Replace the bwillwrite() subsystem to make it more fair to processes.
[dragonfly.git] / sys / vfs / ufs / ffs_softdep.c
blob3a811f5cc34a3710304901d3866306ad23ec6f59
1 /*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
9 * Further information about soft updates can be obtained from:
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.57 2008/06/28 17:59:51 dillon Exp $
44 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <sys/buf2.h>
64 #include <machine/inttypes.h>
65 #include "dir.h"
66 #include "quota.h"
67 #include "inode.h"
68 #include "ufsmount.h"
69 #include "fs.h"
70 #include "softdep.h"
71 #include "ffs_extern.h"
72 #include "ufs_extern.h"
74 #include <sys/thread2.h>
77 * These definitions need to be adapted to the system to which
78 * this file is being ported.
81 * malloc types defined for the softdep system.
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
99 #define D_PAGEDEP 0
100 #define D_INODEDEP 1
101 #define D_NEWBLK 2
102 #define D_BMSAFEMAP 3
103 #define D_ALLOCDIRECT 4
104 #define D_INDIRDEP 5
105 #define D_ALLOCINDIR 6
106 #define D_FREEFRAG 7
107 #define D_FREEBLKS 8
108 #define D_FREEFILE 9
109 #define D_DIRADD 10
110 #define D_MKDIR 11
111 #define D_DIRREM 12
112 #define D_LAST D_DIRREM
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
118 static struct malloc_type *memtype[] = {
119 M_PAGEDEP,
120 M_INODEDEP,
121 M_NEWBLK,
122 M_BMSAFEMAP,
123 M_ALLOCDIRECT,
124 M_INDIRDEP,
125 M_ALLOCINDIR,
126 M_FREEFRAG,
127 M_FREEBLKS,
128 M_FREEFILE,
129 M_DIRADD,
130 M_MKDIR,
131 M_DIRREM
134 #define DtoM(type) (memtype[type])
137 * Names of malloc types.
139 #define TYPENAME(type) \
140 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142 * End system adaptaion definitions.
146 * Internal function prototypes.
148 static void softdep_error(char *, int);
149 static void drain_output(struct vnode *, int);
150 static int getdirtybuf(struct buf **, int);
151 static void clear_remove(struct thread *);
152 static void clear_inodedeps(struct thread *);
153 static int flush_pagedep_deps(struct vnode *, struct mount *,
154 struct diraddhd *);
155 static int flush_inodedep_deps(struct fs *, ino_t);
156 static int handle_written_filepage(struct pagedep *, struct buf *);
157 static void diradd_inode_written(struct diradd *, struct inodedep *);
158 static int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static void handle_allocdirect_partdone(struct allocdirect *);
160 static void handle_allocindir_partdone(struct allocindir *);
161 static void initiate_write_filepage(struct pagedep *, struct buf *);
162 static void handle_written_mkdir(struct mkdir *, int);
163 static void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static void handle_workitem_freefile(struct freefile *);
165 static void handle_workitem_remove(struct dirrem *);
166 static struct dirrem *newdirrem(struct buf *, struct inode *,
167 struct inode *, int, struct dirrem **);
168 static void free_diradd(struct diradd *);
169 static void free_allocindir(struct allocindir *, struct inodedep *);
170 static int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static void deallocate_dependencies(struct buf *, struct inodedep *);
172 static void free_allocdirect(struct allocdirectlst *,
173 struct allocdirect *, int);
174 static int check_inode_unwritten(struct inodedep *);
175 static int free_inodedep(struct inodedep *);
176 static void handle_workitem_freeblocks(struct freeblks *);
177 static void merge_inode_lists(struct inodedep *);
178 static void setup_allocindir_phase2(struct buf *, struct inode *,
179 struct allocindir *);
180 static struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 ufs_daddr_t);
182 static void handle_workitem_freefrag(struct freefrag *);
183 static struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static void allocdirect_merge(struct allocdirectlst *,
185 struct allocdirect *, struct allocdirect *);
186 static struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 struct newblk **);
189 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 struct pagedep **);
192 static void pause_timer(void *);
193 static int request_cleanup(int, int);
194 static int process_worklist_item(struct mount *, int);
195 static void add_to_worklist(struct worklist *);
198 * Exported softdep operations.
200 static void softdep_disk_io_initiation(struct buf *);
201 static void softdep_disk_write_complete(struct buf *);
202 static void softdep_deallocate_dependencies(struct buf *);
203 static int softdep_fsync(struct vnode *);
204 static int softdep_process_worklist(struct mount *);
205 static void softdep_move_dependencies(struct buf *, struct buf *);
206 static int softdep_count_dependencies(struct buf *bp, int);
207 static int softdep_checkread(struct buf *bp);
208 static int softdep_checkwrite(struct buf *bp);
210 static struct bio_ops softdep_bioops = {
211 .io_start = softdep_disk_io_initiation,
212 .io_complete = softdep_disk_write_complete,
213 .io_deallocate = softdep_deallocate_dependencies,
214 .io_fsync = softdep_fsync,
215 .io_sync = softdep_process_worklist,
216 .io_movedeps = softdep_move_dependencies,
217 .io_countdeps = softdep_count_dependencies,
218 .io_checkread = softdep_checkread,
219 .io_checkwrite = softdep_checkwrite
223 * Locking primitives.
225 * For a uniprocessor, all we need to do is protect against disk
226 * interrupts. For a multiprocessor, this lock would have to be
227 * a mutex. A single mutex is used throughout this file, though
228 * finer grain locking could be used if contention warranted it.
230 * For a multiprocessor, the sleep call would accept a lock and
231 * release it after the sleep processing was complete. In a uniprocessor
232 * implementation there is no such interlock, so we simple mark
233 * the places where it needs to be done with the `interlocked' form
234 * of the lock calls. Since the uniprocessor sleep already interlocks
235 * the spl, there is nothing that really needs to be done.
237 #ifndef /* NOT */ DEBUG
238 static struct lockit {
239 } lk = { 0 };
240 #define ACQUIRE_LOCK(lk) crit_enter_id("softupdates");
241 #define FREE_LOCK(lk) crit_exit_id("softupdates");
243 #else /* DEBUG */
244 #define NOHOLDER ((struct thread *)-1)
245 #define SPECIAL_FLAG ((struct thread *)-2)
246 static struct lockit {
247 int lkt_spl;
248 struct thread *lkt_held;
249 } lk = { 0, NOHOLDER };
250 static int lockcnt;
252 static void acquire_lock(struct lockit *);
253 static void free_lock(struct lockit *);
254 void softdep_panic(char *);
256 #define ACQUIRE_LOCK(lk) acquire_lock(lk)
257 #define FREE_LOCK(lk) free_lock(lk)
259 static void
260 acquire_lock(struct lockit *lk)
262 thread_t holder;
264 if (lk->lkt_held != NOHOLDER) {
265 holder = lk->lkt_held;
266 FREE_LOCK(lk);
267 if (holder == curthread)
268 panic("softdep_lock: locking against myself");
269 else
270 panic("softdep_lock: lock held by %p", holder);
272 crit_enter_id("softupdates");
273 lk->lkt_held = curthread;
274 lockcnt++;
277 static void
278 free_lock(struct lockit *lk)
281 if (lk->lkt_held == NOHOLDER)
282 panic("softdep_unlock: lock not held");
283 lk->lkt_held = NOHOLDER;
284 crit_exit_id("softupdates");
288 * Function to release soft updates lock and panic.
290 void
291 softdep_panic(char *msg)
294 if (lk.lkt_held != NOHOLDER)
295 FREE_LOCK(&lk);
296 panic(msg);
298 #endif /* DEBUG */
300 static int interlocked_sleep(struct lockit *, int, void *, int,
301 const char *, int);
304 * When going to sleep, we must save our SPL so that it does
305 * not get lost if some other process uses the lock while we
306 * are sleeping. We restore it after we have slept. This routine
307 * wraps the interlocking with functions that sleep. The list
308 * below enumerates the available set of operations.
310 #define UNKNOWN 0
311 #define SLEEP 1
312 #define LOCKBUF 2
314 static int
315 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
316 const char *wmesg, int timo)
318 thread_t holder;
319 int s, retval;
321 s = lk->lkt_spl;
322 # ifdef DEBUG
323 if (lk->lkt_held == NOHOLDER)
324 panic("interlocked_sleep: lock not held");
325 lk->lkt_held = NOHOLDER;
326 # endif /* DEBUG */
327 switch (op) {
328 case SLEEP:
329 retval = tsleep(ident, flags, wmesg, timo);
330 break;
331 case LOCKBUF:
332 retval = BUF_LOCK((struct buf *)ident, flags);
333 break;
334 default:
335 panic("interlocked_sleep: unknown operation");
337 # ifdef DEBUG
338 if (lk->lkt_held != NOHOLDER) {
339 holder = lk->lkt_held;
340 FREE_LOCK(lk);
341 if (holder == curthread)
342 panic("interlocked_sleep: locking against self");
343 else
344 panic("interlocked_sleep: lock held by %p", holder);
346 lk->lkt_held = curthread;
347 lockcnt++;
348 # endif /* DEBUG */
349 lk->lkt_spl = s;
350 return (retval);
354 * Place holder for real semaphores.
356 struct sema {
357 int value;
358 thread_t holder;
359 char *name;
360 int prio;
361 int timo;
363 static void sema_init(struct sema *, char *, int, int);
364 static int sema_get(struct sema *, struct lockit *);
365 static void sema_release(struct sema *);
367 static void
368 sema_init(struct sema *semap, char *name, int prio, int timo)
371 semap->holder = NOHOLDER;
372 semap->value = 0;
373 semap->name = name;
374 semap->prio = prio;
375 semap->timo = timo;
378 static int
379 sema_get(struct sema *semap, struct lockit *interlock)
382 if (semap->value++ > 0) {
383 if (interlock != NULL) {
384 interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
385 semap->prio, semap->name, semap->timo);
386 FREE_LOCK(interlock);
387 } else {
388 tsleep((caddr_t)semap, semap->prio, semap->name,
389 semap->timo);
391 return (0);
393 semap->holder = curthread;
394 if (interlock != NULL)
395 FREE_LOCK(interlock);
396 return (1);
399 static void
400 sema_release(struct sema *semap)
403 if (semap->value <= 0 || semap->holder != curthread) {
404 if (lk.lkt_held != NOHOLDER)
405 FREE_LOCK(&lk);
406 panic("sema_release: not held");
408 if (--semap->value > 0) {
409 semap->value = 0;
410 wakeup(semap);
412 semap->holder = NOHOLDER;
416 * Worklist queue management.
417 * These routines require that the lock be held.
419 #ifndef /* NOT */ DEBUG
420 #define WORKLIST_INSERT(head, item) do { \
421 (item)->wk_state |= ONWORKLIST; \
422 LIST_INSERT_HEAD(head, item, wk_list); \
423 } while (0)
425 #define WORKLIST_INSERT_BP(bp, item) do { \
426 (item)->wk_state |= ONWORKLIST; \
427 (bp)->b_ops = &softdep_bioops; \
428 LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list); \
429 } while (0)
431 #define WORKLIST_REMOVE(item) do { \
432 (item)->wk_state &= ~ONWORKLIST; \
433 LIST_REMOVE(item, wk_list); \
434 } while (0)
436 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
438 #else /* DEBUG */
439 static void worklist_insert(struct workhead *, struct worklist *);
440 static void worklist_remove(struct worklist *);
441 static void workitem_free(struct worklist *, int);
443 #define WORKLIST_INSERT_BP(bp, item) do { \
444 (bp)->b_ops = &softdep_bioops; \
445 worklist_insert(&(bp)->b_dep, item); \
446 } while (0)
448 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
449 #define WORKLIST_REMOVE(item) worklist_remove(item)
450 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
452 static void
453 worklist_insert(struct workhead *head, struct worklist *item)
456 if (lk.lkt_held == NOHOLDER)
457 panic("worklist_insert: lock not held");
458 if (item->wk_state & ONWORKLIST) {
459 FREE_LOCK(&lk);
460 panic("worklist_insert: already on list");
462 item->wk_state |= ONWORKLIST;
463 LIST_INSERT_HEAD(head, item, wk_list);
466 static void
467 worklist_remove(struct worklist *item)
470 if (lk.lkt_held == NOHOLDER)
471 panic("worklist_remove: lock not held");
472 if ((item->wk_state & ONWORKLIST) == 0) {
473 FREE_LOCK(&lk);
474 panic("worklist_remove: not on list");
476 item->wk_state &= ~ONWORKLIST;
477 LIST_REMOVE(item, wk_list);
480 static void
481 workitem_free(struct worklist *item, int type)
484 if (item->wk_state & ONWORKLIST) {
485 if (lk.lkt_held != NOHOLDER)
486 FREE_LOCK(&lk);
487 panic("workitem_free: still on list");
489 if (item->wk_type != type) {
490 if (lk.lkt_held != NOHOLDER)
491 FREE_LOCK(&lk);
492 panic("workitem_free: type mismatch");
494 FREE(item, DtoM(type));
496 #endif /* DEBUG */
499 * Workitem queue management
501 static struct workhead softdep_workitem_pending;
502 static int num_on_worklist; /* number of worklist items to be processed */
503 static int softdep_worklist_busy; /* 1 => trying to do unmount */
504 static int softdep_worklist_req; /* serialized waiters */
505 static int max_softdeps; /* maximum number of structs before slowdown */
506 static int tickdelay = 2; /* number of ticks to pause during slowdown */
507 static int *stat_countp; /* statistic to count in proc_waiting timeout */
508 static int proc_waiting; /* tracks whether we have a timeout posted */
509 static struct callout handle; /* handle on posted proc_waiting timeout */
510 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
511 static int req_clear_inodedeps; /* syncer process flush some inodedeps */
512 #define FLUSH_INODES 1
513 static int req_clear_remove; /* syncer process flush some freeblks */
514 #define FLUSH_REMOVE 2
516 * runtime statistics
518 static int stat_worklist_push; /* number of worklist cleanups */
519 static int stat_blk_limit_push; /* number of times block limit neared */
520 static int stat_ino_limit_push; /* number of times inode limit neared */
521 static int stat_blk_limit_hit; /* number of times block slowdown imposed */
522 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
523 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
524 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
525 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
526 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
527 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
528 #ifdef DEBUG
529 #include <vm/vm.h>
530 #include <sys/sysctl.h>
531 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
532 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
533 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
534 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
535 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
536 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
537 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
538 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
539 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
540 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
541 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
542 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
543 #endif /* DEBUG */
546 * Add an item to the end of the work queue.
547 * This routine requires that the lock be held.
548 * This is the only routine that adds items to the list.
549 * The following routine is the only one that removes items
550 * and does so in order from first to last.
552 static void
553 add_to_worklist(struct worklist *wk)
555 static struct worklist *worklist_tail;
557 if (wk->wk_state & ONWORKLIST) {
558 if (lk.lkt_held != NOHOLDER)
559 FREE_LOCK(&lk);
560 panic("add_to_worklist: already on list");
562 wk->wk_state |= ONWORKLIST;
563 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
564 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
565 else
566 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
567 worklist_tail = wk;
568 num_on_worklist += 1;
572 * Process that runs once per second to handle items in the background queue.
574 * Note that we ensure that everything is done in the order in which they
575 * appear in the queue. The code below depends on this property to ensure
576 * that blocks of a file are freed before the inode itself is freed. This
577 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
578 * until all the old ones have been purged from the dependency lists.
580 static int
581 softdep_process_worklist(struct mount *matchmnt)
583 thread_t td = curthread;
584 int matchcnt, loopcount;
585 long starttime;
588 * Record the process identifier of our caller so that we can give
589 * this process preferential treatment in request_cleanup below.
591 filesys_syncer = td;
592 matchcnt = 0;
595 * There is no danger of having multiple processes run this
596 * code, but we have to single-thread it when softdep_flushfiles()
597 * is in operation to get an accurate count of the number of items
598 * related to its mount point that are in the list.
600 if (matchmnt == NULL) {
601 if (softdep_worklist_busy < 0)
602 return(-1);
603 softdep_worklist_busy += 1;
607 * If requested, try removing inode or removal dependencies.
609 if (req_clear_inodedeps) {
610 clear_inodedeps(td);
611 req_clear_inodedeps -= 1;
612 wakeup_one(&proc_waiting);
614 if (req_clear_remove) {
615 clear_remove(td);
616 req_clear_remove -= 1;
617 wakeup_one(&proc_waiting);
619 loopcount = 1;
620 starttime = time_second;
621 while (num_on_worklist > 0) {
622 matchcnt += process_worklist_item(matchmnt, 0);
625 * If a umount operation wants to run the worklist
626 * accurately, abort.
628 if (softdep_worklist_req && matchmnt == NULL) {
629 matchcnt = -1;
630 break;
634 * If requested, try removing inode or removal dependencies.
636 if (req_clear_inodedeps) {
637 clear_inodedeps(td);
638 req_clear_inodedeps -= 1;
639 wakeup_one(&proc_waiting);
641 if (req_clear_remove) {
642 clear_remove(td);
643 req_clear_remove -= 1;
644 wakeup_one(&proc_waiting);
647 * We do not generally want to stop for buffer space, but if
648 * we are really being a buffer hog, we will stop and wait.
650 if (loopcount++ % 128 == 0)
651 bwillinode(1);
653 * Never allow processing to run for more than one
654 * second. Otherwise the other syncer tasks may get
655 * excessively backlogged.
657 if (starttime != time_second && matchmnt == NULL) {
658 matchcnt = -1;
659 break;
662 if (matchmnt == NULL) {
663 --softdep_worklist_busy;
664 if (softdep_worklist_req && softdep_worklist_busy == 0)
665 wakeup(&softdep_worklist_req);
667 return (matchcnt);
671 * Process one item on the worklist.
673 static int
674 process_worklist_item(struct mount *matchmnt, int flags)
676 struct worklist *wk;
677 struct dirrem *dirrem;
678 struct fs *matchfs;
679 struct vnode *vp;
680 int matchcnt = 0;
682 matchfs = NULL;
683 if (matchmnt != NULL)
684 matchfs = VFSTOUFS(matchmnt)->um_fs;
685 ACQUIRE_LOCK(&lk);
687 * Normally we just process each item on the worklist in order.
688 * However, if we are in a situation where we cannot lock any
689 * inodes, we have to skip over any dirrem requests whose
690 * vnodes are resident and locked.
692 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
693 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
694 break;
695 dirrem = WK_DIRREM(wk);
696 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
697 dirrem->dm_oldinum);
698 if (vp == NULL || !vn_islocked(vp))
699 break;
701 if (wk == 0) {
702 FREE_LOCK(&lk);
703 return (0);
705 WORKLIST_REMOVE(wk);
706 num_on_worklist -= 1;
707 FREE_LOCK(&lk);
708 switch (wk->wk_type) {
710 case D_DIRREM:
711 /* removal of a directory entry */
712 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
713 matchcnt += 1;
714 handle_workitem_remove(WK_DIRREM(wk));
715 break;
717 case D_FREEBLKS:
718 /* releasing blocks and/or fragments from a file */
719 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
720 matchcnt += 1;
721 handle_workitem_freeblocks(WK_FREEBLKS(wk));
722 break;
724 case D_FREEFRAG:
725 /* releasing a fragment when replaced as a file grows */
726 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
727 matchcnt += 1;
728 handle_workitem_freefrag(WK_FREEFRAG(wk));
729 break;
731 case D_FREEFILE:
732 /* releasing an inode when its link count drops to 0 */
733 if (WK_FREEFILE(wk)->fx_fs == matchfs)
734 matchcnt += 1;
735 handle_workitem_freefile(WK_FREEFILE(wk));
736 break;
738 default:
739 panic("%s_process_worklist: Unknown type %s",
740 "softdep", TYPENAME(wk->wk_type));
741 /* NOTREACHED */
743 return (matchcnt);
747 * Move dependencies from one buffer to another.
749 static void
750 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
752 struct worklist *wk, *wktail;
754 if (LIST_FIRST(&newbp->b_dep) != NULL)
755 panic("softdep_move_dependencies: need merge code");
756 wktail = NULL;
757 ACQUIRE_LOCK(&lk);
758 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
759 LIST_REMOVE(wk, wk_list);
760 if (wktail == NULL)
761 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
762 else
763 LIST_INSERT_AFTER(wktail, wk, wk_list);
764 wktail = wk;
765 newbp->b_ops = &softdep_bioops;
767 FREE_LOCK(&lk);
771 * Purge the work list of all items associated with a particular mount point.
774 softdep_flushfiles(struct mount *oldmnt, int flags)
776 struct vnode *devvp;
777 int error, loopcnt;
780 * Await our turn to clear out the queue, then serialize access.
782 while (softdep_worklist_busy != 0) {
783 softdep_worklist_req += 1;
784 tsleep(&softdep_worklist_req, 0, "softflush", 0);
785 softdep_worklist_req -= 1;
787 softdep_worklist_busy = -1;
789 if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
790 softdep_worklist_busy = 0;
791 if (softdep_worklist_req)
792 wakeup(&softdep_worklist_req);
793 return (error);
796 * Alternately flush the block device associated with the mount
797 * point and process any dependencies that the flushing
798 * creates. In theory, this loop can happen at most twice,
799 * but we give it a few extra just to be sure.
801 devvp = VFSTOUFS(oldmnt)->um_devvp;
802 for (loopcnt = 10; loopcnt > 0; ) {
803 if (softdep_process_worklist(oldmnt) == 0) {
804 loopcnt--;
806 * Do another flush in case any vnodes were brought in
807 * as part of the cleanup operations.
809 if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
810 break;
812 * If we still found nothing to do, we are really done.
814 if (softdep_process_worklist(oldmnt) == 0)
815 break;
817 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
818 error = VOP_FSYNC(devvp, MNT_WAIT);
819 vn_unlock(devvp);
820 if (error)
821 break;
823 softdep_worklist_busy = 0;
824 if (softdep_worklist_req)
825 wakeup(&softdep_worklist_req);
828 * If we are unmounting then it is an error to fail. If we
829 * are simply trying to downgrade to read-only, then filesystem
830 * activity can keep us busy forever, so we just fail with EBUSY.
832 if (loopcnt == 0) {
833 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
834 panic("softdep_flushfiles: looping");
835 error = EBUSY;
837 return (error);
841 * Structure hashing.
843 * There are three types of structures that can be looked up:
844 * 1) pagedep structures identified by mount point, inode number,
845 * and logical block.
846 * 2) inodedep structures identified by mount point and inode number.
847 * 3) newblk structures identified by mount point and
848 * physical block number.
850 * The "pagedep" and "inodedep" dependency structures are hashed
851 * separately from the file blocks and inodes to which they correspond.
852 * This separation helps when the in-memory copy of an inode or
853 * file block must be replaced. It also obviates the need to access
854 * an inode or file page when simply updating (or de-allocating)
855 * dependency structures. Lookup of newblk structures is needed to
856 * find newly allocated blocks when trying to associate them with
857 * their allocdirect or allocindir structure.
859 * The lookup routines optionally create and hash a new instance when
860 * an existing entry is not found.
862 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */
863 #define NODELAY 0x0002 /* cannot do background work */
866 * Structures and routines associated with pagedep caching.
868 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
869 u_long pagedep_hash; /* size of hash table - 1 */
870 #define PAGEDEP_HASH(mp, inum, lbn) \
871 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
872 pagedep_hash])
873 static struct sema pagedep_in_progress;
876 * Helper routine for pagedep_lookup()
878 static __inline
879 struct pagedep *
880 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
881 struct mount *mp)
883 struct pagedep *pagedep;
885 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
886 if (ino == pagedep->pd_ino &&
887 lbn == pagedep->pd_lbn &&
888 mp == pagedep->pd_mnt) {
889 return (pagedep);
892 return(NULL);
896 * Look up a pagedep. Return 1 if found, 0 if not found.
897 * If not found, allocate if DEPALLOC flag is passed.
898 * Found or allocated entry is returned in pagedeppp.
899 * This routine must be called with splbio interrupts blocked.
901 static int
902 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
903 struct pagedep **pagedeppp)
905 struct pagedep *pagedep;
906 struct pagedep_hashhead *pagedephd;
907 struct mount *mp;
908 int i;
910 #ifdef DEBUG
911 if (lk.lkt_held == NOHOLDER)
912 panic("pagedep_lookup: lock not held");
913 #endif
914 mp = ITOV(ip)->v_mount;
915 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
916 top:
917 *pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
918 if (*pagedeppp)
919 return(1);
920 if ((flags & DEPALLOC) == 0)
921 return (0);
922 if (sema_get(&pagedep_in_progress, &lk) == 0) {
923 ACQUIRE_LOCK(&lk);
924 goto top;
926 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
927 M_SOFTDEP_FLAGS | M_ZERO);
929 if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
930 kprintf("pagedep_lookup: blocking race avoided\n");
931 ACQUIRE_LOCK(&lk);
932 sema_release(&pagedep_in_progress);
933 kfree(pagedep, M_PAGEDEP);
934 goto top;
937 pagedep->pd_list.wk_type = D_PAGEDEP;
938 pagedep->pd_mnt = mp;
939 pagedep->pd_ino = ip->i_number;
940 pagedep->pd_lbn = lbn;
941 LIST_INIT(&pagedep->pd_dirremhd);
942 LIST_INIT(&pagedep->pd_pendinghd);
943 for (i = 0; i < DAHASHSZ; i++)
944 LIST_INIT(&pagedep->pd_diraddhd[i]);
945 ACQUIRE_LOCK(&lk);
946 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
947 sema_release(&pagedep_in_progress);
948 *pagedeppp = pagedep;
949 return (0);
953 * Structures and routines associated with inodedep caching.
955 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
956 static u_long inodedep_hash; /* size of hash table - 1 */
957 static long num_inodedep; /* number of inodedep allocated */
958 #define INODEDEP_HASH(fs, inum) \
959 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
960 static struct sema inodedep_in_progress;
963 * Helper routine for inodedep_lookup()
965 static __inline
966 struct inodedep *
967 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
969 struct inodedep *inodedep;
971 LIST_FOREACH(inodedep, inodedephd, id_hash) {
972 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
973 return(inodedep);
975 return (NULL);
979 * Look up a inodedep. Return 1 if found, 0 if not found.
980 * If not found, allocate if DEPALLOC flag is passed.
981 * Found or allocated entry is returned in inodedeppp.
982 * This routine must be called with splbio interrupts blocked.
984 static int
985 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
986 struct inodedep **inodedeppp)
988 struct inodedep *inodedep;
989 struct inodedep_hashhead *inodedephd;
990 int firsttry;
992 #ifdef DEBUG
993 if (lk.lkt_held == NOHOLDER)
994 panic("inodedep_lookup: lock not held");
995 #endif
996 firsttry = 1;
997 inodedephd = INODEDEP_HASH(fs, inum);
998 top:
999 *inodedeppp = inodedep_find(inodedephd, fs, inum);
1000 if (*inodedeppp)
1001 return (1);
1002 if ((flags & DEPALLOC) == 0)
1003 return (0);
1005 * If we are over our limit, try to improve the situation.
1007 if (num_inodedep > max_softdeps && firsttry &&
1008 speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1009 request_cleanup(FLUSH_INODES, 1)) {
1010 firsttry = 0;
1011 goto top;
1013 if (sema_get(&inodedep_in_progress, &lk) == 0) {
1014 ACQUIRE_LOCK(&lk);
1015 goto top;
1017 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1018 M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1019 if (inodedep_find(inodedephd, fs, inum)) {
1020 kprintf("inodedep_lookup: blocking race avoided\n");
1021 ACQUIRE_LOCK(&lk);
1022 sema_release(&inodedep_in_progress);
1023 kfree(inodedep, M_INODEDEP);
1024 goto top;
1026 inodedep->id_list.wk_type = D_INODEDEP;
1027 inodedep->id_fs = fs;
1028 inodedep->id_ino = inum;
1029 inodedep->id_state = ALLCOMPLETE;
1030 inodedep->id_nlinkdelta = 0;
1031 inodedep->id_savedino = NULL;
1032 inodedep->id_savedsize = -1;
1033 inodedep->id_buf = NULL;
1034 LIST_INIT(&inodedep->id_pendinghd);
1035 LIST_INIT(&inodedep->id_inowait);
1036 LIST_INIT(&inodedep->id_bufwait);
1037 TAILQ_INIT(&inodedep->id_inoupdt);
1038 TAILQ_INIT(&inodedep->id_newinoupdt);
1039 ACQUIRE_LOCK(&lk);
1040 num_inodedep += 1;
1041 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1042 sema_release(&inodedep_in_progress);
1043 *inodedeppp = inodedep;
1044 return (0);
1048 * Structures and routines associated with newblk caching.
1050 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1051 u_long newblk_hash; /* size of hash table - 1 */
1052 #define NEWBLK_HASH(fs, inum) \
1053 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1054 static struct sema newblk_in_progress;
1057 * Helper routine for newblk_lookup()
1059 static __inline
1060 struct newblk *
1061 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1062 ufs_daddr_t newblkno)
1064 struct newblk *newblk;
1066 LIST_FOREACH(newblk, newblkhd, nb_hash) {
1067 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1068 return (newblk);
1070 return(NULL);
1074 * Look up a newblk. Return 1 if found, 0 if not found.
1075 * If not found, allocate if DEPALLOC flag is passed.
1076 * Found or allocated entry is returned in newblkpp.
1078 static int
1079 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1080 struct newblk **newblkpp)
1082 struct newblk *newblk;
1083 struct newblk_hashhead *newblkhd;
1085 newblkhd = NEWBLK_HASH(fs, newblkno);
1086 top:
1087 *newblkpp = newblk_find(newblkhd, fs, newblkno);
1088 if (*newblkpp)
1089 return(1);
1090 if ((flags & DEPALLOC) == 0)
1091 return (0);
1092 if (sema_get(&newblk_in_progress, 0) == 0)
1093 goto top;
1094 MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1095 M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1097 if (newblk_find(newblkhd, fs, newblkno)) {
1098 kprintf("newblk_lookup: blocking race avoided\n");
1099 sema_release(&pagedep_in_progress);
1100 kfree(newblk, M_NEWBLK);
1101 goto top;
1103 newblk->nb_state = 0;
1104 newblk->nb_fs = fs;
1105 newblk->nb_newblkno = newblkno;
1106 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1107 sema_release(&newblk_in_progress);
1108 *newblkpp = newblk;
1109 return (0);
1113 * Executed during filesystem system initialization before
1114 * mounting any filesystems.
1116 void
1117 softdep_initialize(void)
1119 callout_init(&handle);
1121 LIST_INIT(&mkdirlisthd);
1122 LIST_INIT(&softdep_workitem_pending);
1123 max_softdeps = min(desiredvnodes * 8,
1124 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1125 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1126 &pagedep_hash);
1127 sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1128 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1129 sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1130 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1131 sema_init(&newblk_in_progress, "newblk", 0, 0);
1132 add_bio_ops(&softdep_bioops);
1136 * Called at mount time to notify the dependency code that a
1137 * filesystem wishes to use it.
1140 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1142 struct csum cstotal;
1143 struct cg *cgp;
1144 struct buf *bp;
1145 int error, cyl;
1147 mp->mnt_flag &= ~MNT_ASYNC;
1148 mp->mnt_flag |= MNT_SOFTDEP;
1149 mp->mnt_bioops = &softdep_bioops;
1151 * When doing soft updates, the counters in the
1152 * superblock may have gotten out of sync, so we have
1153 * to scan the cylinder groups and recalculate them.
1155 if (fs->fs_clean != 0)
1156 return (0);
1157 bzero(&cstotal, sizeof cstotal);
1158 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1159 if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1160 fs->fs_cgsize, &bp)) != 0) {
1161 brelse(bp);
1162 return (error);
1164 cgp = (struct cg *)bp->b_data;
1165 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1166 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1167 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1168 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1169 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1170 brelse(bp);
1172 #ifdef DEBUG
1173 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1174 kprintf("ffs_mountfs: superblock updated for soft updates\n");
1175 #endif
1176 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1177 return (0);
1181 * Protecting the freemaps (or bitmaps).
1183 * To eliminate the need to execute fsck before mounting a filesystem
1184 * after a power failure, one must (conservatively) guarantee that the
1185 * on-disk copy of the bitmaps never indicate that a live inode or block is
1186 * free. So, when a block or inode is allocated, the bitmap should be
1187 * updated (on disk) before any new pointers. When a block or inode is
1188 * freed, the bitmap should not be updated until all pointers have been
1189 * reset. The latter dependency is handled by the delayed de-allocation
1190 * approach described below for block and inode de-allocation. The former
1191 * dependency is handled by calling the following procedure when a block or
1192 * inode is allocated. When an inode is allocated an "inodedep" is created
1193 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1194 * Each "inodedep" is also inserted into the hash indexing structure so
1195 * that any additional link additions can be made dependent on the inode
1196 * allocation.
1198 * The ufs filesystem maintains a number of free block counts (e.g., per
1199 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1200 * in addition to the bitmaps. These counts are used to improve efficiency
1201 * during allocation and therefore must be consistent with the bitmaps.
1202 * There is no convenient way to guarantee post-crash consistency of these
1203 * counts with simple update ordering, for two main reasons: (1) The counts
1204 * and bitmaps for a single cylinder group block are not in the same disk
1205 * sector. If a disk write is interrupted (e.g., by power failure), one may
1206 * be written and the other not. (2) Some of the counts are located in the
1207 * superblock rather than the cylinder group block. So, we focus our soft
1208 * updates implementation on protecting the bitmaps. When mounting a
1209 * filesystem, we recompute the auxiliary counts from the bitmaps.
1213 * Called just after updating the cylinder group block to allocate an inode.
1215 * Parameters:
1216 * bp: buffer for cylgroup block with inode map
1217 * ip: inode related to allocation
1218 * newinum: new inode number being allocated
1220 void
1221 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1223 struct inodedep *inodedep;
1224 struct bmsafemap *bmsafemap;
1227 * Create a dependency for the newly allocated inode.
1228 * Panic if it already exists as something is seriously wrong.
1229 * Otherwise add it to the dependency list for the buffer holding
1230 * the cylinder group map from which it was allocated.
1232 ACQUIRE_LOCK(&lk);
1233 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1234 FREE_LOCK(&lk);
1235 panic("softdep_setup_inomapdep: found inode");
1237 inodedep->id_buf = bp;
1238 inodedep->id_state &= ~DEPCOMPLETE;
1239 bmsafemap = bmsafemap_lookup(bp);
1240 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1241 FREE_LOCK(&lk);
1245 * Called just after updating the cylinder group block to
1246 * allocate block or fragment.
1248 * Parameters:
1249 * bp: buffer for cylgroup block with block map
1250 * fs: filesystem doing allocation
1251 * newblkno: number of newly allocated block
1253 void
1254 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1255 ufs_daddr_t newblkno)
1257 struct newblk *newblk;
1258 struct bmsafemap *bmsafemap;
1261 * Create a dependency for the newly allocated block.
1262 * Add it to the dependency list for the buffer holding
1263 * the cylinder group map from which it was allocated.
1265 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1266 panic("softdep_setup_blkmapdep: found block");
1267 ACQUIRE_LOCK(&lk);
1268 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1269 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1270 FREE_LOCK(&lk);
1274 * Find the bmsafemap associated with a cylinder group buffer.
1275 * If none exists, create one. The buffer must be locked when
1276 * this routine is called and this routine must be called with
1277 * splbio interrupts blocked.
1279 static struct bmsafemap *
1280 bmsafemap_lookup(struct buf *bp)
1282 struct bmsafemap *bmsafemap;
1283 struct worklist *wk;
1285 #ifdef DEBUG
1286 if (lk.lkt_held == NOHOLDER)
1287 panic("bmsafemap_lookup: lock not held");
1288 #endif
1289 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1290 if (wk->wk_type == D_BMSAFEMAP)
1291 return (WK_BMSAFEMAP(wk));
1293 FREE_LOCK(&lk);
1294 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1295 M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1296 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1297 bmsafemap->sm_list.wk_state = 0;
1298 bmsafemap->sm_buf = bp;
1299 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1300 LIST_INIT(&bmsafemap->sm_allocindirhd);
1301 LIST_INIT(&bmsafemap->sm_inodedephd);
1302 LIST_INIT(&bmsafemap->sm_newblkhd);
1303 ACQUIRE_LOCK(&lk);
1304 WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1305 return (bmsafemap);
1309 * Direct block allocation dependencies.
1311 * When a new block is allocated, the corresponding disk locations must be
1312 * initialized (with zeros or new data) before the on-disk inode points to
1313 * them. Also, the freemap from which the block was allocated must be
1314 * updated (on disk) before the inode's pointer. These two dependencies are
1315 * independent of each other and are needed for all file blocks and indirect
1316 * blocks that are pointed to directly by the inode. Just before the
1317 * "in-core" version of the inode is updated with a newly allocated block
1318 * number, a procedure (below) is called to setup allocation dependency
1319 * structures. These structures are removed when the corresponding
1320 * dependencies are satisfied or when the block allocation becomes obsolete
1321 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1322 * fragment that gets upgraded). All of these cases are handled in
1323 * procedures described later.
1325 * When a file extension causes a fragment to be upgraded, either to a larger
1326 * fragment or to a full block, the on-disk location may change (if the
1327 * previous fragment could not simply be extended). In this case, the old
1328 * fragment must be de-allocated, but not until after the inode's pointer has
1329 * been updated. In most cases, this is handled by later procedures, which
1330 * will construct a "freefrag" structure to be added to the workitem queue
1331 * when the inode update is complete (or obsolete). The main exception to
1332 * this is when an allocation occurs while a pending allocation dependency
1333 * (for the same block pointer) remains. This case is handled in the main
1334 * allocation dependency setup procedure by immediately freeing the
1335 * unreferenced fragments.
1337 * Parameters:
1338 * ip: inode to which block is being added
1339 * lbn: block pointer within inode
1340 * newblkno: disk block number being added
1341 * oldblkno: previous block number, 0 unless frag
1342 * newsize: size of new block
1343 * oldsize: size of new block
1344 * bp: bp for allocated block
1346 void
1347 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1348 ufs_daddr_t oldblkno, long newsize, long oldsize,
1349 struct buf *bp)
1351 struct allocdirect *adp, *oldadp;
1352 struct allocdirectlst *adphead;
1353 struct bmsafemap *bmsafemap;
1354 struct inodedep *inodedep;
1355 struct pagedep *pagedep;
1356 struct newblk *newblk;
1358 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1359 M_ALLOCDIRECT, M_SOFTDEP_FLAGS | M_ZERO);
1360 adp->ad_list.wk_type = D_ALLOCDIRECT;
1361 adp->ad_lbn = lbn;
1362 adp->ad_newblkno = newblkno;
1363 adp->ad_oldblkno = oldblkno;
1364 adp->ad_newsize = newsize;
1365 adp->ad_oldsize = oldsize;
1366 adp->ad_state = ATTACHED;
1367 if (newblkno == oldblkno)
1368 adp->ad_freefrag = NULL;
1369 else
1370 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1372 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1373 panic("softdep_setup_allocdirect: lost block");
1375 ACQUIRE_LOCK(&lk);
1376 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1377 adp->ad_inodedep = inodedep;
1379 if (newblk->nb_state == DEPCOMPLETE) {
1380 adp->ad_state |= DEPCOMPLETE;
1381 adp->ad_buf = NULL;
1382 } else {
1383 bmsafemap = newblk->nb_bmsafemap;
1384 adp->ad_buf = bmsafemap->sm_buf;
1385 LIST_REMOVE(newblk, nb_deps);
1386 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1388 LIST_REMOVE(newblk, nb_hash);
1389 FREE(newblk, M_NEWBLK);
1391 WORKLIST_INSERT_BP(bp, &adp->ad_list);
1392 if (lbn >= NDADDR) {
1393 /* allocating an indirect block */
1394 if (oldblkno != 0) {
1395 FREE_LOCK(&lk);
1396 panic("softdep_setup_allocdirect: non-zero indir");
1398 } else {
1400 * Allocating a direct block.
1402 * If we are allocating a directory block, then we must
1403 * allocate an associated pagedep to track additions and
1404 * deletions.
1406 if ((ip->i_mode & IFMT) == IFDIR &&
1407 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1408 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1412 * The list of allocdirects must be kept in sorted and ascending
1413 * order so that the rollback routines can quickly determine the
1414 * first uncommitted block (the size of the file stored on disk
1415 * ends at the end of the lowest committed fragment, or if there
1416 * are no fragments, at the end of the highest committed block).
1417 * Since files generally grow, the typical case is that the new
1418 * block is to be added at the end of the list. We speed this
1419 * special case by checking against the last allocdirect in the
1420 * list before laboriously traversing the list looking for the
1421 * insertion point.
1423 adphead = &inodedep->id_newinoupdt;
1424 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1425 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1426 /* insert at end of list */
1427 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1428 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1429 allocdirect_merge(adphead, adp, oldadp);
1430 FREE_LOCK(&lk);
1431 return;
1433 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1434 if (oldadp->ad_lbn >= lbn)
1435 break;
1437 if (oldadp == NULL) {
1438 FREE_LOCK(&lk);
1439 panic("softdep_setup_allocdirect: lost entry");
1441 /* insert in middle of list */
1442 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1443 if (oldadp->ad_lbn == lbn)
1444 allocdirect_merge(adphead, adp, oldadp);
1445 FREE_LOCK(&lk);
1449 * Replace an old allocdirect dependency with a newer one.
1450 * This routine must be called with splbio interrupts blocked.
1452 * Parameters:
1453 * adphead: head of list holding allocdirects
1454 * newadp: allocdirect being added
1455 * oldadp: existing allocdirect being checked
1457 static void
1458 allocdirect_merge(struct allocdirectlst *adphead,
1459 struct allocdirect *newadp,
1460 struct allocdirect *oldadp)
1462 struct freefrag *freefrag;
1464 #ifdef DEBUG
1465 if (lk.lkt_held == NOHOLDER)
1466 panic("allocdirect_merge: lock not held");
1467 #endif
1468 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1469 newadp->ad_oldsize != oldadp->ad_newsize ||
1470 newadp->ad_lbn >= NDADDR) {
1471 FREE_LOCK(&lk);
1472 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1473 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1474 NDADDR);
1476 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1477 newadp->ad_oldsize = oldadp->ad_oldsize;
1479 * If the old dependency had a fragment to free or had never
1480 * previously had a block allocated, then the new dependency
1481 * can immediately post its freefrag and adopt the old freefrag.
1482 * This action is done by swapping the freefrag dependencies.
1483 * The new dependency gains the old one's freefrag, and the
1484 * old one gets the new one and then immediately puts it on
1485 * the worklist when it is freed by free_allocdirect. It is
1486 * not possible to do this swap when the old dependency had a
1487 * non-zero size but no previous fragment to free. This condition
1488 * arises when the new block is an extension of the old block.
1489 * Here, the first part of the fragment allocated to the new
1490 * dependency is part of the block currently claimed on disk by
1491 * the old dependency, so cannot legitimately be freed until the
1492 * conditions for the new dependency are fulfilled.
1494 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1495 freefrag = newadp->ad_freefrag;
1496 newadp->ad_freefrag = oldadp->ad_freefrag;
1497 oldadp->ad_freefrag = freefrag;
1499 free_allocdirect(adphead, oldadp, 0);
1503 * Allocate a new freefrag structure if needed.
1505 static struct freefrag *
1506 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1508 struct freefrag *freefrag;
1509 struct fs *fs;
1511 if (blkno == 0)
1512 return (NULL);
1513 fs = ip->i_fs;
1514 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1515 panic("newfreefrag: frag size");
1516 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1517 M_FREEFRAG, M_SOFTDEP_FLAGS);
1518 freefrag->ff_list.wk_type = D_FREEFRAG;
1519 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1520 freefrag->ff_inum = ip->i_number;
1521 freefrag->ff_fs = fs;
1522 freefrag->ff_devvp = ip->i_devvp;
1523 freefrag->ff_blkno = blkno;
1524 freefrag->ff_fragsize = size;
1525 return (freefrag);
1529 * This workitem de-allocates fragments that were replaced during
1530 * file block allocation.
1532 static void
1533 handle_workitem_freefrag(struct freefrag *freefrag)
1535 struct inode tip;
1537 tip.i_fs = freefrag->ff_fs;
1538 tip.i_devvp = freefrag->ff_devvp;
1539 tip.i_dev = freefrag->ff_devvp->v_rdev;
1540 tip.i_number = freefrag->ff_inum;
1541 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1542 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1543 FREE(freefrag, M_FREEFRAG);
1547 * Indirect block allocation dependencies.
1549 * The same dependencies that exist for a direct block also exist when
1550 * a new block is allocated and pointed to by an entry in a block of
1551 * indirect pointers. The undo/redo states described above are also
1552 * used here. Because an indirect block contains many pointers that
1553 * may have dependencies, a second copy of the entire in-memory indirect
1554 * block is kept. The buffer cache copy is always completely up-to-date.
1555 * The second copy, which is used only as a source for disk writes,
1556 * contains only the safe pointers (i.e., those that have no remaining
1557 * update dependencies). The second copy is freed when all pointers
1558 * are safe. The cache is not allowed to replace indirect blocks with
1559 * pending update dependencies. If a buffer containing an indirect
1560 * block with dependencies is written, these routines will mark it
1561 * dirty again. It can only be successfully written once all the
1562 * dependencies are removed. The ffs_fsync routine in conjunction with
1563 * softdep_sync_metadata work together to get all the dependencies
1564 * removed so that a file can be successfully written to disk. Three
1565 * procedures are used when setting up indirect block pointer
1566 * dependencies. The division is necessary because of the organization
1567 * of the "balloc" routine and because of the distinction between file
1568 * pages and file metadata blocks.
1572 * Allocate a new allocindir structure.
1574 * Parameters:
1575 * ip: inode for file being extended
1576 * ptrno: offset of pointer in indirect block
1577 * newblkno: disk block number being added
1578 * oldblkno: previous block number, 0 if none
1580 static struct allocindir *
1581 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1582 ufs_daddr_t oldblkno)
1584 struct allocindir *aip;
1586 MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1587 M_ALLOCINDIR, M_SOFTDEP_FLAGS | M_ZERO);
1588 aip->ai_list.wk_type = D_ALLOCINDIR;
1589 aip->ai_state = ATTACHED;
1590 aip->ai_offset = ptrno;
1591 aip->ai_newblkno = newblkno;
1592 aip->ai_oldblkno = oldblkno;
1593 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1594 return (aip);
1598 * Called just before setting an indirect block pointer
1599 * to a newly allocated file page.
1601 * Parameters:
1602 * ip: inode for file being extended
1603 * lbn: allocated block number within file
1604 * bp: buffer with indirect blk referencing page
1605 * ptrno: offset of pointer in indirect block
1606 * newblkno: disk block number being added
1607 * oldblkno: previous block number, 0 if none
1608 * nbp: buffer holding allocated page
1610 void
1611 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1612 struct buf *bp, int ptrno,
1613 ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1614 struct buf *nbp)
1616 struct allocindir *aip;
1617 struct pagedep *pagedep;
1619 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1620 ACQUIRE_LOCK(&lk);
1622 * If we are allocating a directory page, then we must
1623 * allocate an associated pagedep to track additions and
1624 * deletions.
1626 if ((ip->i_mode & IFMT) == IFDIR &&
1627 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1628 WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1629 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1630 FREE_LOCK(&lk);
1631 setup_allocindir_phase2(bp, ip, aip);
1635 * Called just before setting an indirect block pointer to a
1636 * newly allocated indirect block.
1637 * Parameters:
1638 * nbp: newly allocated indirect block
1639 * ip: inode for file being extended
1640 * bp: indirect block referencing allocated block
1641 * ptrno: offset of pointer in indirect block
1642 * newblkno: disk block number being added
1644 void
1645 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1646 struct buf *bp, int ptrno,
1647 ufs_daddr_t newblkno)
1649 struct allocindir *aip;
1651 aip = newallocindir(ip, ptrno, newblkno, 0);
1652 ACQUIRE_LOCK(&lk);
1653 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1654 FREE_LOCK(&lk);
1655 setup_allocindir_phase2(bp, ip, aip);
1659 * Called to finish the allocation of the "aip" allocated
1660 * by one of the two routines above.
1662 * Parameters:
1663 * bp: in-memory copy of the indirect block
1664 * ip: inode for file being extended
1665 * aip: allocindir allocated by the above routines
1667 static void
1668 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1669 struct allocindir *aip)
1671 struct worklist *wk;
1672 struct indirdep *indirdep, *newindirdep;
1673 struct bmsafemap *bmsafemap;
1674 struct allocindir *oldaip;
1675 struct freefrag *freefrag;
1676 struct newblk *newblk;
1678 if (bp->b_loffset >= 0)
1679 panic("setup_allocindir_phase2: not indir blk");
1680 for (indirdep = NULL, newindirdep = NULL; ; ) {
1681 ACQUIRE_LOCK(&lk);
1682 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1683 if (wk->wk_type != D_INDIRDEP)
1684 continue;
1685 indirdep = WK_INDIRDEP(wk);
1686 break;
1688 if (indirdep == NULL && newindirdep) {
1689 indirdep = newindirdep;
1690 WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1691 newindirdep = NULL;
1693 FREE_LOCK(&lk);
1694 if (indirdep) {
1695 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1696 &newblk) == 0)
1697 panic("setup_allocindir: lost block");
1698 ACQUIRE_LOCK(&lk);
1699 if (newblk->nb_state == DEPCOMPLETE) {
1700 aip->ai_state |= DEPCOMPLETE;
1701 aip->ai_buf = NULL;
1702 } else {
1703 bmsafemap = newblk->nb_bmsafemap;
1704 aip->ai_buf = bmsafemap->sm_buf;
1705 LIST_REMOVE(newblk, nb_deps);
1706 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1707 aip, ai_deps);
1709 LIST_REMOVE(newblk, nb_hash);
1710 FREE(newblk, M_NEWBLK);
1711 aip->ai_indirdep = indirdep;
1713 * Check to see if there is an existing dependency
1714 * for this block. If there is, merge the old
1715 * dependency into the new one.
1717 if (aip->ai_oldblkno == 0)
1718 oldaip = NULL;
1719 else
1721 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1722 if (oldaip->ai_offset == aip->ai_offset)
1723 break;
1724 if (oldaip != NULL) {
1725 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1726 FREE_LOCK(&lk);
1727 panic("setup_allocindir_phase2: blkno");
1729 aip->ai_oldblkno = oldaip->ai_oldblkno;
1730 freefrag = oldaip->ai_freefrag;
1731 oldaip->ai_freefrag = aip->ai_freefrag;
1732 aip->ai_freefrag = freefrag;
1733 free_allocindir(oldaip, NULL);
1735 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1736 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1737 [aip->ai_offset] = aip->ai_oldblkno;
1738 FREE_LOCK(&lk);
1740 if (newindirdep) {
1742 * Avoid any possibility of data corruption by
1743 * ensuring that our old version is thrown away.
1745 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1746 brelse(newindirdep->ir_savebp);
1747 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1749 if (indirdep)
1750 break;
1751 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1752 M_INDIRDEP, M_SOFTDEP_FLAGS);
1753 newindirdep->ir_list.wk_type = D_INDIRDEP;
1754 newindirdep->ir_state = ATTACHED;
1755 LIST_INIT(&newindirdep->ir_deplisthd);
1756 LIST_INIT(&newindirdep->ir_donehd);
1757 if (bp->b_bio2.bio_offset == NOOFFSET) {
1758 VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1759 &bp->b_bio2.bio_offset, NULL, NULL,
1760 BUF_CMD_WRITE);
1762 KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1763 newindirdep->ir_savebp = getblk(ip->i_devvp,
1764 bp->b_bio2.bio_offset,
1765 bp->b_bcount, 0, 0);
1766 BUF_KERNPROC(newindirdep->ir_savebp);
1767 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1772 * Block de-allocation dependencies.
1774 * When blocks are de-allocated, the on-disk pointers must be nullified before
1775 * the blocks are made available for use by other files. (The true
1776 * requirement is that old pointers must be nullified before new on-disk
1777 * pointers are set. We chose this slightly more stringent requirement to
1778 * reduce complexity.) Our implementation handles this dependency by updating
1779 * the inode (or indirect block) appropriately but delaying the actual block
1780 * de-allocation (i.e., freemap and free space count manipulation) until
1781 * after the updated versions reach stable storage. After the disk is
1782 * updated, the blocks can be safely de-allocated whenever it is convenient.
1783 * This implementation handles only the common case of reducing a file's
1784 * length to zero. Other cases are handled by the conventional synchronous
1785 * write approach.
1787 * The ffs implementation with which we worked double-checks
1788 * the state of the block pointers and file size as it reduces
1789 * a file's length. Some of this code is replicated here in our
1790 * soft updates implementation. The freeblks->fb_chkcnt field is
1791 * used to transfer a part of this information to the procedure
1792 * that eventually de-allocates the blocks.
1794 * This routine should be called from the routine that shortens
1795 * a file's length, before the inode's size or block pointers
1796 * are modified. It will save the block pointer information for
1797 * later release and zero the inode so that the calling routine
1798 * can release it.
1800 struct softdep_setup_freeblocks_info {
1801 struct fs *fs;
1802 struct inode *ip;
1805 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1808 * Parameters:
1809 * ip: The inode whose length is to be reduced
1810 * length: The new length for the file
1812 void
1813 softdep_setup_freeblocks(struct inode *ip, off_t length)
1815 struct softdep_setup_freeblocks_info info;
1816 struct freeblks *freeblks;
1817 struct inodedep *inodedep;
1818 struct allocdirect *adp;
1819 struct vnode *vp;
1820 struct buf *bp;
1821 struct fs *fs;
1822 int i, error, delay;
1823 int count;
1825 fs = ip->i_fs;
1826 if (length != 0)
1827 panic("softde_setup_freeblocks: non-zero length");
1828 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1829 M_FREEBLKS, M_SOFTDEP_FLAGS | M_ZERO);
1830 freeblks->fb_list.wk_type = D_FREEBLKS;
1831 freeblks->fb_state = ATTACHED;
1832 freeblks->fb_uid = ip->i_uid;
1833 freeblks->fb_previousinum = ip->i_number;
1834 freeblks->fb_devvp = ip->i_devvp;
1835 freeblks->fb_fs = fs;
1836 freeblks->fb_oldsize = ip->i_size;
1837 freeblks->fb_newsize = length;
1838 freeblks->fb_chkcnt = ip->i_blocks;
1839 for (i = 0; i < NDADDR; i++) {
1840 freeblks->fb_dblks[i] = ip->i_db[i];
1841 ip->i_db[i] = 0;
1843 for (i = 0; i < NIADDR; i++) {
1844 freeblks->fb_iblks[i] = ip->i_ib[i];
1845 ip->i_ib[i] = 0;
1847 ip->i_blocks = 0;
1848 ip->i_size = 0;
1850 * Push the zero'ed inode to to its disk buffer so that we are free
1851 * to delete its dependencies below. Once the dependencies are gone
1852 * the buffer can be safely released.
1854 if ((error = bread(ip->i_devvp,
1855 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1856 (int)fs->fs_bsize, &bp)) != 0)
1857 softdep_error("softdep_setup_freeblocks", error);
1858 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1859 ip->i_din;
1861 * Find and eliminate any inode dependencies.
1863 ACQUIRE_LOCK(&lk);
1864 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1865 if ((inodedep->id_state & IOSTARTED) != 0) {
1866 FREE_LOCK(&lk);
1867 panic("softdep_setup_freeblocks: inode busy");
1870 * Add the freeblks structure to the list of operations that
1871 * must await the zero'ed inode being written to disk. If we
1872 * still have a bitmap dependency (delay == 0), then the inode
1873 * has never been written to disk, so we can process the
1874 * freeblks below once we have deleted the dependencies.
1876 delay = (inodedep->id_state & DEPCOMPLETE);
1877 if (delay)
1878 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1880 * Because the file length has been truncated to zero, any
1881 * pending block allocation dependency structures associated
1882 * with this inode are obsolete and can simply be de-allocated.
1883 * We must first merge the two dependency lists to get rid of
1884 * any duplicate freefrag structures, then purge the merged list.
1886 merge_inode_lists(inodedep);
1887 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1888 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1889 FREE_LOCK(&lk);
1890 bdwrite(bp);
1892 * We must wait for any I/O in progress to finish so that
1893 * all potential buffers on the dirty list will be visible.
1894 * Once they are all there, walk the list and get rid of
1895 * any dependencies.
1897 vp = ITOV(ip);
1898 ACQUIRE_LOCK(&lk);
1899 drain_output(vp, 1);
1901 info.fs = fs;
1902 info.ip = ip;
1903 do {
1904 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1905 softdep_setup_freeblocks_bp, &info);
1906 } while (count != 0);
1907 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1908 (void)free_inodedep(inodedep);
1910 if (delay) {
1911 freeblks->fb_state |= DEPCOMPLETE;
1913 * If the inode with zeroed block pointers is now on disk
1914 * we can start freeing blocks. Add freeblks to the worklist
1915 * instead of calling handle_workitem_freeblocks directly as
1916 * it is more likely that additional IO is needed to complete
1917 * the request here than in the !delay case.
1919 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1920 add_to_worklist(&freeblks->fb_list);
1923 FREE_LOCK(&lk);
1925 * If the inode has never been written to disk (delay == 0),
1926 * then we can process the freeblks now that we have deleted
1927 * the dependencies.
1929 if (!delay)
1930 handle_workitem_freeblocks(freeblks);
1933 static int
1934 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1936 struct softdep_setup_freeblocks_info *info = data;
1937 struct inodedep *inodedep;
1939 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1940 kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1941 return(-1);
1943 if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1944 kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1945 BUF_UNLOCK(bp);
1946 return(-1);
1948 (void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1949 deallocate_dependencies(bp, inodedep);
1950 bp->b_flags |= B_INVAL | B_NOCACHE;
1951 FREE_LOCK(&lk);
1952 brelse(bp);
1953 ACQUIRE_LOCK(&lk);
1954 return(1);
1958 * Reclaim any dependency structures from a buffer that is about to
1959 * be reallocated to a new vnode. The buffer must be locked, thus,
1960 * no I/O completion operations can occur while we are manipulating
1961 * its associated dependencies. The mutex is held so that other I/O's
1962 * associated with related dependencies do not occur.
1964 static void
1965 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1967 struct worklist *wk;
1968 struct indirdep *indirdep;
1969 struct allocindir *aip;
1970 struct pagedep *pagedep;
1971 struct dirrem *dirrem;
1972 struct diradd *dap;
1973 int i;
1975 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1976 switch (wk->wk_type) {
1978 case D_INDIRDEP:
1979 indirdep = WK_INDIRDEP(wk);
1981 * None of the indirect pointers will ever be visible,
1982 * so they can simply be tossed. GOINGAWAY ensures
1983 * that allocated pointers will be saved in the buffer
1984 * cache until they are freed. Note that they will
1985 * only be able to be found by their physical address
1986 * since the inode mapping the logical address will
1987 * be gone. The save buffer used for the safe copy
1988 * was allocated in setup_allocindir_phase2 using
1989 * the physical address so it could be used for this
1990 * purpose. Hence we swap the safe copy with the real
1991 * copy, allowing the safe copy to be freed and holding
1992 * on to the real copy for later use in indir_trunc.
1994 * NOTE: ir_savebp is relative to the block device
1995 * so b_bio1 contains the device block number.
1997 if (indirdep->ir_state & GOINGAWAY) {
1998 FREE_LOCK(&lk);
1999 panic("deallocate_dependencies: already gone");
2001 indirdep->ir_state |= GOINGAWAY;
2002 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2003 free_allocindir(aip, inodedep);
2004 if (bp->b_bio1.bio_offset >= 0 ||
2005 bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2006 FREE_LOCK(&lk);
2007 panic("deallocate_dependencies: not indir");
2009 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2010 bp->b_bcount);
2011 WORKLIST_REMOVE(wk);
2012 WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2013 continue;
2015 case D_PAGEDEP:
2016 pagedep = WK_PAGEDEP(wk);
2018 * None of the directory additions will ever be
2019 * visible, so they can simply be tossed.
2021 for (i = 0; i < DAHASHSZ; i++)
2022 while ((dap =
2023 LIST_FIRST(&pagedep->pd_diraddhd[i])))
2024 free_diradd(dap);
2025 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2026 free_diradd(dap);
2028 * Copy any directory remove dependencies to the list
2029 * to be processed after the zero'ed inode is written.
2030 * If the inode has already been written, then they
2031 * can be dumped directly onto the work list.
2033 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2034 LIST_REMOVE(dirrem, dm_next);
2035 dirrem->dm_dirinum = pagedep->pd_ino;
2036 if (inodedep == NULL ||
2037 (inodedep->id_state & ALLCOMPLETE) ==
2038 ALLCOMPLETE)
2039 add_to_worklist(&dirrem->dm_list);
2040 else
2041 WORKLIST_INSERT(&inodedep->id_bufwait,
2042 &dirrem->dm_list);
2044 WORKLIST_REMOVE(&pagedep->pd_list);
2045 LIST_REMOVE(pagedep, pd_hash);
2046 WORKITEM_FREE(pagedep, D_PAGEDEP);
2047 continue;
2049 case D_ALLOCINDIR:
2050 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2051 continue;
2053 case D_ALLOCDIRECT:
2054 case D_INODEDEP:
2055 FREE_LOCK(&lk);
2056 panic("deallocate_dependencies: Unexpected type %s",
2057 TYPENAME(wk->wk_type));
2058 /* NOTREACHED */
2060 default:
2061 FREE_LOCK(&lk);
2062 panic("deallocate_dependencies: Unknown type %s",
2063 TYPENAME(wk->wk_type));
2064 /* NOTREACHED */
2070 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2071 * This routine must be called with splbio interrupts blocked.
2073 static void
2074 free_allocdirect(struct allocdirectlst *adphead,
2075 struct allocdirect *adp, int delay)
2078 #ifdef DEBUG
2079 if (lk.lkt_held == NOHOLDER)
2080 panic("free_allocdirect: lock not held");
2081 #endif
2082 if ((adp->ad_state & DEPCOMPLETE) == 0)
2083 LIST_REMOVE(adp, ad_deps);
2084 TAILQ_REMOVE(adphead, adp, ad_next);
2085 if ((adp->ad_state & COMPLETE) == 0)
2086 WORKLIST_REMOVE(&adp->ad_list);
2087 if (adp->ad_freefrag != NULL) {
2088 if (delay)
2089 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2090 &adp->ad_freefrag->ff_list);
2091 else
2092 add_to_worklist(&adp->ad_freefrag->ff_list);
2094 WORKITEM_FREE(adp, D_ALLOCDIRECT);
2098 * Prepare an inode to be freed. The actual free operation is not
2099 * done until the zero'ed inode has been written to disk.
2101 void
2102 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2104 struct inode *ip = VTOI(pvp);
2105 struct inodedep *inodedep;
2106 struct freefile *freefile;
2109 * This sets up the inode de-allocation dependency.
2111 MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2112 M_FREEFILE, M_SOFTDEP_FLAGS);
2113 freefile->fx_list.wk_type = D_FREEFILE;
2114 freefile->fx_list.wk_state = 0;
2115 freefile->fx_mode = mode;
2116 freefile->fx_oldinum = ino;
2117 freefile->fx_devvp = ip->i_devvp;
2118 freefile->fx_fs = ip->i_fs;
2121 * If the inodedep does not exist, then the zero'ed inode has
2122 * been written to disk. If the allocated inode has never been
2123 * written to disk, then the on-disk inode is zero'ed. In either
2124 * case we can free the file immediately.
2126 ACQUIRE_LOCK(&lk);
2127 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2128 check_inode_unwritten(inodedep)) {
2129 FREE_LOCK(&lk);
2130 handle_workitem_freefile(freefile);
2131 return;
2133 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2134 FREE_LOCK(&lk);
2138 * Check to see if an inode has never been written to disk. If
2139 * so free the inodedep and return success, otherwise return failure.
2140 * This routine must be called with splbio interrupts blocked.
2142 * If we still have a bitmap dependency, then the inode has never
2143 * been written to disk. Drop the dependency as it is no longer
2144 * necessary since the inode is being deallocated. We set the
2145 * ALLCOMPLETE flags since the bitmap now properly shows that the
2146 * inode is not allocated. Even if the inode is actively being
2147 * written, it has been rolled back to its zero'ed state, so we
2148 * are ensured that a zero inode is what is on the disk. For short
2149 * lived files, this change will usually result in removing all the
2150 * dependencies from the inode so that it can be freed immediately.
2152 static int
2153 check_inode_unwritten(struct inodedep *inodedep)
2156 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2157 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2158 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2159 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2160 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2161 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2162 inodedep->id_nlinkdelta != 0)
2163 return (0);
2166 * Another process might be in initiate_write_inodeblock
2167 * trying to allocate memory without holding "Softdep Lock".
2169 if ((inodedep->id_state & IOSTARTED) != 0 &&
2170 inodedep->id_savedino == NULL)
2171 return(0);
2173 inodedep->id_state |= ALLCOMPLETE;
2174 LIST_REMOVE(inodedep, id_deps);
2175 inodedep->id_buf = NULL;
2176 if (inodedep->id_state & ONWORKLIST)
2177 WORKLIST_REMOVE(&inodedep->id_list);
2178 if (inodedep->id_savedino != NULL) {
2179 FREE(inodedep->id_savedino, M_INODEDEP);
2180 inodedep->id_savedino = NULL;
2182 if (free_inodedep(inodedep) == 0) {
2183 FREE_LOCK(&lk);
2184 panic("check_inode_unwritten: busy inode");
2186 return (1);
2190 * Try to free an inodedep structure. Return 1 if it could be freed.
2192 static int
2193 free_inodedep(struct inodedep *inodedep)
2196 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2197 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2198 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2199 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2200 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2201 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2202 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2203 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2204 return (0);
2205 LIST_REMOVE(inodedep, id_hash);
2206 WORKITEM_FREE(inodedep, D_INODEDEP);
2207 num_inodedep -= 1;
2208 return (1);
2212 * This workitem routine performs the block de-allocation.
2213 * The workitem is added to the pending list after the updated
2214 * inode block has been written to disk. As mentioned above,
2215 * checks regarding the number of blocks de-allocated (compared
2216 * to the number of blocks allocated for the file) are also
2217 * performed in this function.
2219 static void
2220 handle_workitem_freeblocks(struct freeblks *freeblks)
2222 struct inode tip;
2223 ufs_daddr_t bn;
2224 struct fs *fs;
2225 int i, level, bsize;
2226 long nblocks, blocksreleased = 0;
2227 int error, allerror = 0;
2228 ufs_lbn_t baselbns[NIADDR], tmpval;
2230 tip.i_number = freeblks->fb_previousinum;
2231 tip.i_devvp = freeblks->fb_devvp;
2232 tip.i_dev = freeblks->fb_devvp->v_rdev;
2233 tip.i_fs = freeblks->fb_fs;
2234 tip.i_size = freeblks->fb_oldsize;
2235 tip.i_uid = freeblks->fb_uid;
2236 fs = freeblks->fb_fs;
2237 tmpval = 1;
2238 baselbns[0] = NDADDR;
2239 for (i = 1; i < NIADDR; i++) {
2240 tmpval *= NINDIR(fs);
2241 baselbns[i] = baselbns[i - 1] + tmpval;
2243 nblocks = btodb(fs->fs_bsize);
2244 blocksreleased = 0;
2246 * Indirect blocks first.
2248 for (level = (NIADDR - 1); level >= 0; level--) {
2249 if ((bn = freeblks->fb_iblks[level]) == 0)
2250 continue;
2251 if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2252 baselbns[level], &blocksreleased)) == 0)
2253 allerror = error;
2254 ffs_blkfree(&tip, bn, fs->fs_bsize);
2255 blocksreleased += nblocks;
2258 * All direct blocks or frags.
2260 for (i = (NDADDR - 1); i >= 0; i--) {
2261 if ((bn = freeblks->fb_dblks[i]) == 0)
2262 continue;
2263 bsize = blksize(fs, &tip, i);
2264 ffs_blkfree(&tip, bn, bsize);
2265 blocksreleased += btodb(bsize);
2268 #ifdef DIAGNOSTIC
2269 if (freeblks->fb_chkcnt != blocksreleased)
2270 kprintf("handle_workitem_freeblocks: block count\n");
2271 if (allerror)
2272 softdep_error("handle_workitem_freeblks", allerror);
2273 #endif /* DIAGNOSTIC */
2274 WORKITEM_FREE(freeblks, D_FREEBLKS);
2278 * Release blocks associated with the inode ip and stored in the indirect
2279 * block at doffset. If level is greater than SINGLE, the block is an
2280 * indirect block and recursive calls to indirtrunc must be used to
2281 * cleanse other indirect blocks.
2283 static int
2284 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2285 long *countp)
2287 struct buf *bp;
2288 ufs_daddr_t *bap;
2289 ufs_daddr_t nb;
2290 struct fs *fs;
2291 struct worklist *wk;
2292 struct indirdep *indirdep;
2293 int i, lbnadd, nblocks;
2294 int error, allerror = 0;
2296 fs = ip->i_fs;
2297 lbnadd = 1;
2298 for (i = level; i > 0; i--)
2299 lbnadd *= NINDIR(fs);
2301 * Get buffer of block pointers to be freed. This routine is not
2302 * called until the zero'ed inode has been written, so it is safe
2303 * to free blocks as they are encountered. Because the inode has
2304 * been zero'ed, calls to bmap on these blocks will fail. So, we
2305 * have to use the on-disk address and the block device for the
2306 * filesystem to look them up. If the file was deleted before its
2307 * indirect blocks were all written to disk, the routine that set
2308 * us up (deallocate_dependencies) will have arranged to leave
2309 * a complete copy of the indirect block in memory for our use.
2310 * Otherwise we have to read the blocks in from the disk.
2312 ACQUIRE_LOCK(&lk);
2313 if ((bp = findblk(ip->i_devvp, doffset)) != NULL &&
2314 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2316 * bp must be ir_savebp, which is held locked for our use.
2318 if (wk->wk_type != D_INDIRDEP ||
2319 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2320 (indirdep->ir_state & GOINGAWAY) == 0) {
2321 FREE_LOCK(&lk);
2322 panic("indir_trunc: lost indirdep");
2324 WORKLIST_REMOVE(wk);
2325 WORKITEM_FREE(indirdep, D_INDIRDEP);
2326 if (LIST_FIRST(&bp->b_dep) != NULL) {
2327 FREE_LOCK(&lk);
2328 panic("indir_trunc: dangling dep");
2330 FREE_LOCK(&lk);
2331 } else {
2332 FREE_LOCK(&lk);
2333 error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2334 if (error)
2335 return (error);
2338 * Recursively free indirect blocks.
2340 bap = (ufs_daddr_t *)bp->b_data;
2341 nblocks = btodb(fs->fs_bsize);
2342 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2343 if ((nb = bap[i]) == 0)
2344 continue;
2345 if (level != 0) {
2346 if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2347 level - 1, lbn + (i * lbnadd), countp)) != 0)
2348 allerror = error;
2350 ffs_blkfree(ip, nb, fs->fs_bsize);
2351 *countp += nblocks;
2353 bp->b_flags |= B_INVAL | B_NOCACHE;
2354 brelse(bp);
2355 return (allerror);
2359 * Free an allocindir.
2360 * This routine must be called with splbio interrupts blocked.
2362 static void
2363 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2365 struct freefrag *freefrag;
2367 #ifdef DEBUG
2368 if (lk.lkt_held == NOHOLDER)
2369 panic("free_allocindir: lock not held");
2370 #endif
2371 if ((aip->ai_state & DEPCOMPLETE) == 0)
2372 LIST_REMOVE(aip, ai_deps);
2373 if (aip->ai_state & ONWORKLIST)
2374 WORKLIST_REMOVE(&aip->ai_list);
2375 LIST_REMOVE(aip, ai_next);
2376 if ((freefrag = aip->ai_freefrag) != NULL) {
2377 if (inodedep == NULL)
2378 add_to_worklist(&freefrag->ff_list);
2379 else
2380 WORKLIST_INSERT(&inodedep->id_bufwait,
2381 &freefrag->ff_list);
2383 WORKITEM_FREE(aip, D_ALLOCINDIR);
2387 * Directory entry addition dependencies.
2389 * When adding a new directory entry, the inode (with its incremented link
2390 * count) must be written to disk before the directory entry's pointer to it.
2391 * Also, if the inode is newly allocated, the corresponding freemap must be
2392 * updated (on disk) before the directory entry's pointer. These requirements
2393 * are met via undo/redo on the directory entry's pointer, which consists
2394 * simply of the inode number.
2396 * As directory entries are added and deleted, the free space within a
2397 * directory block can become fragmented. The ufs filesystem will compact
2398 * a fragmented directory block to make space for a new entry. When this
2399 * occurs, the offsets of previously added entries change. Any "diradd"
2400 * dependency structures corresponding to these entries must be updated with
2401 * the new offsets.
2405 * This routine is called after the in-memory inode's link
2406 * count has been incremented, but before the directory entry's
2407 * pointer to the inode has been set.
2409 * Parameters:
2410 * bp: buffer containing directory block
2411 * dp: inode for directory
2412 * diroffset: offset of new entry in directory
2413 * newinum: inode referenced by new directory entry
2414 * newdirbp: non-NULL => contents of new mkdir
2416 void
2417 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2418 ino_t newinum, struct buf *newdirbp)
2420 int offset; /* offset of new entry within directory block */
2421 ufs_lbn_t lbn; /* block in directory containing new entry */
2422 struct fs *fs;
2423 struct diradd *dap;
2424 struct pagedep *pagedep;
2425 struct inodedep *inodedep;
2426 struct mkdir *mkdir1, *mkdir2;
2429 * Whiteouts have no dependencies.
2431 if (newinum == WINO) {
2432 if (newdirbp != NULL)
2433 bdwrite(newdirbp);
2434 return;
2437 fs = dp->i_fs;
2438 lbn = lblkno(fs, diroffset);
2439 offset = blkoff(fs, diroffset);
2440 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2441 M_SOFTDEP_FLAGS | M_ZERO);
2442 dap->da_list.wk_type = D_DIRADD;
2443 dap->da_offset = offset;
2444 dap->da_newinum = newinum;
2445 dap->da_state = ATTACHED;
2446 if (newdirbp == NULL) {
2447 dap->da_state |= DEPCOMPLETE;
2448 ACQUIRE_LOCK(&lk);
2449 } else {
2450 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2451 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2452 M_SOFTDEP_FLAGS);
2453 mkdir1->md_list.wk_type = D_MKDIR;
2454 mkdir1->md_state = MKDIR_BODY;
2455 mkdir1->md_diradd = dap;
2456 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2457 M_SOFTDEP_FLAGS);
2458 mkdir2->md_list.wk_type = D_MKDIR;
2459 mkdir2->md_state = MKDIR_PARENT;
2460 mkdir2->md_diradd = dap;
2462 * Dependency on "." and ".." being written to disk.
2464 mkdir1->md_buf = newdirbp;
2465 ACQUIRE_LOCK(&lk);
2466 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2467 WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2468 FREE_LOCK(&lk);
2469 bdwrite(newdirbp);
2471 * Dependency on link count increase for parent directory
2473 ACQUIRE_LOCK(&lk);
2474 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2475 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2476 dap->da_state &= ~MKDIR_PARENT;
2477 WORKITEM_FREE(mkdir2, D_MKDIR);
2478 } else {
2479 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2480 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2484 * Link into parent directory pagedep to await its being written.
2486 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2487 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2488 dap->da_pagedep = pagedep;
2489 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2490 da_pdlist);
2492 * Link into its inodedep. Put it on the id_bufwait list if the inode
2493 * is not yet written. If it is written, do the post-inode write
2494 * processing to put it on the id_pendinghd list.
2496 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2497 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2498 diradd_inode_written(dap, inodedep);
2499 else
2500 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2501 FREE_LOCK(&lk);
2505 * This procedure is called to change the offset of a directory
2506 * entry when compacting a directory block which must be owned
2507 * exclusively by the caller. Note that the actual entry movement
2508 * must be done in this procedure to ensure that no I/O completions
2509 * occur while the move is in progress.
2511 * Parameters:
2512 * dp: inode for directory
2513 * base: address of dp->i_offset
2514 * oldloc: address of old directory location
2515 * newloc: address of new directory location
2516 * entrysize: size of directory entry
2518 void
2519 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2520 caddr_t oldloc, caddr_t newloc,
2521 int entrysize)
2523 int offset, oldoffset, newoffset;
2524 struct pagedep *pagedep;
2525 struct diradd *dap;
2526 ufs_lbn_t lbn;
2528 ACQUIRE_LOCK(&lk);
2529 lbn = lblkno(dp->i_fs, dp->i_offset);
2530 offset = blkoff(dp->i_fs, dp->i_offset);
2531 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2532 goto done;
2533 oldoffset = offset + (oldloc - base);
2534 newoffset = offset + (newloc - base);
2536 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2537 if (dap->da_offset != oldoffset)
2538 continue;
2539 dap->da_offset = newoffset;
2540 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2541 break;
2542 LIST_REMOVE(dap, da_pdlist);
2543 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2544 dap, da_pdlist);
2545 break;
2547 if (dap == NULL) {
2549 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2550 if (dap->da_offset == oldoffset) {
2551 dap->da_offset = newoffset;
2552 break;
2556 done:
2557 bcopy(oldloc, newloc, entrysize);
2558 FREE_LOCK(&lk);
2562 * Free a diradd dependency structure. This routine must be called
2563 * with splbio interrupts blocked.
2565 static void
2566 free_diradd(struct diradd *dap)
2568 struct dirrem *dirrem;
2569 struct pagedep *pagedep;
2570 struct inodedep *inodedep;
2571 struct mkdir *mkdir, *nextmd;
2573 #ifdef DEBUG
2574 if (lk.lkt_held == NOHOLDER)
2575 panic("free_diradd: lock not held");
2576 #endif
2577 WORKLIST_REMOVE(&dap->da_list);
2578 LIST_REMOVE(dap, da_pdlist);
2579 if ((dap->da_state & DIRCHG) == 0) {
2580 pagedep = dap->da_pagedep;
2581 } else {
2582 dirrem = dap->da_previous;
2583 pagedep = dirrem->dm_pagedep;
2584 dirrem->dm_dirinum = pagedep->pd_ino;
2585 add_to_worklist(&dirrem->dm_list);
2587 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2588 0, &inodedep) != 0)
2589 (void) free_inodedep(inodedep);
2590 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2591 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2592 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2593 if (mkdir->md_diradd != dap)
2594 continue;
2595 dap->da_state &= ~mkdir->md_state;
2596 WORKLIST_REMOVE(&mkdir->md_list);
2597 LIST_REMOVE(mkdir, md_mkdirs);
2598 WORKITEM_FREE(mkdir, D_MKDIR);
2600 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2601 FREE_LOCK(&lk);
2602 panic("free_diradd: unfound ref");
2605 WORKITEM_FREE(dap, D_DIRADD);
2609 * Directory entry removal dependencies.
2611 * When removing a directory entry, the entry's inode pointer must be
2612 * zero'ed on disk before the corresponding inode's link count is decremented
2613 * (possibly freeing the inode for re-use). This dependency is handled by
2614 * updating the directory entry but delaying the inode count reduction until
2615 * after the directory block has been written to disk. After this point, the
2616 * inode count can be decremented whenever it is convenient.
2620 * This routine should be called immediately after removing
2621 * a directory entry. The inode's link count should not be
2622 * decremented by the calling procedure -- the soft updates
2623 * code will do this task when it is safe.
2625 * Parameters:
2626 * bp: buffer containing directory block
2627 * dp: inode for the directory being modified
2628 * ip: inode for directory entry being removed
2629 * isrmdir: indicates if doing RMDIR
2631 void
2632 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2633 int isrmdir)
2635 struct dirrem *dirrem, *prevdirrem;
2638 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2640 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2643 * If the COMPLETE flag is clear, then there were no active
2644 * entries and we want to roll back to a zeroed entry until
2645 * the new inode is committed to disk. If the COMPLETE flag is
2646 * set then we have deleted an entry that never made it to
2647 * disk. If the entry we deleted resulted from a name change,
2648 * then the old name still resides on disk. We cannot delete
2649 * its inode (returned to us in prevdirrem) until the zeroed
2650 * directory entry gets to disk. The new inode has never been
2651 * referenced on the disk, so can be deleted immediately.
2653 if ((dirrem->dm_state & COMPLETE) == 0) {
2654 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2655 dm_next);
2656 FREE_LOCK(&lk);
2657 } else {
2658 if (prevdirrem != NULL)
2659 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2660 prevdirrem, dm_next);
2661 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2662 FREE_LOCK(&lk);
2663 handle_workitem_remove(dirrem);
2668 * Allocate a new dirrem if appropriate and return it along with
2669 * its associated pagedep. Called without a lock, returns with lock.
2671 static long num_dirrem; /* number of dirrem allocated */
2674 * Parameters:
2675 * bp: buffer containing directory block
2676 * dp: inode for the directory being modified
2677 * ip: inode for directory entry being removed
2678 * isrmdir: indicates if doing RMDIR
2679 * prevdirremp: previously referenced inode, if any
2681 static struct dirrem *
2682 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2683 int isrmdir, struct dirrem **prevdirremp)
2685 int offset;
2686 ufs_lbn_t lbn;
2687 struct diradd *dap;
2688 struct dirrem *dirrem;
2689 struct pagedep *pagedep;
2692 * Whiteouts have no deletion dependencies.
2694 if (ip == NULL)
2695 panic("newdirrem: whiteout");
2697 * If we are over our limit, try to improve the situation.
2698 * Limiting the number of dirrem structures will also limit
2699 * the number of freefile and freeblks structures.
2701 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2702 (void) request_cleanup(FLUSH_REMOVE, 0);
2703 num_dirrem += 1;
2704 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2705 M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO);
2706 dirrem->dm_list.wk_type = D_DIRREM;
2707 dirrem->dm_state = isrmdir ? RMDIR : 0;
2708 dirrem->dm_mnt = ITOV(ip)->v_mount;
2709 dirrem->dm_oldinum = ip->i_number;
2710 *prevdirremp = NULL;
2712 ACQUIRE_LOCK(&lk);
2713 lbn = lblkno(dp->i_fs, dp->i_offset);
2714 offset = blkoff(dp->i_fs, dp->i_offset);
2715 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2716 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2717 dirrem->dm_pagedep = pagedep;
2719 * Check for a diradd dependency for the same directory entry.
2720 * If present, then both dependencies become obsolete and can
2721 * be de-allocated. Check for an entry on both the pd_dirraddhd
2722 * list and the pd_pendinghd list.
2725 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2726 if (dap->da_offset == offset)
2727 break;
2728 if (dap == NULL) {
2730 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2731 if (dap->da_offset == offset)
2732 break;
2733 if (dap == NULL)
2734 return (dirrem);
2737 * Must be ATTACHED at this point.
2739 if ((dap->da_state & ATTACHED) == 0) {
2740 FREE_LOCK(&lk);
2741 panic("newdirrem: not ATTACHED");
2743 if (dap->da_newinum != ip->i_number) {
2744 FREE_LOCK(&lk);
2745 panic("newdirrem: inum %"PRId64" should be %"PRId64,
2746 ip->i_number, dap->da_newinum);
2749 * If we are deleting a changed name that never made it to disk,
2750 * then return the dirrem describing the previous inode (which
2751 * represents the inode currently referenced from this entry on disk).
2753 if ((dap->da_state & DIRCHG) != 0) {
2754 *prevdirremp = dap->da_previous;
2755 dap->da_state &= ~DIRCHG;
2756 dap->da_pagedep = pagedep;
2759 * We are deleting an entry that never made it to disk.
2760 * Mark it COMPLETE so we can delete its inode immediately.
2762 dirrem->dm_state |= COMPLETE;
2763 free_diradd(dap);
2764 return (dirrem);
2768 * Directory entry change dependencies.
2770 * Changing an existing directory entry requires that an add operation
2771 * be completed first followed by a deletion. The semantics for the addition
2772 * are identical to the description of adding a new entry above except
2773 * that the rollback is to the old inode number rather than zero. Once
2774 * the addition dependency is completed, the removal is done as described
2775 * in the removal routine above.
2779 * This routine should be called immediately after changing
2780 * a directory entry. The inode's link count should not be
2781 * decremented by the calling procedure -- the soft updates
2782 * code will perform this task when it is safe.
2784 * Parameters:
2785 * bp: buffer containing directory block
2786 * dp: inode for the directory being modified
2787 * ip: inode for directory entry being removed
2788 * newinum: new inode number for changed entry
2789 * isrmdir: indicates if doing RMDIR
2791 void
2792 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2793 struct inode *ip, ino_t newinum,
2794 int isrmdir)
2796 int offset;
2797 struct diradd *dap = NULL;
2798 struct dirrem *dirrem, *prevdirrem;
2799 struct pagedep *pagedep;
2800 struct inodedep *inodedep;
2802 offset = blkoff(dp->i_fs, dp->i_offset);
2805 * Whiteouts do not need diradd dependencies.
2807 if (newinum != WINO) {
2808 MALLOC(dap, struct diradd *, sizeof(struct diradd),
2809 M_DIRADD, M_SOFTDEP_FLAGS | M_ZERO);
2810 dap->da_list.wk_type = D_DIRADD;
2811 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2812 dap->da_offset = offset;
2813 dap->da_newinum = newinum;
2817 * Allocate a new dirrem and ACQUIRE_LOCK.
2819 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2820 pagedep = dirrem->dm_pagedep;
2822 * The possible values for isrmdir:
2823 * 0 - non-directory file rename
2824 * 1 - directory rename within same directory
2825 * inum - directory rename to new directory of given inode number
2826 * When renaming to a new directory, we are both deleting and
2827 * creating a new directory entry, so the link count on the new
2828 * directory should not change. Thus we do not need the followup
2829 * dirrem which is usually done in handle_workitem_remove. We set
2830 * the DIRCHG flag to tell handle_workitem_remove to skip the
2831 * followup dirrem.
2833 if (isrmdir > 1)
2834 dirrem->dm_state |= DIRCHG;
2837 * Whiteouts have no additional dependencies,
2838 * so just put the dirrem on the correct list.
2840 if (newinum == WINO) {
2841 if ((dirrem->dm_state & COMPLETE) == 0) {
2842 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2843 dm_next);
2844 } else {
2845 dirrem->dm_dirinum = pagedep->pd_ino;
2846 add_to_worklist(&dirrem->dm_list);
2848 FREE_LOCK(&lk);
2849 return;
2853 * If the COMPLETE flag is clear, then there were no active
2854 * entries and we want to roll back to the previous inode until
2855 * the new inode is committed to disk. If the COMPLETE flag is
2856 * set, then we have deleted an entry that never made it to disk.
2857 * If the entry we deleted resulted from a name change, then the old
2858 * inode reference still resides on disk. Any rollback that we do
2859 * needs to be to that old inode (returned to us in prevdirrem). If
2860 * the entry we deleted resulted from a create, then there is
2861 * no entry on the disk, so we want to roll back to zero rather
2862 * than the uncommitted inode. In either of the COMPLETE cases we
2863 * want to immediately free the unwritten and unreferenced inode.
2865 if ((dirrem->dm_state & COMPLETE) == 0) {
2866 dap->da_previous = dirrem;
2867 } else {
2868 if (prevdirrem != NULL) {
2869 dap->da_previous = prevdirrem;
2870 } else {
2871 dap->da_state &= ~DIRCHG;
2872 dap->da_pagedep = pagedep;
2874 dirrem->dm_dirinum = pagedep->pd_ino;
2875 add_to_worklist(&dirrem->dm_list);
2878 * Link into its inodedep. Put it on the id_bufwait list if the inode
2879 * is not yet written. If it is written, do the post-inode write
2880 * processing to put it on the id_pendinghd list.
2882 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2883 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2884 dap->da_state |= COMPLETE;
2885 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2886 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2887 } else {
2888 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2889 dap, da_pdlist);
2890 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2892 FREE_LOCK(&lk);
2896 * Called whenever the link count on an inode is changed.
2897 * It creates an inode dependency so that the new reference(s)
2898 * to the inode cannot be committed to disk until the updated
2899 * inode has been written.
2901 * Parameters:
2902 * ip: the inode with the increased link count
2904 void
2905 softdep_change_linkcnt(struct inode *ip)
2907 struct inodedep *inodedep;
2909 ACQUIRE_LOCK(&lk);
2910 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2911 if (ip->i_nlink < ip->i_effnlink) {
2912 FREE_LOCK(&lk);
2913 panic("softdep_change_linkcnt: bad delta");
2915 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2916 FREE_LOCK(&lk);
2920 * This workitem decrements the inode's link count.
2921 * If the link count reaches zero, the file is removed.
2923 static void
2924 handle_workitem_remove(struct dirrem *dirrem)
2926 struct inodedep *inodedep;
2927 struct vnode *vp;
2928 struct inode *ip;
2929 ino_t oldinum;
2930 int error;
2932 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2933 softdep_error("handle_workitem_remove: vget", error);
2934 return;
2936 ip = VTOI(vp);
2937 ACQUIRE_LOCK(&lk);
2938 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2939 FREE_LOCK(&lk);
2940 panic("handle_workitem_remove: lost inodedep");
2943 * Normal file deletion.
2945 if ((dirrem->dm_state & RMDIR) == 0) {
2946 ip->i_nlink--;
2947 ip->i_flag |= IN_CHANGE;
2948 if (ip->i_nlink < ip->i_effnlink) {
2949 FREE_LOCK(&lk);
2950 panic("handle_workitem_remove: bad file delta");
2952 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2953 FREE_LOCK(&lk);
2954 vput(vp);
2955 num_dirrem -= 1;
2956 WORKITEM_FREE(dirrem, D_DIRREM);
2957 return;
2960 * Directory deletion. Decrement reference count for both the
2961 * just deleted parent directory entry and the reference for ".".
2962 * Next truncate the directory to length zero. When the
2963 * truncation completes, arrange to have the reference count on
2964 * the parent decremented to account for the loss of "..".
2966 ip->i_nlink -= 2;
2967 ip->i_flag |= IN_CHANGE;
2968 if (ip->i_nlink < ip->i_effnlink) {
2969 FREE_LOCK(&lk);
2970 panic("handle_workitem_remove: bad dir delta");
2972 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2973 FREE_LOCK(&lk);
2974 if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2975 softdep_error("handle_workitem_remove: truncate", error);
2977 * Rename a directory to a new parent. Since, we are both deleting
2978 * and creating a new directory entry, the link count on the new
2979 * directory should not change. Thus we skip the followup dirrem.
2981 if (dirrem->dm_state & DIRCHG) {
2982 vput(vp);
2983 num_dirrem -= 1;
2984 WORKITEM_FREE(dirrem, D_DIRREM);
2985 return;
2988 * If the inodedep does not exist, then the zero'ed inode has
2989 * been written to disk. If the allocated inode has never been
2990 * written to disk, then the on-disk inode is zero'ed. In either
2991 * case we can remove the file immediately.
2993 ACQUIRE_LOCK(&lk);
2994 dirrem->dm_state = 0;
2995 oldinum = dirrem->dm_oldinum;
2996 dirrem->dm_oldinum = dirrem->dm_dirinum;
2997 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2998 check_inode_unwritten(inodedep)) {
2999 FREE_LOCK(&lk);
3000 vput(vp);
3001 handle_workitem_remove(dirrem);
3002 return;
3004 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3005 FREE_LOCK(&lk);
3006 ip->i_flag |= IN_CHANGE;
3007 ffs_update(vp, 0);
3008 vput(vp);
3012 * Inode de-allocation dependencies.
3014 * When an inode's link count is reduced to zero, it can be de-allocated. We
3015 * found it convenient to postpone de-allocation until after the inode is
3016 * written to disk with its new link count (zero). At this point, all of the
3017 * on-disk inode's block pointers are nullified and, with careful dependency
3018 * list ordering, all dependencies related to the inode will be satisfied and
3019 * the corresponding dependency structures de-allocated. So, if/when the
3020 * inode is reused, there will be no mixing of old dependencies with new
3021 * ones. This artificial dependency is set up by the block de-allocation
3022 * procedure above (softdep_setup_freeblocks) and completed by the
3023 * following procedure.
3025 static void
3026 handle_workitem_freefile(struct freefile *freefile)
3028 struct vnode vp;
3029 struct inode tip;
3030 struct inodedep *idp;
3031 int error;
3033 #ifdef DEBUG
3034 ACQUIRE_LOCK(&lk);
3035 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3036 FREE_LOCK(&lk);
3037 if (error)
3038 panic("handle_workitem_freefile: inodedep survived");
3039 #endif
3040 tip.i_devvp = freefile->fx_devvp;
3041 tip.i_dev = freefile->fx_devvp->v_rdev;
3042 tip.i_fs = freefile->fx_fs;
3043 vp.v_data = &tip;
3044 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3045 softdep_error("handle_workitem_freefile", error);
3046 WORKITEM_FREE(freefile, D_FREEFILE);
3050 * Helper function which unlinks marker element from work list and returns
3051 * the next element on the list.
3053 static __inline struct worklist *
3054 markernext(struct worklist *marker)
3056 struct worklist *next;
3058 next = LIST_NEXT(marker, wk_list);
3059 LIST_REMOVE(marker, wk_list);
3060 return next;
3064 * checkread, checkwrite
3067 static int
3068 softdep_checkread(struct buf *bp)
3070 return(0);
3073 static int
3074 softdep_checkwrite(struct buf *bp)
3076 return(0);
3080 * Disk writes.
3082 * The dependency structures constructed above are most actively used when file
3083 * system blocks are written to disk. No constraints are placed on when a
3084 * block can be written, but unsatisfied update dependencies are made safe by
3085 * modifying (or replacing) the source memory for the duration of the disk
3086 * write. When the disk write completes, the memory block is again brought
3087 * up-to-date.
3089 * In-core inode structure reclamation.
3091 * Because there are a finite number of "in-core" inode structures, they are
3092 * reused regularly. By transferring all inode-related dependencies to the
3093 * in-memory inode block and indexing them separately (via "inodedep"s), we
3094 * can allow "in-core" inode structures to be reused at any time and avoid
3095 * any increase in contention.
3097 * Called just before entering the device driver to initiate a new disk I/O.
3098 * The buffer must be locked, thus, no I/O completion operations can occur
3099 * while we are manipulating its associated dependencies.
3101 * Parameters:
3102 * bp: structure describing disk write to occur
3104 static void
3105 softdep_disk_io_initiation(struct buf *bp)
3107 struct worklist *wk;
3108 struct worklist marker;
3109 struct indirdep *indirdep;
3112 * We only care about write operations. There should never
3113 * be dependencies for reads.
3115 if (bp->b_cmd == BUF_CMD_READ)
3116 panic("softdep_disk_io_initiation: read");
3118 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3121 * Do any necessary pre-I/O processing.
3123 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3124 LIST_INSERT_AFTER(wk, &marker, wk_list);
3126 switch (wk->wk_type) {
3128 case D_PAGEDEP:
3129 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3130 continue;
3132 case D_INODEDEP:
3133 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3134 continue;
3136 case D_INDIRDEP:
3137 indirdep = WK_INDIRDEP(wk);
3138 if (indirdep->ir_state & GOINGAWAY)
3139 panic("disk_io_initiation: indirdep gone");
3141 * If there are no remaining dependencies, this
3142 * will be writing the real pointers, so the
3143 * dependency can be freed.
3145 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3146 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3147 brelse(indirdep->ir_savebp);
3148 /* inline expand WORKLIST_REMOVE(wk); */
3149 wk->wk_state &= ~ONWORKLIST;
3150 LIST_REMOVE(wk, wk_list);
3151 WORKITEM_FREE(indirdep, D_INDIRDEP);
3152 continue;
3155 * Replace up-to-date version with safe version.
3157 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3158 M_INDIRDEP, M_SOFTDEP_FLAGS);
3159 ACQUIRE_LOCK(&lk);
3160 indirdep->ir_state &= ~ATTACHED;
3161 indirdep->ir_state |= UNDONE;
3162 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3163 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3164 bp->b_bcount);
3165 FREE_LOCK(&lk);
3166 continue;
3168 case D_MKDIR:
3169 case D_BMSAFEMAP:
3170 case D_ALLOCDIRECT:
3171 case D_ALLOCINDIR:
3172 continue;
3174 default:
3175 panic("handle_disk_io_initiation: Unexpected type %s",
3176 TYPENAME(wk->wk_type));
3177 /* NOTREACHED */
3183 * Called from within the procedure above to deal with unsatisfied
3184 * allocation dependencies in a directory. The buffer must be locked,
3185 * thus, no I/O completion operations can occur while we are
3186 * manipulating its associated dependencies.
3188 static void
3189 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3191 struct diradd *dap;
3192 struct direct *ep;
3193 int i;
3195 if (pagedep->pd_state & IOSTARTED) {
3197 * This can only happen if there is a driver that does not
3198 * understand chaining. Here biodone will reissue the call
3199 * to strategy for the incomplete buffers.
3201 kprintf("initiate_write_filepage: already started\n");
3202 return;
3204 pagedep->pd_state |= IOSTARTED;
3205 ACQUIRE_LOCK(&lk);
3206 for (i = 0; i < DAHASHSZ; i++) {
3207 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3208 ep = (struct direct *)
3209 ((char *)bp->b_data + dap->da_offset);
3210 if (ep->d_ino != dap->da_newinum) {
3211 FREE_LOCK(&lk);
3212 panic("%s: dir inum %d != new %"PRId64,
3213 "initiate_write_filepage",
3214 ep->d_ino, dap->da_newinum);
3216 if (dap->da_state & DIRCHG)
3217 ep->d_ino = dap->da_previous->dm_oldinum;
3218 else
3219 ep->d_ino = 0;
3220 dap->da_state &= ~ATTACHED;
3221 dap->da_state |= UNDONE;
3224 FREE_LOCK(&lk);
3228 * Called from within the procedure above to deal with unsatisfied
3229 * allocation dependencies in an inodeblock. The buffer must be
3230 * locked, thus, no I/O completion operations can occur while we
3231 * are manipulating its associated dependencies.
3233 * Parameters:
3234 * bp: The inode block
3236 static void
3237 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3239 struct allocdirect *adp, *lastadp;
3240 struct ufs1_dinode *dp;
3241 struct ufs1_dinode *sip;
3242 struct fs *fs;
3243 ufs_lbn_t prevlbn = 0;
3244 int i, deplist;
3246 if (inodedep->id_state & IOSTARTED)
3247 panic("initiate_write_inodeblock: already started");
3248 inodedep->id_state |= IOSTARTED;
3249 fs = inodedep->id_fs;
3250 dp = (struct ufs1_dinode *)bp->b_data +
3251 ino_to_fsbo(fs, inodedep->id_ino);
3253 * If the bitmap is not yet written, then the allocated
3254 * inode cannot be written to disk.
3256 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3257 if (inodedep->id_savedino != NULL)
3258 panic("initiate_write_inodeblock: already doing I/O");
3259 MALLOC(sip, struct ufs1_dinode *,
3260 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3261 inodedep->id_savedino = sip;
3262 *inodedep->id_savedino = *dp;
3263 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3264 dp->di_gen = inodedep->id_savedino->di_gen;
3265 return;
3268 * If no dependencies, then there is nothing to roll back.
3270 inodedep->id_savedsize = dp->di_size;
3271 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3272 return;
3274 * Set the dependencies to busy.
3276 ACQUIRE_LOCK(&lk);
3277 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3278 adp = TAILQ_NEXT(adp, ad_next)) {
3279 #ifdef DIAGNOSTIC
3280 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3281 FREE_LOCK(&lk);
3282 panic("softdep_write_inodeblock: lbn order");
3284 prevlbn = adp->ad_lbn;
3285 if (adp->ad_lbn < NDADDR &&
3286 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3287 FREE_LOCK(&lk);
3288 panic("%s: direct pointer #%ld mismatch %d != %d",
3289 "softdep_write_inodeblock", adp->ad_lbn,
3290 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3292 if (adp->ad_lbn >= NDADDR &&
3293 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3294 FREE_LOCK(&lk);
3295 panic("%s: indirect pointer #%ld mismatch %d != %d",
3296 "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3297 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3299 deplist |= 1 << adp->ad_lbn;
3300 if ((adp->ad_state & ATTACHED) == 0) {
3301 FREE_LOCK(&lk);
3302 panic("softdep_write_inodeblock: Unknown state 0x%x",
3303 adp->ad_state);
3305 #endif /* DIAGNOSTIC */
3306 adp->ad_state &= ~ATTACHED;
3307 adp->ad_state |= UNDONE;
3310 * The on-disk inode cannot claim to be any larger than the last
3311 * fragment that has been written. Otherwise, the on-disk inode
3312 * might have fragments that were not the last block in the file
3313 * which would corrupt the filesystem.
3315 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3316 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3317 if (adp->ad_lbn >= NDADDR)
3318 break;
3319 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3320 /* keep going until hitting a rollback to a frag */
3321 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3322 continue;
3323 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3324 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3325 #ifdef DIAGNOSTIC
3326 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3327 FREE_LOCK(&lk);
3328 panic("softdep_write_inodeblock: lost dep1");
3330 #endif /* DIAGNOSTIC */
3331 dp->di_db[i] = 0;
3333 for (i = 0; i < NIADDR; i++) {
3334 #ifdef DIAGNOSTIC
3335 if (dp->di_ib[i] != 0 &&
3336 (deplist & ((1 << NDADDR) << i)) == 0) {
3337 FREE_LOCK(&lk);
3338 panic("softdep_write_inodeblock: lost dep2");
3340 #endif /* DIAGNOSTIC */
3341 dp->di_ib[i] = 0;
3343 FREE_LOCK(&lk);
3344 return;
3347 * If we have zero'ed out the last allocated block of the file,
3348 * roll back the size to the last currently allocated block.
3349 * We know that this last allocated block is a full-sized as
3350 * we already checked for fragments in the loop above.
3352 if (lastadp != NULL &&
3353 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3354 for (i = lastadp->ad_lbn; i >= 0; i--)
3355 if (dp->di_db[i] != 0)
3356 break;
3357 dp->di_size = (i + 1) * fs->fs_bsize;
3360 * The only dependencies are for indirect blocks.
3362 * The file size for indirect block additions is not guaranteed.
3363 * Such a guarantee would be non-trivial to achieve. The conventional
3364 * synchronous write implementation also does not make this guarantee.
3365 * Fsck should catch and fix discrepancies. Arguably, the file size
3366 * can be over-estimated without destroying integrity when the file
3367 * moves into the indirect blocks (i.e., is large). If we want to
3368 * postpone fsck, we are stuck with this argument.
3370 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3371 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3372 FREE_LOCK(&lk);
3376 * This routine is called during the completion interrupt
3377 * service routine for a disk write (from the procedure called
3378 * by the device driver to inform the filesystem caches of
3379 * a request completion). It should be called early in this
3380 * procedure, before the block is made available to other
3381 * processes or other routines are called.
3383 * Parameters:
3384 * bp: describes the completed disk write
3386 static void
3387 softdep_disk_write_complete(struct buf *bp)
3389 struct worklist *wk;
3390 struct workhead reattach;
3391 struct newblk *newblk;
3392 struct allocindir *aip;
3393 struct allocdirect *adp;
3394 struct indirdep *indirdep;
3395 struct inodedep *inodedep;
3396 struct bmsafemap *bmsafemap;
3398 #ifdef DEBUG
3399 if (lk.lkt_held != NOHOLDER)
3400 panic("softdep_disk_write_complete: lock is held");
3401 lk.lkt_held = SPECIAL_FLAG;
3402 #endif
3403 LIST_INIT(&reattach);
3404 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3405 WORKLIST_REMOVE(wk);
3406 switch (wk->wk_type) {
3408 case D_PAGEDEP:
3409 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3410 WORKLIST_INSERT(&reattach, wk);
3411 continue;
3413 case D_INODEDEP:
3414 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3415 WORKLIST_INSERT(&reattach, wk);
3416 continue;
3418 case D_BMSAFEMAP:
3419 bmsafemap = WK_BMSAFEMAP(wk);
3420 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3421 newblk->nb_state |= DEPCOMPLETE;
3422 newblk->nb_bmsafemap = NULL;
3423 LIST_REMOVE(newblk, nb_deps);
3425 while ((adp =
3426 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3427 adp->ad_state |= DEPCOMPLETE;
3428 adp->ad_buf = NULL;
3429 LIST_REMOVE(adp, ad_deps);
3430 handle_allocdirect_partdone(adp);
3432 while ((aip =
3433 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3434 aip->ai_state |= DEPCOMPLETE;
3435 aip->ai_buf = NULL;
3436 LIST_REMOVE(aip, ai_deps);
3437 handle_allocindir_partdone(aip);
3439 while ((inodedep =
3440 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3441 inodedep->id_state |= DEPCOMPLETE;
3442 LIST_REMOVE(inodedep, id_deps);
3443 inodedep->id_buf = NULL;
3445 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3446 continue;
3448 case D_MKDIR:
3449 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3450 continue;
3452 case D_ALLOCDIRECT:
3453 adp = WK_ALLOCDIRECT(wk);
3454 adp->ad_state |= COMPLETE;
3455 handle_allocdirect_partdone(adp);
3456 continue;
3458 case D_ALLOCINDIR:
3459 aip = WK_ALLOCINDIR(wk);
3460 aip->ai_state |= COMPLETE;
3461 handle_allocindir_partdone(aip);
3462 continue;
3464 case D_INDIRDEP:
3465 indirdep = WK_INDIRDEP(wk);
3466 if (indirdep->ir_state & GOINGAWAY) {
3467 lk.lkt_held = NOHOLDER;
3468 panic("disk_write_complete: indirdep gone");
3470 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3471 FREE(indirdep->ir_saveddata, M_INDIRDEP);
3472 indirdep->ir_saveddata = 0;
3473 indirdep->ir_state &= ~UNDONE;
3474 indirdep->ir_state |= ATTACHED;
3475 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3476 handle_allocindir_partdone(aip);
3477 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3478 lk.lkt_held = NOHOLDER;
3479 panic("disk_write_complete: not gone");
3482 WORKLIST_INSERT(&reattach, wk);
3483 if ((bp->b_flags & B_DELWRI) == 0)
3484 stat_indir_blk_ptrs++;
3485 bdirty(bp);
3486 continue;
3488 default:
3489 lk.lkt_held = NOHOLDER;
3490 panic("handle_disk_write_complete: Unknown type %s",
3491 TYPENAME(wk->wk_type));
3492 /* NOTREACHED */
3496 * Reattach any requests that must be redone.
3498 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3499 WORKLIST_REMOVE(wk);
3500 WORKLIST_INSERT_BP(bp, wk);
3502 #ifdef DEBUG
3503 if (lk.lkt_held != SPECIAL_FLAG)
3504 panic("softdep_disk_write_complete: lock lost");
3505 lk.lkt_held = NOHOLDER;
3506 #endif
3510 * Called from within softdep_disk_write_complete above. Note that
3511 * this routine is always called from interrupt level with further
3512 * splbio interrupts blocked.
3514 * Parameters:
3515 * adp: the completed allocdirect
3517 static void
3518 handle_allocdirect_partdone(struct allocdirect *adp)
3520 struct allocdirect *listadp;
3521 struct inodedep *inodedep;
3522 long bsize;
3524 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3525 return;
3526 if (adp->ad_buf != NULL) {
3527 lk.lkt_held = NOHOLDER;
3528 panic("handle_allocdirect_partdone: dangling dep");
3531 * The on-disk inode cannot claim to be any larger than the last
3532 * fragment that has been written. Otherwise, the on-disk inode
3533 * might have fragments that were not the last block in the file
3534 * which would corrupt the filesystem. Thus, we cannot free any
3535 * allocdirects after one whose ad_oldblkno claims a fragment as
3536 * these blocks must be rolled back to zero before writing the inode.
3537 * We check the currently active set of allocdirects in id_inoupdt.
3539 inodedep = adp->ad_inodedep;
3540 bsize = inodedep->id_fs->fs_bsize;
3541 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3542 /* found our block */
3543 if (listadp == adp)
3544 break;
3545 /* continue if ad_oldlbn is not a fragment */
3546 if (listadp->ad_oldsize == 0 ||
3547 listadp->ad_oldsize == bsize)
3548 continue;
3549 /* hit a fragment */
3550 return;
3553 * If we have reached the end of the current list without
3554 * finding the just finished dependency, then it must be
3555 * on the future dependency list. Future dependencies cannot
3556 * be freed until they are moved to the current list.
3558 if (listadp == NULL) {
3559 #ifdef DEBUG
3560 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3561 /* found our block */
3562 if (listadp == adp)
3563 break;
3564 if (listadp == NULL) {
3565 lk.lkt_held = NOHOLDER;
3566 panic("handle_allocdirect_partdone: lost dep");
3568 #endif /* DEBUG */
3569 return;
3572 * If we have found the just finished dependency, then free
3573 * it along with anything that follows it that is complete.
3575 for (; adp; adp = listadp) {
3576 listadp = TAILQ_NEXT(adp, ad_next);
3577 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3578 return;
3579 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3584 * Called from within softdep_disk_write_complete above. Note that
3585 * this routine is always called from interrupt level with further
3586 * splbio interrupts blocked.
3588 * Parameters:
3589 * aip: the completed allocindir
3591 static void
3592 handle_allocindir_partdone(struct allocindir *aip)
3594 struct indirdep *indirdep;
3596 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3597 return;
3598 if (aip->ai_buf != NULL) {
3599 lk.lkt_held = NOHOLDER;
3600 panic("handle_allocindir_partdone: dangling dependency");
3602 indirdep = aip->ai_indirdep;
3603 if (indirdep->ir_state & UNDONE) {
3604 LIST_REMOVE(aip, ai_next);
3605 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3606 return;
3608 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3609 aip->ai_newblkno;
3610 LIST_REMOVE(aip, ai_next);
3611 if (aip->ai_freefrag != NULL)
3612 add_to_worklist(&aip->ai_freefrag->ff_list);
3613 WORKITEM_FREE(aip, D_ALLOCINDIR);
3617 * Called from within softdep_disk_write_complete above to restore
3618 * in-memory inode block contents to their most up-to-date state. Note
3619 * that this routine is always called from interrupt level with further
3620 * splbio interrupts blocked.
3622 * Parameters:
3623 * bp: buffer containing the inode block
3625 static int
3626 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3628 struct worklist *wk, *filefree;
3629 struct allocdirect *adp, *nextadp;
3630 struct ufs1_dinode *dp;
3631 int hadchanges;
3633 if ((inodedep->id_state & IOSTARTED) == 0) {
3634 lk.lkt_held = NOHOLDER;
3635 panic("handle_written_inodeblock: not started");
3637 inodedep->id_state &= ~IOSTARTED;
3638 dp = (struct ufs1_dinode *)bp->b_data +
3639 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3641 * If we had to rollback the inode allocation because of
3642 * bitmaps being incomplete, then simply restore it.
3643 * Keep the block dirty so that it will not be reclaimed until
3644 * all associated dependencies have been cleared and the
3645 * corresponding updates written to disk.
3647 if (inodedep->id_savedino != NULL) {
3648 *dp = *inodedep->id_savedino;
3649 FREE(inodedep->id_savedino, M_INODEDEP);
3650 inodedep->id_savedino = NULL;
3651 if ((bp->b_flags & B_DELWRI) == 0)
3652 stat_inode_bitmap++;
3653 bdirty(bp);
3654 return (1);
3656 inodedep->id_state |= COMPLETE;
3658 * Roll forward anything that had to be rolled back before
3659 * the inode could be updated.
3661 hadchanges = 0;
3662 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3663 nextadp = TAILQ_NEXT(adp, ad_next);
3664 if (adp->ad_state & ATTACHED) {
3665 lk.lkt_held = NOHOLDER;
3666 panic("handle_written_inodeblock: new entry");
3668 if (adp->ad_lbn < NDADDR) {
3669 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3670 lk.lkt_held = NOHOLDER;
3671 panic("%s: %s #%ld mismatch %d != %d",
3672 "handle_written_inodeblock",
3673 "direct pointer", adp->ad_lbn,
3674 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3676 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3677 } else {
3678 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3679 lk.lkt_held = NOHOLDER;
3680 panic("%s: %s #%ld allocated as %d",
3681 "handle_written_inodeblock",
3682 "indirect pointer", adp->ad_lbn - NDADDR,
3683 dp->di_ib[adp->ad_lbn - NDADDR]);
3685 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3687 adp->ad_state &= ~UNDONE;
3688 adp->ad_state |= ATTACHED;
3689 hadchanges = 1;
3691 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3692 stat_direct_blk_ptrs++;
3694 * Reset the file size to its most up-to-date value.
3696 if (inodedep->id_savedsize == -1) {
3697 lk.lkt_held = NOHOLDER;
3698 panic("handle_written_inodeblock: bad size");
3700 if (dp->di_size != inodedep->id_savedsize) {
3701 dp->di_size = inodedep->id_savedsize;
3702 hadchanges = 1;
3704 inodedep->id_savedsize = -1;
3706 * If there were any rollbacks in the inode block, then it must be
3707 * marked dirty so that its will eventually get written back in
3708 * its correct form.
3710 if (hadchanges)
3711 bdirty(bp);
3713 * Process any allocdirects that completed during the update.
3715 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3716 handle_allocdirect_partdone(adp);
3718 * Process deallocations that were held pending until the
3719 * inode had been written to disk. Freeing of the inode
3720 * is delayed until after all blocks have been freed to
3721 * avoid creation of new <vfsid, inum, lbn> triples
3722 * before the old ones have been deleted.
3724 filefree = NULL;
3725 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3726 WORKLIST_REMOVE(wk);
3727 switch (wk->wk_type) {
3729 case D_FREEFILE:
3731 * We defer adding filefree to the worklist until
3732 * all other additions have been made to ensure
3733 * that it will be done after all the old blocks
3734 * have been freed.
3736 if (filefree != NULL) {
3737 lk.lkt_held = NOHOLDER;
3738 panic("handle_written_inodeblock: filefree");
3740 filefree = wk;
3741 continue;
3743 case D_MKDIR:
3744 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3745 continue;
3747 case D_DIRADD:
3748 diradd_inode_written(WK_DIRADD(wk), inodedep);
3749 continue;
3751 case D_FREEBLKS:
3752 wk->wk_state |= COMPLETE;
3753 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
3754 continue;
3755 /* -- fall through -- */
3756 case D_FREEFRAG:
3757 case D_DIRREM:
3758 add_to_worklist(wk);
3759 continue;
3761 default:
3762 lk.lkt_held = NOHOLDER;
3763 panic("handle_written_inodeblock: Unknown type %s",
3764 TYPENAME(wk->wk_type));
3765 /* NOTREACHED */
3768 if (filefree != NULL) {
3769 if (free_inodedep(inodedep) == 0) {
3770 lk.lkt_held = NOHOLDER;
3771 panic("handle_written_inodeblock: live inodedep");
3773 add_to_worklist(filefree);
3774 return (0);
3778 * If no outstanding dependencies, free it.
3780 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3781 return (0);
3782 return (hadchanges);
3786 * Process a diradd entry after its dependent inode has been written.
3787 * This routine must be called with splbio interrupts blocked.
3789 static void
3790 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3792 struct pagedep *pagedep;
3794 dap->da_state |= COMPLETE;
3795 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3796 if (dap->da_state & DIRCHG)
3797 pagedep = dap->da_previous->dm_pagedep;
3798 else
3799 pagedep = dap->da_pagedep;
3800 LIST_REMOVE(dap, da_pdlist);
3801 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3803 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3807 * Handle the completion of a mkdir dependency.
3809 static void
3810 handle_written_mkdir(struct mkdir *mkdir, int type)
3812 struct diradd *dap;
3813 struct pagedep *pagedep;
3815 if (mkdir->md_state != type) {
3816 lk.lkt_held = NOHOLDER;
3817 panic("handle_written_mkdir: bad type");
3819 dap = mkdir->md_diradd;
3820 dap->da_state &= ~type;
3821 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3822 dap->da_state |= DEPCOMPLETE;
3823 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3824 if (dap->da_state & DIRCHG)
3825 pagedep = dap->da_previous->dm_pagedep;
3826 else
3827 pagedep = dap->da_pagedep;
3828 LIST_REMOVE(dap, da_pdlist);
3829 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3831 LIST_REMOVE(mkdir, md_mkdirs);
3832 WORKITEM_FREE(mkdir, D_MKDIR);
3836 * Called from within softdep_disk_write_complete above.
3837 * A write operation was just completed. Removed inodes can
3838 * now be freed and associated block pointers may be committed.
3839 * Note that this routine is always called from interrupt level
3840 * with further splbio interrupts blocked.
3842 * Parameters:
3843 * bp: buffer containing the written page
3845 static int
3846 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3848 struct dirrem *dirrem;
3849 struct diradd *dap, *nextdap;
3850 struct direct *ep;
3851 int i, chgs;
3853 if ((pagedep->pd_state & IOSTARTED) == 0) {
3854 lk.lkt_held = NOHOLDER;
3855 panic("handle_written_filepage: not started");
3857 pagedep->pd_state &= ~IOSTARTED;
3859 * Process any directory removals that have been committed.
3861 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3862 LIST_REMOVE(dirrem, dm_next);
3863 dirrem->dm_dirinum = pagedep->pd_ino;
3864 add_to_worklist(&dirrem->dm_list);
3867 * Free any directory additions that have been committed.
3869 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3870 free_diradd(dap);
3872 * Uncommitted directory entries must be restored.
3874 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3875 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3876 dap = nextdap) {
3877 nextdap = LIST_NEXT(dap, da_pdlist);
3878 if (dap->da_state & ATTACHED) {
3879 lk.lkt_held = NOHOLDER;
3880 panic("handle_written_filepage: attached");
3882 ep = (struct direct *)
3883 ((char *)bp->b_data + dap->da_offset);
3884 ep->d_ino = dap->da_newinum;
3885 dap->da_state &= ~UNDONE;
3886 dap->da_state |= ATTACHED;
3887 chgs = 1;
3889 * If the inode referenced by the directory has
3890 * been written out, then the dependency can be
3891 * moved to the pending list.
3893 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3894 LIST_REMOVE(dap, da_pdlist);
3895 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3896 da_pdlist);
3901 * If there were any rollbacks in the directory, then it must be
3902 * marked dirty so that its will eventually get written back in
3903 * its correct form.
3905 if (chgs) {
3906 if ((bp->b_flags & B_DELWRI) == 0)
3907 stat_dir_entry++;
3908 bdirty(bp);
3911 * If no dependencies remain, the pagedep will be freed.
3912 * Otherwise it will remain to update the page before it
3913 * is written back to disk.
3915 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3916 for (i = 0; i < DAHASHSZ; i++)
3917 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3918 break;
3919 if (i == DAHASHSZ) {
3920 LIST_REMOVE(pagedep, pd_hash);
3921 WORKITEM_FREE(pagedep, D_PAGEDEP);
3922 return (0);
3925 return (1);
3929 * Writing back in-core inode structures.
3931 * The filesystem only accesses an inode's contents when it occupies an
3932 * "in-core" inode structure. These "in-core" structures are separate from
3933 * the page frames used to cache inode blocks. Only the latter are
3934 * transferred to/from the disk. So, when the updated contents of the
3935 * "in-core" inode structure are copied to the corresponding in-memory inode
3936 * block, the dependencies are also transferred. The following procedure is
3937 * called when copying a dirty "in-core" inode to a cached inode block.
3941 * Called when an inode is loaded from disk. If the effective link count
3942 * differed from the actual link count when it was last flushed, then we
3943 * need to ensure that the correct effective link count is put back.
3945 * Parameters:
3946 * ip: the "in_core" copy of the inode
3948 void
3949 softdep_load_inodeblock(struct inode *ip)
3951 struct inodedep *inodedep;
3954 * Check for alternate nlink count.
3956 ip->i_effnlink = ip->i_nlink;
3957 ACQUIRE_LOCK(&lk);
3958 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3959 FREE_LOCK(&lk);
3960 return;
3962 ip->i_effnlink -= inodedep->id_nlinkdelta;
3963 FREE_LOCK(&lk);
3967 * This routine is called just before the "in-core" inode
3968 * information is to be copied to the in-memory inode block.
3969 * Recall that an inode block contains several inodes. If
3970 * the force flag is set, then the dependencies will be
3971 * cleared so that the update can always be made. Note that
3972 * the buffer is locked when this routine is called, so we
3973 * will never be in the middle of writing the inode block
3974 * to disk.
3976 * Parameters:
3977 * ip: the "in_core" copy of the inode
3978 * bp: the buffer containing the inode block
3979 * waitfor: nonzero => update must be allowed
3981 void
3982 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3983 int waitfor)
3985 struct inodedep *inodedep;
3986 struct worklist *wk;
3987 int error, gotit;
3990 * If the effective link count is not equal to the actual link
3991 * count, then we must track the difference in an inodedep while
3992 * the inode is (potentially) tossed out of the cache. Otherwise,
3993 * if there is no existing inodedep, then there are no dependencies
3994 * to track.
3996 ACQUIRE_LOCK(&lk);
3997 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3998 FREE_LOCK(&lk);
3999 if (ip->i_effnlink != ip->i_nlink)
4000 panic("softdep_update_inodeblock: bad link count");
4001 return;
4003 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4004 FREE_LOCK(&lk);
4005 panic("softdep_update_inodeblock: bad delta");
4008 * Changes have been initiated. Anything depending on these
4009 * changes cannot occur until this inode has been written.
4011 inodedep->id_state &= ~COMPLETE;
4012 if ((inodedep->id_state & ONWORKLIST) == 0)
4013 WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4015 * Any new dependencies associated with the incore inode must
4016 * now be moved to the list associated with the buffer holding
4017 * the in-memory copy of the inode. Once merged process any
4018 * allocdirects that are completed by the merger.
4020 merge_inode_lists(inodedep);
4021 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4022 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4024 * Now that the inode has been pushed into the buffer, the
4025 * operations dependent on the inode being written to disk
4026 * can be moved to the id_bufwait so that they will be
4027 * processed when the buffer I/O completes.
4029 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4030 WORKLIST_REMOVE(wk);
4031 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4034 * Newly allocated inodes cannot be written until the bitmap
4035 * that allocates them have been written (indicated by
4036 * DEPCOMPLETE being set in id_state). If we are doing a
4037 * forced sync (e.g., an fsync on a file), we force the bitmap
4038 * to be written so that the update can be done.
4040 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4041 FREE_LOCK(&lk);
4042 return;
4044 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4045 FREE_LOCK(&lk);
4046 if (gotit &&
4047 (error = bwrite(inodedep->id_buf)) != 0)
4048 softdep_error("softdep_update_inodeblock: bwrite", error);
4052 * Merge the new inode dependency list (id_newinoupdt) into the old
4053 * inode dependency list (id_inoupdt). This routine must be called
4054 * with splbio interrupts blocked.
4056 static void
4057 merge_inode_lists(struct inodedep *inodedep)
4059 struct allocdirect *listadp, *newadp;
4061 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4062 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4063 if (listadp->ad_lbn < newadp->ad_lbn) {
4064 listadp = TAILQ_NEXT(listadp, ad_next);
4065 continue;
4067 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4068 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4069 if (listadp->ad_lbn == newadp->ad_lbn) {
4070 allocdirect_merge(&inodedep->id_inoupdt, newadp,
4071 listadp);
4072 listadp = newadp;
4074 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4076 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4077 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4078 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4083 * If we are doing an fsync, then we must ensure that any directory
4084 * entries for the inode have been written after the inode gets to disk.
4086 * Parameters:
4087 * vp: the "in_core" copy of the inode
4089 static int
4090 softdep_fsync(struct vnode *vp)
4092 struct inodedep *inodedep;
4093 struct pagedep *pagedep;
4094 struct worklist *wk;
4095 struct diradd *dap;
4096 struct mount *mnt;
4097 struct vnode *pvp;
4098 struct inode *ip;
4099 struct buf *bp;
4100 struct fs *fs;
4101 int error, flushparent;
4102 ino_t parentino;
4103 ufs_lbn_t lbn;
4106 * Move check from original kernel code, possibly not needed any
4107 * more with the per-mount bioops.
4109 if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4110 return (0);
4112 ip = VTOI(vp);
4113 fs = ip->i_fs;
4114 ACQUIRE_LOCK(&lk);
4115 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4116 FREE_LOCK(&lk);
4117 return (0);
4119 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4120 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4121 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4122 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4123 FREE_LOCK(&lk);
4124 panic("softdep_fsync: pending ops");
4126 for (error = 0, flushparent = 0; ; ) {
4127 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4128 break;
4129 if (wk->wk_type != D_DIRADD) {
4130 FREE_LOCK(&lk);
4131 panic("softdep_fsync: Unexpected type %s",
4132 TYPENAME(wk->wk_type));
4134 dap = WK_DIRADD(wk);
4136 * Flush our parent if this directory entry
4137 * has a MKDIR_PARENT dependency.
4139 if (dap->da_state & DIRCHG)
4140 pagedep = dap->da_previous->dm_pagedep;
4141 else
4142 pagedep = dap->da_pagedep;
4143 mnt = pagedep->pd_mnt;
4144 parentino = pagedep->pd_ino;
4145 lbn = pagedep->pd_lbn;
4146 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4147 FREE_LOCK(&lk);
4148 panic("softdep_fsync: dirty");
4150 flushparent = dap->da_state & MKDIR_PARENT;
4152 * If we are being fsync'ed as part of vgone'ing this vnode,
4153 * then we will not be able to release and recover the
4154 * vnode below, so we just have to give up on writing its
4155 * directory entry out. It will eventually be written, just
4156 * not now, but then the user was not asking to have it
4157 * written, so we are not breaking any promises.
4159 if (vp->v_flag & VRECLAIMED)
4160 break;
4162 * We prevent deadlock by always fetching inodes from the
4163 * root, moving down the directory tree. Thus, when fetching
4164 * our parent directory, we must unlock ourselves before
4165 * requesting the lock on our parent. See the comment in
4166 * ufs_lookup for details on possible races.
4168 FREE_LOCK(&lk);
4169 vn_unlock(vp);
4170 error = VFS_VGET(mnt, parentino, &pvp);
4171 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4172 if (error != 0)
4173 return (error);
4174 if (flushparent) {
4175 if ((error = ffs_update(pvp, 1)) != 0) {
4176 vput(pvp);
4177 return (error);
4181 * Flush directory page containing the inode's name.
4183 error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4184 if (error == 0)
4185 error = bwrite(bp);
4186 vput(pvp);
4187 if (error != 0)
4188 return (error);
4189 ACQUIRE_LOCK(&lk);
4190 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4191 break;
4193 FREE_LOCK(&lk);
4194 return (0);
4198 * Flush all the dirty bitmaps associated with the block device
4199 * before flushing the rest of the dirty blocks so as to reduce
4200 * the number of dependencies that will have to be rolled back.
4202 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4204 void
4205 softdep_fsync_mountdev(struct vnode *vp)
4207 if (!vn_isdisk(vp, NULL))
4208 panic("softdep_fsync_mountdev: vnode not a disk");
4209 ACQUIRE_LOCK(&lk);
4210 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4211 softdep_fsync_mountdev_bp, vp);
4212 drain_output(vp, 1);
4213 FREE_LOCK(&lk);
4216 static int
4217 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4219 struct worklist *wk;
4220 struct vnode *vp = data;
4223 * If it is already scheduled, skip to the next buffer.
4225 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4226 return(0);
4227 if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4228 BUF_UNLOCK(bp);
4229 kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4230 return(0);
4233 * We are only interested in bitmaps with outstanding
4234 * dependencies.
4236 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4237 wk->wk_type != D_BMSAFEMAP) {
4238 BUF_UNLOCK(bp);
4239 return(0);
4241 bremfree(bp);
4242 FREE_LOCK(&lk);
4243 (void) bawrite(bp);
4244 ACQUIRE_LOCK(&lk);
4245 return(0);
4249 * This routine is called when we are trying to synchronously flush a
4250 * file. This routine must eliminate any filesystem metadata dependencies
4251 * so that the syncing routine can succeed by pushing the dirty blocks
4252 * associated with the file. If any I/O errors occur, they are returned.
4254 struct softdep_sync_metadata_info {
4255 struct vnode *vp;
4256 int waitfor;
4259 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4262 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4264 struct softdep_sync_metadata_info info;
4265 int error, waitfor;
4268 * Check whether this vnode is involved in a filesystem
4269 * that is doing soft dependency processing.
4271 if (!vn_isdisk(vp, NULL)) {
4272 if (!DOINGSOFTDEP(vp))
4273 return (0);
4274 } else
4275 if (vp->v_rdev->si_mountpoint == NULL ||
4276 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4277 return (0);
4279 * Ensure that any direct block dependencies have been cleared.
4281 ACQUIRE_LOCK(&lk);
4282 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4283 FREE_LOCK(&lk);
4284 return (error);
4287 * For most files, the only metadata dependencies are the
4288 * cylinder group maps that allocate their inode or blocks.
4289 * The block allocation dependencies can be found by traversing
4290 * the dependency lists for any buffers that remain on their
4291 * dirty buffer list. The inode allocation dependency will
4292 * be resolved when the inode is updated with MNT_WAIT.
4293 * This work is done in two passes. The first pass grabs most
4294 * of the buffers and begins asynchronously writing them. The
4295 * only way to wait for these asynchronous writes is to sleep
4296 * on the filesystem vnode which may stay busy for a long time
4297 * if the filesystem is active. So, instead, we make a second
4298 * pass over the dependencies blocking on each write. In the
4299 * usual case we will be blocking against a write that we
4300 * initiated, so when it is done the dependency will have been
4301 * resolved. Thus the second pass is expected to end quickly.
4303 waitfor = MNT_NOWAIT;
4304 top:
4306 * We must wait for any I/O in progress to finish so that
4307 * all potential buffers on the dirty list will be visible.
4309 drain_output(vp, 1);
4310 info.vp = vp;
4311 info.waitfor = waitfor;
4312 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4313 softdep_sync_metadata_bp, &info);
4314 if (error < 0) {
4315 FREE_LOCK(&lk);
4316 return(-error); /* error code */
4320 * The brief unlock is to allow any pent up dependency
4321 * processing to be done. Then proceed with the second pass.
4323 if (waitfor == MNT_NOWAIT) {
4324 waitfor = MNT_WAIT;
4325 FREE_LOCK(&lk);
4326 ACQUIRE_LOCK(&lk);
4327 goto top;
4331 * If we have managed to get rid of all the dirty buffers,
4332 * then we are done. For certain directories and block
4333 * devices, we may need to do further work.
4335 * We must wait for any I/O in progress to finish so that
4336 * all potential buffers on the dirty list will be visible.
4338 drain_output(vp, 1);
4339 if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4340 FREE_LOCK(&lk);
4341 return (0);
4344 FREE_LOCK(&lk);
4346 * If we are trying to sync a block device, some of its buffers may
4347 * contain metadata that cannot be written until the contents of some
4348 * partially written files have been written to disk. The only easy
4349 * way to accomplish this is to sync the entire filesystem (luckily
4350 * this happens rarely).
4352 if (vn_isdisk(vp, NULL) &&
4353 vp->v_rdev &&
4354 vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4355 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4356 return (error);
4357 return (0);
4360 static int
4361 softdep_sync_metadata_bp(struct buf *bp, void *data)
4363 struct softdep_sync_metadata_info *info = data;
4364 struct pagedep *pagedep;
4365 struct allocdirect *adp;
4366 struct allocindir *aip;
4367 struct worklist *wk;
4368 struct buf *nbp;
4369 int error;
4370 int i;
4372 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4373 kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4374 return (1);
4376 if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4377 kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4378 BUF_UNLOCK(bp);
4379 return(1);
4383 * As we hold the buffer locked, none of its dependencies
4384 * will disappear.
4386 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4387 switch (wk->wk_type) {
4389 case D_ALLOCDIRECT:
4390 adp = WK_ALLOCDIRECT(wk);
4391 if (adp->ad_state & DEPCOMPLETE)
4392 break;
4393 nbp = adp->ad_buf;
4394 if (getdirtybuf(&nbp, info->waitfor) == 0)
4395 break;
4396 FREE_LOCK(&lk);
4397 if (info->waitfor == MNT_NOWAIT) {
4398 bawrite(nbp);
4399 } else if ((error = bwrite(nbp)) != 0) {
4400 bawrite(bp);
4401 ACQUIRE_LOCK(&lk);
4402 return (-error);
4404 ACQUIRE_LOCK(&lk);
4405 break;
4407 case D_ALLOCINDIR:
4408 aip = WK_ALLOCINDIR(wk);
4409 if (aip->ai_state & DEPCOMPLETE)
4410 break;
4411 nbp = aip->ai_buf;
4412 if (getdirtybuf(&nbp, info->waitfor) == 0)
4413 break;
4414 FREE_LOCK(&lk);
4415 if (info->waitfor == MNT_NOWAIT) {
4416 bawrite(nbp);
4417 } else if ((error = bwrite(nbp)) != 0) {
4418 bawrite(bp);
4419 ACQUIRE_LOCK(&lk);
4420 return (-error);
4422 ACQUIRE_LOCK(&lk);
4423 break;
4425 case D_INDIRDEP:
4426 restart:
4428 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4429 if (aip->ai_state & DEPCOMPLETE)
4430 continue;
4431 nbp = aip->ai_buf;
4432 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4433 goto restart;
4434 FREE_LOCK(&lk);
4435 if ((error = bwrite(nbp)) != 0) {
4436 bawrite(bp);
4437 ACQUIRE_LOCK(&lk);
4438 return (-error);
4440 ACQUIRE_LOCK(&lk);
4441 goto restart;
4443 break;
4445 case D_INODEDEP:
4446 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4447 WK_INODEDEP(wk)->id_ino)) != 0) {
4448 FREE_LOCK(&lk);
4449 bawrite(bp);
4450 ACQUIRE_LOCK(&lk);
4451 return (-error);
4453 break;
4455 case D_PAGEDEP:
4457 * We are trying to sync a directory that may
4458 * have dependencies on both its own metadata
4459 * and/or dependencies on the inodes of any
4460 * recently allocated files. We walk its diradd
4461 * lists pushing out the associated inode.
4463 pagedep = WK_PAGEDEP(wk);
4464 for (i = 0; i < DAHASHSZ; i++) {
4465 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4466 continue;
4467 if ((error =
4468 flush_pagedep_deps(info->vp,
4469 pagedep->pd_mnt,
4470 &pagedep->pd_diraddhd[i]))) {
4471 FREE_LOCK(&lk);
4472 bawrite(bp);
4473 ACQUIRE_LOCK(&lk);
4474 return (-error);
4477 break;
4479 case D_MKDIR:
4481 * This case should never happen if the vnode has
4482 * been properly sync'ed. However, if this function
4483 * is used at a place where the vnode has not yet
4484 * been sync'ed, this dependency can show up. So,
4485 * rather than panic, just flush it.
4487 nbp = WK_MKDIR(wk)->md_buf;
4488 if (getdirtybuf(&nbp, info->waitfor) == 0)
4489 break;
4490 FREE_LOCK(&lk);
4491 if (info->waitfor == MNT_NOWAIT) {
4492 bawrite(nbp);
4493 } else if ((error = bwrite(nbp)) != 0) {
4494 bawrite(bp);
4495 ACQUIRE_LOCK(&lk);
4496 return (-error);
4498 ACQUIRE_LOCK(&lk);
4499 break;
4501 case D_BMSAFEMAP:
4503 * This case should never happen if the vnode has
4504 * been properly sync'ed. However, if this function
4505 * is used at a place where the vnode has not yet
4506 * been sync'ed, this dependency can show up. So,
4507 * rather than panic, just flush it.
4509 * nbp can wind up == bp if a device node for the
4510 * same filesystem is being fsynced at the same time,
4511 * leading to a panic if we don't catch the case.
4513 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4514 if (nbp == bp)
4515 break;
4516 if (getdirtybuf(&nbp, info->waitfor) == 0)
4517 break;
4518 FREE_LOCK(&lk);
4519 if (info->waitfor == MNT_NOWAIT) {
4520 bawrite(nbp);
4521 } else if ((error = bwrite(nbp)) != 0) {
4522 bawrite(bp);
4523 ACQUIRE_LOCK(&lk);
4524 return (-error);
4526 ACQUIRE_LOCK(&lk);
4527 break;
4529 default:
4530 FREE_LOCK(&lk);
4531 panic("softdep_sync_metadata: Unknown type %s",
4532 TYPENAME(wk->wk_type));
4533 /* NOTREACHED */
4536 FREE_LOCK(&lk);
4537 bawrite(bp);
4538 ACQUIRE_LOCK(&lk);
4539 return(0);
4543 * Flush the dependencies associated with an inodedep.
4544 * Called with splbio blocked.
4546 static int
4547 flush_inodedep_deps(struct fs *fs, ino_t ino)
4549 struct inodedep *inodedep;
4550 struct allocdirect *adp;
4551 int error, waitfor;
4552 struct buf *bp;
4555 * This work is done in two passes. The first pass grabs most
4556 * of the buffers and begins asynchronously writing them. The
4557 * only way to wait for these asynchronous writes is to sleep
4558 * on the filesystem vnode which may stay busy for a long time
4559 * if the filesystem is active. So, instead, we make a second
4560 * pass over the dependencies blocking on each write. In the
4561 * usual case we will be blocking against a write that we
4562 * initiated, so when it is done the dependency will have been
4563 * resolved. Thus the second pass is expected to end quickly.
4564 * We give a brief window at the top of the loop to allow
4565 * any pending I/O to complete.
4567 for (waitfor = MNT_NOWAIT; ; ) {
4568 FREE_LOCK(&lk);
4569 ACQUIRE_LOCK(&lk);
4570 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4571 return (0);
4572 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4573 if (adp->ad_state & DEPCOMPLETE)
4574 continue;
4575 bp = adp->ad_buf;
4576 if (getdirtybuf(&bp, waitfor) == 0) {
4577 if (waitfor == MNT_NOWAIT)
4578 continue;
4579 break;
4581 FREE_LOCK(&lk);
4582 if (waitfor == MNT_NOWAIT) {
4583 bawrite(bp);
4584 } else if ((error = bwrite(bp)) != 0) {
4585 ACQUIRE_LOCK(&lk);
4586 return (error);
4588 ACQUIRE_LOCK(&lk);
4589 break;
4591 if (adp != NULL)
4592 continue;
4593 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4594 if (adp->ad_state & DEPCOMPLETE)
4595 continue;
4596 bp = adp->ad_buf;
4597 if (getdirtybuf(&bp, waitfor) == 0) {
4598 if (waitfor == MNT_NOWAIT)
4599 continue;
4600 break;
4602 FREE_LOCK(&lk);
4603 if (waitfor == MNT_NOWAIT) {
4604 bawrite(bp);
4605 } else if ((error = bwrite(bp)) != 0) {
4606 ACQUIRE_LOCK(&lk);
4607 return (error);
4609 ACQUIRE_LOCK(&lk);
4610 break;
4612 if (adp != NULL)
4613 continue;
4615 * If pass2, we are done, otherwise do pass 2.
4617 if (waitfor == MNT_WAIT)
4618 break;
4619 waitfor = MNT_WAIT;
4622 * Try freeing inodedep in case all dependencies have been removed.
4624 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4625 (void) free_inodedep(inodedep);
4626 return (0);
4630 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4631 * Called with splbio blocked.
4633 static int
4634 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4635 struct diraddhd *diraddhdp)
4637 struct inodedep *inodedep;
4638 struct ufsmount *ump;
4639 struct diradd *dap;
4640 struct vnode *vp;
4641 int gotit, error = 0;
4642 struct buf *bp;
4643 ino_t inum;
4645 ump = VFSTOUFS(mp);
4646 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4648 * Flush ourselves if this directory entry
4649 * has a MKDIR_PARENT dependency.
4651 if (dap->da_state & MKDIR_PARENT) {
4652 FREE_LOCK(&lk);
4653 if ((error = ffs_update(pvp, 1)) != 0)
4654 break;
4655 ACQUIRE_LOCK(&lk);
4657 * If that cleared dependencies, go on to next.
4659 if (dap != LIST_FIRST(diraddhdp))
4660 continue;
4661 if (dap->da_state & MKDIR_PARENT) {
4662 FREE_LOCK(&lk);
4663 panic("flush_pagedep_deps: MKDIR_PARENT");
4667 * A newly allocated directory must have its "." and
4668 * ".." entries written out before its name can be
4669 * committed in its parent. We do not want or need
4670 * the full semantics of a synchronous VOP_FSYNC as
4671 * that may end up here again, once for each directory
4672 * level in the filesystem. Instead, we push the blocks
4673 * and wait for them to clear. We have to fsync twice
4674 * because the first call may choose to defer blocks
4675 * that still have dependencies, but deferral will
4676 * happen at most once.
4678 inum = dap->da_newinum;
4679 if (dap->da_state & MKDIR_BODY) {
4680 FREE_LOCK(&lk);
4681 if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4682 break;
4683 if ((error=VOP_FSYNC(vp, MNT_NOWAIT)) ||
4684 (error=VOP_FSYNC(vp, MNT_NOWAIT))) {
4685 vput(vp);
4686 break;
4688 drain_output(vp, 0);
4689 vput(vp);
4690 ACQUIRE_LOCK(&lk);
4692 * If that cleared dependencies, go on to next.
4694 if (dap != LIST_FIRST(diraddhdp))
4695 continue;
4696 if (dap->da_state & MKDIR_BODY) {
4697 FREE_LOCK(&lk);
4698 panic("flush_pagedep_deps: MKDIR_BODY");
4702 * Flush the inode on which the directory entry depends.
4703 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4704 * the only remaining dependency is that the updated inode
4705 * count must get pushed to disk. The inode has already
4706 * been pushed into its inode buffer (via VOP_UPDATE) at
4707 * the time of the reference count change. So we need only
4708 * locate that buffer, ensure that there will be no rollback
4709 * caused by a bitmap dependency, then write the inode buffer.
4711 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4712 FREE_LOCK(&lk);
4713 panic("flush_pagedep_deps: lost inode");
4716 * If the inode still has bitmap dependencies,
4717 * push them to disk.
4719 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4720 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4721 FREE_LOCK(&lk);
4722 if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4723 break;
4724 ACQUIRE_LOCK(&lk);
4725 if (dap != LIST_FIRST(diraddhdp))
4726 continue;
4729 * If the inode is still sitting in a buffer waiting
4730 * to be written, push it to disk.
4732 FREE_LOCK(&lk);
4733 if ((error = bread(ump->um_devvp,
4734 fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4735 (int)ump->um_fs->fs_bsize, &bp)) != 0)
4736 break;
4737 if ((error = bwrite(bp)) != 0)
4738 break;
4739 ACQUIRE_LOCK(&lk);
4741 * If we have failed to get rid of all the dependencies
4742 * then something is seriously wrong.
4744 if (dap == LIST_FIRST(diraddhdp)) {
4745 FREE_LOCK(&lk);
4746 panic("flush_pagedep_deps: flush failed");
4749 if (error)
4750 ACQUIRE_LOCK(&lk);
4751 return (error);
4755 * A large burst of file addition or deletion activity can drive the
4756 * memory load excessively high. First attempt to slow things down
4757 * using the techniques below. If that fails, this routine requests
4758 * the offending operations to fall back to running synchronously
4759 * until the memory load returns to a reasonable level.
4762 softdep_slowdown(struct vnode *vp)
4764 int max_softdeps_hard;
4766 max_softdeps_hard = max_softdeps * 11 / 10;
4767 if (num_dirrem < max_softdeps_hard / 2 &&
4768 num_inodedep < max_softdeps_hard)
4769 return (0);
4770 stat_sync_limit_hit += 1;
4771 return (1);
4775 * If memory utilization has gotten too high, deliberately slow things
4776 * down and speed up the I/O processing.
4778 static int
4779 request_cleanup(int resource, int islocked)
4781 struct thread *td = curthread; /* XXX */
4784 * We never hold up the filesystem syncer process.
4786 if (td == filesys_syncer)
4787 return (0);
4789 * First check to see if the work list has gotten backlogged.
4790 * If it has, co-opt this process to help clean up two entries.
4791 * Because this process may hold inodes locked, we cannot
4792 * handle any remove requests that might block on a locked
4793 * inode as that could lead to deadlock.
4795 if (num_on_worklist > max_softdeps / 10) {
4796 if (islocked)
4797 FREE_LOCK(&lk);
4798 process_worklist_item(NULL, LK_NOWAIT);
4799 process_worklist_item(NULL, LK_NOWAIT);
4800 stat_worklist_push += 2;
4801 if (islocked)
4802 ACQUIRE_LOCK(&lk);
4803 return(1);
4807 * If we are resource constrained on inode dependencies, try
4808 * flushing some dirty inodes. Otherwise, we are constrained
4809 * by file deletions, so try accelerating flushes of directories
4810 * with removal dependencies. We would like to do the cleanup
4811 * here, but we probably hold an inode locked at this point and
4812 * that might deadlock against one that we try to clean. So,
4813 * the best that we can do is request the syncer daemon to do
4814 * the cleanup for us.
4816 switch (resource) {
4818 case FLUSH_INODES:
4819 stat_ino_limit_push += 1;
4820 req_clear_inodedeps += 1;
4821 stat_countp = &stat_ino_limit_hit;
4822 break;
4824 case FLUSH_REMOVE:
4825 stat_blk_limit_push += 1;
4826 req_clear_remove += 1;
4827 stat_countp = &stat_blk_limit_hit;
4828 break;
4830 default:
4831 if (islocked)
4832 FREE_LOCK(&lk);
4833 panic("request_cleanup: unknown type");
4836 * Hopefully the syncer daemon will catch up and awaken us.
4837 * We wait at most tickdelay before proceeding in any case.
4839 if (islocked == 0)
4840 ACQUIRE_LOCK(&lk);
4841 proc_waiting += 1;
4842 if (!callout_active(&handle))
4843 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4844 pause_timer, NULL);
4845 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4846 "softupdate", 0);
4847 proc_waiting -= 1;
4848 if (islocked == 0)
4849 FREE_LOCK(&lk);
4850 return (1);
4854 * Awaken processes pausing in request_cleanup and clear proc_waiting
4855 * to indicate that there is no longer a timer running.
4857 void
4858 pause_timer(void *arg)
4860 *stat_countp += 1;
4861 wakeup_one(&proc_waiting);
4862 if (proc_waiting > 0)
4863 callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4864 pause_timer, NULL);
4865 else
4866 callout_deactivate(&handle);
4870 * Flush out a directory with at least one removal dependency in an effort to
4871 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4873 static void
4874 clear_remove(struct thread *td)
4876 struct pagedep_hashhead *pagedephd;
4877 struct pagedep *pagedep;
4878 static int next = 0;
4879 struct mount *mp;
4880 struct vnode *vp;
4881 int error, cnt;
4882 ino_t ino;
4884 ACQUIRE_LOCK(&lk);
4885 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4886 pagedephd = &pagedep_hashtbl[next++];
4887 if (next >= pagedep_hash)
4888 next = 0;
4889 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4890 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4891 continue;
4892 mp = pagedep->pd_mnt;
4893 ino = pagedep->pd_ino;
4894 FREE_LOCK(&lk);
4895 if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4896 softdep_error("clear_remove: vget", error);
4897 return;
4899 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4900 softdep_error("clear_remove: fsync", error);
4901 drain_output(vp, 0);
4902 vput(vp);
4903 return;
4906 FREE_LOCK(&lk);
4910 * Clear out a block of dirty inodes in an effort to reduce
4911 * the number of inodedep dependency structures.
4913 struct clear_inodedeps_info {
4914 struct fs *fs;
4915 struct mount *mp;
4918 static int
4919 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4921 struct clear_inodedeps_info *info = data;
4923 if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4924 info->mp = mp;
4925 return(-1);
4927 return(0);
4930 static void
4931 clear_inodedeps(struct thread *td)
4933 struct clear_inodedeps_info info;
4934 struct inodedep_hashhead *inodedephd;
4935 struct inodedep *inodedep;
4936 static int next = 0;
4937 struct vnode *vp;
4938 struct fs *fs;
4939 int error, cnt;
4940 ino_t firstino, lastino, ino;
4942 ACQUIRE_LOCK(&lk);
4944 * Pick a random inode dependency to be cleared.
4945 * We will then gather up all the inodes in its block
4946 * that have dependencies and flush them out.
4948 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4949 inodedephd = &inodedep_hashtbl[next++];
4950 if (next >= inodedep_hash)
4951 next = 0;
4952 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4953 break;
4955 if (inodedep == NULL) {
4956 FREE_LOCK(&lk);
4957 return;
4960 * Ugly code to find mount point given pointer to superblock.
4962 fs = inodedep->id_fs;
4963 info.mp = NULL;
4964 info.fs = fs;
4965 mountlist_scan(clear_inodedeps_mountlist_callback,
4966 &info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4968 * Find the last inode in the block with dependencies.
4970 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4971 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4972 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4973 break;
4975 * Asynchronously push all but the last inode with dependencies.
4976 * Synchronously push the last inode with dependencies to ensure
4977 * that the inode block gets written to free up the inodedeps.
4979 for (ino = firstino; ino <= lastino; ino++) {
4980 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4981 continue;
4982 FREE_LOCK(&lk);
4983 if ((error = VFS_VGET(info.mp, ino, &vp)) != 0) {
4984 softdep_error("clear_inodedeps: vget", error);
4985 return;
4987 if (ino == lastino) {
4988 if ((error = VOP_FSYNC(vp, MNT_WAIT)))
4989 softdep_error("clear_inodedeps: fsync1", error);
4990 } else {
4991 if ((error = VOP_FSYNC(vp, MNT_NOWAIT)))
4992 softdep_error("clear_inodedeps: fsync2", error);
4993 drain_output(vp, 0);
4995 vput(vp);
4996 ACQUIRE_LOCK(&lk);
4998 FREE_LOCK(&lk);
5002 * Function to determine if the buffer has outstanding dependencies
5003 * that will cause a roll-back if the buffer is written. If wantcount
5004 * is set, return number of dependencies, otherwise just yes or no.
5006 static int
5007 softdep_count_dependencies(struct buf *bp, int wantcount)
5009 struct worklist *wk;
5010 struct inodedep *inodedep;
5011 struct indirdep *indirdep;
5012 struct allocindir *aip;
5013 struct pagedep *pagedep;
5014 struct diradd *dap;
5015 int i, retval;
5017 retval = 0;
5018 ACQUIRE_LOCK(&lk);
5019 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5020 switch (wk->wk_type) {
5022 case D_INODEDEP:
5023 inodedep = WK_INODEDEP(wk);
5024 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5025 /* bitmap allocation dependency */
5026 retval += 1;
5027 if (!wantcount)
5028 goto out;
5030 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5031 /* direct block pointer dependency */
5032 retval += 1;
5033 if (!wantcount)
5034 goto out;
5036 continue;
5038 case D_INDIRDEP:
5039 indirdep = WK_INDIRDEP(wk);
5041 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5042 /* indirect block pointer dependency */
5043 retval += 1;
5044 if (!wantcount)
5045 goto out;
5047 continue;
5049 case D_PAGEDEP:
5050 pagedep = WK_PAGEDEP(wk);
5051 for (i = 0; i < DAHASHSZ; i++) {
5053 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5054 /* directory entry dependency */
5055 retval += 1;
5056 if (!wantcount)
5057 goto out;
5060 continue;
5062 case D_BMSAFEMAP:
5063 case D_ALLOCDIRECT:
5064 case D_ALLOCINDIR:
5065 case D_MKDIR:
5066 /* never a dependency on these blocks */
5067 continue;
5069 default:
5070 FREE_LOCK(&lk);
5071 panic("softdep_check_for_rollback: Unexpected type %s",
5072 TYPENAME(wk->wk_type));
5073 /* NOTREACHED */
5076 out:
5077 FREE_LOCK(&lk);
5078 return retval;
5082 * Acquire exclusive access to a buffer.
5083 * Must be called with splbio blocked.
5084 * Return 1 if buffer was acquired.
5086 static int
5087 getdirtybuf(struct buf **bpp, int waitfor)
5089 struct buf *bp;
5090 int error;
5092 for (;;) {
5093 if ((bp = *bpp) == NULL)
5094 return (0);
5095 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5096 break;
5097 if (waitfor != MNT_WAIT)
5098 return (0);
5099 error = interlocked_sleep(&lk, LOCKBUF, bp,
5100 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5101 if (error != ENOLCK) {
5102 FREE_LOCK(&lk);
5103 panic("getdirtybuf: inconsistent lock");
5106 if ((bp->b_flags & B_DELWRI) == 0) {
5107 BUF_UNLOCK(bp);
5108 return (0);
5110 bremfree(bp);
5111 return (1);
5115 * Wait for pending output on a vnode to complete.
5116 * Must be called with vnode locked.
5118 static void
5119 drain_output(struct vnode *vp, int islocked)
5122 if (!islocked)
5123 ACQUIRE_LOCK(&lk);
5124 while (vp->v_track_write.bk_active) {
5125 vp->v_track_write.bk_waitflag = 1;
5126 interlocked_sleep(&lk, SLEEP, &vp->v_track_write,
5127 0, "drainvp", 0);
5129 if (!islocked)
5130 FREE_LOCK(&lk);
5134 * Called whenever a buffer that is being invalidated or reallocated
5135 * contains dependencies. This should only happen if an I/O error has
5136 * occurred. The routine is called with the buffer locked.
5138 static void
5139 softdep_deallocate_dependencies(struct buf *bp)
5141 if ((bp->b_flags & B_ERROR) == 0)
5142 panic("softdep_deallocate_dependencies: dangling deps");
5143 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5144 panic("softdep_deallocate_dependencies: unrecovered I/O error");
5148 * Function to handle asynchronous write errors in the filesystem.
5150 void
5151 softdep_error(char *func, int error)
5154 /* XXX should do something better! */
5155 kprintf("%s: got error %d while accessing filesystem\n", func, error);