vkernel - Change how VPTE_M works to fix seg-faults during paging
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap.c
blobe81784c8afecf77dc6be9aefa8e910ba29ad5ee8
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * All rights reserved.
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
43 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
44 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
48 * Manages physical address maps.
51 #include "opt_msgbuf.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/vmspace.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine/globaldata.h>
86 #include <machine/pmap.h>
87 #include <machine/pmap_inval.h>
89 #include <ddb/ddb.h>
91 #include <stdio.h>
92 #include <assert.h>
93 #include <stdlib.h>
94 #include <pthread.h>
96 #define PMAP_KEEP_PDIRS
97 #ifndef PMAP_SHPGPERPROC
98 #define PMAP_SHPGPERPROC 1000
99 #endif
101 #if defined(DIAGNOSTIC)
102 #define PMAP_DIAGNOSTIC
103 #endif
105 #define MINPV 2048
107 #if !defined(PMAP_DIAGNOSTIC)
108 #define PMAP_INLINE __inline
109 #else
110 #define PMAP_INLINE
111 #endif
114 * Get PDEs and PTEs for user/kernel address space
116 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
117 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
119 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & VPTE_V) != 0)
120 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
121 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & VPTE_M) != 0)
122 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & VPTE_A) != 0)
123 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & VPTE_V) != 0)
126 * Given a map and a machine independent protection code,
127 * convert to a vax protection code.
129 #define pte_prot(m, p) \
130 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
131 static int protection_codes[8];
133 struct pmap kernel_pmap;
135 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
137 static struct vm_object kptobj;
138 static int nkpt;
140 static uint64_t KPDphys; /* phys addr of kernel level 2 */
141 uint64_t KPDPphys; /* phys addr of kernel level 3 */
142 uint64_t KPML4phys; /* phys addr of kernel level 4 */
144 extern int vmm_enabled;
145 extern void *vkernel_stack;
148 * Data for the pv entry allocation mechanism
150 static vm_zone_t pvzone;
151 static struct vm_zone pvzone_store;
152 static struct vm_object pvzone_obj;
153 static int pv_entry_count = 0;
154 static int pv_entry_max = 0;
155 static int pv_entry_high_water = 0;
156 static int pmap_pagedaemon_waken = 0;
157 static struct pv_entry *pvinit;
160 * All those kernel PT submaps that BSD is so fond of
162 pt_entry_t *CMAP1 = NULL, *ptmmap;
163 caddr_t CADDR1 = NULL;
164 static pt_entry_t *msgbufmap;
166 uint64_t KPTphys;
168 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
169 static pv_entry_t get_pv_entry (void);
170 static void i386_protection_init (void);
171 static __inline void pmap_clearbit (vm_page_t m, int bit);
173 static void pmap_remove_all (vm_page_t m);
174 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
175 vm_offset_t sva);
176 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
177 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
178 vm_offset_t va);
179 static boolean_t pmap_testbit (vm_page_t m, int bit);
180 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
181 vm_page_t mpte, vm_page_t m, pv_entry_t);
183 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
185 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
186 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
187 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
188 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
190 static int
191 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
193 if (pv1->pv_va < pv2->pv_va)
194 return(-1);
195 if (pv1->pv_va > pv2->pv_va)
196 return(1);
197 return(0);
200 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
201 pv_entry_compare, vm_offset_t, pv_va);
203 static __inline vm_pindex_t
204 pmap_pt_pindex(vm_offset_t va)
206 return va >> PDRSHIFT;
209 static __inline vm_pindex_t
210 pmap_pte_index(vm_offset_t va)
212 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
215 static __inline vm_pindex_t
216 pmap_pde_index(vm_offset_t va)
218 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
221 static __inline vm_pindex_t
222 pmap_pdpe_index(vm_offset_t va)
224 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
227 static __inline vm_pindex_t
228 pmap_pml4e_index(vm_offset_t va)
230 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
233 /* Return a pointer to the PML4 slot that corresponds to a VA */
234 static __inline pml4_entry_t *
235 pmap_pml4e(pmap_t pmap, vm_offset_t va)
237 return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
240 /* Return a pointer to the PDP slot that corresponds to a VA */
241 static __inline pdp_entry_t *
242 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
244 pdp_entry_t *pdpe;
246 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
247 return (&pdpe[pmap_pdpe_index(va)]);
250 /* Return a pointer to the PDP slot that corresponds to a VA */
251 static __inline pdp_entry_t *
252 pmap_pdpe(pmap_t pmap, vm_offset_t va)
254 pml4_entry_t *pml4e;
256 pml4e = pmap_pml4e(pmap, va);
257 if ((*pml4e & VPTE_V) == 0)
258 return NULL;
259 return (pmap_pml4e_to_pdpe(pml4e, va));
262 /* Return a pointer to the PD slot that corresponds to a VA */
263 static __inline pd_entry_t *
264 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
266 pd_entry_t *pde;
268 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
269 return (&pde[pmap_pde_index(va)]);
272 /* Return a pointer to the PD slot that corresponds to a VA */
273 static __inline pd_entry_t *
274 pmap_pde(pmap_t pmap, vm_offset_t va)
276 pdp_entry_t *pdpe;
278 pdpe = pmap_pdpe(pmap, va);
279 if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
280 return NULL;
281 return (pmap_pdpe_to_pde(pdpe, va));
284 /* Return a pointer to the PT slot that corresponds to a VA */
285 static __inline pt_entry_t *
286 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
288 pt_entry_t *pte;
290 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
291 return (&pte[pmap_pte_index(va)]);
295 * Hold pt_m for page table scans to prevent it from getting reused out
296 * from under us across blocking conditions in the body of the loop.
298 static __inline
299 vm_page_t
300 pmap_hold_pt_page(pd_entry_t *pde, vm_offset_t va)
302 pt_entry_t pte;
303 vm_page_t pt_m;
305 pte = (pt_entry_t)*pde;
306 KKASSERT(pte != 0);
307 pt_m = PHYS_TO_VM_PAGE(pte & VPTE_FRAME);
308 vm_page_hold(pt_m);
310 return pt_m;
313 /* Return a pointer to the PT slot that corresponds to a VA */
314 static __inline pt_entry_t *
315 pmap_pte(pmap_t pmap, vm_offset_t va)
317 pd_entry_t *pde;
319 pde = pmap_pde(pmap, va);
320 if (pde == NULL || (*pde & VPTE_V) == 0)
321 return NULL;
322 if ((*pde & VPTE_PS) != 0) /* compat with i386 pmap_pte() */
323 return ((pt_entry_t *)pde);
324 return (pmap_pde_to_pte(pde, va));
327 static PMAP_INLINE pt_entry_t *
328 vtopte(vm_offset_t va)
330 pt_entry_t *x;
331 x = pmap_pte(&kernel_pmap, va);
332 assert(x != NULL);
333 return x;
336 static __inline pd_entry_t *
337 vtopde(vm_offset_t va)
339 pd_entry_t *x;
340 x = pmap_pde(&kernel_pmap, va);
341 assert(x != NULL);
342 return x;
345 static uint64_t
346 allocpages(vm_paddr_t *firstaddr, int n)
348 uint64_t ret;
350 ret = *firstaddr;
351 /*bzero((void *)ret, n * PAGE_SIZE); not mapped yet */
352 *firstaddr += n * PAGE_SIZE;
353 return (ret);
356 static void
357 create_dmap_vmm(vm_paddr_t *firstaddr)
359 void *stack_addr;
360 int pml4_stack_index;
361 int pdp_stack_index;
362 int pd_stack_index;
363 long i,j;
364 int regs[4];
365 int amd_feature;
367 uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
368 uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
369 uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
371 pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
372 pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
373 pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
374 pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
376 bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
377 bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
378 bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
380 do_cpuid(0x80000001, regs);
381 amd_feature = regs[3];
383 /* Build the mappings for the first 512GB */
384 if (amd_feature & AMDID_PAGE1GB) {
385 /* In pages of 1 GB, if supported */
386 for (i = 0; i < NPDPEPG; i++) {
387 KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
388 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
390 } else {
391 /* In page of 2MB, otherwise */
392 for (i = 0; i < NPDPEPG; i++) {
393 uint64_t KPD_DMAP_phys;
394 pd_entry_t *KPD_DMAP_virt;
396 KPD_DMAP_phys = allocpages(firstaddr, 1);
397 KPD_DMAP_virt =
398 (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
400 bzero(KPD_DMAP_virt, PAGE_SIZE);
402 KPDP_DMAP_virt[i] = KPD_DMAP_phys;
403 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
405 /* For each PD, we have to allocate NPTEPG PT */
406 for (j = 0; j < NPTEPG; j++) {
407 KPD_DMAP_virt[j] = (i << PDPSHIFT) |
408 (j << PDRSHIFT);
409 KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V |
410 VPTE_PS | VPTE_U;
415 /* DMAP for the first 512G */
416 KPML4virt[0] = KPDP_DMAP_phys;
417 KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
419 /* create a 2 MB map of the new stack */
420 pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
421 KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
422 KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
424 pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
425 KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
426 KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
428 pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
429 KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
430 KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
433 static void
434 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
436 int i;
437 pml4_entry_t *KPML4virt;
438 pdp_entry_t *KPDPvirt;
439 pd_entry_t *KPDvirt;
440 pt_entry_t *KPTvirt;
441 int kpml4i = pmap_pml4e_index(ptov_offset);
442 int kpdpi = pmap_pdpe_index(ptov_offset);
443 int kpdi = pmap_pde_index(ptov_offset);
446 * Calculate NKPT - number of kernel page tables. We have to
447 * accomodoate prealloction of the vm_page_array, dump bitmap,
448 * MSGBUF_SIZE, and other stuff. Be generous.
450 * Maxmem is in pages.
452 nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
454 * Allocate pages
456 KPML4phys = allocpages(firstaddr, 1);
457 KPDPphys = allocpages(firstaddr, NKPML4E);
458 KPDphys = allocpages(firstaddr, NKPDPE);
459 KPTphys = allocpages(firstaddr, nkpt);
461 KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
462 KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
463 KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
464 KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
466 bzero(KPML4virt, 1 * PAGE_SIZE);
467 bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
468 bzero(KPDvirt, NKPDPE * PAGE_SIZE);
469 bzero(KPTvirt, nkpt * PAGE_SIZE);
471 /* Now map the page tables at their location within PTmap */
472 for (i = 0; i < nkpt; i++) {
473 KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
474 KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
477 /* And connect up the PD to the PDP */
478 for (i = 0; i < NKPDPE; i++) {
479 KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
480 KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
483 /* And recursively map PML4 to itself in order to get PTmap */
484 KPML4virt[PML4PML4I] = KPML4phys;
485 KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
487 /* Connect the KVA slot up to the PML4 */
488 KPML4virt[kpml4i] = KPDPphys;
489 KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
493 * Typically used to initialize a fictitious page by vm/device_pager.c
495 void
496 pmap_page_init(struct vm_page *m)
498 vm_page_init(m);
499 TAILQ_INIT(&m->md.pv_list);
503 * Bootstrap the system enough to run with virtual memory.
505 * On the i386 this is called after mapping has already been enabled
506 * and just syncs the pmap module with what has already been done.
507 * [We can't call it easily with mapping off since the kernel is not
508 * mapped with PA == VA, hence we would have to relocate every address
509 * from the linked base (virtual) address "KERNBASE" to the actual
510 * (physical) address starting relative to 0]
512 void
513 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
515 vm_offset_t va;
516 pt_entry_t *pte;
519 * Create an initial set of page tables to run the kernel in.
521 create_pagetables(firstaddr, ptov_offset);
523 /* Create the DMAP for the VMM */
524 if (vmm_enabled) {
525 create_dmap_vmm(firstaddr);
528 virtual_start = KvaStart;
529 virtual_end = KvaEnd;
532 * Initialize protection array.
534 i386_protection_init();
537 * The kernel's pmap is statically allocated so we don't have to use
538 * pmap_create, which is unlikely to work correctly at this part of
539 * the boot sequence (XXX and which no longer exists).
541 * The kernel_pmap's pm_pteobj is used only for locking and not
542 * for mmu pages.
544 kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
545 kernel_pmap.pm_count = 1;
546 /* don't allow deactivation */
547 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
548 kernel_pmap.pm_pteobj = NULL; /* see pmap_init */
549 RB_INIT(&kernel_pmap.pm_pvroot);
550 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
553 * Reserve some special page table entries/VA space for temporary
554 * mapping of pages.
556 #define SYSMAP(c, p, v, n) \
557 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
559 va = virtual_start;
560 pte = pmap_pte(&kernel_pmap, va);
562 * CMAP1/CMAP2 are used for zeroing and copying pages.
564 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
566 #if JGV
568 * Crashdump maps.
570 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
571 #endif
574 * ptvmmap is used for reading arbitrary physical pages via
575 * /dev/mem.
577 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
580 * msgbufp is used to map the system message buffer.
581 * XXX msgbufmap is not used.
583 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
584 atop(round_page(MSGBUF_SIZE)))
586 virtual_start = va;
588 *CMAP1 = 0;
589 /* Not ready to do an invltlb yet for VMM*/
590 if (!vmm_enabled)
591 cpu_invltlb();
596 * Initialize the pmap module.
597 * Called by vm_init, to initialize any structures that the pmap
598 * system needs to map virtual memory.
599 * pmap_init has been enhanced to support in a fairly consistant
600 * way, discontiguous physical memory.
602 void
603 pmap_init(void)
605 int i;
606 int initial_pvs;
609 * object for kernel page table pages
611 /* JG I think the number can be arbitrary */
612 vm_object_init(&kptobj, 5);
613 kernel_pmap.pm_pteobj = &kptobj;
616 * Allocate memory for random pmap data structures. Includes the
617 * pv_head_table.
619 for(i = 0; i < vm_page_array_size; i++) {
620 vm_page_t m;
622 m = &vm_page_array[i];
623 TAILQ_INIT(&m->md.pv_list);
624 m->md.pv_list_count = 0;
628 * init the pv free list
630 initial_pvs = vm_page_array_size;
631 if (initial_pvs < MINPV)
632 initial_pvs = MINPV;
633 pvzone = &pvzone_store;
634 pvinit = (struct pv_entry *)
635 kmem_alloc(&kernel_map,
636 initial_pvs * sizeof (struct pv_entry),
637 VM_SUBSYS_PVENTRY);
638 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
639 initial_pvs);
642 * Now it is safe to enable pv_table recording.
644 pmap_initialized = TRUE;
648 * Initialize the address space (zone) for the pv_entries. Set a
649 * high water mark so that the system can recover from excessive
650 * numbers of pv entries.
652 void
653 pmap_init2(void)
655 int shpgperproc = PMAP_SHPGPERPROC;
657 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
658 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
659 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
660 pv_entry_high_water = 9 * (pv_entry_max / 10);
661 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
665 /***************************************************
666 * Low level helper routines.....
667 ***************************************************/
670 * The modification bit is not tracked for any pages in this range. XXX
671 * such pages in this maps should always use pmap_k*() functions and not
672 * be managed anyhow.
674 * XXX User and kernel address spaces are independant for virtual kernels,
675 * this function only applies to the kernel pmap.
677 static int
678 pmap_track_modified(pmap_t pmap, vm_offset_t va)
680 if (pmap != &kernel_pmap)
681 return 1;
682 if ((va < clean_sva) || (va >= clean_eva))
683 return 1;
684 else
685 return 0;
689 * Extract the physical page address associated with the map/VA pair.
691 * No requirements.
693 vm_paddr_t
694 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
696 vm_paddr_t rtval;
697 pt_entry_t *pte;
698 pd_entry_t pde, *pdep;
700 vm_object_hold(pmap->pm_pteobj);
701 rtval = 0;
702 pdep = pmap_pde(pmap, va);
703 if (pdep != NULL) {
704 pde = *pdep;
705 if (pde) {
706 if ((pde & VPTE_PS) != 0) {
707 /* JGV */
708 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
709 } else {
710 pte = pmap_pde_to_pte(pdep, va);
711 rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
715 if (handlep)
716 *handlep = NULL; /* XXX */
717 vm_object_drop(pmap->pm_pteobj);
719 return rtval;
722 void
723 pmap_extract_done(void *handle)
725 pmap_t pmap;
727 if (handle) {
728 pmap = handle;
729 vm_object_drop(pmap->pm_pteobj);
734 * Similar to extract but checks protections, SMP-friendly short-cut for
735 * vm_fault_page[_quick]().
737 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NEITHER IT NOR ITS TARGET
738 * DATA IS SUITABLE FOR WRITING. Writing can interfere with
739 * pageouts flushes, msync, etc. The hold_count is not enough
740 * to avoid races against pageouts and other flush code doesn't
741 * care about hold_count.
743 vm_page_t
744 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
745 vm_prot_t prot __unused, int *busyp __unused)
747 return(NULL);
751 * Routine: pmap_kextract
752 * Function:
753 * Extract the physical page address associated
754 * kernel virtual address.
756 vm_paddr_t
757 pmap_kextract(vm_offset_t va)
759 pd_entry_t pde;
760 vm_paddr_t pa;
762 KKASSERT(va >= KvaStart && va < KvaEnd);
765 * The DMAP region is not included in [KvaStart, KvaEnd)
767 #if 0
768 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
769 pa = DMAP_TO_PHYS(va);
770 } else {
771 #endif
772 pde = *vtopde(va);
773 if (pde & VPTE_PS) {
774 /* JGV */
775 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
776 } else {
778 * Beware of a concurrent promotion that changes the
779 * PDE at this point! For example, vtopte() must not
780 * be used to access the PTE because it would use the
781 * new PDE. It is, however, safe to use the old PDE
782 * because the page table page is preserved by the
783 * promotion.
785 pa = *pmap_pde_to_pte(&pde, va);
786 pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
788 #if 0
790 #endif
791 return pa;
794 /***************************************************
795 * Low level mapping routines.....
796 ***************************************************/
799 * Enter a mapping into kernel_pmap. Mappings created in this fashion
800 * are not managed. Mappings must be immediately accessible on all cpus.
802 * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
803 * real pmap and handle related races before storing the new vpte. The
804 * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
805 * because the entry may have previously been cleared without an invalidation.
807 void
808 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
810 pt_entry_t *ptep;
811 pt_entry_t npte;
813 KKASSERT(va >= KvaStart && va < KvaEnd);
814 npte = pa | VPTE_RW | VPTE_V | VPTE_U;
815 ptep = vtopte(va);
817 #if 1
818 pmap_inval_pte(ptep, &kernel_pmap, va);
819 #else
820 if (*pte & VPTE_V)
821 pmap_inval_pte(ptep, &kernel_pmap, va);
822 #endif
823 atomic_swap_long(ptep, npte);
827 * Enter an unmanaged KVA mapping for the private use of the current
828 * cpu only.
830 * It is illegal for the mapping to be accessed by other cpus without
831 * proper invalidation.
834 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
836 pt_entry_t *ptep;
837 pt_entry_t npte;
838 int res;
840 KKASSERT(va >= KvaStart && va < KvaEnd);
842 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
843 ptep = vtopte(va);
845 #if 1
846 pmap_inval_pte_quick(ptep, &kernel_pmap, va);
847 res = 1;
848 #else
849 /* FUTURE */
850 res = (*ptep != 0);
851 if (*pte & VPTE_V)
852 pmap_inval_pte(pte, &kernel_pmap, va);
853 #endif
854 atomic_swap_long(ptep, npte);
856 return res;
860 * Invalidation will occur later, ok to be lazy here.
863 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
865 pt_entry_t *ptep;
866 pt_entry_t npte;
867 int res;
869 KKASSERT(va >= KvaStart && va < KvaEnd);
871 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
872 ptep = vtopte(va);
873 #if 1
874 res = 1;
875 #else
876 /* FUTURE */
877 res = (*ptep != 0);
878 #endif
879 atomic_swap_long(ptep, npte);
881 return res;
885 * Remove an unmanaged mapping created with pmap_kenter*().
887 void
888 pmap_kremove(vm_offset_t va)
890 pt_entry_t *ptep;
892 KKASSERT(va >= KvaStart && va < KvaEnd);
894 ptep = vtopte(va);
895 atomic_swap_long(ptep, 0);
896 pmap_inval_pte(ptep, &kernel_pmap, va);
900 * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
901 * only with this cpu.
903 * Unfortunately because we optimize new entries by testing VPTE_V later
904 * on, we actually still have to synchronize with all the cpus. XXX maybe
905 * store a junk value and test against 0 in the other places instead?
907 void
908 pmap_kremove_quick(vm_offset_t va)
910 pt_entry_t *ptep;
912 KKASSERT(va >= KvaStart && va < KvaEnd);
914 ptep = vtopte(va);
915 atomic_swap_long(ptep, 0);
916 pmap_inval_pte(ptep, &kernel_pmap, va); /* NOT _quick */
920 * Invalidation will occur later, ok to be lazy here.
922 void
923 pmap_kremove_noinval(vm_offset_t va)
925 pt_entry_t *ptep;
927 KKASSERT(va >= KvaStart && va < KvaEnd);
929 ptep = vtopte(va);
930 atomic_swap_long(ptep, 0);
934 * Used to map a range of physical addresses into kernel
935 * virtual address space.
937 * For now, VM is already on, we only need to map the
938 * specified memory.
940 vm_offset_t
941 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
943 return PHYS_TO_DMAP(start);
947 * Map a set of unmanaged VM pages into KVM.
949 void
950 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
952 vm_offset_t end_va;
953 vm_offset_t va;
955 end_va = beg_va + count * PAGE_SIZE;
956 KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
958 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
959 pt_entry_t *ptep;
961 ptep = vtopte(va);
962 atomic_swap_long(ptep, VM_PAGE_TO_PHYS(*m) |
963 VPTE_RW | VPTE_V | VPTE_U);
964 ++m;
966 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
967 /* pmap_inval_pte(pte, &kernel_pmap, va); */
971 * Undo the effects of pmap_qenter*().
973 void
974 pmap_qremove(vm_offset_t beg_va, int count)
976 vm_offset_t end_va;
977 vm_offset_t va;
979 end_va = beg_va + count * PAGE_SIZE;
980 KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
982 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
983 pt_entry_t *ptep;
985 ptep = vtopte(va);
986 atomic_swap_long(ptep, 0);
988 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
992 * Unlike the real pmap code, we can't avoid calling the real-kernel.
994 void
995 pmap_qremove_quick(vm_offset_t va, int count)
997 pmap_qremove(va, count);
1000 void
1001 pmap_qremove_noinval(vm_offset_t va, int count)
1003 pmap_qremove(va, count);
1007 * This routine works like vm_page_lookup() but also blocks as long as the
1008 * page is busy. This routine does not busy the page it returns.
1010 * Unless the caller is managing objects whos pages are in a known state,
1011 * the call should be made with a critical section held so the page's object
1012 * association remains valid on return.
1014 static vm_page_t
1015 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1017 vm_page_t m;
1019 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1020 m = vm_page_lookup_busy_wait(object, pindex, FALSE, "pplookp");
1022 return(m);
1026 * Create a new thread and optionally associate it with a (new) process.
1027 * NOTE! the new thread's cpu may not equal the current cpu.
1029 void
1030 pmap_init_thread(thread_t td)
1032 /* enforce pcb placement */
1033 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1034 td->td_savefpu = &td->td_pcb->pcb_save;
1035 td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1039 * This routine directly affects the fork perf for a process.
1041 void
1042 pmap_init_proc(struct proc *p)
1047 * Unwire a page table which has been removed from the pmap. We own the
1048 * wire_count, so the page cannot go away. The page representing the page
1049 * table is passed in unbusied and must be busied if we cannot trivially
1050 * unwire it.
1052 #include <unistd.h>
1053 static int
1054 pmap_unwire_pgtable(pmap_t pmap, vm_offset_t va, vm_page_t m)
1057 * Try to unwire optimally. If non-zero is returned the wire_count
1058 * is 1 and we must busy the page to unwire it.
1060 if (vm_page_unwire_quick(m) == 0)
1061 return 0;
1063 vm_page_busy_wait(m, FALSE, "pmuwpt");
1064 KASSERT(m->queue == PQ_NONE,
1065 ("_pmap_unwire_pgtable: %p->queue != PQ_NONE", m));
1067 if (m->wire_count == 1) {
1069 * Unmap the page table page.
1071 /* pmap_inval_add(info, pmap, -1); */
1073 if (m->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1074 /* PDP page */
1075 pml4_entry_t *pml4;
1076 pml4 = pmap_pml4e(pmap, va);
1077 *pml4 = 0;
1078 } else if (m->pindex >= NUPT_TOTAL) {
1079 /* PD page */
1080 pdp_entry_t *pdp;
1081 pdp = pmap_pdpe(pmap, va);
1082 *pdp = 0;
1083 } else {
1084 /* PT page */
1085 pd_entry_t *pd;
1086 pd = pmap_pde(pmap, va);
1087 *pd = 0;
1090 KKASSERT(pmap->pm_stats.resident_count > 0);
1091 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1093 if (pmap->pm_ptphint == m)
1094 pmap->pm_ptphint = NULL;
1096 if (m->pindex < NUPT_TOTAL) {
1097 /* We just released a PT, unhold the matching PD */
1098 vm_page_t pdpg;
1100 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) &
1101 VPTE_FRAME);
1102 pmap_unwire_pgtable(pmap, va, pdpg);
1104 if (m->pindex >= NUPT_TOTAL &&
1105 m->pindex < (NUPT_TOTAL + NUPD_TOTAL)) {
1106 /* We just released a PD, unhold the matching PDP */
1107 vm_page_t pdppg;
1109 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) &
1110 VPTE_FRAME);
1111 pmap_unwire_pgtable(pmap, va, pdppg);
1115 * This was our last wire, the page had better be unwired
1116 * after we decrement wire_count.
1118 * FUTURE NOTE: shared page directory page could result in
1119 * multiple wire counts.
1121 vm_page_unwire(m, 0);
1122 KKASSERT(m->wire_count == 0);
1123 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1124 vm_page_flash(m);
1125 vm_page_free_zero(m);
1126 return 1;
1127 } else {
1128 /* XXX SMP race to 1 if not holding vmobj */
1129 vm_page_unwire(m, 0);
1130 vm_page_wakeup(m);
1131 return 0;
1136 * After removing a page table entry, this routine is used to
1137 * conditionally free the page, and manage the hold/wire counts.
1139 * If not NULL the caller owns a wire_count on mpte, so it can't disappear.
1140 * If NULL the caller owns a wire_count on what would be the mpte, we must
1141 * look it up.
1143 static int
1144 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1146 vm_pindex_t ptepindex;
1148 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1150 if (mpte == NULL) {
1152 * page table pages in the kernel_pmap are not managed.
1154 if (pmap == &kernel_pmap)
1155 return(0);
1156 ptepindex = pmap_pt_pindex(va);
1157 if (pmap->pm_ptphint &&
1158 (pmap->pm_ptphint->pindex == ptepindex)) {
1159 mpte = pmap->pm_ptphint;
1160 } else {
1161 mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1162 pmap->pm_ptphint = mpte;
1163 vm_page_wakeup(mpte);
1166 return pmap_unwire_pgtable(pmap, va, mpte);
1170 * Initialize pmap0/vmspace0 . Since process 0 never enters user mode we
1171 * just dummy it up so it works well enough for fork().
1173 * In DragonFly, process pmaps may only be used to manipulate user address
1174 * space, never kernel address space.
1176 void
1177 pmap_pinit0(struct pmap *pmap)
1179 pmap_pinit(pmap);
1183 * Initialize a preallocated and zeroed pmap structure,
1184 * such as one in a vmspace structure.
1186 void
1187 pmap_pinit(struct pmap *pmap)
1189 vm_page_t ptdpg;
1192 * No need to allocate page table space yet but we do need a valid
1193 * page directory table.
1195 if (pmap->pm_pml4 == NULL) {
1196 pmap->pm_pml4 = (pml4_entry_t *)
1197 kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1198 VM_SUBSYS_PML4);
1202 * Allocate an object for the ptes
1204 if (pmap->pm_pteobj == NULL)
1205 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL + 1);
1208 * Allocate the page directory page, unless we already have
1209 * one cached. If we used the cached page the wire_count will
1210 * already be set appropriately.
1212 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1213 ptdpg = vm_page_grab(pmap->pm_pteobj,
1214 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL,
1215 VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1216 VM_ALLOC_ZERO);
1217 pmap->pm_pdirm = ptdpg;
1218 vm_page_flag_clear(ptdpg, PG_MAPPED);
1219 vm_page_wire(ptdpg);
1220 vm_page_wakeup(ptdpg);
1221 pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1223 pmap->pm_count = 1;
1224 CPUMASK_ASSZERO(pmap->pm_active);
1225 pmap->pm_ptphint = NULL;
1226 RB_INIT(&pmap->pm_pvroot);
1227 spin_init(&pmap->pm_spin, "pmapinit");
1228 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1229 pmap->pm_stats.resident_count = 1;
1230 pmap->pm_stats.wired_count = 1;
1234 * Clean up a pmap structure so it can be physically freed. This routine
1235 * is called by the vmspace dtor function. A great deal of pmap data is
1236 * left passively mapped to improve vmspace management so we have a bit
1237 * of cleanup work to do here.
1239 * No requirements.
1241 void
1242 pmap_puninit(pmap_t pmap)
1244 vm_page_t p;
1246 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1247 if ((p = pmap->pm_pdirm) != NULL) {
1248 KKASSERT(pmap->pm_pml4 != NULL);
1249 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1250 vm_page_busy_wait(p, FALSE, "pgpun");
1251 atomic_add_int(&p->wire_count, -1);
1252 atomic_add_int(&vmstats.v_wire_count, -1);
1253 vm_page_free_zero(p);
1254 pmap->pm_pdirm = NULL;
1255 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1256 KKASSERT(pmap->pm_stats.wired_count == 0);
1258 if (pmap->pm_pml4) {
1259 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1260 pmap->pm_pml4 = NULL;
1262 if (pmap->pm_pteobj) {
1263 vm_object_deallocate(pmap->pm_pteobj);
1264 pmap->pm_pteobj = NULL;
1269 * This function is now unused (used to add the pmap to the pmap_list)
1271 void
1272 pmap_pinit2(struct pmap *pmap)
1277 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1278 * 0 on failure (if the procedure had to sleep).
1280 * When asked to remove the page directory page itself, we actually just
1281 * leave it cached so we do not have to incur the SMP inval overhead of
1282 * removing the kernel mapping. pmap_puninit() will take care of it.
1284 static int
1285 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1288 * This code optimizes the case of freeing non-busy
1289 * page-table pages. Those pages are zero now, and
1290 * might as well be placed directly into the zero queue.
1292 if (vm_page_busy_try(p, FALSE)) {
1293 vm_page_sleep_busy(p, FALSE, "pmaprl");
1294 return 1;
1298 * Remove the page table page from the processes address space.
1300 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1302 * We are the pml4 table itself.
1304 /* XXX anything to do here? */
1305 } else if (p->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1307 * We are a PDP page.
1308 * We look for the PML4 entry that points to us.
1310 vm_page_t m4;
1311 pml4_entry_t *pml4;
1312 int idx;
1314 m4 = vm_page_lookup(pmap->pm_pteobj,
1315 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
1316 KKASSERT(m4 != NULL);
1317 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1318 idx = (p->pindex - (NUPT_TOTAL + NUPD_TOTAL)) % NPML4EPG;
1319 KKASSERT(pml4[idx] != 0);
1320 if (pml4[idx] == 0)
1321 kprintf("pmap_release: Unmapped PML4\n");
1322 pml4[idx] = 0;
1323 vm_page_unwire_quick(m4);
1324 } else if (p->pindex >= NUPT_TOTAL) {
1326 * We are a PD page.
1327 * We look for the PDP entry that points to us.
1329 vm_page_t m3;
1330 pdp_entry_t *pdp;
1331 int idx;
1333 m3 = vm_page_lookup(pmap->pm_pteobj,
1334 NUPT_TOTAL + NUPD_TOTAL +
1335 (p->pindex - NUPT_TOTAL) / NPDPEPG);
1336 KKASSERT(m3 != NULL);
1337 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1338 idx = (p->pindex - NUPT_TOTAL) % NPDPEPG;
1339 KKASSERT(pdp[idx] != 0);
1340 if (pdp[idx] == 0)
1341 kprintf("pmap_release: Unmapped PDP %d\n", idx);
1342 pdp[idx] = 0;
1343 vm_page_unwire_quick(m3);
1344 } else {
1345 /* We are a PT page.
1346 * We look for the PD entry that points to us.
1348 vm_page_t m2;
1349 pd_entry_t *pd;
1350 int idx;
1352 m2 = vm_page_lookup(pmap->pm_pteobj,
1353 NUPT_TOTAL + p->pindex / NPDEPG);
1354 KKASSERT(m2 != NULL);
1355 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1356 idx = p->pindex % NPDEPG;
1357 if (pd[idx] == 0)
1358 kprintf("pmap_release: Unmapped PD %d\n", idx);
1359 pd[idx] = 0;
1360 vm_page_unwire_quick(m2);
1362 KKASSERT(pmap->pm_stats.resident_count > 0);
1363 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1365 if (p->wire_count > 1) {
1366 panic("pmap_release: freeing held pt page "
1367 "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1368 pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1369 p->pindex, NUPT_TOTAL, NUPD_TOTAL, NUPDP_TOTAL);
1371 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1372 pmap->pm_ptphint = NULL;
1375 * We leave the top-level page table page cached, wired, and mapped in
1376 * the pmap until the dtor function (pmap_puninit()) gets called.
1377 * However, still clean it up.
1379 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1380 bzero(pmap->pm_pml4, PAGE_SIZE);
1381 vm_page_wakeup(p);
1382 } else {
1383 vm_page_unwire(p, 0);
1384 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1385 vm_page_free(p);
1386 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1388 return 0;
1392 * Locate the requested PT, PD, or PDP page table page.
1394 * Returns a busied page, caller must vm_page_wakeup() when done.
1396 static vm_page_t
1397 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1399 vm_page_t m;
1400 vm_page_t pm;
1401 vm_pindex_t pindex;
1402 pt_entry_t *ptep;
1403 pt_entry_t data;
1406 * Find or fabricate a new pagetable page. A non-zero wire_count
1407 * indicates that the page has already been mapped into its parent.
1409 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1410 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1411 if (m->wire_count != 0)
1412 return m;
1415 * Map the page table page into its parent, giving it 1 wire count.
1417 vm_page_wire(m);
1418 atomic_add_long(&pmap->pm_stats.resident_count, 1);
1419 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1421 data = VM_PAGE_TO_PHYS(m) |
1422 VPTE_RW | VPTE_V | VPTE_U | VPTE_A | VPTE_M | VPTE_WIRED;
1423 atomic_add_long(&pmap->pm_stats.wired_count, 1);
1425 if (ptepindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1427 * Map PDP into the PML4
1429 pindex = ptepindex - (NUPT_TOTAL + NUPD_TOTAL);
1430 pindex &= (NUPDP_TOTAL - 1);
1431 ptep = (pt_entry_t *)pmap->pm_pml4;
1432 pm = NULL;
1433 } else if (ptepindex >= NUPT_TOTAL) {
1435 * Map PD into its PDP
1437 pindex = (ptepindex - NUPT_TOTAL) >> NPDPEPGSHIFT;
1438 pindex += NUPT_TOTAL + NUPD_TOTAL;
1439 pm = _pmap_allocpte(pmap, pindex);
1440 pindex = (ptepindex - NUPT_TOTAL) & (NPDPEPG - 1);
1441 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1442 } else {
1444 * Map PT into its PD
1446 pindex = ptepindex >> NPDPEPGSHIFT;
1447 pindex += NUPT_TOTAL;
1448 pm = _pmap_allocpte(pmap, pindex);
1449 pindex = ptepindex & (NPTEPG - 1);
1450 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1454 * Install the pte in (pm). (m) prevents races.
1456 ptep += pindex;
1457 data = atomic_swap_long(ptep, data);
1458 if (pm) {
1459 vm_page_wire_quick(pm);
1460 vm_page_wakeup(pm);
1462 pmap->pm_ptphint = pm;
1464 return m;
1468 * Determine the page table page required to access the VA in the pmap
1469 * and allocate it if necessary. Return a held vm_page_t for the page.
1471 * Only used with user pmaps.
1473 static vm_page_t
1474 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1476 vm_pindex_t ptepindex;
1477 vm_page_t m;
1479 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1482 * Calculate pagetable page index, and return the PT page to
1483 * the caller.
1485 ptepindex = pmap_pt_pindex(va);
1486 m = _pmap_allocpte(pmap, ptepindex);
1488 return m;
1491 /***************************************************
1492 * Pmap allocation/deallocation routines.
1493 ***************************************************/
1496 * Release any resources held by the given physical map.
1497 * Called when a pmap initialized by pmap_pinit is being released.
1498 * Should only be called if the map contains no valid mappings.
1500 static int pmap_release_callback(struct vm_page *p, void *data);
1502 void
1503 pmap_release(struct pmap *pmap)
1505 vm_object_t object = pmap->pm_pteobj;
1506 struct rb_vm_page_scan_info info;
1508 KKASSERT(pmap != &kernel_pmap);
1510 #if defined(DIAGNOSTIC)
1511 if (object->ref_count != 1)
1512 panic("pmap_release: pteobj reference count != 1");
1513 #endif
1515 info.pmap = pmap;
1516 info.object = object;
1518 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1519 ("pmap %p still active! %016jx",
1520 pmap,
1521 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1523 vm_object_hold(object);
1524 do {
1525 info.error = 0;
1526 info.mpte = NULL;
1527 info.limit = object->generation;
1529 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1530 pmap_release_callback, &info);
1531 if (info.error == 0 && info.mpte) {
1532 if (pmap_release_free_page(pmap, info.mpte))
1533 info.error = 1;
1535 } while (info.error);
1537 KASSERT((pmap->pm_stats.wired_count == (pmap->pm_pdirm != NULL)),
1538 ("pmap_release: dangling count %p %ld",
1539 pmap, pmap->pm_stats.wired_count));
1541 vm_object_drop(object);
1544 static int
1545 pmap_release_callback(struct vm_page *p, void *data)
1547 struct rb_vm_page_scan_info *info = data;
1549 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1550 info->mpte = p;
1551 return(0);
1553 if (pmap_release_free_page(info->pmap, p)) {
1554 info->error = 1;
1555 return(-1);
1557 if (info->object->generation != info->limit) {
1558 info->error = 1;
1559 return(-1);
1561 return(0);
1565 * Grow the number of kernel page table entries, if needed.
1567 * kernel_map must be locked exclusively by the caller.
1569 void
1570 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1572 vm_offset_t addr;
1573 vm_paddr_t paddr;
1574 vm_offset_t ptppaddr;
1575 vm_page_t nkpg;
1576 pd_entry_t *pde, newpdir;
1577 pdp_entry_t newpdp;
1579 addr = kend;
1581 vm_object_hold(&kptobj);
1582 if (kernel_vm_end == 0) {
1583 kernel_vm_end = KvaStart;
1584 nkpt = 0;
1585 while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1586 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1587 nkpt++;
1588 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1589 kernel_vm_end = kernel_map.max_offset;
1590 break;
1594 addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1595 if (addr - 1 >= kernel_map.max_offset)
1596 addr = kernel_map.max_offset;
1597 while (kernel_vm_end < addr) {
1598 pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1599 if (pde == NULL) {
1600 /* We need a new PDP entry */
1601 nkpg = vm_page_alloc(&kptobj, nkpt,
1602 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1603 | VM_ALLOC_INTERRUPT);
1604 if (nkpg == NULL) {
1605 panic("pmap_growkernel: no memory to "
1606 "grow kernel");
1608 paddr = VM_PAGE_TO_PHYS(nkpg);
1609 pmap_zero_page(paddr);
1610 newpdp = (pdp_entry_t)(paddr |
1611 VPTE_V | VPTE_RW | VPTE_U |
1612 VPTE_A | VPTE_M | VPTE_WIRED);
1613 *pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1614 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1615 nkpt++;
1616 continue; /* try again */
1618 if ((*pde & VPTE_V) != 0) {
1619 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1620 ~(PAGE_SIZE * NPTEPG - 1);
1621 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1622 kernel_vm_end = kernel_map.max_offset;
1623 break;
1625 continue;
1629 * This index is bogus, but out of the way
1631 nkpg = vm_page_alloc(&kptobj, nkpt,
1632 VM_ALLOC_NORMAL |
1633 VM_ALLOC_SYSTEM |
1634 VM_ALLOC_INTERRUPT);
1635 if (nkpg == NULL)
1636 panic("pmap_growkernel: no memory to grow kernel");
1638 vm_page_wire(nkpg);
1639 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1640 pmap_zero_page(ptppaddr);
1641 newpdir = (pd_entry_t)(ptppaddr |
1642 VPTE_V | VPTE_RW | VPTE_U |
1643 VPTE_A | VPTE_M | VPTE_WIRED);
1644 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1645 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1646 nkpt++;
1648 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1649 ~(PAGE_SIZE * NPTEPG - 1);
1650 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1651 kernel_vm_end = kernel_map.max_offset;
1652 break;
1655 vm_object_drop(&kptobj);
1659 * Add a reference to the specified pmap.
1661 * No requirements.
1663 void
1664 pmap_reference(pmap_t pmap)
1666 if (pmap)
1667 atomic_add_int(&pmap->pm_count, 1);
1670 /************************************************************************
1671 * VMSPACE MANAGEMENT *
1672 ************************************************************************
1674 * The VMSPACE management we do in our virtual kernel must be reflected
1675 * in the real kernel. This is accomplished by making vmspace system
1676 * calls to the real kernel.
1678 void
1679 cpu_vmspace_alloc(struct vmspace *vm)
1681 int r;
1682 void *rp;
1683 vpte_t vpte;
1686 * If VMM enable, don't do nothing, we
1687 * are able to use real page tables
1689 if (vmm_enabled)
1690 return;
1692 #define USER_SIZE (VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1694 if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1695 panic("vmspace_create() failed");
1697 rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1698 PROT_READ|PROT_WRITE,
1699 MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1700 MemImageFd, 0);
1701 if (rp == MAP_FAILED)
1702 panic("vmspace_mmap: failed");
1703 vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1704 MADV_NOSYNC, 0);
1705 vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) |
1706 VPTE_RW | VPTE_V | VPTE_U;
1707 r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1708 MADV_SETMAP, vpte);
1709 if (r < 0)
1710 panic("vmspace_mcontrol: failed");
1713 void
1714 cpu_vmspace_free(struct vmspace *vm)
1717 * If VMM enable, don't do nothing, we
1718 * are able to use real page tables
1720 if (vmm_enabled)
1721 return;
1723 if (vmspace_destroy(&vm->vm_pmap) < 0)
1724 panic("vmspace_destroy() failed");
1727 /***************************************************
1728 * page management routines.
1729 ***************************************************/
1732 * free the pv_entry back to the free list. This function may be
1733 * called from an interrupt.
1735 static __inline void
1736 free_pv_entry(pv_entry_t pv)
1738 atomic_add_int(&pv_entry_count, -1);
1739 KKASSERT(pv_entry_count >= 0);
1740 zfree(pvzone, pv);
1744 * get a new pv_entry, allocating a block from the system
1745 * when needed. This function may be called from an interrupt.
1747 static pv_entry_t
1748 get_pv_entry(void)
1750 atomic_add_int(&pv_entry_count, 1);
1751 if (pv_entry_high_water &&
1752 (pv_entry_count > pv_entry_high_water) &&
1753 atomic_swap_int(&pmap_pagedaemon_waken, 1) == 0) {
1754 wakeup(&vm_pages_needed);
1756 return zalloc(pvzone);
1760 * This routine is very drastic, but can save the system
1761 * in a pinch.
1763 * No requirements.
1765 void
1766 pmap_collect(void)
1768 int i;
1769 vm_page_t m;
1770 static int warningdone=0;
1772 if (pmap_pagedaemon_waken == 0)
1773 return;
1774 pmap_pagedaemon_waken = 0;
1776 if (warningdone < 5) {
1777 kprintf("pmap_collect: collecting pv entries -- "
1778 "suggest increasing PMAP_SHPGPERPROC\n");
1779 warningdone++;
1782 for (i = 0; i < vm_page_array_size; i++) {
1783 m = &vm_page_array[i];
1784 if (m->wire_count || m->hold_count)
1785 continue;
1786 if (vm_page_busy_try(m, TRUE) == 0) {
1787 if (m->wire_count == 0 && m->hold_count == 0) {
1788 pmap_remove_all(m);
1790 vm_page_wakeup(m);
1797 * If it is the first entry on the list, it is actually
1798 * in the header and we must copy the following entry up
1799 * to the header. Otherwise we must search the list for
1800 * the entry. In either case we free the now unused entry.
1802 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1804 static int
1805 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1807 pv_entry_t pv;
1808 int rtval;
1810 vm_page_spin_lock(m);
1811 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, va);
1814 * Note that pv_ptem is NULL if the page table page itself is not
1815 * managed, even if the page being removed IS managed.
1817 rtval = 0;
1818 if (pv) {
1819 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1820 m->md.pv_list_count--;
1821 KKASSERT(m->md.pv_list_count >= 0);
1822 if (TAILQ_EMPTY(&m->md.pv_list))
1823 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1824 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
1825 atomic_add_int(&pmap->pm_generation, 1);
1826 vm_page_spin_unlock(m);
1827 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1828 free_pv_entry(pv);
1829 } else {
1830 vm_page_spin_unlock(m);
1831 kprintf("pmap_remove_entry: could not find "
1832 "pmap=%p m=%p va=%016jx\n",
1833 pmap, m, va);
1835 return rtval;
1839 * Create a pv entry for page at pa for (pmap, va). If the page table page
1840 * holding the VA is managed, mpte will be non-NULL.
1842 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1844 static void
1845 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1846 pv_entry_t pv)
1848 pv->pv_va = va;
1849 pv->pv_pmap = pmap;
1850 pv->pv_ptem = mpte;
1852 m->md.pv_list_count++;
1853 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1854 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pv);
1855 KKASSERT(pv == NULL);
1859 * pmap_remove_pte: do the things to unmap a page in a process
1861 * Caller holds pmap->pm_pteobj and holds the associated page table
1862 * page busy to prevent races.
1864 static int
1865 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1867 pt_entry_t oldpte;
1868 vm_page_t m;
1869 int error;
1871 oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1872 if (oldpte & VPTE_WIRED)
1873 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1874 KKASSERT(pmap->pm_stats.wired_count >= 0);
1876 #if 0
1878 * Machines that don't support invlpg, also don't support
1879 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1880 * the SMP case.
1882 if (oldpte & PG_G)
1883 cpu_invlpg((void *)va);
1884 #endif
1885 KKASSERT(pmap->pm_stats.resident_count > 0);
1886 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1887 if (oldpte & VPTE_MANAGED) {
1888 m = PHYS_TO_VM_PAGE(oldpte);
1891 * NOTE: pmap_remove_entry() will spin-lock the page
1893 if (oldpte & VPTE_M) {
1894 #if defined(PMAP_DIAGNOSTIC)
1895 if (pmap_nw_modified(oldpte)) {
1896 kprintf("pmap_remove: modified page not "
1897 "writable: va: 0x%lx, pte: 0x%lx\n",
1898 va, oldpte);
1900 #endif
1901 if (pmap_track_modified(pmap, va))
1902 vm_page_dirty(m);
1904 if (oldpte & VPTE_A)
1905 vm_page_flag_set(m, PG_REFERENCED);
1906 error = pmap_remove_entry(pmap, m, va);
1907 } else {
1908 error = pmap_unuse_pt(pmap, va, NULL);
1910 return error;
1914 * pmap_remove_page:
1916 * Remove a single page from a process address space.
1918 * This function may not be called from an interrupt if the pmap is
1919 * not kernel_pmap.
1921 * Caller holds pmap->pm_pteobj
1923 static void
1924 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1926 pt_entry_t *pte;
1928 pte = pmap_pte(pmap, va);
1929 if (pte == NULL)
1930 return;
1931 if ((*pte & VPTE_V) == 0)
1932 return;
1933 pmap_remove_pte(pmap, pte, va);
1937 * Remove the given range of addresses from the specified map.
1939 * It is assumed that the start and end are properly rounded to
1940 * the page size.
1942 * This function may not be called from an interrupt if the pmap is
1943 * not kernel_pmap.
1945 * No requirements.
1947 void
1948 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1950 vm_offset_t va_next;
1951 pml4_entry_t *pml4e;
1952 pdp_entry_t *pdpe;
1953 pd_entry_t ptpaddr, *pde;
1954 pt_entry_t *pte;
1955 vm_page_t pt_m;
1957 if (pmap == NULL)
1958 return;
1960 vm_object_hold(pmap->pm_pteobj);
1961 KKASSERT(pmap->pm_stats.resident_count >= 0);
1962 if (pmap->pm_stats.resident_count == 0) {
1963 vm_object_drop(pmap->pm_pteobj);
1964 return;
1968 * special handling of removing one page. a very
1969 * common operation and easy to short circuit some
1970 * code.
1972 if (sva + PAGE_SIZE == eva) {
1973 pde = pmap_pde(pmap, sva);
1974 if (pde && (*pde & VPTE_PS) == 0) {
1975 pmap_remove_page(pmap, sva);
1976 vm_object_drop(pmap->pm_pteobj);
1977 return;
1981 for (; sva < eva; sva = va_next) {
1982 pml4e = pmap_pml4e(pmap, sva);
1983 if ((*pml4e & VPTE_V) == 0) {
1984 va_next = (sva + NBPML4) & ~PML4MASK;
1985 if (va_next < sva)
1986 va_next = eva;
1987 continue;
1990 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
1991 if ((*pdpe & VPTE_V) == 0) {
1992 va_next = (sva + NBPDP) & ~PDPMASK;
1993 if (va_next < sva)
1994 va_next = eva;
1995 continue;
1999 * Calculate index for next page table.
2001 va_next = (sva + NBPDR) & ~PDRMASK;
2002 if (va_next < sva)
2003 va_next = eva;
2005 pde = pmap_pdpe_to_pde(pdpe, sva);
2006 ptpaddr = *pde;
2009 * Weed out invalid mappings.
2011 if (ptpaddr == 0)
2012 continue;
2015 * Check for large page.
2017 if ((ptpaddr & VPTE_PS) != 0) {
2018 /* JG FreeBSD has more complex treatment here */
2019 KKASSERT(*pde != 0);
2020 pmap_inval_pde(pde, pmap, sva);
2021 atomic_add_long(&pmap->pm_stats.resident_count,
2022 -NBPDR / PAGE_SIZE);
2023 continue;
2027 * Limit our scan to either the end of the va represented
2028 * by the current page table page, or to the end of the
2029 * range being removed.
2031 if (va_next > eva)
2032 va_next = eva;
2035 * NOTE: pmap_remove_pte() can block.
2037 pt_m = pmap_hold_pt_page(pde, sva);
2038 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2039 sva += PAGE_SIZE) {
2040 if (*pte) {
2041 if (pmap_remove_pte(pmap, pte, sva))
2042 break;
2045 vm_page_unhold(pt_m);
2047 vm_object_drop(pmap->pm_pteobj);
2051 * Removes this physical page from all physical maps in which it resides.
2052 * Reflects back modify bits to the pager.
2054 * This routine may not be called from an interrupt.
2056 * No requirements.
2058 static void
2059 pmap_remove_all(vm_page_t m)
2061 pt_entry_t *pte, tpte;
2062 pv_entry_t pv;
2063 vm_object_t pmobj;
2064 pmap_t pmap;
2066 #if defined(PMAP_DIAGNOSTIC)
2068 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2069 * pages!
2071 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2072 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2074 #endif
2076 restart:
2077 vm_page_spin_lock(m);
2078 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2079 pmap = pv->pv_pmap;
2080 pmobj = pmap->pm_pteobj;
2083 * Handle reversed lock ordering
2085 if (vm_object_hold_try(pmobj) == 0) {
2086 refcount_acquire(&pmobj->hold_count);
2087 vm_page_spin_unlock(m);
2088 vm_object_lock(pmobj);
2089 vm_page_spin_lock(m);
2090 if (pv != TAILQ_FIRST(&m->md.pv_list) ||
2091 pmap != pv->pv_pmap ||
2092 pmobj != pmap->pm_pteobj) {
2093 vm_page_spin_unlock(m);
2094 vm_object_drop(pmobj);
2095 goto restart;
2099 KKASSERT(pmap->pm_stats.resident_count > 0);
2100 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2102 pte = pmap_pte(pmap, pv->pv_va);
2103 KKASSERT(pte != NULL);
2105 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2106 if (tpte & VPTE_WIRED)
2107 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2108 KKASSERT(pmap->pm_stats.wired_count >= 0);
2110 if (tpte & VPTE_A)
2111 vm_page_flag_set(m, PG_REFERENCED);
2114 * Update the vm_page_t clean and reference bits.
2116 if (tpte & VPTE_M) {
2117 #if defined(PMAP_DIAGNOSTIC)
2118 if (pmap_nw_modified(tpte)) {
2119 kprintf(
2120 "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2121 pv->pv_va, tpte);
2123 #endif
2124 if (pmap_track_modified(pmap, pv->pv_va))
2125 vm_page_dirty(m);
2127 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2128 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2129 atomic_add_int(&pmap->pm_generation, 1);
2130 m->md.pv_list_count--;
2131 KKASSERT(m->md.pv_list_count >= 0);
2132 if (TAILQ_EMPTY(&m->md.pv_list))
2133 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2134 vm_page_spin_unlock(m);
2135 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2136 vm_object_drop(pmobj);
2137 free_pv_entry(pv);
2138 vm_page_spin_lock(m);
2140 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2141 vm_page_spin_unlock(m);
2145 * Removes the page from a particular pmap
2147 void
2148 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2150 pt_entry_t *pte, tpte;
2151 pv_entry_t pv;
2153 vm_object_hold(pmap->pm_pteobj);
2154 again:
2155 vm_page_spin_lock(m);
2156 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2157 if (pv->pv_pmap != pmap)
2158 continue;
2160 KKASSERT(pmap->pm_stats.resident_count > 0);
2161 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2163 pte = pmap_pte(pmap, pv->pv_va);
2164 KKASSERT(pte != NULL);
2166 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2167 if (tpte & VPTE_WIRED)
2168 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2169 KKASSERT(pmap->pm_stats.wired_count >= 0);
2171 if (tpte & VPTE_A)
2172 vm_page_flag_set(m, PG_REFERENCED);
2175 * Update the vm_page_t clean and reference bits.
2177 if (tpte & VPTE_M) {
2178 if (pmap_track_modified(pmap, pv->pv_va))
2179 vm_page_dirty(m);
2181 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2182 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2183 atomic_add_int(&pmap->pm_generation, 1);
2184 m->md.pv_list_count--;
2185 KKASSERT(m->md.pv_list_count >= 0);
2186 if (TAILQ_EMPTY(&m->md.pv_list))
2187 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2188 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2189 vm_page_spin_unlock(m);
2190 free_pv_entry(pv);
2191 goto again;
2193 vm_page_spin_unlock(m);
2194 vm_object_drop(pmap->pm_pteobj);
2198 * Set the physical protection on the specified range of this map
2199 * as requested.
2201 * This function may not be called from an interrupt if the map is
2202 * not the kernel_pmap.
2204 * No requirements.
2206 void
2207 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2209 vm_offset_t va_next;
2210 pml4_entry_t *pml4e;
2211 pdp_entry_t *pdpe;
2212 pd_entry_t ptpaddr, *pde;
2213 pt_entry_t *pte;
2214 vm_page_t pt_m;
2216 if (pmap == NULL)
2217 return;
2219 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2220 pmap_remove(pmap, sva, eva);
2221 return;
2224 if (prot & VM_PROT_WRITE)
2225 return;
2227 vm_object_hold(pmap->pm_pteobj);
2229 for (; sva < eva; sva = va_next) {
2230 pml4e = pmap_pml4e(pmap, sva);
2231 if ((*pml4e & VPTE_V) == 0) {
2232 va_next = (sva + NBPML4) & ~PML4MASK;
2233 if (va_next < sva)
2234 va_next = eva;
2235 continue;
2238 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2239 if ((*pdpe & VPTE_V) == 0) {
2240 va_next = (sva + NBPDP) & ~PDPMASK;
2241 if (va_next < sva)
2242 va_next = eva;
2243 continue;
2246 va_next = (sva + NBPDR) & ~PDRMASK;
2247 if (va_next < sva)
2248 va_next = eva;
2250 pde = pmap_pdpe_to_pde(pdpe, sva);
2251 ptpaddr = *pde;
2253 #if 0
2255 * Check for large page.
2257 if ((ptpaddr & VPTE_PS) != 0) {
2258 /* JG correct? */
2259 pmap_clean_pde(pde, pmap, sva);
2260 atomic_add_long(&pmap->pm_stats.resident_count,
2261 -NBPDR / PAGE_SIZE);
2262 continue;
2264 #endif
2267 * Weed out invalid mappings. Note: we assume that the page
2268 * directory table is always allocated, and in kernel virtual.
2270 if (ptpaddr == 0)
2271 continue;
2273 if (va_next > eva)
2274 va_next = eva;
2276 pt_m = pmap_hold_pt_page(pde, sva);
2277 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2278 sva += PAGE_SIZE) {
2279 pt_entry_t pbits;
2280 vm_page_t m;
2283 * Clean managed pages and also check the accessed
2284 * bit. Just remove write perms for unmanaged
2285 * pages. Be careful of races, turning off write
2286 * access will force a fault rather then setting
2287 * the modified bit at an unexpected time.
2289 if (*pte & VPTE_MANAGED) {
2290 pbits = pmap_clean_pte(pte, pmap, sva);
2291 m = NULL;
2292 if (pbits & VPTE_A) {
2293 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2294 vm_page_flag_set(m, PG_REFERENCED);
2295 atomic_clear_long(pte, VPTE_A);
2297 if (pbits & VPTE_M) {
2298 if (pmap_track_modified(pmap, sva)) {
2299 if (m == NULL)
2300 m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2301 vm_page_dirty(m);
2304 } else {
2305 pbits = pmap_setro_pte(pte, pmap, sva);
2308 vm_page_unhold(pt_m);
2310 vm_object_drop(pmap->pm_pteobj);
2314 * Enter a managed page into a pmap. If the page is not wired related pmap
2315 * data can be destroyed at any time for later demand-operation.
2317 * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2318 * specified protection, and wire the mapping if requested.
2320 * NOTE: This routine may not lazy-evaluate or lose information. The
2321 * page must actually be inserted into the given map NOW.
2323 * NOTE: When entering a page at a KVA address, the pmap must be the
2324 * kernel_pmap.
2326 * No requirements.
2328 void
2329 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2330 boolean_t wired, vm_map_entry_t entry __unused)
2332 vm_paddr_t pa;
2333 pv_entry_t pv;
2334 pt_entry_t *pte;
2335 pt_entry_t origpte, newpte;
2336 vm_paddr_t opa;
2337 vm_page_t mpte;
2339 if (pmap == NULL)
2340 return;
2342 va = trunc_page(va);
2344 vm_object_hold(pmap->pm_pteobj);
2347 * Get the page table page. The kernel_pmap's page table pages
2348 * are preallocated and have no associated vm_page_t.
2350 * If not NULL, mpte will be busied and we must vm_page_wakeup()
2351 * to cleanup. There will already be at least one wire count from
2352 * it being mapped into its parent.
2354 if (pmap == &kernel_pmap) {
2355 mpte = NULL;
2356 pte = vtopte(va);
2357 } else {
2358 mpte = pmap_allocpte(pmap, va);
2359 pte = (void *)PHYS_TO_DMAP(mpte->phys_addr);
2360 pte += pmap_pte_index(va);
2364 * Deal with races on the original mapping by cleaning it, which
2365 * turns of PG_RW and gives us a definitive VPTE_M status. We
2366 * are primarily concerned about VPTE_M races.
2368 pa = VM_PAGE_TO_PHYS(m);
2369 origpte = pmap_clean_pte(pte, pmap, va);
2370 opa = origpte & VPTE_FRAME;
2372 if (origpte & VPTE_PS)
2373 panic("pmap_enter: attempted pmap_enter on 2MB page");
2375 if ((origpte & (VPTE_MANAGED|VPTE_M)) == (VPTE_MANAGED|VPTE_M)) {
2376 if (pmap_track_modified(pmap, va)) {
2377 vm_page_t om = PHYS_TO_VM_PAGE(opa);
2378 vm_page_dirty(om);
2383 * Mapping has not changed, must be protection or wiring change.
2385 if (origpte && (opa == pa)) {
2387 * Wiring change, just update stats. We don't worry about
2388 * wiring PT pages as they remain resident as long as there
2389 * are valid mappings in them. Hence, if a user page is wired,
2390 * the PT page will be also.
2392 if (wired && ((origpte & VPTE_WIRED) == 0))
2393 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2394 else if (!wired && (origpte & VPTE_WIRED))
2395 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2397 if (origpte & VPTE_MANAGED) {
2398 pa |= VPTE_MANAGED;
2399 KKASSERT(m->flags & PG_MAPPED);
2400 KKASSERT(!(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2401 } else {
2402 KKASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2404 goto validate;
2408 * Bump the wire_count for the page table page.
2410 if (mpte)
2411 vm_page_wire_quick(mpte);
2414 * Mapping has changed, invalidate old range and fall through to
2415 * handle validating new mapping.
2417 if (opa) {
2418 int err;
2419 err = pmap_remove_pte(pmap, pte, va);
2420 if (err)
2421 panic("pmap_enter: pte vanished, va: 0x%lx", va);
2425 * Enter on the PV list if part of our managed memory. Note that we
2426 * raise IPL while manipulating pv_table since pmap_enter can be
2427 * called at interrupt time.
2429 if (pmap_initialized) {
2430 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2431 pv = get_pv_entry();
2432 vm_page_spin_lock(m);
2433 pmap_insert_entry(pmap, va, mpte, m, pv);
2434 pa |= VPTE_MANAGED;
2435 vm_page_flag_set(m, PG_MAPPED);
2436 vm_page_spin_unlock(m);
2441 * Increment counters
2443 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2444 if (wired)
2445 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2447 validate:
2449 * Now validate mapping with desired protection/wiring.
2451 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2452 newpte |= VPTE_A;
2454 if (wired)
2455 newpte |= VPTE_WIRED;
2456 // if (pmap != &kernel_pmap)
2457 newpte |= VPTE_U;
2459 if (newpte & VPTE_RW)
2460 vm_page_flag_set(m, PG_WRITEABLE);
2461 KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2463 atomic_swap_long(pte, newpte);
2465 if (mpte)
2466 vm_page_wakeup(mpte);
2467 vm_object_drop(pmap->pm_pteobj);
2471 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2473 * Currently this routine may only be used on user pmaps, not kernel_pmap.
2475 * No requirements.
2477 void
2478 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2480 pmap_enter(pmap, va, m, VM_PROT_READ, 0, NULL);
2484 * Make a temporary mapping for a physical address. This is only intended
2485 * to be used for panic dumps.
2487 * The caller is responsible for calling smp_invltlb().
2489 void *
2490 pmap_kenter_temporary(vm_paddr_t pa, long i)
2492 pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2493 return ((void *)crashdumpmap);
2496 #define MAX_INIT_PT (96)
2499 * This routine preloads the ptes for a given object into the specified pmap.
2500 * This eliminates the blast of soft faults on process startup and
2501 * immediately after an mmap.
2503 * No requirements.
2505 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2507 void
2508 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2509 vm_object_t object, vm_pindex_t pindex,
2510 vm_size_t size, int limit)
2512 struct rb_vm_page_scan_info info;
2513 struct lwp *lp;
2514 vm_size_t psize;
2517 * We can't preinit if read access isn't set or there is no pmap
2518 * or object.
2520 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2521 return;
2524 * We can't preinit if the pmap is not the current pmap
2526 lp = curthread->td_lwp;
2527 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2528 return;
2530 psize = x86_64_btop(size);
2532 if ((object->type != OBJT_VNODE) ||
2533 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2534 (object->resident_page_count > MAX_INIT_PT))) {
2535 return;
2538 if (psize + pindex > object->size) {
2539 if (object->size < pindex)
2540 return;
2541 psize = object->size - pindex;
2544 if (psize == 0)
2545 return;
2548 * Use a red-black scan to traverse the requested range and load
2549 * any valid pages found into the pmap.
2551 * We cannot safely scan the object's memq unless we are in a
2552 * critical section since interrupts can remove pages from objects.
2554 info.start_pindex = pindex;
2555 info.end_pindex = pindex + psize - 1;
2556 info.limit = limit;
2557 info.mpte = NULL;
2558 info.addr = addr;
2559 info.pmap = pmap;
2561 vm_object_hold_shared(object);
2562 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2563 pmap_object_init_pt_callback, &info);
2564 vm_object_drop(object);
2567 static
2569 pmap_object_init_pt_callback(vm_page_t p, void *data)
2571 struct rb_vm_page_scan_info *info = data;
2572 vm_pindex_t rel_index;
2574 * don't allow an madvise to blow away our really
2575 * free pages allocating pv entries.
2577 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2578 vmstats.v_free_count < vmstats.v_free_reserved) {
2579 return(-1);
2583 * Ignore list markers and ignore pages we cannot instantly
2584 * busy (while holding the object token).
2586 if (p->flags & PG_MARKER)
2587 return 0;
2588 if (vm_page_busy_try(p, TRUE))
2589 return 0;
2590 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2591 (p->flags & PG_FICTITIOUS) == 0) {
2592 if ((p->queue - p->pc) == PQ_CACHE)
2593 vm_page_deactivate(p);
2594 rel_index = p->pindex - info->start_pindex;
2595 pmap_enter_quick(info->pmap,
2596 info->addr + x86_64_ptob(rel_index), p);
2598 vm_page_wakeup(p);
2599 return(0);
2603 * Return TRUE if the pmap is in shape to trivially
2604 * pre-fault the specified address.
2606 * Returns FALSE if it would be non-trivial or if a
2607 * pte is already loaded into the slot.
2609 * No requirements.
2612 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2614 pt_entry_t *pte;
2615 pd_entry_t *pde;
2616 int ret;
2618 vm_object_hold(pmap->pm_pteobj);
2619 pde = pmap_pde(pmap, addr);
2620 if (pde == NULL || *pde == 0) {
2621 ret = 0;
2622 } else {
2623 pte = pmap_pde_to_pte(pde, addr);
2624 ret = (*pte) ? 0 : 1;
2626 vm_object_drop(pmap->pm_pteobj);
2628 return (ret);
2632 * Change the wiring attribute for a map/virtual-address pair.
2634 * The mapping must already exist in the pmap.
2635 * No other requirements.
2637 vm_page_t
2638 pmap_unwire(pmap_t pmap, vm_offset_t va)
2640 pt_entry_t *pte;
2641 vm_paddr_t pa;
2642 vm_page_t m;
2644 if (pmap == NULL)
2645 return NULL;
2647 vm_object_hold(pmap->pm_pteobj);
2648 pte = pmap_pte(pmap, va);
2650 if (pte == NULL || (*pte & VPTE_V) == 0)
2651 return NULL;
2654 * Wiring is not a hardware characteristic so there is no need to
2655 * invalidate TLB. However, in an SMP environment we must use
2656 * a locked bus cycle to update the pte (if we are not using
2657 * the pmap_inval_*() API that is)... it's ok to do this for simple
2658 * wiring changes.
2660 if (pmap_pte_w(pte))
2661 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2662 /* XXX else return NULL so caller doesn't unwire m ? */
2663 atomic_clear_long(pte, VPTE_WIRED);
2665 pa = *pte & VPTE_FRAME;
2666 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
2668 vm_object_drop(pmap->pm_pteobj);
2670 return m;
2674 * Copy the range specified by src_addr/len
2675 * from the source map to the range dst_addr/len
2676 * in the destination map.
2678 * This routine is only advisory and need not do anything.
2680 void
2681 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2682 vm_size_t len, vm_offset_t src_addr)
2685 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2686 * valid through blocking calls, and that's just not going to
2687 * be the case.
2689 * FIXME!
2691 return;
2695 * pmap_zero_page:
2697 * Zero the specified physical page.
2699 * This function may be called from an interrupt and no locking is
2700 * required.
2702 void
2703 pmap_zero_page(vm_paddr_t phys)
2705 vm_offset_t va = PHYS_TO_DMAP(phys);
2707 bzero((void *)va, PAGE_SIZE);
2711 * pmap_zero_page:
2713 * Zero part of a physical page by mapping it into memory and clearing
2714 * its contents with bzero.
2716 * off and size may not cover an area beyond a single hardware page.
2718 void
2719 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2721 vm_offset_t virt = PHYS_TO_DMAP(phys);
2723 bzero((char *)virt + off, size);
2727 * pmap_copy_page:
2729 * Copy the physical page from the source PA to the target PA.
2730 * This function may be called from an interrupt. No locking
2731 * is required.
2733 void
2734 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2736 vm_offset_t src_virt, dst_virt;
2738 src_virt = PHYS_TO_DMAP(src);
2739 dst_virt = PHYS_TO_DMAP(dst);
2740 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2744 * pmap_copy_page_frag:
2746 * Copy the physical page from the source PA to the target PA.
2747 * This function may be called from an interrupt. No locking
2748 * is required.
2750 void
2751 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2753 vm_offset_t src_virt, dst_virt;
2755 src_virt = PHYS_TO_DMAP(src);
2756 dst_virt = PHYS_TO_DMAP(dst);
2757 bcopy((char *)src_virt + (src & PAGE_MASK),
2758 (char *)dst_virt + (dst & PAGE_MASK),
2759 bytes);
2763 * Returns true if the pmap's pv is one of the first 16 pvs linked to
2764 * from this page. This count may be changed upwards or downwards
2765 * in the future; it is only necessary that true be returned for a small
2766 * subset of pmaps for proper page aging.
2768 * No other requirements.
2770 boolean_t
2771 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2773 pv_entry_t pv;
2774 int loops = 0;
2776 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2777 return FALSE;
2779 vm_page_spin_lock(m);
2780 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2781 if (pv->pv_pmap == pmap) {
2782 vm_page_spin_unlock(m);
2783 return TRUE;
2785 loops++;
2786 if (loops >= 16)
2787 break;
2789 vm_page_spin_unlock(m);
2791 return (FALSE);
2795 * Remove all pages from specified address space this aids process
2796 * exit speeds. Also, this code is special cased for current
2797 * process only, but can have the more generic (and slightly slower)
2798 * mode enabled. This is much faster than pmap_remove in the case
2799 * of running down an entire address space.
2801 * No other requirements.
2803 void
2804 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2806 pmap_remove(pmap, sva, eva);
2807 #if 0
2808 pt_entry_t *pte, tpte;
2809 pv_entry_t pv, npv;
2810 vm_page_t m;
2811 int save_generation;
2813 if (pmap->pm_pteobj)
2814 vm_object_hold(pmap->pm_pteobj);
2816 pmap_invalidate_range(pmap, sva, eva);
2818 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2819 if (pv->pv_va >= eva || pv->pv_va < sva) {
2820 npv = TAILQ_NEXT(pv, pv_plist);
2821 continue;
2824 KKASSERT(pmap == pv->pv_pmap);
2826 pte = pmap_pte(pmap, pv->pv_va);
2829 * We cannot remove wired pages from a process' mapping
2830 * at this time
2832 if (*pte & VPTE_WIRED) {
2833 npv = TAILQ_NEXT(pv, pv_plist);
2834 continue;
2836 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2838 m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2839 vm_page_spin_lock(m);
2841 KASSERT(m < &vm_page_array[vm_page_array_size],
2842 ("pmap_remove_pages: bad tpte %lx", tpte));
2844 KKASSERT(pmap->pm_stats.resident_count > 0);
2845 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2848 * Update the vm_page_t clean and reference bits.
2850 if (tpte & VPTE_M) {
2851 vm_page_dirty(m);
2854 npv = TAILQ_NEXT(pv, pv_plist);
2855 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2856 atomic_add_int(&pmap->pm_generation, 1);
2857 save_generation = pmap->pm_generation;
2859 m->md.pv_list_count--;
2860 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2861 if (TAILQ_EMPTY(&m->md.pv_list))
2862 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2863 vm_page_spin_unlock(m);
2865 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2866 free_pv_entry(pv);
2869 * Restart the scan if we blocked during the unuse or free
2870 * calls and other removals were made.
2872 if (save_generation != pmap->pm_generation) {
2873 kprintf("Warning: pmap_remove_pages race-A avoided\n");
2874 npv = TAILQ_FIRST(&pmap->pm_pvlist);
2877 if (pmap->pm_pteobj)
2878 vm_object_drop(pmap->pm_pteobj);
2879 pmap_remove(pmap, sva, eva);
2880 #endif
2884 * pmap_testbit tests bits in active mappings of a VM page.
2886 static boolean_t
2887 pmap_testbit(vm_page_t m, int bit)
2889 pv_entry_t pv;
2890 pt_entry_t *pte;
2892 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2893 return FALSE;
2895 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2896 return FALSE;
2898 vm_page_spin_lock(m);
2899 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2901 * if the bit being tested is the modified bit, then
2902 * mark clean_map and ptes as never
2903 * modified.
2905 if (bit & (VPTE_A|VPTE_M)) {
2906 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2907 continue;
2910 #if defined(PMAP_DIAGNOSTIC)
2911 if (pv->pv_pmap == NULL) {
2912 kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2913 continue;
2915 #endif
2916 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2917 if (*pte & bit) {
2918 vm_page_spin_unlock(m);
2919 return TRUE;
2922 vm_page_spin_unlock(m);
2923 return (FALSE);
2927 * This routine is used to clear bits in ptes. Certain bits require special
2928 * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2930 * This routine is only called with certain VPTE_* bit combinations.
2932 static __inline void
2933 pmap_clearbit(vm_page_t m, int bit)
2935 pv_entry_t pv;
2936 pt_entry_t *pte;
2937 pt_entry_t pbits;
2939 if (bit == VPTE_RW)
2940 vm_page_flag_clear(m, PG_WRITEABLE);
2941 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2942 return;
2945 * Loop over all current mappings setting/clearing as appropos If
2946 * setting RO do we need to clear the VAC?
2948 vm_page_spin_lock(m);
2949 restart:
2950 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2952 * don't write protect pager mappings
2954 if (bit == VPTE_RW) {
2955 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2956 continue;
2959 #if defined(PMAP_DIAGNOSTIC)
2960 if (pv->pv_pmap == NULL) {
2961 kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2962 continue;
2964 #endif
2967 * Careful here. We can use a locked bus instruction to
2968 * clear VPTE_A or VPTE_M safely but we need to synchronize
2969 * with the target cpus when we mess with VPTE_RW.
2971 * On virtual kernels we must force a new fault-on-write
2972 * in the real kernel if we clear the Modify bit ourselves,
2973 * otherwise the real kernel will not get a new fault and
2974 * will never set our Modify bit again.
2976 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2977 if (*pte & bit) {
2978 if (bit == VPTE_RW) {
2980 * We must also clear VPTE_M when clearing
2981 * VPTE_RW and synchronize its state to
2982 * the page.
2984 pbits = pmap_clean_pte(pte, pv->pv_pmap,
2985 pv->pv_va);
2986 if (pbits & VPTE_M) {
2987 if (pmap_track_modified(pv->pv_pmap,
2988 pv->pv_va)) {
2989 vm_page_dirty(m);
2990 goto restart;
2993 } else if (bit == VPTE_M) {
2995 * We must invalidate the real-kernel pte
2996 * when clearing VPTE_M bit to force the
2997 * real-kernel to take a new fault to re-set
2998 * VPTE_M.
3000 atomic_clear_long(pte, VPTE_M);
3001 pmap_invalidate_range(pv->pv_pmap,
3002 pv->pv_va,
3003 pv->pv_va + PAGE_SIZE);
3004 } else if ((bit & (VPTE_RW|VPTE_M)) ==
3005 (VPTE_RW|VPTE_M)) {
3007 * We've been asked to clear W & M, I guess
3008 * the caller doesn't want us to update
3009 * the dirty status of the VM page.
3011 pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
3012 panic("shouldn't be called");
3013 } else {
3015 * We've been asked to clear bits that do
3016 * not interact with hardware.
3018 atomic_clear_long(pte, bit);
3022 vm_page_spin_unlock(m);
3026 * Lower the permission for all mappings to a given page.
3028 * No other requirements.
3030 void
3031 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3033 /* JG NX support? */
3034 if ((prot & VM_PROT_WRITE) == 0) {
3035 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3036 pmap_clearbit(m, VPTE_RW);
3037 } else {
3038 pmap_remove_all(m);
3043 vm_paddr_t
3044 pmap_phys_address(vm_pindex_t ppn)
3046 return (x86_64_ptob(ppn));
3050 * Return a count of reference bits for a page, clearing those bits.
3051 * It is not necessary for every reference bit to be cleared, but it
3052 * is necessary that 0 only be returned when there are truly no
3053 * reference bits set.
3055 * XXX: The exact number of bits to check and clear is a matter that
3056 * should be tested and standardized at some point in the future for
3057 * optimal aging of shared pages.
3059 * No other requirements.
3062 pmap_ts_referenced(vm_page_t m)
3064 pv_entry_t pv, pvf, pvn;
3065 pt_entry_t *pte;
3066 int rtval = 0;
3068 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3069 return (rtval);
3071 vm_page_spin_lock(m);
3072 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3073 pvf = pv;
3074 do {
3075 pvn = TAILQ_NEXT(pv, pv_list);
3076 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3077 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3079 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3080 continue;
3082 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3084 if (pte && (*pte & VPTE_A)) {
3085 atomic_clear_long(pte, VPTE_A);
3086 rtval++;
3087 if (rtval > 4) {
3088 break;
3091 } while ((pv = pvn) != NULL && pv != pvf);
3093 vm_page_spin_unlock(m);
3095 return (rtval);
3099 * Return whether or not the specified physical page was modified
3100 * in any physical maps.
3102 * No other requirements.
3104 boolean_t
3105 pmap_is_modified(vm_page_t m)
3107 boolean_t res;
3109 res = pmap_testbit(m, VPTE_M);
3111 return (res);
3115 * Clear the modify bits on the specified physical page.
3117 * No other requirements.
3119 void
3120 pmap_clear_modify(vm_page_t m)
3122 pmap_clearbit(m, VPTE_M);
3126 * Clear the reference bit on the specified physical page.
3128 * No other requirements.
3130 void
3131 pmap_clear_reference(vm_page_t m)
3133 pmap_clearbit(m, VPTE_A);
3137 * Miscellaneous support routines follow
3140 static void
3141 i386_protection_init(void)
3143 int *kp, prot;
3145 kp = protection_codes;
3146 for (prot = 0; prot < 8; prot++) {
3147 if (prot & VM_PROT_READ)
3148 *kp |= 0; /* if it's VALID is readeable */
3149 if (prot & VM_PROT_WRITE)
3150 *kp |= VPTE_RW;
3151 if (prot & VM_PROT_EXECUTE)
3152 *kp |= 0; /* if it's VALID is executable */
3153 ++kp;
3158 * Sets the memory attribute for the specified page.
3160 void
3161 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3163 /* This is a vkernel, do nothing */
3167 * Change the PAT attribute on an existing kernel memory map. Caller
3168 * must ensure that the virtual memory in question is not accessed
3169 * during the adjustment.
3171 void
3172 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3174 /* This is a vkernel, do nothing */
3178 * Perform the pmap work for mincore
3180 * No other requirements.
3183 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3185 pt_entry_t *ptep, pte;
3186 vm_page_t m;
3187 int val = 0;
3189 vm_object_hold(pmap->pm_pteobj);
3190 ptep = pmap_pte(pmap, addr);
3192 if (ptep && (pte = *ptep) != 0) {
3193 vm_paddr_t pa;
3195 val = MINCORE_INCORE;
3196 if ((pte & VPTE_MANAGED) == 0)
3197 goto done;
3199 pa = pte & VPTE_FRAME;
3201 m = PHYS_TO_VM_PAGE(pa);
3204 * Modified by us
3206 if (pte & VPTE_M)
3207 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3209 * Modified by someone
3211 else if (m->dirty || pmap_is_modified(m))
3212 val |= MINCORE_MODIFIED_OTHER;
3214 * Referenced by us
3216 if (pte & VPTE_A)
3217 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3220 * Referenced by someone
3222 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3223 val |= MINCORE_REFERENCED_OTHER;
3224 vm_page_flag_set(m, PG_REFERENCED);
3227 done:
3228 vm_object_drop(pmap->pm_pteobj);
3230 return val;
3234 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3235 * vmspace will be ref'd and the old one will be deref'd.
3237 * Caller must hold vmspace->vm_map.token for oldvm and newvm
3239 void
3240 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3242 struct vmspace *oldvm;
3243 struct lwp *lp;
3245 crit_enter();
3246 oldvm = p->p_vmspace;
3247 if (oldvm != newvm) {
3248 if (adjrefs)
3249 vmspace_ref(newvm);
3250 p->p_vmspace = newvm;
3251 KKASSERT(p->p_nthreads == 1);
3252 lp = RB_ROOT(&p->p_lwp_tree);
3253 pmap_setlwpvm(lp, newvm);
3254 if (adjrefs)
3255 vmspace_rel(oldvm);
3257 crit_exit();
3261 * Set the vmspace for a LWP. The vmspace is almost universally set the
3262 * same as the process vmspace, but virtual kernels need to swap out contexts
3263 * on a per-lwp basis.
3265 void
3266 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3268 struct vmspace *oldvm;
3269 struct pmap *pmap;
3271 oldvm = lp->lwp_vmspace;
3272 if (oldvm != newvm) {
3273 crit_enter();
3274 lp->lwp_vmspace = newvm;
3275 if (curthread->td_lwp == lp) {
3276 pmap = vmspace_pmap(newvm);
3277 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3278 if (pmap->pm_active_lock & CPULOCK_EXCL)
3279 pmap_interlock_wait(newvm);
3280 #if defined(SWTCH_OPTIM_STATS)
3281 tlb_flush_count++;
3282 #endif
3283 pmap = vmspace_pmap(oldvm);
3284 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3285 mycpu->gd_cpuid);
3287 crit_exit();
3292 * The swtch code tried to switch in a heavy weight process whos pmap
3293 * is locked by another cpu. We have to wait for the lock to clear before
3294 * the pmap can be used.
3296 void
3297 pmap_interlock_wait (struct vmspace *vm)
3299 pmap_t pmap = vmspace_pmap(vm);
3301 if (pmap->pm_active_lock & CPULOCK_EXCL) {
3302 crit_enter();
3303 while (pmap->pm_active_lock & CPULOCK_EXCL) {
3304 cpu_ccfence();
3305 pthread_yield();
3307 crit_exit();
3311 vm_offset_t
3312 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3315 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3316 return addr;
3319 addr = roundup2(addr, NBPDR);
3320 return addr;
3324 * Used by kmalloc/kfree, page already exists at va
3326 vm_page_t
3327 pmap_kvtom(vm_offset_t va)
3329 vpte_t *ptep;
3331 KKASSERT(va >= KvaStart && va < KvaEnd);
3332 ptep = vtopte(va);
3333 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3336 void
3337 pmap_object_init(vm_object_t object)
3339 /* empty */
3342 void
3343 pmap_object_free(vm_object_t object)
3345 /* empty */
3348 void
3349 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3351 pmap_t pmap = pginfo->pmap;
3352 vm_offset_t sva = pginfo->beg_addr;
3353 vm_offset_t eva = pginfo->end_addr;
3354 vm_offset_t va_next;
3355 pml4_entry_t *pml4e;
3356 pdp_entry_t *pdpe;
3357 pd_entry_t ptpaddr, *pde;
3358 pt_entry_t *pte;
3359 vm_page_t pt_m;
3360 int stop = 0;
3362 vm_object_hold(pmap->pm_pteobj);
3364 for (; sva < eva; sva = va_next) {
3365 if (stop)
3366 break;
3368 pml4e = pmap_pml4e(pmap, sva);
3369 if ((*pml4e & VPTE_V) == 0) {
3370 va_next = (sva + NBPML4) & ~PML4MASK;
3371 if (va_next < sva)
3372 va_next = eva;
3373 continue;
3376 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3377 if ((*pdpe & VPTE_V) == 0) {
3378 va_next = (sva + NBPDP) & ~PDPMASK;
3379 if (va_next < sva)
3380 va_next = eva;
3381 continue;
3384 va_next = (sva + NBPDR) & ~PDRMASK;
3385 if (va_next < sva)
3386 va_next = eva;
3388 pde = pmap_pdpe_to_pde(pdpe, sva);
3389 ptpaddr = *pde;
3391 #if 0
3393 * Check for large page (ignore).
3395 if ((ptpaddr & VPTE_PS) != 0) {
3396 #if 0
3397 pmap_clean_pde(pde, pmap, sva);
3398 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3399 #endif
3400 continue;
3402 #endif
3405 * Weed out invalid mappings. Note: we assume that the page
3406 * directory table is always allocated, and in kernel virtual.
3408 if (ptpaddr == 0)
3409 continue;
3411 if (va_next > eva)
3412 va_next = eva;
3414 pt_m = pmap_hold_pt_page(pde, sva);
3415 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3416 sva += PAGE_SIZE) {
3417 vm_page_t m;
3419 if (stop)
3420 break;
3421 if ((*pte & VPTE_MANAGED) == 0)
3422 continue;
3424 m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3425 if (vm_page_busy_try(m, TRUE) == 0) {
3426 if (pginfo->callback(pginfo, sva, m) < 0)
3427 stop = 1;
3430 vm_page_unhold(pt_m);
3432 vm_object_drop(pmap->pm_pteobj);