kernel/disk: Remove use of "%b" format.
[dragonfly.git] / sys / dev / raid / mps / mps.c
blob1d65841b67a88fbc95c00f9d1d89750812f05c3a
1 /*-
2 * Copyright (c) 2009 Yahoo! Inc.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
27 /*-
28 * Copyright (c) 2011 LSI Corp.
29 * All rights reserved.
31 * Redistribution and use in source and binary forms, with or without
32 * modification, are permitted provided that the following conditions
33 * are met:
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
52 * LSI MPT-Fusion Host Adapter FreeBSD
54 * $FreeBSD: src/sys/dev/mps/mps.c,v 1.14 2012/01/26 18:17:21 ken Exp $
57 /* Communications core for LSI MPT2 */
59 /* TODO Move headers to mpsvar */
60 #include <sys/types.h>
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
64 #include <sys/lock.h>
65 #include <sys/globaldata.h>
66 #include <sys/module.h>
67 #include <sys/bus.h>
68 #include <sys/conf.h>
69 #include <sys/bio.h>
70 #include <sys/malloc.h>
71 #include <sys/uio.h>
72 #include <sys/sysctl.h>
73 #include <sys/queue.h>
74 #include <sys/kthread.h>
75 #include <sys/endian.h>
76 #include <sys/eventhandler.h>
78 #include <sys/rman.h>
80 #include <bus/pci/pcivar.h>
82 #include <bus/cam/scsi/scsi_all.h>
84 #include <dev/raid/mps/mpi/mpi2_type.h>
85 #include <dev/raid/mps/mpi/mpi2.h>
86 #include <dev/raid/mps/mpi/mpi2_ioc.h>
87 #include <dev/raid/mps/mpi/mpi2_sas.h>
88 #include <dev/raid/mps/mpi/mpi2_cnfg.h>
89 #include <dev/raid/mps/mpi/mpi2_init.h>
90 #include <dev/raid/mps/mpi/mpi2_tool.h>
91 #include <dev/raid/mps/mps_ioctl.h>
92 #include <dev/raid/mps/mpsvar.h>
93 #include <dev/raid/mps/mps_table.h>
95 static int mps_diag_reset(struct mps_softc *sc);
96 static int mps_init_queues(struct mps_softc *sc);
97 static int mps_message_unit_reset(struct mps_softc *sc);
98 static int mps_transition_operational(struct mps_softc *sc);
99 static void mps_startup(void *arg);
100 static int mps_send_iocinit(struct mps_softc *sc);
101 static int mps_attach_log(struct mps_softc *sc);
102 static __inline void mps_complete_command(struct mps_command *cm);
103 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
104 MPI2_EVENT_NOTIFICATION_REPLY *reply);
105 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
106 static void mps_periodic(void *);
107 static int mps_reregister_events(struct mps_softc *sc);
108 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
110 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD, 0, "MPS Driver Parameters");
112 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
115 * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of
116 * any state and back to its initialization state machine.
118 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
120 static int
121 mps_diag_reset(struct mps_softc *sc)
123 uint32_t reg;
124 int i, error, tries = 0;
126 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
128 /* Clear any pending interrupts */
129 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
131 /* Push the magic sequence */
132 error = ETIMEDOUT;
133 while (tries++ < 20) {
134 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
135 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
136 mpt2_reset_magic[i]);
138 DELAY(100 * 1000);
140 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
141 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
142 error = 0;
143 break;
146 if (error)
147 return (error);
149 /* Send the actual reset. XXX need to refresh the reg? */
150 mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET,
151 reg | MPI2_DIAG_RESET_ADAPTER);
153 /* Wait up to 300 seconds in 50ms intervals */
154 error = ETIMEDOUT;
155 for (i = 0; i < 60000; i++) {
156 DELAY(50000);
157 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
158 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
159 error = 0;
160 break;
163 if (error)
164 return (error);
166 mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
168 return (0);
171 static int
172 mps_message_unit_reset(struct mps_softc *sc)
175 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
177 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
178 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
179 MPI2_DOORBELL_FUNCTION_SHIFT);
180 DELAY(50000);
182 return (0);
185 static int
186 mps_transition_ready(struct mps_softc *sc)
188 uint32_t reg, state;
189 int error, tries = 0;
191 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
193 error = 0;
194 while (tries++ < 5) {
195 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
196 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
199 * Ensure the IOC is ready to talk. If it's not, try
200 * resetting it.
202 if (reg & MPI2_DOORBELL_USED) {
203 mps_diag_reset(sc);
204 DELAY(50000);
205 continue;
208 /* Is the adapter owned by another peer? */
209 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
210 (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
211 device_printf(sc->mps_dev, "IOC is under the control "
212 "of another peer host, aborting initialization.\n");
213 return (ENXIO);
216 state = reg & MPI2_IOC_STATE_MASK;
217 if (state == MPI2_IOC_STATE_READY) {
218 /* Ready to go! */
219 error = 0;
220 break;
221 } else if (state == MPI2_IOC_STATE_FAULT) {
222 mps_dprint(sc, MPS_INFO, "IOC in fault state 0x%x\n",
223 state & MPI2_DOORBELL_FAULT_CODE_MASK);
224 mps_diag_reset(sc);
225 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
226 /* Need to take ownership */
227 mps_message_unit_reset(sc);
228 } else if (state == MPI2_IOC_STATE_RESET) {
229 /* Wait a bit, IOC might be in transition */
230 mps_dprint(sc, MPS_FAULT,
231 "IOC in unexpected reset state\n");
232 } else {
233 mps_dprint(sc, MPS_FAULT,
234 "IOC in unknown state 0x%x\n", state);
235 error = EINVAL;
236 break;
239 /* Wait 50ms for things to settle down. */
240 DELAY(50000);
243 if (error)
244 device_printf(sc->mps_dev, "Cannot transition IOC to ready\n");
246 return (error);
249 static int
250 mps_transition_operational(struct mps_softc *sc)
252 uint32_t reg, state;
253 int error;
255 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
257 error = 0;
258 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
259 mps_dprint(sc, MPS_INFO, "Doorbell= 0x%x\n", reg);
261 state = reg & MPI2_IOC_STATE_MASK;
262 if (state != MPI2_IOC_STATE_READY) {
263 if ((error = mps_transition_ready(sc)) != 0) {
264 mps_dprint(sc, MPS_FAULT,
265 "%s failed to transition ready\n", __func__);
266 return (error);
270 error = mps_send_iocinit(sc);
271 return (error);
275 * XXX Some of this should probably move to mps.c
277 * The terms diag reset and hard reset are used interchangeably in the MPI
278 * docs to mean resetting the controller chip. In this code diag reset
279 * cleans everything up, and the hard reset function just sends the reset
280 * sequence to the chip. This should probably be refactored so that every
281 * subsystem gets a reset notification of some sort, and can clean up
282 * appropriately.
285 mps_reinit(struct mps_softc *sc)
287 int error;
288 uint32_t db;
290 mps_printf(sc, "%s sc %p\n", __func__, sc);
292 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
294 if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
295 mps_printf(sc, "%s reset already in progress\n", __func__);
296 return 0;
299 /* make sure the completion callbacks can recognize they're getting
300 * a NULL cm_reply due to a reset.
302 sc->mps_flags |= MPS_FLAGS_DIAGRESET;
304 mps_printf(sc, "%s mask interrupts\n", __func__);
305 mps_mask_intr(sc);
307 error = mps_diag_reset(sc);
308 if (error != 0) {
309 panic("%s hard reset failed with error %d",
310 __func__, error);
313 /* Restore the PCI state, including the MSI-X registers */
314 mps_pci_restore(sc);
316 /* Give the I/O subsystem special priority to get itself prepared */
317 mpssas_handle_reinit(sc);
319 /* reinitialize queues after the reset */
320 bzero(sc->free_queue, sc->fqdepth * 4);
321 mps_init_queues(sc);
323 /* get the chip out of the reset state */
324 error = mps_transition_operational(sc);
325 if (error != 0)
326 panic("%s transition operational failed with error %d",
327 __func__, error);
329 /* Reinitialize the reply queue. This is delicate because this
330 * function is typically invoked by task mgmt completion callbacks,
331 * which are called by the interrupt thread. We need to make sure
332 * the interrupt handler loop will exit when we return to it, and
333 * that it will recognize the indexes we've changed.
335 sc->replypostindex = 0;
336 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
337 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
339 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
340 mps_printf(sc, "%s doorbell 0x%08x\n", __func__, db);
342 mps_printf(sc, "%s unmask interrupts post %u free %u\n", __func__,
343 sc->replypostindex, sc->replyfreeindex);
345 mps_unmask_intr(sc);
347 mps_printf(sc, "%s restarting post %u free %u\n", __func__,
348 sc->replypostindex, sc->replyfreeindex);
350 /* restart will reload the event masks clobbered by the reset, and
351 * then enable the port.
353 mps_reregister_events(sc);
355 /* the end of discovery will release the simq, so we're done. */
356 mps_printf(sc, "%s finished sc %p post %u free %u\n",
357 __func__, sc,
358 sc->replypostindex, sc->replyfreeindex);
360 sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
362 return 0;
365 /* Wait for the chip to ACK a word that we've put into its FIFO */
366 static int
367 mps_wait_db_ack(struct mps_softc *sc)
369 int retry;
371 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
372 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
373 MPI2_HIS_SYS2IOC_DB_STATUS) == 0)
374 return (0);
375 DELAY(2000);
377 return (ETIMEDOUT);
380 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
381 static int
382 mps_wait_db_int(struct mps_softc *sc)
384 int retry;
386 for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
387 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
388 MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
389 return (0);
390 DELAY(2000);
392 return (ETIMEDOUT);
395 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
396 static int
397 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
398 int req_sz, int reply_sz, int timeout)
400 uint32_t *data32;
401 uint16_t *data16;
402 int i, count, ioc_sz, residual;
404 /* Step 1 */
405 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
407 /* Step 2 */
408 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
409 return (EBUSY);
411 /* Step 3
412 * Announce that a message is coming through the doorbell. Messages
413 * are pushed at 32bit words, so round up if needed.
415 count = (req_sz + 3) / 4;
416 mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
417 (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
418 (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
420 /* Step 4 */
421 if (mps_wait_db_int(sc) ||
422 (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
423 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
424 return (ENXIO);
426 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
427 if (mps_wait_db_ack(sc) != 0) {
428 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
429 return (ENXIO);
432 /* Step 5 */
433 /* Clock out the message data synchronously in 32-bit dwords*/
434 data32 = (uint32_t *)req;
435 for (i = 0; i < count; i++) {
436 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, data32[i]);
437 if (mps_wait_db_ack(sc) != 0) {
438 mps_dprint(sc, MPS_FAULT,
439 "Timeout while writing doorbell\n");
440 return (ENXIO);
444 /* Step 6 */
445 /* Clock in the reply in 16-bit words. The total length of the
446 * message is always in the 4th byte, so clock out the first 2 words
447 * manually, then loop the rest.
449 data16 = (uint16_t *)reply;
450 if (mps_wait_db_int(sc) != 0) {
451 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
452 return (ENXIO);
454 data16[0] =
455 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
456 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
457 if (mps_wait_db_int(sc) != 0) {
458 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
459 return (ENXIO);
461 data16[1] =
462 mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
463 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
465 /* Number of 32bit words in the message */
466 ioc_sz = reply->MsgLength;
469 * Figure out how many 16bit words to clock in without overrunning.
470 * The precision loss with dividing reply_sz can safely be
471 * ignored because the messages can only be multiples of 32bits.
473 residual = 0;
474 count = MIN((reply_sz / 4), ioc_sz) * 2;
475 if (count < ioc_sz * 2) {
476 residual = ioc_sz * 2 - count;
477 mps_dprint(sc, MPS_FAULT, "Driver error, throwing away %d "
478 "residual message words\n", residual);
481 for (i = 2; i < count; i++) {
482 if (mps_wait_db_int(sc) != 0) {
483 mps_dprint(sc, MPS_FAULT,
484 "Timeout reading doorbell %d\n", i);
485 return (ENXIO);
487 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
488 MPI2_DOORBELL_DATA_MASK;
489 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
493 * Pull out residual words that won't fit into the provided buffer.
494 * This keeps the chip from hanging due to a driver programming
495 * error.
497 while (residual--) {
498 if (mps_wait_db_int(sc) != 0) {
499 mps_dprint(sc, MPS_FAULT,
500 "Timeout reading doorbell\n");
501 return (ENXIO);
503 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
504 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
507 /* Step 7 */
508 if (mps_wait_db_int(sc) != 0) {
509 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
510 return (ENXIO);
512 if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
513 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
514 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
516 return (0);
519 static void
520 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
523 mps_dprint(sc, MPS_TRACE, "%s SMID %u cm %p ccb %p\n", __func__,
524 cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
526 if ((sc->mps_flags & MPS_FLAGS_ATTACH_DONE) &&
527 !(sc->mps_flags & MPS_FLAGS_SHUTDOWN)) {
528 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
531 if (++sc->io_cmds_active > sc->io_cmds_highwater)
532 sc->io_cmds_highwater++;
534 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
535 cm->cm_desc.Words.Low);
536 mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
537 cm->cm_desc.Words.High);
541 * Just the FACTS, ma'am.
543 static int
544 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
546 MPI2_DEFAULT_REPLY *reply;
547 MPI2_IOC_FACTS_REQUEST request;
548 int error, req_sz, reply_sz;
550 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
552 req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
553 reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
554 reply = (MPI2_DEFAULT_REPLY *)facts;
556 bzero(&request, req_sz);
557 request.Function = MPI2_FUNCTION_IOC_FACTS;
558 error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
560 return (error);
563 static int
564 mps_get_portfacts(struct mps_softc *sc, MPI2_PORT_FACTS_REPLY *facts, int port)
566 MPI2_PORT_FACTS_REQUEST *request;
567 MPI2_PORT_FACTS_REPLY *reply;
568 struct mps_command *cm;
569 int error;
571 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
573 if ((cm = mps_alloc_command(sc)) == NULL)
574 return (EBUSY);
575 request = (MPI2_PORT_FACTS_REQUEST *)cm->cm_req;
576 request->Function = MPI2_FUNCTION_PORT_FACTS;
577 request->PortNumber = port;
578 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
579 cm->cm_data = NULL;
580 error = mps_request_polled(sc, cm);
581 reply = (MPI2_PORT_FACTS_REPLY *)cm->cm_reply;
582 if (reply == NULL) {
583 mps_printf(sc, "%s NULL reply\n", __func__);
584 goto done;
586 if ((reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) {
587 mps_printf(sc,
588 "%s error %d iocstatus 0x%x iocloginfo 0x%x type 0x%x\n",
589 __func__, error, reply->IOCStatus, reply->IOCLogInfo,
590 reply->PortType);
591 error = ENXIO;
593 bcopy(reply, facts, sizeof(MPI2_PORT_FACTS_REPLY));
594 done:
595 mps_free_command(sc, cm);
597 return (error);
600 static int
601 mps_send_iocinit(struct mps_softc *sc)
603 MPI2_IOC_INIT_REQUEST init;
604 MPI2_DEFAULT_REPLY reply;
605 int req_sz, reply_sz, error;
607 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
609 req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
610 reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
611 bzero(&init, req_sz);
612 bzero(&reply, reply_sz);
615 * Fill in the init block. Note that most addresses are
616 * deliberately in the lower 32bits of memory. This is a micro-
617 * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
619 init.Function = MPI2_FUNCTION_IOC_INIT;
620 init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
621 init.MsgVersion = MPI2_VERSION;
622 init.HeaderVersion = MPI2_HEADER_VERSION;
623 init.SystemRequestFrameSize = sc->facts->IOCRequestFrameSize;
624 init.ReplyDescriptorPostQueueDepth = sc->pqdepth;
625 init.ReplyFreeQueueDepth = sc->fqdepth;
626 init.SenseBufferAddressHigh = 0;
627 init.SystemReplyAddressHigh = 0;
628 init.SystemRequestFrameBaseAddress.High = 0;
629 init.SystemRequestFrameBaseAddress.Low = (uint32_t)sc->req_busaddr;
630 init.ReplyDescriptorPostQueueAddress.High = 0;
631 init.ReplyDescriptorPostQueueAddress.Low = (uint32_t)sc->post_busaddr;
632 init.ReplyFreeQueueAddress.High = 0;
633 init.ReplyFreeQueueAddress.Low = (uint32_t)sc->free_busaddr;
634 init.TimeStamp.High = 0;
635 init.TimeStamp.Low = (uint32_t)time_uptime;
637 error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
638 if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
639 error = ENXIO;
641 mps_dprint(sc, MPS_INFO, "IOCInit status= 0x%x\n", reply.IOCStatus);
642 return (error);
645 void
646 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
648 bus_addr_t *addr;
650 addr = arg;
651 *addr = segs[0].ds_addr;
654 static int
655 mps_alloc_queues(struct mps_softc *sc)
657 bus_addr_t queues_busaddr;
658 uint8_t *queues;
659 int qsize, fqsize, pqsize;
662 * The reply free queue contains 4 byte entries in multiples of 16 and
663 * aligned on a 16 byte boundary. There must always be an unused entry.
664 * This queue supplies fresh reply frames for the firmware to use.
666 * The reply descriptor post queue contains 8 byte entries in
667 * multiples of 16 and aligned on a 16 byte boundary. This queue
668 * contains filled-in reply frames sent from the firmware to the host.
670 * These two queues are allocated together for simplicity.
672 sc->fqdepth = roundup2((sc->num_replies + 1), 16);
673 sc->pqdepth = roundup2((sc->num_replies + 1), 16);
674 fqsize= sc->fqdepth * 4;
675 pqsize = sc->pqdepth * 8;
676 qsize = fqsize + pqsize;
678 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
679 16, 0, /* algnmnt, boundary */
680 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
681 BUS_SPACE_MAXADDR, /* highaddr */
682 NULL, NULL, /* filter, filterarg */
683 qsize, /* maxsize */
684 1, /* nsegments */
685 qsize, /* maxsegsize */
686 0, /* flags */
687 &sc->queues_dmat)) {
688 device_printf(sc->mps_dev, "Cannot allocate queues DMA tag\n");
689 return (ENOMEM);
691 if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
692 &sc->queues_map)) {
693 device_printf(sc->mps_dev, "Cannot allocate queues memory\n");
694 return (ENOMEM);
696 bzero(queues, qsize);
697 bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
698 mps_memaddr_cb, &queues_busaddr, 0);
700 sc->free_queue = (uint32_t *)queues;
701 sc->free_busaddr = queues_busaddr;
702 sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
703 sc->post_busaddr = queues_busaddr + fqsize;
705 return (0);
708 static int
709 mps_alloc_replies(struct mps_softc *sc)
711 int rsize, num_replies;
714 * sc->num_replies should be one less than sc->fqdepth. We need to
715 * allocate space for sc->fqdepth replies, but only sc->num_replies
716 * replies can be used at once.
718 num_replies = max(sc->fqdepth, sc->num_replies);
720 rsize = sc->facts->ReplyFrameSize * num_replies * 4;
721 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
722 4, 0, /* algnmnt, boundary */
723 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
724 BUS_SPACE_MAXADDR, /* highaddr */
725 NULL, NULL, /* filter, filterarg */
726 rsize, /* maxsize */
727 1, /* nsegments */
728 rsize, /* maxsegsize */
729 0, /* flags */
730 &sc->reply_dmat)) {
731 device_printf(sc->mps_dev, "Cannot allocate replies DMA tag\n");
732 return (ENOMEM);
734 if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
735 BUS_DMA_NOWAIT, &sc->reply_map)) {
736 device_printf(sc->mps_dev, "Cannot allocate replies memory\n");
737 return (ENOMEM);
739 bzero(sc->reply_frames, rsize);
740 bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
741 mps_memaddr_cb, &sc->reply_busaddr, 0);
743 return (0);
746 static int
747 mps_alloc_requests(struct mps_softc *sc)
749 struct mps_command *cm;
750 struct mps_chain *chain;
751 int i, rsize, nsegs;
753 rsize = sc->facts->IOCRequestFrameSize * sc->num_reqs * 4;
754 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
755 16, 0, /* algnmnt, boundary */
756 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
757 BUS_SPACE_MAXADDR, /* highaddr */
758 NULL, NULL, /* filter, filterarg */
759 rsize, /* maxsize */
760 1, /* nsegments */
761 rsize, /* maxsegsize */
762 0, /* flags */
763 &sc->req_dmat)) {
764 device_printf(sc->mps_dev, "Cannot allocate request DMA tag\n");
765 return (ENOMEM);
767 if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
768 BUS_DMA_NOWAIT, &sc->req_map)) {
769 device_printf(sc->mps_dev, "Cannot allocate request memory\n");
770 return (ENOMEM);
772 bzero(sc->req_frames, rsize);
773 bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
774 mps_memaddr_cb, &sc->req_busaddr, 0);
776 rsize = sc->facts->IOCRequestFrameSize * sc->max_chains * 4;
777 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
778 16, 0, /* algnmnt, boundary */
779 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
780 BUS_SPACE_MAXADDR, /* highaddr */
781 NULL, NULL, /* filter, filterarg */
782 rsize, /* maxsize */
783 1, /* nsegments */
784 rsize, /* maxsegsize */
785 0, /* flags */
786 &sc->chain_dmat)) {
787 device_printf(sc->mps_dev, "Cannot allocate chain DMA tag\n");
788 return (ENOMEM);
790 if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
791 BUS_DMA_NOWAIT, &sc->chain_map)) {
792 device_printf(sc->mps_dev, "Cannot allocate chain memory\n");
793 return (ENOMEM);
795 bzero(sc->chain_frames, rsize);
796 bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize,
797 mps_memaddr_cb, &sc->chain_busaddr, 0);
799 rsize = MPS_SENSE_LEN * sc->num_reqs;
800 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
801 1, 0, /* algnmnt, boundary */
802 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
803 BUS_SPACE_MAXADDR, /* highaddr */
804 NULL, NULL, /* filter, filterarg */
805 rsize, /* maxsize */
806 1, /* nsegments */
807 rsize, /* maxsegsize */
808 0, /* flags */
809 &sc->sense_dmat)) {
810 device_printf(sc->mps_dev, "Cannot allocate sense DMA tag\n");
811 return (ENOMEM);
813 if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
814 BUS_DMA_NOWAIT, &sc->sense_map)) {
815 device_printf(sc->mps_dev, "Cannot allocate sense memory\n");
816 return (ENOMEM);
818 bzero(sc->sense_frames, rsize);
819 bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
820 mps_memaddr_cb, &sc->sense_busaddr, 0);
822 sc->chains = kmalloc(sizeof(struct mps_chain) * sc->max_chains, M_MPT2,
823 M_WAITOK | M_ZERO);
824 for (i = 0; i < sc->max_chains; i++) {
825 chain = &sc->chains[i];
826 chain->chain = (MPI2_SGE_IO_UNION *)(sc->chain_frames +
827 i * sc->facts->IOCRequestFrameSize * 4);
828 chain->chain_busaddr = sc->chain_busaddr +
829 i * sc->facts->IOCRequestFrameSize * 4;
830 mps_free_chain(sc, chain);
831 sc->chain_free_lowwater++;
834 /* XXX Need to pick a more precise value */
835 nsegs = (MAXPHYS / PAGE_SIZE) + 1;
836 if (bus_dma_tag_create( sc->mps_parent_dmat, /* parent */
837 1, 0, /* algnmnt, boundary */
838 BUS_SPACE_MAXADDR, /* lowaddr */
839 BUS_SPACE_MAXADDR, /* highaddr */
840 NULL, NULL, /* filter, filterarg */
841 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
842 nsegs, /* nsegments */
843 BUS_SPACE_MAXSIZE_24BIT,/* maxsegsize */
844 BUS_DMA_ALLOCNOW, /* flags */
845 &sc->buffer_dmat)) {
846 device_printf(sc->mps_dev, "Cannot allocate buffer DMA tag\n");
847 return (ENOMEM);
851 * SMID 0 cannot be used as a free command per the firmware spec.
852 * Just drop that command instead of risking accounting bugs.
854 sc->commands = kmalloc(sizeof(struct mps_command) * sc->num_reqs,
855 M_MPT2, M_WAITOK | M_ZERO);
856 for (i = 1; i < sc->num_reqs; i++) {
857 cm = &sc->commands[i];
858 cm->cm_req = sc->req_frames +
859 i * sc->facts->IOCRequestFrameSize * 4;
860 cm->cm_req_busaddr = sc->req_busaddr +
861 i * sc->facts->IOCRequestFrameSize * 4;
862 cm->cm_sense = &sc->sense_frames[i];
863 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
864 cm->cm_desc.Default.SMID = i;
865 cm->cm_sc = sc;
866 TAILQ_INIT(&cm->cm_chain_list);
867 callout_init_mp(&cm->cm_callout);
869 /* XXX Is a failure here a critical problem? */
870 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
871 if (i <= sc->facts->HighPriorityCredit)
872 mps_free_high_priority_command(sc, cm);
873 else
874 mps_free_command(sc, cm);
875 else {
876 panic("failed to allocate command %d", i);
877 sc->num_reqs = i;
878 break;
882 return (0);
885 static int
886 mps_init_queues(struct mps_softc *sc)
888 int i;
890 memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
893 * According to the spec, we need to use one less reply than we
894 * have space for on the queue. So sc->num_replies (the number we
895 * use) should be less than sc->fqdepth (allocated size).
897 if (sc->num_replies >= sc->fqdepth)
898 return (EINVAL);
901 * Initialize all of the free queue entries.
903 for (i = 0; i < sc->fqdepth; i++)
904 sc->free_queue[i] = sc->reply_busaddr + (i * sc->facts->ReplyFrameSize * 4);
905 sc->replyfreeindex = sc->num_replies;
907 return (0);
910 /* Get the driver parameter tunables. Lowest priority are the driver defaults.
911 * Next are the global settings, if they exist. Highest are the per-unit
912 * settings, if they exist.
914 static void
915 mps_get_tunables(struct mps_softc *sc)
917 char tmpstr[80];
919 /* XXX default to some debugging for now */
920 sc->mps_debug = MPS_FAULT;
921 #if 0 /* XXX swildner */
922 sc->disable_msix = 0;
923 #endif
924 sc->enable_msi = 1;
925 sc->max_chains = MPS_CHAIN_FRAMES;
928 * Grab the global variables.
930 TUNABLE_INT_FETCH("hw.mps.debug_level", &sc->mps_debug);
931 #if 0 /* XXX swildner */
932 TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
933 #endif
934 TUNABLE_INT_FETCH("hw.mps.msi.enable", &sc->enable_msi);
935 TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
937 /* Grab the unit-instance variables */
938 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
939 device_get_unit(sc->mps_dev));
940 TUNABLE_INT_FETCH(tmpstr, &sc->mps_debug);
942 #if 0 /* XXX swildner */
943 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
944 device_get_unit(sc->mps_dev));
945 TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
946 #endif
948 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_msi",
949 device_get_unit(sc->mps_dev));
950 TUNABLE_INT_FETCH(tmpstr, &sc->enable_msi);
952 ksnprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
953 device_get_unit(sc->mps_dev));
954 TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
957 static void
958 mps_setup_sysctl(struct mps_softc *sc)
960 struct sysctl_ctx_list *sysctl_ctx = NULL;
961 struct sysctl_oid *sysctl_tree = NULL;
962 char tmpstr[80], tmpstr2[80];
965 * Setup the sysctl variable so the user can change the debug level
966 * on the fly.
968 ksnprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
969 device_get_unit(sc->mps_dev));
970 ksnprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
972 sysctl_ctx_init(&sc->sysctl_ctx);
973 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
974 SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
975 CTLFLAG_RD, 0, tmpstr);
976 if (sc->sysctl_tree == NULL)
977 return;
978 sysctl_ctx = &sc->sysctl_ctx;
979 sysctl_tree = sc->sysctl_tree;
981 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
982 OID_AUTO, "debug_level", CTLFLAG_RW, &sc->mps_debug, 0,
983 "mps debug level");
985 #if 0 /* XXX swildner */
986 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
987 OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
988 "Disable the use of MSI-X interrupts");
989 #endif
991 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
992 OID_AUTO, "enable_msi", CTLFLAG_RD, &sc->enable_msi, 0,
993 "Enable the use of MSI interrupts");
995 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
996 OID_AUTO, "firmware_version", CTLFLAG_RW, &sc->fw_version,
997 strlen(sc->fw_version), "firmware version");
999 SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1000 OID_AUTO, "driver_version", CTLFLAG_RW, MPS_DRIVER_VERSION,
1001 strlen(MPS_DRIVER_VERSION), "driver version");
1003 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1004 OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1005 &sc->io_cmds_active, 0, "number of currently active commands");
1007 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1008 OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1009 &sc->io_cmds_highwater, 0, "maximum active commands seen");
1011 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1012 OID_AUTO, "chain_free", CTLFLAG_RD,
1013 &sc->chain_free, 0, "number of free chain elements");
1015 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1016 OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1017 &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1019 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1020 OID_AUTO, "max_chains", CTLFLAG_RD,
1021 &sc->max_chains, 0,"maximum chain frames that will be allocated");
1023 #if 0 /* __FreeBSD_version >= 900030 */
1024 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1025 OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1026 &sc->chain_alloc_fail, "chain allocation failures");
1027 #endif //FreeBSD_version >= 900030
1031 mps_attach(struct mps_softc *sc)
1033 int i, error;
1035 mps_get_tunables(sc);
1037 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1039 lockinit(&sc->mps_lock, "MPT2SAS lock", 0, LK_CANRECURSE);
1040 callout_init_mp(&sc->periodic);
1041 TAILQ_INIT(&sc->event_list);
1043 if ((error = mps_transition_ready(sc)) != 0) {
1044 mps_printf(sc, "%s failed to transition ready\n", __func__);
1045 return (error);
1048 sc->facts = kmalloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1049 M_ZERO|M_WAITOK);
1050 if ((error = mps_get_iocfacts(sc, sc->facts)) != 0)
1051 return (error);
1053 mps_print_iocfacts(sc, sc->facts);
1055 ksnprintf(sc->fw_version, sizeof(sc->fw_version),
1056 "%02d.%02d.%02d.%02d",
1057 sc->facts->FWVersion.Struct.Major,
1058 sc->facts->FWVersion.Struct.Minor,
1059 sc->facts->FWVersion.Struct.Unit,
1060 sc->facts->FWVersion.Struct.Dev);
1062 mps_printf(sc, "Firmware: %s, Driver: %s\n", sc->fw_version,
1063 MPS_DRIVER_VERSION);
1064 mps_printf(sc, "IOCCapabilities: %pb%i\n",
1065 "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
1066 "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
1067 "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc",
1068 sc->facts->IOCCapabilities);
1071 * If the chip doesn't support event replay then a hard reset will be
1072 * required to trigger a full discovery. Do the reset here then
1073 * retransition to Ready. A hard reset might have already been done,
1074 * but it doesn't hurt to do it again.
1076 if ((sc->facts->IOCCapabilities &
1077 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0) {
1078 mps_diag_reset(sc);
1079 if ((error = mps_transition_ready(sc)) != 0)
1080 return (error);
1084 * Set flag if IR Firmware is loaded.
1086 if (sc->facts->IOCCapabilities &
1087 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
1088 sc->ir_firmware = 1;
1091 * Check if controller supports FW diag buffers and set flag to enable
1092 * each type.
1094 if (sc->facts->IOCCapabilities &
1095 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1096 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].enabled =
1097 TRUE;
1098 if (sc->facts->IOCCapabilities &
1099 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1100 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].enabled =
1101 TRUE;
1102 if (sc->facts->IOCCapabilities &
1103 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1104 sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].enabled =
1105 TRUE;
1108 * Set flag if EEDP is supported and if TLR is supported.
1110 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
1111 sc->eedp_enabled = TRUE;
1112 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
1113 sc->control_TLR = TRUE;
1116 * Size the queues. Since the reply queues always need one free entry,
1117 * we'll just deduct one reply message here.
1119 sc->num_reqs = MIN(MPS_REQ_FRAMES, sc->facts->RequestCredit);
1120 sc->num_replies = MIN(MPS_REPLY_FRAMES + MPS_EVT_REPLY_FRAMES,
1121 sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
1122 TAILQ_INIT(&sc->req_list);
1123 TAILQ_INIT(&sc->high_priority_req_list);
1124 TAILQ_INIT(&sc->chain_list);
1125 TAILQ_INIT(&sc->tm_list);
1127 if (((error = mps_alloc_queues(sc)) != 0) ||
1128 ((error = mps_alloc_replies(sc)) != 0) ||
1129 ((error = mps_alloc_requests(sc)) != 0)) {
1130 mps_printf(sc, "%s failed to alloc\n", __func__);
1131 mps_free(sc);
1132 return (error);
1135 if (((error = mps_init_queues(sc)) != 0) ||
1136 ((error = mps_transition_operational(sc)) != 0)) {
1137 mps_printf(sc, "%s failed to transition operational\n", __func__);
1138 mps_free(sc);
1139 return (error);
1143 * Finish the queue initialization.
1144 * These are set here instead of in mps_init_queues() because the
1145 * IOC resets these values during the state transition in
1146 * mps_transition_operational(). The free index is set to 1
1147 * because the corresponding index in the IOC is set to 0, and the
1148 * IOC treats the queues as full if both are set to the same value.
1149 * Hence the reason that the queue can't hold all of the possible
1150 * replies.
1152 sc->replypostindex = 0;
1153 mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
1154 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
1156 sc->pfacts = kmalloc(sizeof(MPI2_PORT_FACTS_REPLY) *
1157 sc->facts->NumberOfPorts, M_MPT2, M_ZERO|M_WAITOK);
1158 for (i = 0; i < sc->facts->NumberOfPorts; i++) {
1159 if ((error = mps_get_portfacts(sc, &sc->pfacts[i], i)) != 0) {
1160 mps_printf(sc, "%s failed to get portfacts for port %d\n",
1161 __func__, i);
1162 mps_free(sc);
1163 return (error);
1165 mps_print_portfacts(sc, &sc->pfacts[i]);
1168 /* Attach the subsystems so they can prepare their event masks. */
1169 /* XXX Should be dynamic so that IM/IR and user modules can attach */
1170 if (((error = mps_attach_log(sc)) != 0) ||
1171 ((error = mps_attach_sas(sc)) != 0) ||
1172 ((error = mps_attach_user(sc)) != 0)) {
1173 mps_printf(sc, "%s failed to attach all subsystems: error %d\n",
1174 __func__, error);
1175 mps_free(sc);
1176 return (error);
1179 if ((error = mps_pci_setup_interrupts(sc)) != 0) {
1180 mps_printf(sc, "%s failed to setup interrupts\n", __func__);
1181 mps_free(sc);
1182 return (error);
1186 * The static page function currently read is ioc page8. Others can be
1187 * added in future.
1189 mps_base_static_config_pages(sc);
1191 /* Start the periodic watchdog check on the IOC Doorbell */
1192 mps_periodic(sc);
1195 * The portenable will kick off discovery events that will drive the
1196 * rest of the initialization process. The CAM/SAS module will
1197 * hold up the boot sequence until discovery is complete.
1199 sc->mps_ich.ich_func = mps_startup;
1200 sc->mps_ich.ich_arg = sc;
1201 sc->mps_ich.ich_desc = "mps";
1202 if (config_intrhook_establish(&sc->mps_ich) != 0) {
1203 mps_dprint(sc, MPS_FAULT, "Cannot establish MPS config hook\n");
1204 error = EINVAL;
1208 * Allow IR to shutdown gracefully when shutdown occurs.
1210 sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
1211 mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
1213 if (sc->shutdown_eh == NULL)
1214 mps_dprint(sc, MPS_FAULT, "shutdown event registration "
1215 "failed\n");
1217 mps_setup_sysctl(sc);
1219 sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
1221 return (error);
1224 /* Run through any late-start handlers. */
1225 static void
1226 mps_startup(void *arg)
1228 struct mps_softc *sc;
1230 sc = (struct mps_softc *)arg;
1232 mps_lock(sc);
1233 mps_unmask_intr(sc);
1234 /* initialize device mapping tables */
1235 mps_mapping_initialize(sc);
1236 mpssas_startup(sc);
1237 mps_unlock(sc);
1240 /* Periodic watchdog. Is called with the driver lock already held. */
1241 static void
1242 mps_periodic(void *arg)
1244 struct mps_softc *sc;
1245 uint32_t db;
1247 sc = (struct mps_softc *)arg;
1248 mps_lock(sc);
1249 if (sc->mps_flags & MPS_FLAGS_SHUTDOWN) {
1250 mps_unlock(sc);
1251 return;
1254 db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
1255 if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
1256 device_printf(sc->mps_dev, "IOC Fault 0x%08x, Resetting\n", db);
1258 mps_reinit(sc);
1261 callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
1262 mps_unlock(sc);
1265 static void
1266 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
1267 MPI2_EVENT_NOTIFICATION_REPLY *event)
1269 MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
1271 mps_print_event(sc, event);
1273 switch (event->Event) {
1274 case MPI2_EVENT_LOG_DATA:
1275 device_printf(sc->mps_dev, "MPI2_EVENT_LOG_DATA:\n");
1276 hexdump(event->EventData, event->EventDataLength, NULL, 0);
1277 break;
1278 case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
1280 mps_dprint(sc, MPS_INFO, "MPI2_EVENT_LOG_ENTRY_ADDED event "
1281 "0x%x Sequence %d:\n", entry->LogEntryQualifier,
1282 entry->LogSequence);
1283 break;
1284 default:
1285 break;
1287 return;
1290 static int
1291 mps_attach_log(struct mps_softc *sc)
1293 uint8_t events[16];
1295 bzero(events, 16);
1296 setbit(events, MPI2_EVENT_LOG_DATA);
1297 setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
1299 mps_register_events(sc, events, mps_log_evt_handler, NULL,
1300 &sc->mps_log_eh);
1302 return (0);
1305 static int
1306 mps_detach_log(struct mps_softc *sc)
1309 if (sc->mps_log_eh != NULL)
1310 mps_deregister_events(sc, sc->mps_log_eh);
1311 return (0);
1315 * Free all of the driver resources and detach submodules. Should be called
1316 * without the lock held.
1319 mps_free(struct mps_softc *sc)
1321 struct mps_command *cm;
1322 int i, error;
1324 /* Turn off the watchdog */
1325 mps_lock(sc);
1326 sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
1327 mps_unlock(sc);
1328 callout_stop_sync(&sc->periodic);
1330 if (((error = mps_detach_log(sc)) != 0) ||
1331 ((error = mps_detach_sas(sc)) != 0))
1332 return (error);
1334 mps_detach_user(sc);
1336 /* Put the IOC back in the READY state. */
1337 mps_lock(sc);
1338 if ((error = mps_transition_ready(sc)) != 0) {
1339 mps_unlock(sc);
1340 return (error);
1342 mps_unlock(sc);
1344 if (sc->facts != NULL)
1345 kfree(sc->facts, M_MPT2);
1347 if (sc->pfacts != NULL)
1348 kfree(sc->pfacts, M_MPT2);
1350 if (sc->post_busaddr != 0)
1351 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
1352 if (sc->post_queue != NULL)
1353 bus_dmamem_free(sc->queues_dmat, sc->post_queue,
1354 sc->queues_map);
1355 if (sc->queues_dmat != NULL)
1356 bus_dma_tag_destroy(sc->queues_dmat);
1358 if (sc->chain_busaddr != 0)
1359 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
1360 if (sc->chain_frames != NULL)
1361 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,sc->chain_map);
1362 if (sc->chain_dmat != NULL)
1363 bus_dma_tag_destroy(sc->chain_dmat);
1365 if (sc->sense_busaddr != 0)
1366 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
1367 if (sc->sense_frames != NULL)
1368 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,sc->sense_map);
1369 if (sc->sense_dmat != NULL)
1370 bus_dma_tag_destroy(sc->sense_dmat);
1372 if (sc->reply_busaddr != 0)
1373 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
1374 if (sc->reply_frames != NULL)
1375 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,sc->reply_map);
1376 if (sc->reply_dmat != NULL)
1377 bus_dma_tag_destroy(sc->reply_dmat);
1379 if (sc->req_busaddr != 0)
1380 bus_dmamap_unload(sc->req_dmat, sc->req_map);
1381 if (sc->req_frames != NULL)
1382 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
1383 if (sc->req_dmat != NULL)
1384 bus_dma_tag_destroy(sc->req_dmat);
1386 if (sc->chains != NULL)
1387 kfree(sc->chains, M_MPT2);
1388 if (sc->commands != NULL) {
1389 for (i = 1; i < sc->num_reqs; i++) {
1390 cm = &sc->commands[i];
1391 bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
1393 kfree(sc->commands, M_MPT2);
1395 if (sc->buffer_dmat != NULL)
1396 bus_dma_tag_destroy(sc->buffer_dmat);
1398 if (sc->sysctl_tree != NULL)
1399 sysctl_ctx_free(&sc->sysctl_ctx);
1401 mps_mapping_free_memory(sc);
1403 /* Deregister the shutdown function */
1404 if (sc->shutdown_eh != NULL)
1405 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
1407 lockuninit(&sc->mps_lock);
1409 return (0);
1412 static __inline void
1413 mps_complete_command(struct mps_command *cm)
1415 if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
1416 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
1418 if (cm->cm_complete != NULL) {
1419 mps_dprint(cm->cm_sc, MPS_TRACE,
1420 "%s cm %p calling cm_complete %p data %p reply %p\n",
1421 __func__, cm, cm->cm_complete, cm->cm_complete_data,
1422 cm->cm_reply);
1423 cm->cm_complete(cm->cm_sc, cm);
1426 if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
1427 mps_dprint(cm->cm_sc, MPS_TRACE, "%s: waking up %p\n",
1428 __func__, cm);
1429 wakeup(cm);
1432 if (cm->cm_sc->io_cmds_active != 0) {
1433 cm->cm_sc->io_cmds_active--;
1434 } else {
1435 mps_dprint(cm->cm_sc, MPS_INFO, "Warning: io_cmds_active is "
1436 "out of sync - resynching to 0\n");
1440 void
1441 mps_intr(void *data)
1443 struct mps_softc *sc;
1444 uint32_t status;
1446 sc = (struct mps_softc *)data;
1447 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1450 * Check interrupt status register to flush the bus. This is
1451 * needed for both INTx interrupts and driver-driven polling
1453 status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
1454 if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
1455 return;
1457 mps_lock(sc);
1458 mps_intr_locked(data);
1459 mps_unlock(sc);
1460 return;
1464 * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
1465 * chip. Hopefully this theory is correct.
1467 void
1468 mps_intr_msi(void *data)
1470 struct mps_softc *sc;
1472 sc = (struct mps_softc *)data;
1473 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1474 mps_lock(sc);
1475 mps_intr_locked(data);
1476 mps_unlock(sc);
1477 return;
1481 * The locking is overly broad and simplistic, but easy to deal with for now.
1483 void
1484 mps_intr_locked(void *data)
1486 MPI2_REPLY_DESCRIPTORS_UNION *desc;
1487 struct mps_softc *sc;
1488 struct mps_command *cm = NULL;
1489 uint8_t flags;
1490 u_int pq;
1491 MPI2_DIAG_RELEASE_REPLY *rel_rep;
1492 mps_fw_diagnostic_buffer_t *pBuffer;
1494 sc = (struct mps_softc *)data;
1496 pq = sc->replypostindex;
1497 mps_dprint(sc, MPS_TRACE,
1498 "%s sc %p starting with replypostindex %u\n",
1499 __func__, sc, sc->replypostindex);
1501 for ( ;; ) {
1502 cm = NULL;
1503 desc = &sc->post_queue[sc->replypostindex];
1504 flags = desc->Default.ReplyFlags &
1505 MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1506 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1507 || (desc->Words.High == 0xffffffff))
1508 break;
1510 /* increment the replypostindex now, so that event handlers
1511 * and cm completion handlers which decide to do a diag
1512 * reset can zero it without it getting incremented again
1513 * afterwards, and we break out of this loop on the next
1514 * iteration since the reply post queue has been cleared to
1515 * 0xFF and all descriptors look unused (which they are).
1517 if (++sc->replypostindex >= sc->pqdepth)
1518 sc->replypostindex = 0;
1520 switch (flags) {
1521 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
1522 cm = &sc->commands[desc->SCSIIOSuccess.SMID];
1523 cm->cm_reply = NULL;
1524 break;
1525 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
1527 uint32_t baddr;
1528 uint8_t *reply;
1531 * Re-compose the reply address from the address
1532 * sent back from the chip. The ReplyFrameAddress
1533 * is the lower 32 bits of the physical address of
1534 * particular reply frame. Convert that address to
1535 * host format, and then use that to provide the
1536 * offset against the virtual address base
1537 * (sc->reply_frames).
1539 baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
1540 reply = sc->reply_frames +
1541 (baddr - ((uint32_t)sc->reply_busaddr));
1543 * Make sure the reply we got back is in a valid
1544 * range. If not, go ahead and panic here, since
1545 * we'll probably panic as soon as we deference the
1546 * reply pointer anyway.
1548 if ((reply < sc->reply_frames)
1549 || (reply > (sc->reply_frames +
1550 (sc->fqdepth * sc->facts->ReplyFrameSize * 4)))) {
1551 kprintf("%s: WARNING: reply %p out of range!\n",
1552 __func__, reply);
1553 kprintf("%s: reply_frames %p, fqdepth %d, "
1554 "frame size %d\n", __func__,
1555 sc->reply_frames, sc->fqdepth,
1556 sc->facts->ReplyFrameSize * 4);
1557 kprintf("%s: baddr %#x,\n", __func__, baddr);
1558 panic("Reply address out of range");
1560 if (desc->AddressReply.SMID == 0) {
1561 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
1562 MPI2_FUNCTION_DIAG_BUFFER_POST) {
1564 * If SMID is 0 for Diag Buffer Post,
1565 * this implies that the reply is due to
1566 * a release function with a status that
1567 * the buffer has been released. Set
1568 * the buffer flags accordingly.
1570 rel_rep =
1571 (MPI2_DIAG_RELEASE_REPLY *)reply;
1572 if (rel_rep->IOCStatus ==
1573 MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
1575 pBuffer =
1576 &sc->fw_diag_buffer_list[
1577 rel_rep->BufferType];
1578 pBuffer->valid_data = TRUE;
1579 pBuffer->owned_by_firmware =
1580 FALSE;
1581 pBuffer->immediate = FALSE;
1583 } else
1584 mps_dispatch_event(sc, baddr,
1585 (MPI2_EVENT_NOTIFICATION_REPLY *)
1586 reply);
1587 } else {
1588 cm = &sc->commands[desc->AddressReply.SMID];
1589 cm->cm_reply = reply;
1590 cm->cm_reply_data =
1591 desc->AddressReply.ReplyFrameAddress;
1593 break;
1595 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
1596 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
1597 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
1598 default:
1599 /* Unhandled */
1600 device_printf(sc->mps_dev, "Unhandled reply 0x%x\n",
1601 desc->Default.ReplyFlags);
1602 cm = NULL;
1603 break;
1606 if (cm != NULL)
1607 mps_complete_command(cm);
1609 desc->Words.Low = 0xffffffff;
1610 desc->Words.High = 0xffffffff;
1613 if (pq != sc->replypostindex) {
1614 mps_dprint(sc, MPS_TRACE,
1615 "%s sc %p writing postindex %d\n",
1616 __func__, sc, sc->replypostindex);
1617 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex);
1620 return;
1623 static void
1624 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
1625 MPI2_EVENT_NOTIFICATION_REPLY *reply)
1627 struct mps_event_handle *eh;
1628 int event, handled = 0;
1630 event = reply->Event;
1631 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1632 if (isset(eh->mask, event)) {
1633 eh->callback(sc, data, reply);
1634 handled++;
1638 if (handled == 0)
1639 device_printf(sc->mps_dev, "Unhandled event 0x%x\n", event);
1642 * This is the only place that the event/reply should be freed.
1643 * Anything wanting to hold onto the event data should have
1644 * already copied it into their own storage.
1646 mps_free_reply(sc, data);
1649 static void
1650 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
1652 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1654 if (cm->cm_reply)
1655 mps_print_event(sc,
1656 (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
1658 mps_free_command(sc, cm);
1660 /* next, send a port enable */
1661 mpssas_startup(sc);
1665 * For both register_events and update_events, the caller supplies a bitmap
1666 * of events that it _wants_. These functions then turn that into a bitmask
1667 * suitable for the controller.
1670 mps_register_events(struct mps_softc *sc, uint8_t *mask,
1671 mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
1673 struct mps_event_handle *eh;
1674 int error = 0;
1676 eh = kmalloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
1677 eh->callback = cb;
1678 eh->data = data;
1679 TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
1680 if (mask != NULL)
1681 error = mps_update_events(sc, eh, mask);
1682 *handle = eh;
1684 return (error);
1688 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
1689 uint8_t *mask)
1691 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1692 MPI2_EVENT_NOTIFICATION_REPLY *reply;
1693 struct mps_command *cm;
1694 struct mps_event_handle *eh;
1695 int error, i;
1697 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1699 if ((mask != NULL) && (handle != NULL))
1700 bcopy(mask, &handle->mask[0], 16);
1701 memset(sc->event_mask, 0xff, 16);
1703 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1704 for (i = 0; i < 16; i++)
1705 sc->event_mask[i] &= ~eh->mask[i];
1708 if ((cm = mps_alloc_command(sc)) == NULL)
1709 return (EBUSY);
1710 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1711 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1712 evtreq->MsgFlags = 0;
1713 evtreq->SASBroadcastPrimitiveMasks = 0;
1714 #ifdef MPS_DEBUG_ALL_EVENTS
1716 u_char fullmask[16];
1717 memset(fullmask, 0x00, 16);
1718 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1720 #else
1721 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1722 #endif
1723 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1724 cm->cm_data = NULL;
1726 error = mps_request_polled(sc, cm);
1727 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
1728 if ((reply == NULL) ||
1729 (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1730 error = ENXIO;
1731 mps_print_event(sc, reply);
1732 mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
1734 mps_free_command(sc, cm);
1735 return (error);
1738 static int
1739 mps_reregister_events(struct mps_softc *sc)
1741 MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
1742 struct mps_command *cm;
1743 struct mps_event_handle *eh;
1744 int error, i;
1746 mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
1748 /* first, reregister events */
1750 memset(sc->event_mask, 0xff, 16);
1752 TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
1753 for (i = 0; i < 16; i++)
1754 sc->event_mask[i] &= ~eh->mask[i];
1757 if ((cm = mps_alloc_command(sc)) == NULL)
1758 return (EBUSY);
1759 evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
1760 evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
1761 evtreq->MsgFlags = 0;
1762 evtreq->SASBroadcastPrimitiveMasks = 0;
1763 #ifdef MPS_DEBUG_ALL_EVENTS
1765 u_char fullmask[16];
1766 memset(fullmask, 0x00, 16);
1767 bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16);
1769 #else
1770 bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16);
1771 #endif
1772 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
1773 cm->cm_data = NULL;
1774 cm->cm_complete = mps_reregister_events_complete;
1776 error = mps_map_command(sc, cm);
1778 mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__, error);
1779 return (error);
1783 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
1786 TAILQ_REMOVE(&sc->event_list, handle, eh_list);
1787 kfree(handle, M_MPT2);
1788 return (mps_update_events(sc, NULL, NULL));
1792 * Add a chain element as the next SGE for the specified command.
1793 * Reset cm_sge and cm_sgesize to indicate all the available space.
1795 static int
1796 mps_add_chain(struct mps_command *cm)
1798 MPI2_SGE_CHAIN32 *sgc;
1799 struct mps_chain *chain;
1800 int space;
1802 if (cm->cm_sglsize < MPS_SGC_SIZE)
1803 panic("MPS: Need SGE Error Code");
1805 chain = mps_alloc_chain(cm->cm_sc);
1806 if (chain == NULL)
1807 return (ENOBUFS);
1809 space = (int)cm->cm_sc->facts->IOCRequestFrameSize * 4;
1812 * Note: a double-linked list is used to make it easier to
1813 * walk for debugging.
1815 TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
1817 sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
1818 sgc->Length = space;
1819 sgc->NextChainOffset = 0;
1820 sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
1821 sgc->Address = chain->chain_busaddr;
1823 cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
1824 cm->cm_sglsize = space;
1825 return (0);
1829 * Add one scatter-gather element (chain, simple, transaction context)
1830 * to the scatter-gather list for a command. Maintain cm_sglsize and
1831 * cm_sge as the remaining size and pointer to the next SGE to fill
1832 * in, respectively.
1835 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
1837 MPI2_SGE_TRANSACTION_UNION *tc = sgep;
1838 MPI2_SGE_SIMPLE64 *sge = sgep;
1839 int error, type;
1840 uint32_t saved_buf_len, saved_address_low, saved_address_high;
1842 type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
1844 #ifdef INVARIANTS
1845 switch (type) {
1846 case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
1847 if (len != tc->DetailsLength + 4)
1848 panic("TC %p length %u or %zu?", tc,
1849 tc->DetailsLength + 4, len);
1851 break;
1852 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
1853 /* Driver only uses 32-bit chain elements */
1854 if (len != MPS_SGC_SIZE)
1855 panic("CHAIN %p length %u or %zu?", sgep,
1856 MPS_SGC_SIZE, len);
1857 break;
1858 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
1859 /* Driver only uses 64-bit SGE simple elements */
1860 if (len != MPS_SGE64_SIZE)
1861 panic("SGE simple %p length %u or %zu?", sge,
1862 MPS_SGE64_SIZE, len);
1863 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
1864 MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
1865 panic("SGE simple %p not marked 64-bit?", sge);
1867 break;
1868 default:
1869 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
1871 #endif
1874 * case 1: 1 more segment, enough room for it
1875 * case 2: 2 more segments, enough room for both
1876 * case 3: >=2 more segments, only enough room for 1 and a chain
1877 * case 4: >=1 more segment, enough room for only a chain
1878 * case 5: >=1 more segment, no room for anything (error)
1882 * There should be room for at least a chain element, or this
1883 * code is buggy. Case (5).
1885 if (cm->cm_sglsize < MPS_SGC_SIZE)
1886 panic("MPS: Need SGE Error Code");
1888 if (segsleft >= 2 &&
1889 cm->cm_sglsize >= len + MPS_SGC_SIZE &&
1890 cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
1892 * There are 2 or more segments left to add, and only
1893 * enough room for 1 and a chain. Case (3).
1895 * Mark as last element in this chain if necessary.
1897 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1898 sge->FlagsLength |= htole32(
1899 MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
1903 * Add the item then a chain. Do the chain now,
1904 * rather than on the next iteration, to simplify
1905 * understanding the code.
1907 cm->cm_sglsize -= len;
1908 bcopy(sgep, cm->cm_sge, len);
1909 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1910 return (mps_add_chain(cm));
1913 if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
1915 * 1 or more segment, enough room for only a chain.
1916 * Hope the previous element wasn't a Simple entry
1917 * that needed to be marked with
1918 * MPI2_SGE_FLAGS_LAST_ELEMENT. Case (4).
1920 if ((error = mps_add_chain(cm)) != 0)
1921 return (error);
1924 #ifdef INVARIANTS
1925 /* Case 1: 1 more segment, enough room for it. */
1926 if (segsleft == 1 && cm->cm_sglsize < len)
1927 panic("1 seg left and no room? %u versus %zu",
1928 cm->cm_sglsize, len);
1930 /* Case 2: 2 more segments, enough room for both */
1931 if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
1932 panic("2 segs left and no room? %u versus %zu",
1933 cm->cm_sglsize, len);
1934 #endif
1936 if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
1938 * If this is a bi-directional request, need to account for that
1939 * here. Save the pre-filled sge values. These will be used
1940 * either for the 2nd SGL or for a single direction SGL. If
1941 * cm_out_len is non-zero, this is a bi-directional request, so
1942 * fill in the OUT SGL first, then the IN SGL, otherwise just
1943 * fill in the IN SGL. Note that at this time, when filling in
1944 * 2 SGL's for a bi-directional request, they both use the same
1945 * DMA buffer (same cm command).
1947 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
1948 saved_address_low = sge->Address.Low;
1949 saved_address_high = sge->Address.High;
1950 if (cm->cm_out_len) {
1951 sge->FlagsLength = htole32(cm->cm_out_len |
1952 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1953 MPI2_SGE_FLAGS_END_OF_BUFFER |
1954 MPI2_SGE_FLAGS_HOST_TO_IOC |
1955 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1956 MPI2_SGE_FLAGS_SHIFT));
1957 cm->cm_sglsize -= len;
1958 bcopy(sgep, cm->cm_sge, len);
1959 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
1960 + len);
1962 saved_buf_len |=
1963 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1964 MPI2_SGE_FLAGS_END_OF_BUFFER |
1965 MPI2_SGE_FLAGS_LAST_ELEMENT |
1966 MPI2_SGE_FLAGS_END_OF_LIST |
1967 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
1968 MPI2_SGE_FLAGS_SHIFT);
1969 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
1970 saved_buf_len |=
1971 ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
1972 MPI2_SGE_FLAGS_SHIFT);
1973 } else {
1974 saved_buf_len |=
1975 ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
1976 MPI2_SGE_FLAGS_SHIFT);
1978 sge->FlagsLength = htole32(saved_buf_len);
1979 sge->Address.Low = saved_address_low;
1980 sge->Address.High = saved_address_high;
1983 cm->cm_sglsize -= len;
1984 bcopy(sgep, cm->cm_sge, len);
1985 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
1986 return (0);
1990 * Add one dma segment to the scatter-gather list for a command.
1993 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
1994 int segsleft)
1996 MPI2_SGE_SIMPLE64 sge;
1999 * This driver always uses 64-bit address elements for simplicity.
2001 bzero(&sge, sizeof(sge));
2002 flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2003 MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2004 sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2005 mps_from_u64(pa, &sge.Address);
2007 return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2010 static void
2011 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2013 struct mps_softc *sc;
2014 struct mps_command *cm;
2015 u_int i, dir, sflags;
2017 cm = (struct mps_command *)arg;
2018 sc = cm->cm_sc;
2021 * In this case, just print out a warning and let the chip tell the
2022 * user they did the wrong thing.
2024 if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2025 mps_printf(sc, "%s: warning: busdma returned %d segments, "
2026 "more than the %d allowed\n", __func__, nsegs,
2027 cm->cm_max_segs);
2031 * Set up DMA direction flags. Bi-directional requests are also handled
2032 * here. In that case, both direction flags will be set.
2034 sflags = 0;
2035 if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2037 * We have to add a special case for SMP passthrough, there
2038 * is no easy way to generically handle it. The first
2039 * S/G element is used for the command (therefore the
2040 * direction bit needs to be set). The second one is used
2041 * for the reply. We'll leave it to the caller to make
2042 * sure we only have two buffers.
2045 * Even though the busdma man page says it doesn't make
2046 * sense to have both direction flags, it does in this case.
2047 * We have one s/g element being accessed in each direction.
2049 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2052 * Set the direction flag on the first buffer in the SMP
2053 * passthrough request. We'll clear it for the second one.
2055 sflags |= MPI2_SGE_FLAGS_DIRECTION |
2056 MPI2_SGE_FLAGS_END_OF_BUFFER;
2057 } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2058 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2059 dir = BUS_DMASYNC_PREWRITE;
2060 } else
2061 dir = BUS_DMASYNC_PREREAD;
2063 for (i = 0; i < nsegs; i++) {
2064 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2065 sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2067 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2068 sflags, nsegs - i);
2069 if (error != 0) {
2070 /* Resource shortage, roll back! */
2071 mps_dprint(sc, MPS_INFO, "out of chain frames\n");
2072 cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2073 mps_complete_command(cm);
2074 return;
2078 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2079 mps_enqueue_request(sc, cm);
2081 return;
2084 static void
2085 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2086 int error)
2088 mps_data_cb(arg, segs, nsegs, error);
2092 * This is the routine to enqueue commands ansynchronously.
2093 * Note that the only error path here is from bus_dmamap_load(), which can
2094 * return EINPROGRESS if it is waiting for resources. Other than this, it's
2095 * assumed that if you have a command in-hand, then you have enough credits
2096 * to use it.
2099 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
2101 int error = 0;
2103 if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
2104 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
2105 &cm->cm_uio, mps_data_cb2, cm, 0);
2106 } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
2107 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
2108 cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
2109 } else {
2110 /* Add a zero-length element as needed */
2111 if (cm->cm_sge != NULL)
2112 mps_add_dmaseg(cm, 0, 0, 0, 1);
2113 mps_enqueue_request(sc, cm);
2116 return (error);
2120 * This is the routine to enqueue commands synchronously. An error of
2121 * EINPROGRESS from mps_map_command() is ignored since the command will
2122 * be executed and enqueued automatically. Other errors come from msleep().
2125 mps_wait_command(struct mps_softc *sc, struct mps_command *cm, int timeout)
2127 int error;
2129 KKASSERT(lockstatus(&sc->mps_lock, curthread) != 0);
2131 cm->cm_complete = NULL;
2132 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
2133 error = mps_map_command(sc, cm);
2134 if ((error != 0) && (error != EINPROGRESS))
2135 return (error);
2136 error = lksleep(cm, &sc->mps_lock, 0, "mpswait", timeout*hz);
2137 if (error == EWOULDBLOCK)
2138 error = ETIMEDOUT;
2139 return (error);
2143 * This is the routine to enqueue a command synchonously and poll for
2144 * completion. Its use should be rare.
2147 mps_request_polled(struct mps_softc *sc, struct mps_command *cm)
2149 int error, timeout = 0;
2151 error = 0;
2153 cm->cm_flags |= MPS_CM_FLAGS_POLLED;
2154 cm->cm_complete = NULL;
2155 mps_map_command(sc, cm);
2157 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
2158 mps_intr_locked(sc);
2159 DELAY(50 * 1000);
2160 if (timeout++ > 1000) {
2161 mps_dprint(sc, MPS_FAULT, "polling failed\n");
2162 error = ETIMEDOUT;
2163 break;
2167 return (error);
2171 * The MPT driver had a verbose interface for config pages. In this driver,
2172 * reduce it to much simplier terms, similar to the Linux driver.
2175 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
2177 MPI2_CONFIG_REQUEST *req;
2178 struct mps_command *cm;
2179 int error;
2181 if (sc->mps_flags & MPS_FLAGS_BUSY) {
2182 return (EBUSY);
2185 cm = mps_alloc_command(sc);
2186 if (cm == NULL) {
2187 return (EBUSY);
2190 req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
2191 req->Function = MPI2_FUNCTION_CONFIG;
2192 req->Action = params->action;
2193 req->SGLFlags = 0;
2194 req->ChainOffset = 0;
2195 req->PageAddress = params->page_address;
2196 if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
2197 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
2199 hdr = &params->hdr.Ext;
2200 req->ExtPageType = hdr->ExtPageType;
2201 req->ExtPageLength = hdr->ExtPageLength;
2202 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
2203 req->Header.PageLength = 0; /* Must be set to zero */
2204 req->Header.PageNumber = hdr->PageNumber;
2205 req->Header.PageVersion = hdr->PageVersion;
2206 } else {
2207 MPI2_CONFIG_PAGE_HEADER *hdr;
2209 hdr = &params->hdr.Struct;
2210 req->Header.PageType = hdr->PageType;
2211 req->Header.PageNumber = hdr->PageNumber;
2212 req->Header.PageLength = hdr->PageLength;
2213 req->Header.PageVersion = hdr->PageVersion;
2216 cm->cm_data = params->buffer;
2217 cm->cm_length = params->length;
2218 cm->cm_sge = &req->PageBufferSGE;
2219 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
2220 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
2221 cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2223 cm->cm_complete_data = params;
2224 if (params->callback != NULL) {
2225 cm->cm_complete = mps_config_complete;
2226 return (mps_map_command(sc, cm));
2227 } else {
2228 error = mps_wait_command(sc, cm, 0);
2229 if (error) {
2230 mps_dprint(sc, MPS_FAULT,
2231 "Error %d reading config page\n", error);
2232 mps_free_command(sc, cm);
2233 return (error);
2235 mps_config_complete(sc, cm);
2238 return (0);
2242 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
2244 return (EINVAL);
2247 static void
2248 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
2250 MPI2_CONFIG_REPLY *reply;
2251 struct mps_config_params *params;
2253 params = cm->cm_complete_data;
2255 if (cm->cm_data != NULL) {
2256 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
2257 BUS_DMASYNC_POSTREAD);
2258 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
2262 * XXX KDM need to do more error recovery? This results in the
2263 * device in question not getting probed.
2265 if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
2266 params->status = MPI2_IOCSTATUS_BUSY;
2267 goto done;
2270 reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
2271 if (reply == NULL) {
2272 params->status = MPI2_IOCSTATUS_BUSY;
2273 goto done;
2275 params->status = reply->IOCStatus;
2276 if (params->hdr.Ext.ExtPageType != 0) {
2277 params->hdr.Ext.ExtPageType = reply->ExtPageType;
2278 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
2279 } else {
2280 params->hdr.Struct.PageType = reply->Header.PageType;
2281 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
2282 params->hdr.Struct.PageLength = reply->Header.PageLength;
2283 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
2286 done:
2287 mps_free_command(sc, cm);
2288 if (params->callback != NULL)
2289 params->callback(sc, params);
2291 return;