memref, it can update the values computed
2124 above. */
2125 if (moffsetx)
2126 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2127 if (moffsety)
2128 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2130 /* If a memref has both a size and an offset, we can use the smaller size.
2131 We can't do this if the offset isn't known because we must view this
2132 memref as being anywhere inside the DECL's MEM. */
2133 if (MEM_SIZE (x) && moffsetx)
2134 sizex = INTVAL (MEM_SIZE (x));
2135 if (MEM_SIZE (y) && moffsety)
2136 sizey = INTVAL (MEM_SIZE (y));
2138 /* Put the values of the memref with the lower offset in X's values. */
2139 if (offsetx > offsety)
2141 tem = offsetx, offsetx = offsety, offsety = tem;
2142 tem = sizex, sizex = sizey, sizey = tem;
2145 /* If we don't know the size of the lower-offset value, we can't tell
2146 if they conflict. Otherwise, we do the test. */
2147 return sizex >= 0 && offsety >= offsetx + sizex;
2150 /* True dependence: X is read after store in MEM takes place. */
2153 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2154 int (*varies) (rtx, int))
2156 rtx x_addr, mem_addr;
2157 rtx base;
2159 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2160 return 1;
2162 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2163 This is used in epilogue deallocation functions. */
2164 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2165 return 1;
2166 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2167 return 1;
2169 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2170 return 0;
2172 /* Unchanging memory can't conflict with non-unchanging memory.
2173 A non-unchanging read can conflict with a non-unchanging write.
2174 An unchanging read can conflict with an unchanging write since
2175 there may be a single store to this address to initialize it.
2176 Note that an unchanging store can conflict with a non-unchanging read
2177 since we have to make conservative assumptions when we have a
2178 record with readonly fields and we are copying the whole thing.
2179 Just fall through to the code below to resolve potential conflicts.
2180 This won't handle all cases optimally, but the possible performance
2181 loss should be negligible. */
2182 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2183 return 0;
2185 if (nonoverlapping_memrefs_p (mem, x))
2186 return 0;
2188 if (mem_mode == VOIDmode)
2189 mem_mode = GET_MODE (mem);
2191 x_addr = get_addr (XEXP (x, 0));
2192 mem_addr = get_addr (XEXP (mem, 0));
2194 base = find_base_term (x_addr);
2195 if (base && (GET_CODE (base) == LABEL_REF
2196 || (GET_CODE (base) == SYMBOL_REF
2197 && CONSTANT_POOL_ADDRESS_P (base))))
2198 return 0;
2200 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2201 return 0;
2203 x_addr = canon_rtx (x_addr);
2204 mem_addr = canon_rtx (mem_addr);
2206 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2207 SIZE_FOR_MODE (x), x_addr, 0))
2208 return 0;
2210 if (aliases_everything_p (x))
2211 return 1;
2213 /* We cannot use aliases_everything_p to test MEM, since we must look
2214 at MEM_MODE, rather than GET_MODE (MEM). */
2215 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2216 return 1;
2218 /* In true_dependence we also allow BLKmode to alias anything. Why
2219 don't we do this in anti_dependence and output_dependence? */
2220 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2221 return 1;
2223 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2224 varies);
2227 /* Canonical true dependence: X is read after store in MEM takes place.
2228 Variant of true_dependence which assumes MEM has already been
2229 canonicalized (hence we no longer do that here).
2230 The mem_addr argument has been added, since true_dependence computed
2231 this value prior to canonicalizing. */
2234 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2235 rtx x, int (*varies) (rtx, int))
2237 rtx x_addr;
2239 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2240 return 1;
2242 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2243 This is used in epilogue deallocation functions. */
2244 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2245 return 1;
2246 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2247 return 1;
2249 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2250 return 0;
2252 /* If X is an unchanging read, then it can't possibly conflict with any
2253 non-unchanging store. It may conflict with an unchanging write though,
2254 because there may be a single store to this address to initialize it.
2255 Just fall through to the code below to resolve the case where we have
2256 both an unchanging read and an unchanging write. This won't handle all
2257 cases optimally, but the possible performance loss should be
2258 negligible. */
2259 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2260 return 0;
2262 if (nonoverlapping_memrefs_p (x, mem))
2263 return 0;
2265 x_addr = get_addr (XEXP (x, 0));
2267 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2268 return 0;
2270 x_addr = canon_rtx (x_addr);
2271 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2272 SIZE_FOR_MODE (x), x_addr, 0))
2273 return 0;
2275 if (aliases_everything_p (x))
2276 return 1;
2278 /* We cannot use aliases_everything_p to test MEM, since we must look
2279 at MEM_MODE, rather than GET_MODE (MEM). */
2280 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2281 return 1;
2283 /* In true_dependence we also allow BLKmode to alias anything. Why
2284 don't we do this in anti_dependence and output_dependence? */
2285 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2286 return 1;
2288 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2289 varies);
2292 /* Returns nonzero if a write to X might alias a previous read from
2293 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2294 honor the RTX_UNCHANGING_P flags on X and MEM. */
2296 static int
2297 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2299 rtx x_addr, mem_addr;
2300 rtx fixed_scalar;
2301 rtx base;
2303 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2304 return 1;
2306 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2307 This is used in epilogue deallocation functions. */
2308 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2309 return 1;
2310 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2311 return 1;
2313 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2314 return 0;
2316 if (constp)
2318 /* Unchanging memory can't conflict with non-unchanging memory. */
2319 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2320 return 0;
2322 /* If MEM is an unchanging read, then it can't possibly conflict with
2323 the store to X, because there is at most one store to MEM, and it
2324 must have occurred somewhere before MEM. */
2325 if (! writep && RTX_UNCHANGING_P (mem))
2326 return 0;
2329 if (nonoverlapping_memrefs_p (x, mem))
2330 return 0;
2332 x_addr = get_addr (XEXP (x, 0));
2333 mem_addr = get_addr (XEXP (mem, 0));
2335 if (! writep)
2337 base = find_base_term (mem_addr);
2338 if (base && (GET_CODE (base) == LABEL_REF
2339 || (GET_CODE (base) == SYMBOL_REF
2340 && CONSTANT_POOL_ADDRESS_P (base))))
2341 return 0;
2344 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2345 GET_MODE (mem)))
2346 return 0;
2348 x_addr = canon_rtx (x_addr);
2349 mem_addr = canon_rtx (mem_addr);
2351 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2352 SIZE_FOR_MODE (x), x_addr, 0))
2353 return 0;
2355 fixed_scalar
2356 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2357 rtx_addr_varies_p);
2359 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2360 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2363 /* Anti dependence: X is written after read in MEM takes place. */
2366 anti_dependence (rtx mem, rtx x)
2368 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2371 /* Output dependence: X is written after store in MEM takes place. */
2374 output_dependence (rtx mem, rtx x)
2376 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2379 /* Unchanging anti dependence: Like anti_dependence but ignores
2380 the UNCHANGING_RTX_P property on const variable references. */
2383 unchanging_anti_dependence (rtx mem, rtx x)
2385 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2388 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2389 something which is not local to the function and is not constant. */
2391 static int
2392 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2394 rtx x = *loc;
2395 rtx base;
2396 int regno;
2398 if (! x)
2399 return 0;
2401 switch (GET_CODE (x))
2403 case SUBREG:
2404 if (GET_CODE (SUBREG_REG (x)) == REG)
2406 /* Global registers are not local. */
2407 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2408 && global_regs[subreg_regno (x)])
2409 return 1;
2410 return 0;
2412 break;
2414 case REG:
2415 regno = REGNO (x);
2416 /* Global registers are not local. */
2417 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2418 return 1;
2419 return 0;
2421 case SCRATCH:
2422 case PC:
2423 case CC0:
2424 case CONST_INT:
2425 case CONST_DOUBLE:
2426 case CONST_VECTOR:
2427 case CONST:
2428 case LABEL_REF:
2429 return 0;
2431 case SYMBOL_REF:
2432 /* Constants in the function's constants pool are constant. */
2433 if (CONSTANT_POOL_ADDRESS_P (x))
2434 return 0;
2435 return 1;
2437 case CALL:
2438 /* Non-constant calls and recursion are not local. */
2439 return 1;
2441 case MEM:
2442 /* Be overly conservative and consider any volatile memory
2443 reference as not local. */
2444 if (MEM_VOLATILE_P (x))
2445 return 1;
2446 base = find_base_term (XEXP (x, 0));
2447 if (base)
2449 /* A Pmode ADDRESS could be a reference via the structure value
2450 address or static chain. Such memory references are nonlocal.
2452 Thus, we have to examine the contents of the ADDRESS to find
2453 out if this is a local reference or not. */
2454 if (GET_CODE (base) == ADDRESS
2455 && GET_MODE (base) == Pmode
2456 && (XEXP (base, 0) == stack_pointer_rtx
2457 || XEXP (base, 0) == arg_pointer_rtx
2458 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2459 || XEXP (base, 0) == hard_frame_pointer_rtx
2460 #endif
2461 || XEXP (base, 0) == frame_pointer_rtx))
2462 return 0;
2463 /* Constants in the function's constant pool are constant. */
2464 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2465 return 0;
2467 return 1;
2469 case UNSPEC_VOLATILE:
2470 case ASM_INPUT:
2471 return 1;
2473 case ASM_OPERANDS:
2474 if (MEM_VOLATILE_P (x))
2475 return 1;
2477 /* Fall through. */
2479 default:
2480 break;
2483 return 0;
2486 /* Returns nonzero if X might mention something which is not
2487 local to the function and is not constant. */
2489 static int
2490 nonlocal_mentioned_p (rtx x)
2492 if (INSN_P (x))
2494 if (GET_CODE (x) == CALL_INSN)
2496 if (! CONST_OR_PURE_CALL_P (x))
2497 return 1;
2498 x = CALL_INSN_FUNCTION_USAGE (x);
2499 if (x == 0)
2500 return 0;
2502 else
2503 x = PATTERN (x);
2506 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2509 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2510 something which is not local to the function and is not constant. */
2512 static int
2513 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2515 rtx x = *loc;
2517 if (! x)
2518 return 0;
2520 switch (GET_CODE (x))
2522 case MEM:
2523 case REG:
2524 case SYMBOL_REF:
2525 case SUBREG:
2526 return nonlocal_mentioned_p (x);
2528 case CALL:
2529 /* Non-constant calls and recursion are not local. */
2530 return 1;
2532 case SET:
2533 if (nonlocal_mentioned_p (SET_SRC (x)))
2534 return 1;
2536 if (GET_CODE (SET_DEST (x)) == MEM)
2537 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2539 /* If the destination is anything other than a CC0, PC,
2540 MEM, REG, or a SUBREG of a REG that occupies all of
2541 the REG, then X references nonlocal memory if it is
2542 mentioned in the destination. */
2543 if (GET_CODE (SET_DEST (x)) != CC0
2544 && GET_CODE (SET_DEST (x)) != PC
2545 && GET_CODE (SET_DEST (x)) != REG
2546 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2547 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2548 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2549 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2550 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2551 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2552 return nonlocal_mentioned_p (SET_DEST (x));
2553 return 0;
2555 case CLOBBER:
2556 if (GET_CODE (XEXP (x, 0)) == MEM)
2557 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2558 return 0;
2560 case USE:
2561 return nonlocal_mentioned_p (XEXP (x, 0));
2563 case ASM_INPUT:
2564 case UNSPEC_VOLATILE:
2565 return 1;
2567 case ASM_OPERANDS:
2568 if (MEM_VOLATILE_P (x))
2569 return 1;
2571 /* Fall through. */
2573 default:
2574 break;
2577 return 0;
2580 /* Returns nonzero if X might reference something which is not
2581 local to the function and is not constant. */
2583 static int
2584 nonlocal_referenced_p (rtx x)
2586 if (INSN_P (x))
2588 if (GET_CODE (x) == CALL_INSN)
2590 if (! CONST_OR_PURE_CALL_P (x))
2591 return 1;
2592 x = CALL_INSN_FUNCTION_USAGE (x);
2593 if (x == 0)
2594 return 0;
2596 else
2597 x = PATTERN (x);
2600 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2603 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2604 something which is not local to the function and is not constant. */
2606 static int
2607 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2609 rtx x = *loc;
2611 if (! x)
2612 return 0;
2614 switch (GET_CODE (x))
2616 case CALL:
2617 /* Non-constant calls and recursion are not local. */
2618 return 1;
2620 case PRE_INC:
2621 case PRE_DEC:
2622 case POST_INC:
2623 case POST_DEC:
2624 case PRE_MODIFY:
2625 case POST_MODIFY:
2626 return nonlocal_mentioned_p (XEXP (x, 0));
2628 case SET:
2629 if (nonlocal_mentioned_p (SET_DEST (x)))
2630 return 1;
2631 return nonlocal_set_p (SET_SRC (x));
2633 case CLOBBER:
2634 return nonlocal_mentioned_p (XEXP (x, 0));
2636 case USE:
2637 return 0;
2639 case ASM_INPUT:
2640 case UNSPEC_VOLATILE:
2641 return 1;
2643 case ASM_OPERANDS:
2644 if (MEM_VOLATILE_P (x))
2645 return 1;
2647 /* Fall through. */
2649 default:
2650 break;
2653 return 0;
2656 /* Returns nonzero if X might set something which is not
2657 local to the function and is not constant. */
2659 static int
2660 nonlocal_set_p (rtx x)
2662 if (INSN_P (x))
2664 if (GET_CODE (x) == CALL_INSN)
2666 if (! CONST_OR_PURE_CALL_P (x))
2667 return 1;
2668 x = CALL_INSN_FUNCTION_USAGE (x);
2669 if (x == 0)
2670 return 0;
2672 else
2673 x = PATTERN (x);
2676 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2679 /* Mark the function if it is pure or constant. */
2681 void
2682 mark_constant_function (void)
2684 rtx insn;
2685 int nonlocal_memory_referenced;
2687 if (TREE_READONLY (current_function_decl)
2688 || DECL_IS_PURE (current_function_decl)
2689 || TREE_THIS_VOLATILE (current_function_decl)
2690 || current_function_has_nonlocal_goto
2691 || !(*targetm.binds_local_p) (current_function_decl))
2692 return;
2694 /* A loop might not return which counts as a side effect. */
2695 if (mark_dfs_back_edges ())
2696 return;
2698 nonlocal_memory_referenced = 0;
2700 init_alias_analysis ();
2702 /* Determine if this is a constant or pure function. */
2704 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2706 if (! INSN_P (insn))
2707 continue;
2709 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2710 || volatile_refs_p (PATTERN (insn)))
2711 break;
2713 if (! nonlocal_memory_referenced)
2714 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2717 end_alias_analysis ();
2719 /* Mark the function. */
2721 if (insn)
2723 else if (nonlocal_memory_referenced)
2725 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2726 DECL_IS_PURE (current_function_decl) = 1;
2728 else
2730 cgraph_rtl_info (current_function_decl)->const_function = 1;
2731 TREE_READONLY (current_function_decl) = 1;
2736 void
2737 init_alias_once (void)
2739 int i;
2741 #ifndef OUTGOING_REGNO
2742 #define OUTGOING_REGNO(N) N
2743 #endif
2744 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2745 /* Check whether this register can hold an incoming pointer
2746 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2747 numbers, so translate if necessary due to register windows. */
2748 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2749 && HARD_REGNO_MODE_OK (i, Pmode))
2750 static_reg_base_value[i]
2751 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2753 static_reg_base_value[STACK_POINTER_REGNUM]
2754 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2755 static_reg_base_value[ARG_POINTER_REGNUM]
2756 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2757 static_reg_base_value[FRAME_POINTER_REGNUM]
2758 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2759 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2760 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2761 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2762 #endif
2765 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2766 to be memory reference. */
2767 static bool memory_modified;
2768 static void
2769 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2771 if (GET_CODE (x) == MEM)
2773 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2774 memory_modified = true;
2779 /* Return true when INSN possibly modify memory contents of MEM
2780 (ie address can be modified). */
2781 bool
2782 memory_modified_in_insn_p (rtx mem, rtx insn)
2784 if (!INSN_P (insn))
2785 return false;
2786 memory_modified = false;
2787 note_stores (PATTERN (insn), memory_modified_1, mem);
2788 return memory_modified;
2791 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2792 array. */
2794 void
2795 init_alias_analysis (void)
2797 unsigned int maxreg = max_reg_num ();
2798 int changed, pass;
2799 int i;
2800 unsigned int ui;
2801 rtx insn;
2803 timevar_push (TV_ALIAS_ANALYSIS);
2805 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2806 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2807 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2809 /* Overallocate reg_base_value to allow some growth during loop
2810 optimization. Loop unrolling can create a large number of
2811 registers. */
2812 if (old_reg_base_value)
2814 reg_base_value = old_reg_base_value;
2815 /* If varray gets large zeroing cost may get important. */
2816 if (VARRAY_SIZE (reg_base_value) > 256
2817 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2818 VARRAY_GROW (reg_base_value, maxreg);
2819 VARRAY_CLEAR (reg_base_value);
2820 if (VARRAY_SIZE (reg_base_value) < maxreg)
2821 VARRAY_GROW (reg_base_value, maxreg);
2823 else
2825 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2828 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2829 reg_seen = xmalloc (maxreg);
2830 if (! reload_completed && flag_old_unroll_loops)
2832 alias_invariant = ggc_calloc (maxreg, sizeof (rtx));
2833 alias_invariant_size = maxreg;
2836 /* The basic idea is that each pass through this loop will use the
2837 "constant" information from the previous pass to propagate alias
2838 information through another level of assignments.
2840 This could get expensive if the assignment chains are long. Maybe
2841 we should throttle the number of iterations, possibly based on
2842 the optimization level or flag_expensive_optimizations.
2844 We could propagate more information in the first pass by making use
2845 of REG_N_SETS to determine immediately that the alias information
2846 for a pseudo is "constant".
2848 A program with an uninitialized variable can cause an infinite loop
2849 here. Instead of doing a full dataflow analysis to detect such problems
2850 we just cap the number of iterations for the loop.
2852 The state of the arrays for the set chain in question does not matter
2853 since the program has undefined behavior. */
2855 pass = 0;
2858 /* Assume nothing will change this iteration of the loop. */
2859 changed = 0;
2861 /* We want to assign the same IDs each iteration of this loop, so
2862 start counting from zero each iteration of the loop. */
2863 unique_id = 0;
2865 /* We're at the start of the function each iteration through the
2866 loop, so we're copying arguments. */
2867 copying_arguments = true;
2869 /* Wipe the potential alias information clean for this pass. */
2870 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2872 /* Wipe the reg_seen array clean. */
2873 memset (reg_seen, 0, maxreg);
2875 /* Mark all hard registers which may contain an address.
2876 The stack, frame and argument pointers may contain an address.
2877 An argument register which can hold a Pmode value may contain
2878 an address even if it is not in BASE_REGS.
2880 The address expression is VOIDmode for an argument and
2881 Pmode for other registers. */
2883 memcpy (new_reg_base_value, static_reg_base_value,
2884 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2886 /* Walk the insns adding values to the new_reg_base_value array. */
2887 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2889 if (INSN_P (insn))
2891 rtx note, set;
2893 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2894 /* The prologue/epilogue insns are not threaded onto the
2895 insn chain until after reload has completed. Thus,
2896 there is no sense wasting time checking if INSN is in
2897 the prologue/epilogue until after reload has completed. */
2898 if (reload_completed
2899 && prologue_epilogue_contains (insn))
2900 continue;
2901 #endif
2903 /* If this insn has a noalias note, process it, Otherwise,
2904 scan for sets. A simple set will have no side effects
2905 which could change the base value of any other register. */
2907 if (GET_CODE (PATTERN (insn)) == SET
2908 && REG_NOTES (insn) != 0
2909 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2910 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2911 else
2912 note_stores (PATTERN (insn), record_set, NULL);
2914 set = single_set (insn);
2916 if (set != 0
2917 && GET_CODE (SET_DEST (set)) == REG
2918 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2920 unsigned int regno = REGNO (SET_DEST (set));
2921 rtx src = SET_SRC (set);
2922 rtx t;
2924 if (REG_NOTES (insn) != 0
2925 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2926 && REG_N_SETS (regno) == 1)
2927 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2928 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2929 && ! rtx_varies_p (XEXP (note, 0), 1)
2930 && ! reg_overlap_mentioned_p (SET_DEST (set),
2931 XEXP (note, 0)))
2933 set_reg_known_value (regno, XEXP (note, 0));
2934 set_reg_known_equiv_p (regno,
2935 REG_NOTE_KIND (note) == REG_EQUIV);
2937 else if (REG_N_SETS (regno) == 1
2938 && GET_CODE (src) == PLUS
2939 && GET_CODE (XEXP (src, 0)) == REG
2940 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2941 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2943 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2944 set_reg_known_value (regno, t);
2945 set_reg_known_equiv_p (regno, 0);
2947 else if (REG_N_SETS (regno) == 1
2948 && ! rtx_varies_p (src, 1))
2950 set_reg_known_value (regno, src);
2951 set_reg_known_equiv_p (regno, 0);
2955 else if (GET_CODE (insn) == NOTE
2956 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2957 copying_arguments = false;
2960 /* Now propagate values from new_reg_base_value to reg_base_value. */
2961 if (maxreg != (unsigned int) max_reg_num())
2962 abort ();
2963 for (ui = 0; ui < maxreg; ui++)
2965 if (new_reg_base_value[ui]
2966 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2967 && ! rtx_equal_p (new_reg_base_value[ui],
2968 VARRAY_RTX (reg_base_value, ui)))
2970 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2971 changed = 1;
2975 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2977 /* Fill in the remaining entries. */
2978 for (i = 0; i < (int)reg_known_value_size; i++)
2979 if (reg_known_value[i] == 0)
2980 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2982 /* Simplify the reg_base_value array so that no register refers to
2983 another register, except to special registers indirectly through
2984 ADDRESS expressions.
2986 In theory this loop can take as long as O(registers^2), but unless
2987 there are very long dependency chains it will run in close to linear
2988 time.
2990 This loop may not be needed any longer now that the main loop does
2991 a better job at propagating alias information. */
2992 pass = 0;
2995 changed = 0;
2996 pass++;
2997 for (ui = 0; ui < maxreg; ui++)
2999 rtx base = VARRAY_RTX (reg_base_value, ui);
3000 if (base && GET_CODE (base) == REG)
3002 unsigned int base_regno = REGNO (base);
3003 if (base_regno == ui) /* register set from itself */
3004 VARRAY_RTX (reg_base_value, ui) = 0;
3005 else
3006 VARRAY_RTX (reg_base_value, ui)
3007 = VARRAY_RTX (reg_base_value, base_regno);
3008 changed = 1;
3012 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
3014 /* Clean up. */
3015 free (new_reg_base_value);
3016 new_reg_base_value = 0;
3017 free (reg_seen);
3018 reg_seen = 0;
3019 timevar_pop (TV_ALIAS_ANALYSIS);
3022 void
3023 end_alias_analysis (void)
3025 old_reg_base_value = reg_base_value;
3026 reg_known_value = 0;
3027 reg_known_value_size = 0;
3028 free (reg_known_equiv_p);
3029 reg_known_equiv_p = 0;
3030 if (alias_invariant)
3032 alias_invariant = 0;
3033 alias_invariant_size = 0;
3037 #include "gt-alias.h"