hammer2 - Remote xop implementation part 1
[dragonfly.git] / sys / vfs / hammer2 / hammer2_vfsops.c
blob43c35e088322a6b84680426090c7c4f3e4d70093
1 /*
2 * Copyright (c) 2011-2018 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
63 #include "zlib/hammer2_zlib.h"
65 #define REPORT_REFS_ERRORS 1 /* XXX remove me */
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
69 struct hammer2_sync_info {
70 int error;
71 int waitfor;
72 int pass;
75 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
76 static struct hammer2_mntlist hammer2_mntlist;
78 struct hammer2_pfslist hammer2_pfslist;
79 struct hammer2_pfslist hammer2_spmplist;
80 struct lock hammer2_mntlk;
82 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
83 int hammer2_debug;
84 int hammer2_cluster_meta_read = 1; /* physical read-ahead */
85 int hammer2_cluster_data_read = 4; /* physical read-ahead */
86 int hammer2_dedup_enable = 1;
87 int hammer2_always_compress = 0; /* always try to compress */
88 int hammer2_inval_enable = 0;
89 int hammer2_flush_pipe = 100;
90 int hammer2_dio_count;
91 int hammer2_dio_limit = 256;
92 int hammer2_bulkfree_tps = 5000;
93 long hammer2_chain_allocs;
94 long hammer2_chain_frees;
95 long hammer2_limit_dirty_chains;
96 long hammer2_limit_dirty_inodes;
97 long hammer2_count_modified_chains;
98 long hammer2_iod_invals;
99 long hammer2_iod_file_read;
100 long hammer2_iod_meta_read;
101 long hammer2_iod_indr_read;
102 long hammer2_iod_fmap_read;
103 long hammer2_iod_volu_read;
104 long hammer2_iod_file_write;
105 long hammer2_iod_file_wembed;
106 long hammer2_iod_file_wzero;
107 long hammer2_iod_file_wdedup;
108 long hammer2_iod_meta_write;
109 long hammer2_iod_indr_write;
110 long hammer2_iod_fmap_write;
111 long hammer2_iod_volu_write;
113 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
114 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
115 "Buffer used for compression.");
117 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
118 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
119 "Buffer used for decompression.");
121 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
124 &hammer2_supported_version, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
126 &hammer2_debug, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
128 &hammer2_cluster_meta_read, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
130 &hammer2_cluster_data_read, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
132 &hammer2_dedup_enable, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
134 &hammer2_always_compress, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, inval_enable, CTLFLAG_RW,
136 &hammer2_inval_enable, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
138 &hammer2_flush_pipe, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
140 &hammer2_bulkfree_tps, 0, "");
141 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
142 &hammer2_chain_allocs, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_frees, CTLFLAG_RW,
144 &hammer2_chain_frees, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
146 &hammer2_limit_dirty_chains, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_inodes, CTLFLAG_RW,
148 &hammer2_limit_dirty_inodes, 0, "");
149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
150 &hammer2_count_modified_chains, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
152 &hammer2_dio_count, 0, "");
153 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW,
154 &hammer2_dio_limit, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_invals, CTLFLAG_RW,
157 &hammer2_iod_invals, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
159 &hammer2_iod_file_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
161 &hammer2_iod_meta_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
163 &hammer2_iod_indr_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
165 &hammer2_iod_fmap_read, 0, "");
166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
167 &hammer2_iod_volu_read, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
170 &hammer2_iod_file_write, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
172 &hammer2_iod_file_wembed, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
174 &hammer2_iod_file_wzero, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
176 &hammer2_iod_file_wdedup, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
178 &hammer2_iod_meta_write, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
180 &hammer2_iod_indr_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
182 &hammer2_iod_fmap_write, 0, "");
183 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
184 &hammer2_iod_volu_write, 0, "");
186 long hammer2_process_icrc32;
187 long hammer2_process_xxhash64;
188 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW,
189 &hammer2_process_icrc32, 0, "");
190 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW,
191 &hammer2_process_xxhash64, 0, "");
193 static int hammer2_vfs_init(struct vfsconf *conf);
194 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
195 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
196 struct ucred *cred);
197 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
198 struct vnode *, struct ucred *);
199 static int hammer2_recovery(hammer2_dev_t *hmp);
200 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
201 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
202 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
203 struct ucred *cred);
204 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
205 struct ucred *cred);
206 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
207 struct fid *fhp, struct vnode **vpp);
208 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
209 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
210 int *exflagsp, struct ucred **credanonp);
212 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
213 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
215 static void hammer2_update_pmps(hammer2_dev_t *hmp);
217 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
218 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
219 hammer2_dev_t *hmp);
220 static int hammer2_fixup_pfses(hammer2_dev_t *hmp);
223 * HAMMER2 vfs operations.
225 static struct vfsops hammer2_vfsops = {
226 .vfs_init = hammer2_vfs_init,
227 .vfs_uninit = hammer2_vfs_uninit,
228 .vfs_sync = hammer2_vfs_sync,
229 .vfs_mount = hammer2_vfs_mount,
230 .vfs_unmount = hammer2_vfs_unmount,
231 .vfs_root = hammer2_vfs_root,
232 .vfs_statfs = hammer2_vfs_statfs,
233 .vfs_statvfs = hammer2_vfs_statvfs,
234 .vfs_vget = hammer2_vfs_vget,
235 .vfs_vptofh = hammer2_vfs_vptofh,
236 .vfs_fhtovp = hammer2_vfs_fhtovp,
237 .vfs_checkexp = hammer2_vfs_checkexp
240 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
242 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
243 MODULE_VERSION(hammer2, 1);
245 static
247 hammer2_vfs_init(struct vfsconf *conf)
249 static struct objcache_malloc_args margs_read;
250 static struct objcache_malloc_args margs_write;
251 static struct objcache_malloc_args margs_vop;
253 int error;
255 error = 0;
258 * A large DIO cache is needed to retain dedup enablement masks.
259 * The bulkfree code clears related masks as part of the disk block
260 * recycling algorithm, preventing it from being used for a later
261 * dedup.
263 * NOTE: A large buffer cache can actually interfere with dedup
264 * operation because we dedup based on media physical buffers
265 * and not logical buffers. Try to make the DIO case large
266 * enough to avoid this problem, but also cap it.
268 hammer2_dio_limit = nbuf * 2;
269 if (hammer2_dio_limit > 100000)
270 hammer2_dio_limit = 100000;
272 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
273 error = EINVAL;
274 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
275 error = EINVAL;
276 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
277 error = EINVAL;
279 if (error)
280 kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
282 margs_read.objsize = 65536;
283 margs_read.mtype = M_HAMMER2_DEBUFFER;
285 margs_write.objsize = 32768;
286 margs_write.mtype = M_HAMMER2_CBUFFER;
288 margs_vop.objsize = sizeof(hammer2_xop_t);
289 margs_vop.mtype = M_HAMMER2;
292 * Note thaht for the XOPS cache we want backing store allocations
293 * to use M_ZERO. This is not allowed in objcache_get() (to avoid
294 * confusion), so use the backing store function that does it. This
295 * means that initial XOPS objects are zerod but REUSED objects are
296 * not. So we are responsible for cleaning the object up sufficiently
297 * for our needs before objcache_put()ing it back (typically just the
298 * FIFO indices).
300 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
301 0, 1, NULL, NULL, NULL,
302 objcache_malloc_alloc,
303 objcache_malloc_free,
304 &margs_read);
305 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
306 0, 1, NULL, NULL, NULL,
307 objcache_malloc_alloc,
308 objcache_malloc_free,
309 &margs_write);
310 cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
311 0, 1, NULL, NULL, NULL,
312 objcache_malloc_alloc_zero,
313 objcache_malloc_free,
314 &margs_vop);
317 lockinit(&hammer2_mntlk, "mntlk", 0, 0);
318 TAILQ_INIT(&hammer2_mntlist);
319 TAILQ_INIT(&hammer2_pfslist);
320 TAILQ_INIT(&hammer2_spmplist);
322 hammer2_limit_dirty_chains = maxvnodes / 10;
323 if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
324 hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
326 hammer2_limit_dirty_inodes = maxvnodes / 100;
327 if (hammer2_limit_dirty_inodes < 100)
328 hammer2_limit_dirty_inodes = 100;
329 if (hammer2_limit_dirty_inodes > HAMMER2_LIMIT_DIRTY_INODES)
330 hammer2_limit_dirty_inodes = HAMMER2_LIMIT_DIRTY_INODES;
332 return (error);
335 static
337 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
339 objcache_destroy(cache_buffer_read);
340 objcache_destroy(cache_buffer_write);
341 objcache_destroy(cache_xops);
342 return 0;
346 * Core PFS allocator. Used to allocate or reference the pmp structure
347 * for PFS cluster mounts and the spmp structure for media (hmp) structures.
348 * The pmp can be passed in or loaded by this function using the chain and
349 * inode data.
351 * pmp->modify_tid tracks new modify_tid transaction ids for front-end
352 * transactions. Note that synchronization does not use this field.
353 * (typically frontend operations and synchronization cannot run on the
354 * same PFS node at the same time).
356 * XXX check locking
358 hammer2_pfs_t *
359 hammer2_pfsalloc(hammer2_chain_t *chain,
360 const hammer2_inode_data_t *ripdata,
361 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
363 hammer2_pfs_t *pmp;
364 hammer2_inode_t *iroot;
365 int count;
366 int i;
367 int j;
369 pmp = NULL;
372 * Locate or create the PFS based on the cluster id. If ripdata
373 * is NULL this is a spmp which is unique and is always allocated.
375 * If the device is mounted in local mode all PFSs are considered
376 * independent and not part of any cluster (for debugging only).
378 if (ripdata) {
379 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
380 if (force_local != pmp->force_local)
381 continue;
382 if (force_local == NULL &&
383 bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
384 sizeof(pmp->pfs_clid)) == 0) {
385 break;
386 } else if (force_local && pmp->pfs_names[0] &&
387 strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
388 break;
393 if (pmp == NULL) {
394 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
395 pmp->force_local = force_local;
396 hammer2_trans_manage_init(pmp);
397 kmalloc_create(&pmp->minode, "HAMMER2-inodes");
398 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
399 lockinit(&pmp->lock, "pfslk", 0, 0);
400 lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
401 spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
402 spin_init(&pmp->xop_spin, "h2xop");
403 spin_init(&pmp->lru_spin, "h2lru");
404 RB_INIT(&pmp->inum_tree);
405 TAILQ_INIT(&pmp->sideq);
406 TAILQ_INIT(&pmp->lru_list);
407 spin_init(&pmp->list_spin, "hm2pfsalloc_list");
410 * Distribute backend operations to threads
412 for (i = 0; i < HAMMER2_XOPGROUPS; ++i)
413 hammer2_xop_group_init(pmp, &pmp->xop_groups[i]);
416 * Save the last media transaction id for the flusher. Set
417 * initial
419 if (ripdata) {
420 pmp->pfs_clid = ripdata->meta.pfs_clid;
421 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
422 } else {
423 pmp->flags |= HAMMER2_PMPF_SPMP;
424 TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry);
428 * The synchronization thread may start too early, make
429 * sure it stays frozen until we are ready to let it go.
430 * XXX
433 pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
434 HAMMER2_THREAD_REMASTER;
439 * Create the PFS's root inode and any missing XOP helper threads.
441 if ((iroot = pmp->iroot) == NULL) {
442 iroot = hammer2_inode_get(pmp, NULL, NULL, -1);
443 if (ripdata)
444 iroot->meta = ripdata->meta;
445 pmp->iroot = iroot;
446 hammer2_inode_ref(iroot);
447 hammer2_inode_unlock(iroot);
451 * Stop here if no chain is passed in.
453 if (chain == NULL)
454 goto done;
457 * When a chain is passed in we must add it to the PFS's root
458 * inode, update pmp->pfs_types[], and update the syncronization
459 * threads.
461 * When forcing local mode, mark the PFS as a MASTER regardless.
463 * At the moment empty spots can develop due to removals or failures.
464 * Ultimately we want to re-fill these spots but doing so might
465 * confused running code. XXX
467 hammer2_inode_ref(iroot);
468 hammer2_mtx_ex(&iroot->lock);
469 j = iroot->cluster.nchains;
471 if (j == HAMMER2_MAXCLUSTER) {
472 kprintf("hammer2_mount: cluster full!\n");
473 /* XXX fatal error? */
474 } else {
475 KKASSERT(chain->pmp == NULL);
476 chain->pmp = pmp;
477 hammer2_chain_ref(chain);
478 iroot->cluster.array[j].chain = chain;
479 if (force_local)
480 pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
481 else
482 pmp->pfs_types[j] = ripdata->meta.pfs_type;
483 pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
484 pmp->pfs_hmps[j] = chain->hmp;
487 * If the PFS is already mounted we must account
488 * for the mount_count here.
490 if (pmp->mp)
491 ++chain->hmp->mount_count;
494 * May have to fixup dirty chain tracking. Previous
495 * pmp was NULL so nothing to undo.
497 if (chain->flags & HAMMER2_CHAIN_MODIFIED)
498 hammer2_pfs_memory_inc(pmp);
499 ++j;
501 iroot->cluster.nchains = j;
504 * Update nmasters from any PFS inode which is part of the cluster.
505 * It is possible that this will result in a value which is too
506 * high. MASTER PFSs are authoritative for pfs_nmasters and will
507 * override this value later on.
509 * (This informs us of masters that might not currently be
510 * discoverable by this mount).
512 if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
513 pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
517 * Count visible masters. Masters are usually added with
518 * ripdata->meta.pfs_nmasters set to 1. This detects when there
519 * are more (XXX and must update the master inodes).
521 count = 0;
522 for (i = 0; i < iroot->cluster.nchains; ++i) {
523 if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
524 ++count;
526 if (pmp->pfs_nmasters < count)
527 pmp->pfs_nmasters = count;
530 * Create missing synchronization and support threads.
532 * Single-node masters (including snapshots) have nothing to
533 * synchronize and do not require this thread.
535 * Multi-node masters or any number of soft masters, slaves, copy,
536 * or other PFS types need the thread.
538 * Each thread is responsible for its particular cluster index.
539 * We use independent threads so stalls or mismatches related to
540 * any given target do not affect other targets.
542 for (i = 0; i < iroot->cluster.nchains; ++i) {
544 * Single-node masters (including snapshots) have nothing
545 * to synchronize and will make direct xops support calls,
546 * thus they do not require this thread.
548 * Note that there can be thousands of snapshots. We do not
549 * want to create thousands of threads.
551 if (pmp->pfs_nmasters <= 1 &&
552 pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
553 continue;
557 * Sync support thread
559 if (pmp->sync_thrs[i].td == NULL) {
560 hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
561 "h2nod", i, -1,
562 hammer2_primary_sync_thread);
567 * Create missing Xop threads
569 * NOTE: We create helper threads for all mounted PFSs or any
570 * PFSs with 2+ nodes (so the sync thread can update them,
571 * even if not mounted).
573 if (pmp->mp || iroot->cluster.nchains >= 2)
574 hammer2_xop_helper_create(pmp);
576 hammer2_mtx_unlock(&iroot->lock);
577 hammer2_inode_drop(iroot);
578 done:
579 return pmp;
583 * Deallocate an element of a probed PFS. If destroying and this is a
584 * MASTER, adjust nmasters.
586 * This function does not physically destroy the PFS element in its device
587 * under the super-root (see hammer2_ioctl_pfs_delete()).
589 void
590 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
592 hammer2_inode_t *iroot;
593 hammer2_chain_t *chain;
594 int j;
597 * Cleanup our reference on iroot. iroot is (should) not be needed
598 * by the flush code.
600 iroot = pmp->iroot;
601 if (iroot) {
603 * Stop synchronizing
605 * XXX flush after acquiring the iroot lock.
606 * XXX clean out the cluster index from all inode structures.
608 hammer2_thr_delete(&pmp->sync_thrs[clindex]);
611 * Remove the cluster index from the group. If destroying
612 * the PFS and this is a master, adjust pfs_nmasters.
614 hammer2_mtx_ex(&iroot->lock);
615 chain = iroot->cluster.array[clindex].chain;
616 iroot->cluster.array[clindex].chain = NULL;
618 switch(pmp->pfs_types[clindex]) {
619 case HAMMER2_PFSTYPE_MASTER:
620 if (destroying && pmp->pfs_nmasters > 0)
621 --pmp->pfs_nmasters;
622 /* XXX adjust ripdata->meta.pfs_nmasters */
623 break;
624 default:
625 break;
627 pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
629 hammer2_mtx_unlock(&iroot->lock);
632 * Release the chain.
634 if (chain) {
635 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
636 hammer2_chain_drop(chain);
640 * Terminate all XOP threads for the cluster index.
642 for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
643 hammer2_thr_delete(&pmp->xop_groups[j].thrs[clindex]);
648 * Destroy a PFS, typically only occurs after the last mount on a device
649 * has gone away.
651 static void
652 hammer2_pfsfree(hammer2_pfs_t *pmp)
654 hammer2_inode_t *iroot;
655 hammer2_chain_t *chain;
656 int i;
657 int j;
660 * Cleanup our reference on iroot. iroot is (should) not be needed
661 * by the flush code.
663 if (pmp->flags & HAMMER2_PMPF_SPMP)
664 TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry);
665 else
666 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
668 iroot = pmp->iroot;
669 if (iroot) {
670 for (i = 0; i < iroot->cluster.nchains; ++i) {
671 hammer2_thr_delete(&pmp->sync_thrs[i]);
672 for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
673 hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
675 #if REPORT_REFS_ERRORS
676 if (pmp->iroot->refs != 1)
677 kprintf("PMP->IROOT %p REFS WRONG %d\n",
678 pmp->iroot, pmp->iroot->refs);
679 #else
680 KKASSERT(pmp->iroot->refs == 1);
681 #endif
682 /* ref for pmp->iroot */
683 hammer2_inode_drop(pmp->iroot);
684 pmp->iroot = NULL;
688 * Cleanup chains remaining on LRU list.
690 hammer2_spin_ex(&pmp->lru_spin);
691 while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
692 KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU);
693 atomic_add_int(&pmp->lru_count, -1);
694 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
695 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
696 hammer2_chain_ref(chain);
697 hammer2_spin_unex(&pmp->lru_spin);
698 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
699 hammer2_chain_drop(chain);
700 hammer2_spin_ex(&pmp->lru_spin);
702 hammer2_spin_unex(&pmp->lru_spin);
705 * Free remaining pmp resources
707 kmalloc_destroy(&pmp->mmsg);
708 kmalloc_destroy(&pmp->minode);
710 kfree(pmp, M_HAMMER2);
714 * Remove all references to hmp from the pfs list. Any PFS which becomes
715 * empty is terminated and freed.
717 * XXX inefficient.
719 static void
720 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which)
722 hammer2_pfs_t *pmp;
723 hammer2_inode_t *iroot;
724 hammer2_chain_t *rchain;
725 int didfreeze;
726 int i;
727 int j;
728 struct hammer2_pfslist *wlist;
730 if (which == 0)
731 wlist = &hammer2_pfslist;
732 else
733 wlist = &hammer2_spmplist;
734 again:
735 TAILQ_FOREACH(pmp, wlist, mntentry) {
736 if ((iroot = pmp->iroot) == NULL)
737 continue;
738 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
739 hammer2_inode_run_sideq(pmp, 1);
740 hammer2_bioq_sync(pmp);
741 hammer2_trans_done(pmp, 0);
744 * Determine if this PFS is affected. If it is we must
745 * freeze all management threads and lock its iroot.
747 * Freezing a management thread forces it idle, operations
748 * in-progress will be aborted and it will have to start
749 * over again when unfrozen, or exit if told to exit.
751 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
752 if (pmp->pfs_hmps[i] == hmp)
753 break;
755 if (i != HAMMER2_MAXCLUSTER) {
757 * Make sure all synchronization threads are locked
758 * down.
760 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
761 if (pmp->pfs_hmps[i] == NULL)
762 continue;
763 hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
764 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
765 hammer2_thr_freeze_async(
766 &pmp->xop_groups[j].thrs[i]);
769 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
770 if (pmp->pfs_hmps[i] == NULL)
771 continue;
772 hammer2_thr_freeze(&pmp->sync_thrs[i]);
773 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
774 hammer2_thr_freeze(
775 &pmp->xop_groups[j].thrs[i]);
780 * Lock the inode and clean out matching chains.
781 * Note that we cannot use hammer2_inode_lock_*()
782 * here because that would attempt to validate the
783 * cluster that we are in the middle of ripping
784 * apart.
786 * WARNING! We are working directly on the inodes
787 * embedded cluster.
789 hammer2_mtx_ex(&iroot->lock);
792 * Remove the chain from matching elements of the PFS.
794 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
795 if (pmp->pfs_hmps[i] != hmp)
796 continue;
797 hammer2_thr_delete(&pmp->sync_thrs[i]);
798 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
799 hammer2_thr_delete(
800 &pmp->xop_groups[j].thrs[i]);
802 rchain = iroot->cluster.array[i].chain;
803 iroot->cluster.array[i].chain = NULL;
804 pmp->pfs_types[i] = 0;
805 if (pmp->pfs_names[i]) {
806 kfree(pmp->pfs_names[i], M_HAMMER2);
807 pmp->pfs_names[i] = NULL;
809 if (rchain) {
810 hammer2_chain_drop(rchain);
811 /* focus hint */
812 if (iroot->cluster.focus == rchain)
813 iroot->cluster.focus = NULL;
815 pmp->pfs_hmps[i] = NULL;
817 hammer2_mtx_unlock(&iroot->lock);
818 didfreeze = 1; /* remaster, unfreeze down below */
819 } else {
820 didfreeze = 0;
824 * Cleanup trailing chains. Gaps may remain.
826 for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
827 if (pmp->pfs_hmps[i])
828 break;
830 iroot->cluster.nchains = i + 1;
833 * If the PMP has no elements remaining we can destroy it.
834 * (this will transition management threads from frozen->exit).
836 if (iroot->cluster.nchains == 0) {
838 * If this was the hmp's spmp, we need to clean
839 * a little more stuff out.
841 if (hmp->spmp == pmp) {
842 hmp->spmp = NULL;
843 hmp->vchain.pmp = NULL;
844 hmp->fchain.pmp = NULL;
848 * Free the pmp and restart the loop
850 hammer2_pfsfree(pmp);
851 goto again;
855 * If elements still remain we need to set the REMASTER
856 * flag and unfreeze it.
858 if (didfreeze) {
859 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
860 if (pmp->pfs_hmps[i] == NULL)
861 continue;
862 hammer2_thr_remaster(&pmp->sync_thrs[i]);
863 hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
864 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
865 hammer2_thr_remaster(
866 &pmp->xop_groups[j].thrs[i]);
867 hammer2_thr_unfreeze(
868 &pmp->xop_groups[j].thrs[i]);
876 * Mount or remount HAMMER2 fileystem from physical media
878 * mountroot
879 * mp mount point structure
880 * path NULL
881 * data <unused>
882 * cred <unused>
884 * mount
885 * mp mount point structure
886 * path path to mount point
887 * data pointer to argument structure in user space
888 * volume volume path (device@LABEL form)
889 * hflags user mount flags
890 * cred user credentials
892 * RETURNS: 0 Success
893 * !0 error number
895 static
897 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
898 struct ucred *cred)
900 struct hammer2_mount_info info;
901 hammer2_pfs_t *pmp;
902 hammer2_pfs_t *spmp;
903 hammer2_dev_t *hmp;
904 hammer2_dev_t *force_local;
905 hammer2_key_t key_next;
906 hammer2_key_t key_dummy;
907 hammer2_key_t lhc;
908 struct vnode *devvp;
909 struct nlookupdata nd;
910 hammer2_chain_t *parent;
911 hammer2_chain_t *chain;
912 const hammer2_inode_data_t *ripdata;
913 hammer2_blockref_t bref;
914 struct file *fp;
915 char devstr[MNAMELEN];
916 size_t size;
917 size_t done;
918 char *dev;
919 char *label;
920 int ronly = 1;
921 int error;
922 int i;
924 hmp = NULL;
925 pmp = NULL;
926 dev = NULL;
927 label = NULL;
928 devvp = NULL;
930 if (path == NULL) {
932 * Root mount
934 bzero(&info, sizeof(info));
935 info.cluster_fd = -1;
936 ksnprintf(devstr, sizeof(devstr), "%s",
937 mp->mnt_stat.f_mntfromname);
938 kprintf("hammer2_mount: root '%s'\n", devstr);
939 done = strlen(devstr) + 1;
940 } else {
942 * Non-root mount or updating a mount
944 error = copyin(data, &info, sizeof(info));
945 if (error)
946 return (error);
948 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
949 if (error)
950 return (error);
951 kprintf("hammer2_mount: '%s'\n", devstr);
955 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
956 * if no label specified, based on the partition id. Error out if no
957 * label or device (with partition id) is specified. This is strictly
958 * a convenience to match the default label created by newfs_hammer2,
959 * our preference is that a label always be specified.
961 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
962 * that does not specify a device, as long as some H2 label
963 * has already been mounted from that device. This makes
964 * mounting snapshots a lot easier.
966 dev = devstr;
967 label = strchr(devstr, '@');
968 if (label && ((label + 1) - dev) > done) {
969 kprintf("hammer2: mount: bad label %s/%zd\n",
970 devstr, done);
971 return (EINVAL);
973 if (label == NULL || label[1] == 0) {
974 char slice;
976 if (label == NULL)
977 label = devstr + strlen(devstr);
978 else
979 *label = '\0'; /* clean up trailing @ */
981 slice = label[-1];
982 switch(slice) {
983 case 'a':
984 label = "BOOT";
985 break;
986 case 'd':
987 label = "ROOT";
988 break;
989 default:
990 label = "DATA";
991 break;
993 } else {
994 *label = '\0';
995 label++;
998 kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
999 dev, label, (mp->mnt_flag & MNT_RDONLY));
1001 if (mp->mnt_flag & MNT_UPDATE) {
1003 * Update mount. Note that pmp->iroot->cluster is
1004 * an inode-embedded cluster and thus cannot be
1005 * directly locked.
1007 * XXX HAMMER2 needs to implement NFS export via
1008 * mountctl.
1010 hammer2_cluster_t *cluster;
1012 pmp = MPTOPMP(mp);
1013 pmp->hflags = info.hflags;
1014 cluster = &pmp->iroot->cluster;
1015 for (i = 0; i < cluster->nchains; ++i) {
1016 if (cluster->array[i].chain == NULL)
1017 continue;
1018 hmp = cluster->array[i].chain->hmp;
1019 devvp = hmp->devvp;
1020 error = hammer2_remount(hmp, mp, path,
1021 devvp, cred);
1022 if (error)
1023 break;
1026 return error;
1030 * HMP device mount
1032 * If a path is specified and dev is not an empty string, lookup the
1033 * name and verify that it referes to a block device.
1035 * If a path is specified and dev is an empty string we fall through
1036 * and locate the label in the hmp search.
1038 if (path && *dev != 0) {
1039 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
1040 if (error == 0)
1041 error = nlookup(&nd);
1042 if (error == 0)
1043 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
1044 nlookup_done(&nd);
1045 } else if (path == NULL) {
1046 /* root mount */
1047 cdev_t cdev = kgetdiskbyname(dev);
1048 error = bdevvp(cdev, &devvp);
1049 if (error)
1050 kprintf("hammer2: cannot find '%s'\n", dev);
1051 } else {
1053 * We will locate the hmp using the label in the hmp loop.
1055 error = 0;
1059 * Make sure its a block device. Do not check to see if it is
1060 * already mounted until we determine that its a fresh H2 device.
1062 if (error == 0 && devvp) {
1063 vn_isdisk(devvp, &error);
1067 * Determine if the device has already been mounted. After this
1068 * check hmp will be non-NULL if we are doing the second or more
1069 * hammer2 mounts from the same device.
1071 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1072 if (devvp) {
1074 * Match the device. Due to the way devfs works,
1075 * we may not be able to directly match the vnode pointer,
1076 * so also check to see if the underlying device matches.
1078 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1079 if (hmp->devvp == devvp)
1080 break;
1081 if (devvp->v_rdev &&
1082 hmp->devvp->v_rdev == devvp->v_rdev) {
1083 break;
1088 * If no match this may be a fresh H2 mount, make sure
1089 * the device is not mounted on anything else.
1091 if (hmp == NULL)
1092 error = vfs_mountedon(devvp);
1093 } else if (error == 0) {
1095 * Match the label to a pmp already probed.
1097 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1098 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1099 if (pmp->pfs_names[i] &&
1100 strcmp(pmp->pfs_names[i], label) == 0) {
1101 hmp = pmp->pfs_hmps[i];
1102 break;
1105 if (hmp)
1106 break;
1108 if (hmp == NULL)
1109 error = ENOENT;
1113 * Open the device if this isn't a secondary mount and construct
1114 * the H2 device mount (hmp).
1116 if (hmp == NULL) {
1117 hammer2_chain_t *schain;
1118 hammer2_xid_t xid;
1119 hammer2_xop_head_t xop;
1121 if (error == 0 && vcount(devvp) > 0) {
1122 kprintf("Primary device already has references\n");
1123 error = EBUSY;
1127 * Now open the device
1129 if (error == 0) {
1130 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1131 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1132 error = vinvalbuf(devvp, V_SAVE, 0, 0);
1133 if (error == 0) {
1134 error = VOP_OPEN(devvp,
1135 (ronly ? FREAD : FREAD | FWRITE),
1136 FSCRED, NULL);
1138 vn_unlock(devvp);
1140 if (error && devvp) {
1141 vrele(devvp);
1142 devvp = NULL;
1144 if (error) {
1145 lockmgr(&hammer2_mntlk, LK_RELEASE);
1146 return error;
1148 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1149 ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1150 hmp->ronly = ronly;
1151 hmp->devvp = devvp;
1152 hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1153 kmalloc_create(&hmp->mchain, "HAMMER2-chains");
1154 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1155 RB_INIT(&hmp->iotree);
1156 spin_init(&hmp->io_spin, "hm2mount_io");
1157 spin_init(&hmp->list_spin, "hm2mount_list");
1158 TAILQ_INIT(&hmp->flushq);
1160 lockinit(&hmp->vollk, "h2vol", 0, 0);
1161 lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1162 lockinit(&hmp->bflock, "h2bflk", 0, 0);
1165 * vchain setup. vchain.data is embedded.
1166 * vchain.refs is initialized and will never drop to 0.
1168 * NOTE! voldata is not yet loaded.
1170 hmp->vchain.hmp = hmp;
1171 hmp->vchain.refs = 1;
1172 hmp->vchain.data = (void *)&hmp->voldata;
1173 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1174 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1175 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1177 hammer2_chain_core_init(&hmp->vchain);
1178 /* hmp->vchain.u.xxx is left NULL */
1181 * fchain setup. fchain.data is embedded.
1182 * fchain.refs is initialized and will never drop to 0.
1184 * The data is not used but needs to be initialized to
1185 * pass assertion muster. We use this chain primarily
1186 * as a placeholder for the freemap's top-level RBTREE
1187 * so it does not interfere with the volume's topology
1188 * RBTREE.
1190 hmp->fchain.hmp = hmp;
1191 hmp->fchain.refs = 1;
1192 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1193 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1194 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1195 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1196 hmp->fchain.bref.methods =
1197 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1198 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1200 hammer2_chain_core_init(&hmp->fchain);
1201 /* hmp->fchain.u.xxx is left NULL */
1204 * Install the volume header and initialize fields from
1205 * voldata.
1207 error = hammer2_install_volume_header(hmp);
1208 if (error) {
1209 hammer2_unmount_helper(mp, NULL, hmp);
1210 lockmgr(&hammer2_mntlk, LK_RELEASE);
1211 hammer2_vfs_unmount(mp, MNT_FORCE);
1212 return error;
1216 * Really important to get these right or flush will get
1217 * confused.
1219 hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1220 spmp = hmp->spmp;
1223 * Dummy-up vchain and fchain's modify_tid. mirror_tid
1224 * is inherited from the volume header.
1226 xid = 0;
1227 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1228 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1229 hmp->vchain.pmp = spmp;
1230 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1231 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1232 hmp->fchain.pmp = spmp;
1235 * First locate the super-root inode, which is key 0
1236 * relative to the volume header's blockset.
1238 * Then locate the root inode by scanning the directory keyspace
1239 * represented by the label.
1241 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1242 schain = hammer2_chain_lookup(&parent, &key_dummy,
1243 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1244 &error, 0);
1245 hammer2_chain_lookup_done(parent);
1246 if (schain == NULL) {
1247 kprintf("hammer2_mount: invalid super-root\n");
1248 hammer2_unmount_helper(mp, NULL, hmp);
1249 lockmgr(&hammer2_mntlk, LK_RELEASE);
1250 hammer2_vfs_unmount(mp, MNT_FORCE);
1251 return EINVAL;
1253 if (schain->error) {
1254 kprintf("hammer2_mount: error %s reading super-root\n",
1255 hammer2_error_str(schain->error));
1256 hammer2_chain_unlock(schain);
1257 hammer2_chain_drop(schain);
1258 schain = NULL;
1259 hammer2_unmount_helper(mp, NULL, hmp);
1260 lockmgr(&hammer2_mntlk, LK_RELEASE);
1261 hammer2_vfs_unmount(mp, MNT_FORCE);
1262 return EINVAL;
1266 * The super-root always uses an inode_tid of 1 when
1267 * creating PFSs.
1269 spmp->inode_tid = 1;
1270 spmp->modify_tid = schain->bref.modify_tid + 1;
1273 * Sanity-check schain's pmp and finish initialization.
1274 * Any chain belonging to the super-root topology should
1275 * have a NULL pmp (not even set to spmp).
1277 ripdata = &hammer2_chain_rdata(schain)->ipdata;
1278 KKASSERT(schain->pmp == NULL);
1279 spmp->pfs_clid = ripdata->meta.pfs_clid;
1282 * Replace the dummy spmp->iroot with a real one. It's
1283 * easier to just do a wholesale replacement than to try
1284 * to update the chain and fixup the iroot fields.
1286 * The returned inode is locked with the supplied cluster.
1288 hammer2_dummy_xop_from_chain(&xop, schain);
1289 hammer2_inode_drop(spmp->iroot);
1290 spmp->iroot = NULL;
1291 spmp->iroot = hammer2_inode_get(spmp, NULL, &xop, -1);
1292 spmp->spmp_hmp = hmp;
1293 spmp->pfs_types[0] = ripdata->meta.pfs_type;
1294 spmp->pfs_hmps[0] = hmp;
1295 hammer2_inode_ref(spmp->iroot);
1296 hammer2_inode_unlock(spmp->iroot);
1297 hammer2_cluster_unlock(&xop.cluster);
1298 hammer2_chain_drop(schain);
1299 /* do not call hammer2_cluster_drop() on an embedded cluster */
1300 schain = NULL; /* now invalid */
1301 /* leave spmp->iroot with one ref */
1303 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1304 error = hammer2_recovery(hmp);
1305 if (error == 0)
1306 error |= hammer2_fixup_pfses(hmp);
1307 /* XXX do something with error */
1309 hammer2_update_pmps(hmp);
1310 hammer2_iocom_init(hmp);
1311 hammer2_bulkfree_init(hmp);
1314 * Ref the cluster management messaging descriptor. The mount
1315 * program deals with the other end of the communications pipe.
1317 * Root mounts typically do not supply one.
1319 if (info.cluster_fd >= 0) {
1320 fp = holdfp(curthread, info.cluster_fd, -1);
1321 if (fp) {
1322 hammer2_cluster_reconnect(hmp, fp);
1323 } else {
1324 kprintf("hammer2_mount: bad cluster_fd!\n");
1327 } else {
1328 spmp = hmp->spmp;
1329 if (info.hflags & HMNT2_DEVFLAGS) {
1330 kprintf("hammer2: Warning: mount flags pertaining "
1331 "to the whole device may only be specified "
1332 "on the first mount of the device: %08x\n",
1333 info.hflags & HMNT2_DEVFLAGS);
1338 * Force local mount (disassociate all PFSs from their clusters).
1339 * Used primarily for debugging.
1341 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1344 * Lookup the mount point under the media-localized super-root.
1345 * Scanning hammer2_pfslist doesn't help us because it represents
1346 * PFS cluster ids which can aggregate several named PFSs together.
1348 * cluster->pmp will incorrectly point to spmp and must be fixed
1349 * up later on.
1351 hammer2_inode_lock(spmp->iroot, 0);
1352 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1353 lhc = hammer2_dirhash(label, strlen(label));
1354 chain = hammer2_chain_lookup(&parent, &key_next,
1355 lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1356 &error, 0);
1357 while (chain) {
1358 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1359 strcmp(label, chain->data->ipdata.filename) == 0) {
1360 break;
1362 chain = hammer2_chain_next(&parent, chain, &key_next,
1363 key_next,
1364 lhc + HAMMER2_DIRHASH_LOMASK,
1365 &error, 0);
1367 if (parent) {
1368 hammer2_chain_unlock(parent);
1369 hammer2_chain_drop(parent);
1371 hammer2_inode_unlock(spmp->iroot);
1374 * PFS could not be found?
1376 if (chain == NULL) {
1377 if (error)
1378 kprintf("hammer2_mount: PFS label I/O error\n");
1379 else
1380 kprintf("hammer2_mount: PFS label not found\n");
1381 hammer2_unmount_helper(mp, NULL, hmp);
1382 lockmgr(&hammer2_mntlk, LK_RELEASE);
1383 hammer2_vfs_unmount(mp, MNT_FORCE);
1385 return EINVAL;
1389 * Acquire the pmp structure (it should have already been allocated
1390 * via hammer2_update_pmps() so do not pass cluster in to add to
1391 * available chains).
1393 * Check if the cluster has already been mounted. A cluster can
1394 * only be mounted once, use null mounts to mount additional copies.
1396 if (chain->error) {
1397 kprintf("hammer2_mount: PFS label I/O error\n");
1398 } else {
1399 ripdata = &chain->data->ipdata;
1400 bref = chain->bref;
1401 pmp = hammer2_pfsalloc(NULL, ripdata,
1402 bref.modify_tid, force_local);
1404 hammer2_chain_unlock(chain);
1405 hammer2_chain_drop(chain);
1408 * Finish the mount
1410 kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1412 if (pmp->mp) {
1413 kprintf("hammer2_mount: PFS already mounted!\n");
1414 hammer2_unmount_helper(mp, NULL, hmp);
1415 lockmgr(&hammer2_mntlk, LK_RELEASE);
1416 hammer2_vfs_unmount(mp, MNT_FORCE);
1418 return EBUSY;
1421 pmp->hflags = info.hflags;
1422 mp->mnt_flag |= MNT_LOCAL;
1423 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */
1424 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */
1427 * required mount structure initializations
1429 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1430 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1432 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1433 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1436 * Optional fields
1438 mp->mnt_iosize_max = MAXPHYS;
1441 * Connect up mount pointers.
1443 hammer2_mount_helper(mp, pmp);
1445 lockmgr(&hammer2_mntlk, LK_RELEASE);
1448 * Finish setup
1450 vfs_getnewfsid(mp);
1451 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1452 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1453 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1455 if (path) {
1456 copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1457 MNAMELEN - 1, &size);
1458 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1459 } /* else root mount, already in there */
1461 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1462 if (path) {
1463 copyinstr(path, mp->mnt_stat.f_mntonname,
1464 sizeof(mp->mnt_stat.f_mntonname) - 1,
1465 &size);
1466 } else {
1467 /* root mount */
1468 mp->mnt_stat.f_mntonname[0] = '/';
1472 * Initial statfs to prime mnt_stat.
1474 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1476 return 0;
1480 * Scan PFSs under the super-root and create hammer2_pfs structures.
1482 static
1483 void
1484 hammer2_update_pmps(hammer2_dev_t *hmp)
1486 const hammer2_inode_data_t *ripdata;
1487 hammer2_chain_t *parent;
1488 hammer2_chain_t *chain;
1489 hammer2_blockref_t bref;
1490 hammer2_dev_t *force_local;
1491 hammer2_pfs_t *spmp;
1492 hammer2_pfs_t *pmp;
1493 hammer2_key_t key_next;
1494 int error;
1497 * Force local mount (disassociate all PFSs from their clusters).
1498 * Used primarily for debugging.
1500 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1503 * Lookup mount point under the media-localized super-root.
1505 * cluster->pmp will incorrectly point to spmp and must be fixed
1506 * up later on.
1508 spmp = hmp->spmp;
1509 hammer2_inode_lock(spmp->iroot, 0);
1510 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1511 chain = hammer2_chain_lookup(&parent, &key_next,
1512 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1513 &error, 0);
1514 while (chain) {
1515 if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
1516 continue;
1517 if (chain->error) {
1518 kprintf("I/O error scanning PFS labels\n");
1519 } else {
1520 ripdata = &chain->data->ipdata;
1521 bref = chain->bref;
1523 pmp = hammer2_pfsalloc(chain, ripdata,
1524 bref.modify_tid, force_local);
1526 chain = hammer2_chain_next(&parent, chain, &key_next,
1527 key_next, HAMMER2_KEY_MAX,
1528 &error, 0);
1530 if (parent) {
1531 hammer2_chain_unlock(parent);
1532 hammer2_chain_drop(parent);
1534 hammer2_inode_unlock(spmp->iroot);
1537 static
1539 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1540 struct vnode *devvp, struct ucred *cred)
1542 int error;
1544 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1545 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1546 VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1547 vn_unlock(devvp);
1548 error = hammer2_recovery(hmp);
1549 if (error == 0)
1550 error |= hammer2_fixup_pfses(hmp);
1551 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1552 if (error == 0) {
1553 VOP_CLOSE(devvp, FREAD, NULL);
1554 hmp->ronly = 0;
1555 } else {
1556 VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1558 vn_unlock(devvp);
1559 } else {
1560 error = 0;
1562 return error;
1565 static
1567 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1569 hammer2_pfs_t *pmp;
1570 int flags;
1571 int error = 0;
1573 pmp = MPTOPMP(mp);
1575 if (pmp == NULL)
1576 return(0);
1578 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1581 * If mount initialization proceeded far enough we must flush
1582 * its vnodes and sync the underlying mount points. Three syncs
1583 * are required to fully flush the filesystem (freemap updates lag
1584 * by one flush, and one extra for safety).
1586 if (mntflags & MNT_FORCE)
1587 flags = FORCECLOSE;
1588 else
1589 flags = 0;
1590 if (pmp->iroot) {
1591 error = vflush(mp, 0, flags);
1592 if (error)
1593 goto failed;
1594 hammer2_vfs_sync(mp, MNT_WAIT);
1595 hammer2_vfs_sync(mp, MNT_WAIT);
1596 hammer2_vfs_sync(mp, MNT_WAIT);
1600 * Cleanup the frontend support XOPS threads
1602 hammer2_xop_helper_cleanup(pmp);
1604 if (pmp->mp)
1605 hammer2_unmount_helper(mp, pmp, NULL);
1607 error = 0;
1608 failed:
1609 lockmgr(&hammer2_mntlk, LK_RELEASE);
1611 return (error);
1615 * Mount helper, hook the system mount into our PFS.
1616 * The mount lock is held.
1618 * We must bump the mount_count on related devices for any
1619 * mounted PFSs.
1621 static
1622 void
1623 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1625 hammer2_cluster_t *cluster;
1626 hammer2_chain_t *rchain;
1627 int i;
1629 mp->mnt_data = (qaddr_t)pmp;
1630 pmp->mp = mp;
1633 * After pmp->mp is set we have to adjust hmp->mount_count.
1635 cluster = &pmp->iroot->cluster;
1636 for (i = 0; i < cluster->nchains; ++i) {
1637 rchain = cluster->array[i].chain;
1638 if (rchain == NULL)
1639 continue;
1640 ++rchain->hmp->mount_count;
1644 * Create missing Xop threads
1646 hammer2_xop_helper_create(pmp);
1650 * Mount helper, unhook the system mount from our PFS.
1651 * The mount lock is held.
1653 * If hmp is supplied a mount responsible for being the first to open
1654 * the block device failed and the block device and all PFSs using the
1655 * block device must be cleaned up.
1657 * If pmp is supplied multiple devices might be backing the PFS and each
1658 * must be disconnected. This might not be the last PFS using some of the
1659 * underlying devices. Also, we have to adjust our hmp->mount_count
1660 * accounting for the devices backing the pmp which is now undergoing an
1661 * unmount.
1663 static
1664 void
1665 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1667 hammer2_cluster_t *cluster;
1668 hammer2_chain_t *rchain;
1669 struct vnode *devvp;
1670 int dumpcnt;
1671 int ronly;
1672 int i;
1675 * If no device supplied this is a high-level unmount and we have to
1676 * to disconnect the mount, adjust mount_count, and locate devices
1677 * that might now have no mounts.
1679 if (pmp) {
1680 KKASSERT(hmp == NULL);
1681 KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1682 pmp->mp = NULL;
1683 mp->mnt_data = NULL;
1686 * After pmp->mp is cleared we have to account for
1687 * mount_count.
1689 cluster = &pmp->iroot->cluster;
1690 for (i = 0; i < cluster->nchains; ++i) {
1691 rchain = cluster->array[i].chain;
1692 if (rchain == NULL)
1693 continue;
1694 --rchain->hmp->mount_count;
1695 /* scrapping hmp now may invalidate the pmp */
1697 again:
1698 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1699 if (hmp->mount_count == 0) {
1700 hammer2_unmount_helper(NULL, NULL, hmp);
1701 goto again;
1704 return;
1708 * Try to terminate the block device. We can't terminate it if
1709 * there are still PFSs referencing it.
1711 if (hmp->mount_count)
1712 return;
1715 * Decomission the network before we start messing with the
1716 * device and PFS.
1718 hammer2_iocom_uninit(hmp);
1720 hammer2_bulkfree_uninit(hmp);
1721 hammer2_pfsfree_scan(hmp, 0);
1722 hammer2_dev_exlock(hmp); /* XXX order */
1725 * Cycle the volume data lock as a safety (probably not needed any
1726 * more). To ensure everything is out we need to flush at least
1727 * three times. (1) The running of the sideq can dirty the
1728 * filesystem, (2) A normal flush can dirty the freemap, and
1729 * (3) ensure that the freemap is fully synchronized.
1731 * The next mount's recovery scan can clean everything up but we want
1732 * to leave the filesystem in a 100% clean state on a normal unmount.
1734 #if 0
1735 hammer2_voldata_lock(hmp);
1736 hammer2_voldata_unlock(hmp);
1737 #endif
1740 * Flush whatever is left. Unmounted but modified PFS's might still
1741 * have some dirty chains on them.
1743 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1744 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1746 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1747 hammer2_voldata_modify(hmp);
1748 hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP |
1749 HAMMER2_FLUSH_ALL);
1751 hammer2_chain_unlock(&hmp->fchain);
1753 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) {
1754 hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP |
1755 HAMMER2_FLUSH_ALL);
1757 hammer2_chain_unlock(&hmp->vchain);
1759 if ((hmp->vchain.flags | hmp->fchain.flags) &
1760 HAMMER2_CHAIN_FLUSH_MASK) {
1761 kprintf("hammer2_unmount: chains left over "
1762 "after final sync\n");
1763 kprintf(" vchain %08x\n", hmp->vchain.flags);
1764 kprintf(" fchain %08x\n", hmp->fchain.flags);
1766 if (hammer2_debug & 0x0010)
1767 Debugger("entered debugger");
1770 hammer2_pfsfree_scan(hmp, 1);
1772 KKASSERT(hmp->spmp == NULL);
1775 * Finish up with the device vnode
1777 if ((devvp = hmp->devvp) != NULL) {
1778 ronly = hmp->ronly;
1779 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1780 kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n",
1781 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree),
1782 ronly);
1783 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1784 kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n",
1785 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree));
1786 hmp->devvp = NULL;
1787 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1788 vn_unlock(devvp);
1789 vrele(devvp);
1790 devvp = NULL;
1794 * Clear vchain/fchain flags that might prevent final cleanup
1795 * of these chains.
1797 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1798 atomic_add_long(&hammer2_count_modified_chains, -1);
1799 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1800 hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1802 if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1803 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1806 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1807 atomic_add_long(&hammer2_count_modified_chains, -1);
1808 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1809 hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1811 if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1812 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1816 * Final drop of embedded freemap root chain to
1817 * clean up fchain.core (fchain structure is not
1818 * flagged ALLOCATED so it is cleaned out and then
1819 * left to rot).
1821 hammer2_chain_drop(&hmp->fchain);
1824 * Final drop of embedded volume root chain to clean
1825 * up vchain.core (vchain structure is not flagged
1826 * ALLOCATED so it is cleaned out and then left to
1827 * rot).
1829 dumpcnt = 50;
1830 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v', (u_int)-1);
1831 dumpcnt = 50;
1832 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f', (u_int)-1);
1833 hammer2_dev_unlock(hmp);
1834 hammer2_chain_drop(&hmp->vchain);
1836 hammer2_io_cleanup(hmp, &hmp->iotree);
1837 if (hmp->iofree_count) {
1838 kprintf("io_cleanup: %d I/O's left hanging\n",
1839 hmp->iofree_count);
1842 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1843 kmalloc_destroy(&hmp->mchain);
1844 kfree(hmp, M_HAMMER2);
1848 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1849 ino_t ino, struct vnode **vpp)
1851 hammer2_xop_lookup_t *xop;
1852 hammer2_pfs_t *pmp;
1853 hammer2_inode_t *ip;
1854 hammer2_tid_t inum;
1855 int error;
1857 inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1859 error = 0;
1860 pmp = MPTOPMP(mp);
1863 * Easy if we already have it cached
1865 ip = hammer2_inode_lookup(pmp, inum);
1866 if (ip) {
1867 hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1868 *vpp = hammer2_igetv(ip, &error);
1869 hammer2_inode_unlock(ip);
1870 hammer2_inode_drop(ip); /* from lookup */
1872 return error;
1876 * Otherwise we have to find the inode
1878 xop = hammer2_xop_alloc(pmp->iroot, 0);
1879 xop->lhc = inum;
1880 hammer2_xop_start(&xop->head, &hammer2_lookup_desc);
1881 error = hammer2_xop_collect(&xop->head, 0);
1883 if (error == 0)
1884 ip = hammer2_inode_get(pmp, NULL, &xop->head, -1);
1885 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1887 if (ip) {
1888 *vpp = hammer2_igetv(ip, &error);
1889 hammer2_inode_unlock(ip);
1890 } else {
1891 *vpp = NULL;
1892 error = ENOENT;
1894 return (error);
1897 static
1899 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1901 hammer2_pfs_t *pmp;
1902 struct vnode *vp;
1903 int error;
1905 pmp = MPTOPMP(mp);
1906 if (pmp->iroot == NULL) {
1907 kprintf("hammer2 (%s): no root inode\n",
1908 mp->mnt_stat.f_mntfromname);
1909 *vpp = NULL;
1910 return EINVAL;
1913 error = 0;
1914 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1916 while (pmp->inode_tid == 0) {
1917 hammer2_xop_ipcluster_t *xop;
1918 const hammer2_inode_meta_t *meta;
1920 xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1921 hammer2_xop_start(&xop->head, &hammer2_ipcluster_desc);
1922 error = hammer2_xop_collect(&xop->head, 0);
1924 if (error == 0) {
1925 meta = &hammer2_xop_gdata(&xop->head)->ipdata.meta;
1926 pmp->iroot->meta = *meta;
1927 pmp->inode_tid = meta->pfs_inum + 1;
1928 hammer2_xop_pdata(&xop->head);
1929 /* meta invalid */
1931 if (pmp->inode_tid < HAMMER2_INODE_START)
1932 pmp->inode_tid = HAMMER2_INODE_START;
1933 pmp->modify_tid =
1934 xop->head.cluster.focus->bref.modify_tid + 1;
1935 #if 0
1936 kprintf("PFS: Starting inode %jd\n",
1937 (intmax_t)pmp->inode_tid);
1938 kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1939 pmp->inode_tid, pmp->modify_tid);
1940 #endif
1941 wakeup(&pmp->iroot);
1943 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1946 * Prime the mount info.
1948 hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
1949 break;
1953 * Loop, try again
1955 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1956 hammer2_inode_unlock(pmp->iroot);
1957 error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
1958 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1959 if (error == EINTR)
1960 break;
1963 if (error) {
1964 hammer2_inode_unlock(pmp->iroot);
1965 *vpp = NULL;
1966 } else {
1967 vp = hammer2_igetv(pmp->iroot, &error);
1968 hammer2_inode_unlock(pmp->iroot);
1969 *vpp = vp;
1972 return (error);
1976 * Filesystem status
1978 * XXX incorporate ipdata->meta.inode_quota and data_quota
1980 static
1982 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1984 hammer2_pfs_t *pmp;
1985 hammer2_dev_t *hmp;
1986 hammer2_blockref_t bref;
1987 struct statfs tmp;
1988 int i;
1991 * NOTE: iroot might not have validated the cluster yet.
1993 pmp = MPTOPMP(mp);
1995 bzero(&tmp, sizeof(tmp));
1997 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1998 hmp = pmp->pfs_hmps[i];
1999 if (hmp == NULL)
2000 continue;
2001 if (pmp->iroot->cluster.array[i].chain)
2002 bref = pmp->iroot->cluster.array[i].chain->bref;
2003 else
2004 bzero(&bref, sizeof(bref));
2006 tmp.f_files = bref.embed.stats.inode_count;
2007 tmp.f_ffree = 0;
2008 tmp.f_blocks = hmp->voldata.allocator_size /
2009 mp->mnt_vstat.f_bsize;
2010 tmp.f_bfree = hmp->voldata.allocator_free /
2011 mp->mnt_vstat.f_bsize;
2012 tmp.f_bavail = tmp.f_bfree;
2014 if (cred && cred->cr_uid != 0) {
2015 uint64_t adj;
2017 /* 5% */
2018 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2019 tmp.f_blocks -= adj;
2020 tmp.f_bfree -= adj;
2021 tmp.f_bavail -= adj;
2024 mp->mnt_stat.f_blocks = tmp.f_blocks;
2025 mp->mnt_stat.f_bfree = tmp.f_bfree;
2026 mp->mnt_stat.f_bavail = tmp.f_bavail;
2027 mp->mnt_stat.f_files = tmp.f_files;
2028 mp->mnt_stat.f_ffree = tmp.f_ffree;
2030 *sbp = mp->mnt_stat;
2032 return (0);
2035 static
2037 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
2039 hammer2_pfs_t *pmp;
2040 hammer2_dev_t *hmp;
2041 hammer2_blockref_t bref;
2042 struct statvfs tmp;
2043 int i;
2046 * NOTE: iroot might not have validated the cluster yet.
2048 pmp = MPTOPMP(mp);
2049 bzero(&tmp, sizeof(tmp));
2051 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2052 hmp = pmp->pfs_hmps[i];
2053 if (hmp == NULL)
2054 continue;
2055 if (pmp->iroot->cluster.array[i].chain)
2056 bref = pmp->iroot->cluster.array[i].chain->bref;
2057 else
2058 bzero(&bref, sizeof(bref));
2060 tmp.f_files = bref.embed.stats.inode_count;
2061 tmp.f_ffree = 0;
2062 tmp.f_blocks = hmp->voldata.allocator_size /
2063 mp->mnt_vstat.f_bsize;
2064 tmp.f_bfree = hmp->voldata.allocator_free /
2065 mp->mnt_vstat.f_bsize;
2066 tmp.f_bavail = tmp.f_bfree;
2068 if (cred && cred->cr_uid != 0) {
2069 uint64_t adj;
2071 /* 5% */
2072 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2073 tmp.f_blocks -= adj;
2074 tmp.f_bfree -= adj;
2075 tmp.f_bavail -= adj;
2078 mp->mnt_vstat.f_blocks = tmp.f_blocks;
2079 mp->mnt_vstat.f_bfree = tmp.f_bfree;
2080 mp->mnt_vstat.f_bavail = tmp.f_bavail;
2081 mp->mnt_vstat.f_files = tmp.f_files;
2082 mp->mnt_vstat.f_ffree = tmp.f_ffree;
2084 *sbp = mp->mnt_vstat;
2086 return (0);
2090 * Mount-time recovery (RW mounts)
2092 * Updates to the free block table are allowed to lag flushes by one
2093 * transaction. In case of a crash, then on a fresh mount we must do an
2094 * incremental scan of the last committed transaction id and make sure that
2095 * all related blocks have been marked allocated.
2097 * The super-root topology and each PFS has its own transaction id domain,
2098 * so we must track PFS boundary transitions.
2100 struct hammer2_recovery_elm {
2101 TAILQ_ENTRY(hammer2_recovery_elm) entry;
2102 hammer2_chain_t *chain;
2103 hammer2_tid_t sync_tid;
2106 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2108 struct hammer2_recovery_info {
2109 struct hammer2_recovery_list list;
2110 hammer2_tid_t mtid;
2111 int depth;
2114 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2115 hammer2_chain_t *parent,
2116 struct hammer2_recovery_info *info,
2117 hammer2_tid_t sync_tid);
2119 #define HAMMER2_RECOVERY_MAXDEPTH 10
2121 static
2123 hammer2_recovery(hammer2_dev_t *hmp)
2125 struct hammer2_recovery_info info;
2126 struct hammer2_recovery_elm *elm;
2127 hammer2_chain_t *parent;
2128 hammer2_tid_t sync_tid;
2129 hammer2_tid_t mirror_tid;
2130 int error;
2132 hammer2_trans_init(hmp->spmp, 0);
2134 sync_tid = hmp->voldata.freemap_tid;
2135 mirror_tid = hmp->voldata.mirror_tid;
2137 kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
2138 if (sync_tid >= mirror_tid) {
2139 kprintf(" no recovery needed\n");
2140 } else {
2141 kprintf(" freemap recovery %016jx-%016jx\n",
2142 sync_tid + 1, mirror_tid);
2145 TAILQ_INIT(&info.list);
2146 info.depth = 0;
2147 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2148 error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2149 hammer2_chain_lookup_done(parent);
2151 while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2152 TAILQ_REMOVE(&info.list, elm, entry);
2153 parent = elm->chain;
2154 sync_tid = elm->sync_tid;
2155 kfree(elm, M_HAMMER2);
2157 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2158 error |= hammer2_recovery_scan(hmp, parent, &info,
2159 hmp->voldata.freemap_tid);
2160 hammer2_chain_unlock(parent);
2161 hammer2_chain_drop(parent); /* drop elm->chain ref */
2164 hammer2_trans_done(hmp->spmp, 0);
2166 return error;
2169 static
2171 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2172 struct hammer2_recovery_info *info,
2173 hammer2_tid_t sync_tid)
2175 const hammer2_inode_data_t *ripdata;
2176 hammer2_chain_t *chain;
2177 hammer2_blockref_t bref;
2178 int tmp_error;
2179 int rup_error;
2180 int error;
2181 int first;
2184 * Adjust freemap to ensure that the block(s) are marked allocated.
2186 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2187 hammer2_freemap_adjust(hmp, &parent->bref,
2188 HAMMER2_FREEMAP_DORECOVER);
2192 * Check type for recursive scan
2194 switch(parent->bref.type) {
2195 case HAMMER2_BREF_TYPE_VOLUME:
2196 /* data already instantiated */
2197 break;
2198 case HAMMER2_BREF_TYPE_INODE:
2200 * Must instantiate data for DIRECTDATA test and also
2201 * for recursion.
2203 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2204 ripdata = &hammer2_chain_rdata(parent)->ipdata;
2205 if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2206 /* not applicable to recovery scan */
2207 hammer2_chain_unlock(parent);
2208 return 0;
2210 hammer2_chain_unlock(parent);
2211 break;
2212 case HAMMER2_BREF_TYPE_INDIRECT:
2214 * Must instantiate data for recursion
2216 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2217 hammer2_chain_unlock(parent);
2218 break;
2219 case HAMMER2_BREF_TYPE_DIRENT:
2220 case HAMMER2_BREF_TYPE_DATA:
2221 case HAMMER2_BREF_TYPE_FREEMAP:
2222 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2223 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2224 /* not applicable to recovery scan */
2225 return 0;
2226 break;
2227 default:
2228 return HAMMER2_ERROR_BADBREF;
2232 * Defer operation if depth limit reached or if we are crossing a
2233 * PFS boundary.
2235 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2236 struct hammer2_recovery_elm *elm;
2238 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2239 elm->chain = parent;
2240 elm->sync_tid = sync_tid;
2241 hammer2_chain_ref(parent);
2242 TAILQ_INSERT_TAIL(&info->list, elm, entry);
2243 /* unlocked by caller */
2245 return(0);
2250 * Recursive scan of the last flushed transaction only. We are
2251 * doing this without pmp assignments so don't leave the chains
2252 * hanging around after we are done with them.
2254 * error Cumulative error this level only
2255 * rup_error Cumulative error for recursion
2256 * tmp_error Specific non-cumulative recursion error
2258 chain = NULL;
2259 first = 1;
2260 rup_error = 0;
2261 error = 0;
2263 for (;;) {
2264 error |= hammer2_chain_scan(parent, &chain, &bref,
2265 &first,
2266 HAMMER2_LOOKUP_NODATA);
2269 * Problem during scan or EOF
2271 if (error)
2272 break;
2275 * If this is a leaf
2277 if (chain == NULL) {
2278 if (bref.mirror_tid > sync_tid) {
2279 hammer2_freemap_adjust(hmp, &bref,
2280 HAMMER2_FREEMAP_DORECOVER);
2282 continue;
2286 * This may or may not be a recursive node.
2288 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2289 if (bref.mirror_tid > sync_tid) {
2290 ++info->depth;
2291 tmp_error = hammer2_recovery_scan(hmp, chain,
2292 info, sync_tid);
2293 --info->depth;
2294 } else {
2295 tmp_error = 0;
2299 * Flush the recovery at the PFS boundary to stage it for
2300 * the final flush of the super-root topology.
2302 if (tmp_error == 0 &&
2303 (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2304 (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2305 hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2306 HAMMER2_FLUSH_ALL);
2308 rup_error |= tmp_error;
2310 return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2314 * This fixes up an error introduced in earlier H2 implementations where
2315 * moving a PFS inode into an indirect block wound up causing the
2316 * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared.
2318 static
2320 hammer2_fixup_pfses(hammer2_dev_t *hmp)
2322 const hammer2_inode_data_t *ripdata;
2323 hammer2_chain_t *parent;
2324 hammer2_chain_t *chain;
2325 hammer2_key_t key_next;
2326 hammer2_pfs_t *spmp;
2327 int error;
2329 error = 0;
2332 * Lookup mount point under the media-localized super-root.
2334 * cluster->pmp will incorrectly point to spmp and must be fixed
2335 * up later on.
2337 spmp = hmp->spmp;
2338 hammer2_inode_lock(spmp->iroot, 0);
2339 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
2340 chain = hammer2_chain_lookup(&parent, &key_next,
2341 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
2342 &error, 0);
2343 while (chain) {
2344 if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
2345 continue;
2346 if (chain->error) {
2347 kprintf("I/O error scanning PFS labels\n");
2348 error |= chain->error;
2349 } else if ((chain->bref.flags &
2350 HAMMER2_BREF_FLAG_PFSROOT) == 0) {
2351 int error2;
2353 ripdata = &chain->data->ipdata;
2354 hammer2_trans_init(hmp->spmp, 0);
2355 error2 = hammer2_chain_modify(chain,
2356 chain->bref.modify_tid,
2357 0, 0);
2358 if (error2 == 0) {
2359 kprintf("hammer2: Correct mis-flagged PFS %s\n",
2360 ripdata->filename);
2361 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2362 } else {
2363 error |= error2;
2365 hammer2_flush(chain, HAMMER2_FLUSH_TOP |
2366 HAMMER2_FLUSH_ALL);
2367 hammer2_trans_done(hmp->spmp, 0);
2369 chain = hammer2_chain_next(&parent, chain, &key_next,
2370 key_next, HAMMER2_KEY_MAX,
2371 &error, 0);
2373 if (parent) {
2374 hammer2_chain_unlock(parent);
2375 hammer2_chain_drop(parent);
2377 hammer2_inode_unlock(spmp->iroot);
2379 return error;
2383 * Sync a mount point; this is called periodically on a per-mount basis from
2384 * the filesystem syncer, and whenever a user issues a sync.
2387 hammer2_vfs_sync(struct mount *mp, int waitfor)
2389 hammer2_xop_flush_t *xop;
2390 struct hammer2_sync_info info;
2391 hammer2_inode_t *iroot;
2392 hammer2_pfs_t *pmp;
2393 int flags;
2394 int error;
2396 pmp = MPTOPMP(mp);
2397 iroot = pmp->iroot;
2398 KKASSERT(iroot);
2399 KKASSERT(iroot->pmp == pmp);
2402 * We can't acquire locks on existing vnodes while in a transaction
2403 * without risking a deadlock. This assumes that vfsync() can be
2404 * called without the vnode locked (which it can in DragonFly).
2405 * Otherwise we'd have to implement a multi-pass or flag the lock
2406 * failures and retry.
2408 * The reclamation code interlocks with the sync list's token
2409 * (by removing the vnode from the scan list) before unlocking
2410 * the inode, giving us time to ref the inode.
2412 /*flags = VMSC_GETVP;*/
2413 flags = 0;
2414 if (waitfor & MNT_LAZY)
2415 flags |= VMSC_ONEPASS;
2418 * Flush vnodes individually using a normal transaction to avoid
2419 * stalling any concurrent operations. This will flush the related
2420 * buffer cache buffers and inodes to the media.
2422 * For efficiency do an async pass before making sure with a
2423 * synchronous pass on all related buffer cache buffers.
2425 hammer2_trans_init(pmp, 0);
2427 info.error = 0;
2429 info.waitfor = MNT_NOWAIT;
2430 info.pass = 1;
2431 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2434 * Now do two passes making sure we get everything. The first pass
2435 * vfsync()s dirty vnodes. The second pass waits for their I/O's
2436 * to finish and cleans up the dirty flag on the vnode.
2438 info.pass = 1;
2439 info.waitfor = MNT_WAIT;
2440 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2442 info.pass = 2;
2443 info.waitfor = MNT_WAIT;
2444 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2447 * We must also run the sideq to handle any disconnected inodes
2448 * as the vnode scan will not see these.
2450 hammer2_inode_run_sideq(pmp, 1);
2451 hammer2_trans_done(pmp, 0);
2454 * Start our flush transaction and flush the root topology down to
2455 * the inodes, but not the inodes themselves (which we already flushed
2456 * above). Any concurrent activity effecting inode contents will not
2458 * The flush sequence will
2460 * NOTE! It is still possible for the paging code to push pages
2461 * out via a UIO_NOCOPY hammer2_vop_write() during the main
2462 * flush.
2464 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2467 * sync dirty vnodes again while in the flush transaction. This is
2468 * currently an expensive shim to makre sure the logical topology is
2469 * completely consistent before we flush the volume header.
2471 info.pass = 1;
2472 info.waitfor = MNT_WAIT;
2473 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2475 info.pass = 2;
2476 info.waitfor = MNT_WAIT;
2477 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2480 * Use the XOP interface to concurrently flush all nodes to
2481 * synchronize the PFSROOT subtopology to the media. A standard
2482 * end-of-scan ENOENT error indicates cluster sufficiency.
2484 * Note that this flush will not be visible on crash recovery until
2485 * we flush the super-root topology in the next loop.
2487 * XXX For now wait for all flushes to complete.
2489 if (iroot) {
2491 * If unmounting try to flush everything including any
2492 * sub-trees under inodes, just in case there is dangling
2493 * modified data, as a safety. Otherwise just flush up to
2494 * the inodes in this stage.
2496 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
2497 xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING |
2498 HAMMER2_XOP_VOLHDR);
2499 } else {
2500 xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING |
2501 HAMMER2_XOP_INODE_STOP |
2502 HAMMER2_XOP_VOLHDR);
2504 hammer2_xop_start(&xop->head, &hammer2_inode_flush_desc);
2505 error = hammer2_xop_collect(&xop->head,
2506 HAMMER2_XOP_COLLECT_WAITALL);
2507 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2508 if (error == HAMMER2_ERROR_ENOENT)
2509 error = 0;
2510 else
2511 error = hammer2_error_to_errno(error);
2512 } else {
2513 error = 0;
2515 hammer2_trans_done(pmp, 0);
2517 return (error);
2521 * Sync passes.
2523 * Note that we ignore the tranasction mtid we got above. Instead,
2524 * each vfsync below will ultimately get its own via TRANS_BUFCACHE
2525 * transactions.
2527 * WARNING! The frontend might be waiting on chnmem (limit_dirty_chains)
2528 * while holding a vnode locked. When this situation occurs we cannot
2529 * safely test whether it is ok to clear the dirty bit on the vnode.
2530 * However, we can still flush the inode's topology.
2532 static int
2533 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2535 struct hammer2_sync_info *info = data;
2536 hammer2_inode_t *ip;
2537 int error;
2540 * Degenerate cases. Note that ip == NULL typically means the
2541 * syncer vnode itself and we don't want to vclrisdirty() in that
2542 * situation.
2544 ip = VTOI(vp);
2545 if (ip == NULL) {
2546 return(0);
2548 if (vp->v_type == VNON || vp->v_type == VBAD) {
2549 vclrisdirty(vp);
2550 return(0);
2554 * Synchronize the buffer cche and inode meta-data to the backing
2555 * chain topology.
2557 * vfsync is not necessarily synchronous, so it is best NOT to try
2558 * to flush the backing topology to media at this point.
2560 hammer2_inode_ref(ip);
2561 if ((ip->flags & (HAMMER2_INODE_RESIZED|HAMMER2_INODE_MODIFIED)) ||
2562 !RB_EMPTY(&vp->v_rbdirty_tree)) {
2563 if (info->pass == 1)
2564 vfsync(vp, info->waitfor, 1, NULL, NULL);
2565 else
2566 bio_track_wait(&vp->v_track_write, 0, 0);
2568 if (info->pass == 2 && (vp->v_flag & VISDIRTY)) {
2570 * v_token is needed to interlock v_rbdirty_tree.
2572 lwkt_gettoken(&vp->v_token);
2573 hammer2_inode_lock(ip, 0);
2574 hammer2_inode_chain_sync(ip);
2575 hammer2_inode_chain_flush(ip);
2576 if ((ip->flags & (HAMMER2_INODE_MODIFIED |
2577 HAMMER2_INODE_RESIZED |
2578 HAMMER2_INODE_DIRTYDATA)) == 0 &&
2579 RB_EMPTY(&vp->v_rbdirty_tree) &&
2580 !bio_track_active(&vp->v_track_write)) {
2581 vclrisdirty(vp);
2583 hammer2_inode_unlock(ip);
2584 lwkt_reltoken(&vp->v_token);
2586 hammer2_inode_drop(ip);
2587 #if 1
2588 error = 0;
2589 if (error)
2590 info->error = error;
2591 #endif
2592 return(0);
2595 static
2597 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2599 hammer2_inode_t *ip;
2601 KKASSERT(MAXFIDSZ >= 16);
2602 ip = VTOI(vp);
2603 fhp->fid_len = offsetof(struct fid, fid_data[16]);
2604 fhp->fid_ext = 0;
2605 ((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2606 ((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2608 return 0;
2611 static
2613 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2614 struct fid *fhp, struct vnode **vpp)
2616 hammer2_pfs_t *pmp;
2617 hammer2_tid_t inum;
2618 int error;
2620 pmp = MPTOPMP(mp);
2621 inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2622 if (vpp) {
2623 if (inum == 1)
2624 error = hammer2_vfs_root(mp, vpp);
2625 else
2626 error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2627 } else {
2628 error = 0;
2630 if (error)
2631 kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2632 return error;
2635 static
2637 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2638 int *exflagsp, struct ucred **credanonp)
2640 hammer2_pfs_t *pmp;
2641 struct netcred *np;
2642 int error;
2644 pmp = MPTOPMP(mp);
2645 np = vfs_export_lookup(mp, &pmp->export, nam);
2646 if (np) {
2647 *exflagsp = np->netc_exflags;
2648 *credanonp = &np->netc_anon;
2649 error = 0;
2650 } else {
2651 error = EACCES;
2653 return error;
2657 * Support code for hammer2_vfs_mount(). Read, verify, and install the volume
2658 * header into the HMP
2660 * XXX read four volhdrs and use the one with the highest TID whos CRC
2661 * matches.
2663 * XXX check iCRCs.
2665 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2666 * nonexistant locations.
2668 * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2670 static
2672 hammer2_install_volume_header(hammer2_dev_t *hmp)
2674 hammer2_volume_data_t *vd;
2675 struct buf *bp;
2676 hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2677 int error_reported;
2678 int error;
2679 int valid;
2680 int i;
2682 error_reported = 0;
2683 error = 0;
2684 valid = 0;
2685 bp = NULL;
2688 * There are up to 4 copies of the volume header (syncs iterate
2689 * between them so there is no single master). We don't trust the
2690 * volu_size field so we don't know precisely how large the filesystem
2691 * is, so depend on the OS to return an error if we go beyond the
2692 * block device's EOF.
2694 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2695 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2696 HAMMER2_VOLUME_BYTES, &bp);
2697 if (error) {
2698 brelse(bp);
2699 bp = NULL;
2700 continue;
2703 vd = (struct hammer2_volume_data *) bp->b_data;
2704 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2705 (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2706 brelse(bp);
2707 bp = NULL;
2708 continue;
2711 if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2712 /* XXX: Reversed-endianness filesystem */
2713 kprintf("hammer2: reverse-endian filesystem detected");
2714 brelse(bp);
2715 bp = NULL;
2716 continue;
2719 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2720 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2721 HAMMER2_VOLUME_ICRC0_SIZE);
2722 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2723 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2724 HAMMER2_VOLUME_ICRC1_SIZE);
2725 if ((crc0 != crc) || (bcrc0 != bcrc)) {
2726 kprintf("hammer2 volume header crc "
2727 "mismatch copy #%d %08x/%08x\n",
2728 i, crc0, crc);
2729 error_reported = 1;
2730 brelse(bp);
2731 bp = NULL;
2732 continue;
2734 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2735 valid = 1;
2736 hmp->voldata = *vd;
2737 hmp->volhdrno = i;
2739 brelse(bp);
2740 bp = NULL;
2742 if (valid) {
2743 hmp->volsync = hmp->voldata;
2744 hmp->free_reserved = hmp->voldata.allocator_size / 20;
2745 error = 0;
2746 if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2747 kprintf("hammer2: using volume header #%d\n",
2748 hmp->volhdrno);
2750 } else {
2751 error = EINVAL;
2752 kprintf("hammer2: no valid volume headers found!\n");
2754 return (error);
2758 * This handles hysteresis on regular file flushes. Because the BIOs are
2759 * routed to a thread it is possible for an excessive number to build up
2760 * and cause long front-end stalls long before the runningbuffspace limit
2761 * is hit, so we implement hammer2_flush_pipe to control the
2762 * hysteresis.
2764 * This is a particular problem when compression is used.
2766 void
2767 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2769 atomic_add_int(&pmp->count_lwinprog, 1);
2772 void
2773 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2775 int lwinprog;
2777 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2778 if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2779 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2780 atomic_clear_int(&pmp->count_lwinprog,
2781 HAMMER2_LWINPROG_WAITING);
2782 wakeup(&pmp->count_lwinprog);
2784 if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2785 (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2786 atomic_clear_int(&pmp->count_lwinprog,
2787 HAMMER2_LWINPROG_WAITING0);
2788 wakeup(&pmp->count_lwinprog);
2792 void
2793 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2795 int lwinprog;
2796 int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2797 HAMMER2_LWINPROG_WAITING0;
2799 for (;;) {
2800 lwinprog = pmp->count_lwinprog;
2801 cpu_ccfence();
2802 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2803 break;
2804 tsleep_interlock(&pmp->count_lwinprog, 0);
2805 atomic_set_int(&pmp->count_lwinprog, lwflag);
2806 lwinprog = pmp->count_lwinprog;
2807 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2808 break;
2809 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2814 * Attempt to proactively fsync dirty vnodes if we have too many. This
2815 * solves an issue where the kernel syncer thread can get seriously behind
2816 * when multiple user processes/threads are furiously modifying inodes.
2817 * This situation can occur on slow storage and is only limited by
2818 * kern.maxvnodes without the moderation code below. It is made worse
2819 * when the device buffers underlying the modified inodes (which are clean)
2820 * get evicted before the flush can occur, forcing a re-read.
2822 * We do not want sysads to feel that they have to torpedo kern.maxvnodes
2823 * to solve this problem, so we implement vfs.hammer2.limit_dirty_inodes
2824 * (per-mount-basis) and default it to something reasonable.
2826 static void
2827 hammer2_pfs_moderate(hammer2_inode_t *ip, int always_moderate)
2829 hammer2_pfs_t *pmp = ip->pmp;
2830 struct mount *mp = pmp->mp;
2832 if (mp && vn_syncer_count(mp) > hammer2_limit_dirty_inodes) {
2833 vn_syncer_one(mp);
2838 * Manage excessive memory resource use for chain and related
2839 * structures.
2841 * Called without any inode locks or transaction locks. VNodes
2842 * might be locked by the kernel in the call stack.
2844 void
2845 hammer2_pfs_memory_wait(hammer2_inode_t *ip, int always_moderate)
2847 hammer2_pfs_t *pmp = ip->pmp;
2848 uint32_t waiting;
2849 uint32_t count;
2850 uint32_t limit;
2851 #if 0
2852 static int zzticks;
2853 #endif
2856 * Moderate the number of dirty inodes
2858 hammer2_pfs_moderate(ip, always_moderate);
2861 * Atomic check condition and wait. Also do an early speedup of
2862 * the syncer to try to avoid hitting the wait.
2864 for (;;) {
2865 waiting = pmp->inmem_dirty_chains;
2866 cpu_ccfence();
2867 count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2869 limit = pmp->mp->mnt_nvnodelistsize / 10;
2870 if (limit < hammer2_limit_dirty_chains)
2871 limit = hammer2_limit_dirty_chains;
2872 if (limit < 1000)
2873 limit = 1000;
2875 #if 0
2876 if ((int)(ticks - zzticks) > hz) {
2877 zzticks = ticks;
2878 kprintf("count %ld %ld\n", count, limit);
2880 #endif
2883 * Block if there are too many dirty chains present, wait
2884 * for the flush to clean some out.
2886 if (count > limit) {
2887 hammer2_pfs_moderate(ip, always_moderate);
2888 tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2889 if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2890 waiting,
2891 waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2892 if (ticks != pmp->speedup_ticks) {
2893 pmp->speedup_ticks = ticks;
2894 speedup_syncer(pmp->mp);
2896 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2897 "chnmem", hz);
2899 continue; /* loop on success or fail */
2903 * Try to start an early flush before we are forced to block.
2905 if (count > limit * 5 / 10 &&
2906 ticks != pmp->speedup_ticks) {
2907 pmp->speedup_ticks = ticks;
2908 speedup_syncer(pmp->mp);
2910 break;
2914 void
2915 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
2917 if (pmp) {
2918 atomic_add_int(&pmp->inmem_dirty_chains, 1);
2922 void
2923 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp)
2925 uint32_t waiting;
2927 if (pmp) {
2928 waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, -1);
2929 /* don't need --waiting to test flag */
2930 if (waiting & HAMMER2_DIRTYCHAIN_WAITING) {
2931 atomic_clear_int(&pmp->inmem_dirty_chains,
2932 HAMMER2_DIRTYCHAIN_WAITING);
2933 wakeup(&pmp->inmem_dirty_chains);
2939 * Returns 0 if the filesystem has tons of free space
2940 * Returns 1 if the filesystem has less than 10% remaining
2941 * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
2944 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
2946 hammer2_pfs_t *pmp;
2947 hammer2_dev_t *hmp;
2948 hammer2_off_t free_reserved;
2949 hammer2_off_t free_nominal;
2950 int i;
2952 pmp = ip->pmp;
2954 if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
2955 free_reserved = HAMMER2_SEGSIZE;
2956 free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
2957 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2958 hmp = pmp->pfs_hmps[i];
2959 if (hmp == NULL)
2960 continue;
2961 if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
2962 pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
2963 continue;
2965 if (free_nominal > hmp->voldata.allocator_free)
2966 free_nominal = hmp->voldata.allocator_free;
2967 if (free_reserved < hmp->free_reserved)
2968 free_reserved = hmp->free_reserved;
2972 * SMP races ok
2974 pmp->free_reserved = free_reserved;
2975 pmp->free_nominal = free_nominal;
2976 pmp->free_ticks = ticks;
2977 } else {
2978 free_reserved = pmp->free_reserved;
2979 free_nominal = pmp->free_nominal;
2981 if (cred && cred->cr_uid != 0) {
2982 if ((int64_t)(free_nominal - bytes) <
2983 (int64_t)free_reserved) {
2984 return 2;
2986 } else {
2987 if ((int64_t)(free_nominal - bytes) <
2988 (int64_t)free_reserved / 2) {
2989 return 2;
2992 if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
2993 return 1;
2994 return 0;
2998 * Debugging
3000 void
3001 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx,
3002 u_int flags)
3004 hammer2_chain_t *scan;
3005 hammer2_chain_t *parent;
3007 --*countp;
3008 if (*countp == 0) {
3009 kprintf("%*.*s...\n", tab, tab, "");
3010 return;
3012 if (*countp < 0)
3013 return;
3014 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
3015 tab, tab, "", pfx,
3016 chain, chain->bref.type,
3017 chain->bref.key, chain->bref.keybits,
3018 chain->bref.mirror_tid);
3020 kprintf("%*.*s [%08x] (%s) refs=%d",
3021 tab, tab, "",
3022 chain->flags,
3023 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
3024 chain->data) ? (char *)chain->data->ipdata.filename : "?"),
3025 chain->refs);
3027 parent = chain->parent;
3028 if (parent)
3029 kprintf("\n%*.*s p=%p [pflags %08x prefs %d",
3030 tab, tab, "",
3031 parent, parent->flags, parent->refs);
3032 if (RB_EMPTY(&chain->core.rbtree)) {
3033 kprintf("\n");
3034 } else {
3035 kprintf(" {\n");
3036 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
3037 if ((scan->flags & flags) || flags == (u_int)-1) {
3038 hammer2_dump_chain(scan, tab + 4, countp, 'a',
3039 flags);
3042 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
3043 kprintf("%*.*s}(%s)\n", tab, tab, "",
3044 chain->data->ipdata.filename);
3045 else
3046 kprintf("%*.*s}\n", tab, tab, "");