kernel/disk: Remove use of "%b" format.
[dragonfly.git] / sys / dev / raid / mly / mly.c
blob8cd6de84653f4c62093afe30d07031d7bb2bdd1b
1 /*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
27 * $FreeBSD: src/sys/dev/mly/mly.c,v 1.50 2010/01/28 08:41:30 mav Exp $
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/ctype.h>
38 #include <sys/stat.h>
39 #include <sys/rman.h>
40 #include <sys/thread2.h>
42 #include <bus/cam/cam.h>
43 #include <bus/cam/cam_ccb.h>
44 #include <bus/cam/cam_periph.h>
45 #include <bus/cam/cam_sim.h>
46 #include <bus/cam/cam_xpt_periph.h>
47 #include <bus/cam/cam_xpt_sim.h>
48 #include <bus/cam/scsi/scsi_all.h>
49 #include <bus/cam/scsi/scsi_message.h>
51 #include <bus/pci/pcireg.h>
52 #include <bus/pci/pcivar.h>
54 #include <dev/raid/mly/mlyreg.h>
55 #include <dev/raid/mly/mlyio.h>
56 #include <dev/raid/mly/mlyvar.h>
57 #include <dev/raid/mly/mly_tables.h>
59 static int mly_probe(device_t dev);
60 static int mly_attach(device_t dev);
61 static int mly_pci_attach(struct mly_softc *sc);
62 static int mly_detach(device_t dev);
63 static int mly_shutdown(device_t dev);
64 static void mly_intr(void *arg);
66 static int mly_sg_map(struct mly_softc *sc);
67 static void mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
68 static int mly_mmbox_map(struct mly_softc *sc);
69 static void mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
70 static void mly_free(struct mly_softc *sc);
72 static int mly_get_controllerinfo(struct mly_softc *sc);
73 static void mly_scan_devices(struct mly_softc *sc);
74 static void mly_rescan_btl(struct mly_softc *sc, int bus, int target);
75 static void mly_complete_rescan(struct mly_command *mc);
76 static int mly_get_eventstatus(struct mly_softc *sc);
77 static int mly_enable_mmbox(struct mly_softc *sc);
78 static int mly_flush(struct mly_softc *sc);
79 static int mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
80 size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
81 static void mly_check_event(struct mly_softc *sc);
82 static void mly_fetch_event(struct mly_softc *sc);
83 static void mly_complete_event(struct mly_command *mc);
84 static void mly_process_event(struct mly_softc *sc, struct mly_event *me);
85 static void mly_periodic(void *data);
87 static int mly_immediate_command(struct mly_command *mc);
88 static int mly_start(struct mly_command *mc);
89 static void mly_done(struct mly_softc *sc);
90 static void mly_complete(void *context, int pending);
92 static int mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
93 static void mly_release_command(struct mly_command *mc);
94 static void mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
95 static int mly_alloc_commands(struct mly_softc *sc);
96 static void mly_release_commands(struct mly_softc *sc);
97 static void mly_map_command(struct mly_command *mc);
98 static void mly_unmap_command(struct mly_command *mc);
100 static int mly_cam_attach(struct mly_softc *sc);
101 static void mly_cam_detach(struct mly_softc *sc);
102 static void mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
103 static void mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
104 static void mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105 static int mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106 static void mly_cam_poll(struct cam_sim *sim);
107 static void mly_cam_complete(struct mly_command *mc);
108 static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109 static int mly_name_device(struct mly_softc *sc, int bus, int target);
111 static int mly_fwhandshake(struct mly_softc *sc);
113 static void mly_describe_controller(struct mly_softc *sc);
114 #ifdef MLY_DEBUG
115 static void mly_printstate(struct mly_softc *sc);
116 static void mly_print_command(struct mly_command *mc);
117 static void mly_print_packet(struct mly_command *mc);
118 static void mly_panic(struct mly_softc *sc, char *reason);
119 static int mly_timeout(struct mly_softc *sc);
120 #endif
121 void mly_print_controller(int controller);
124 static d_open_t mly_user_open;
125 static d_close_t mly_user_close;
126 static d_ioctl_t mly_user_ioctl;
127 static int mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128 static int mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
130 #define MLY_CMD_TIMEOUT 20
132 static device_method_t mly_methods[] = {
133 /* Device interface */
134 DEVMETHOD(device_probe, mly_probe),
135 DEVMETHOD(device_attach, mly_attach),
136 DEVMETHOD(device_detach, mly_detach),
137 DEVMETHOD(device_shutdown, mly_shutdown),
138 DEVMETHOD_END
141 static driver_t mly_pci_driver = {
142 "mly",
143 mly_methods,
144 sizeof(struct mly_softc)
147 static devclass_t mly_devclass;
148 DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, NULL, NULL);
149 MODULE_DEPEND(mly, pci, 1, 1, 1);
150 MODULE_DEPEND(mly, cam, 1, 1, 1);
152 static struct dev_ops mly_ops = {
153 { "mly", 0, 0 },
154 .d_open = mly_user_open,
155 .d_close = mly_user_close,
156 .d_ioctl = mly_user_ioctl,
159 /********************************************************************************
160 ********************************************************************************
161 Device Interface
162 ********************************************************************************
163 ********************************************************************************/
165 static struct mly_ident
167 u_int16_t vendor;
168 u_int16_t device;
169 u_int16_t subvendor;
170 u_int16_t subdevice;
171 int hwif;
172 char *desc;
173 } mly_identifiers[] = {
174 {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
175 {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
176 {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX, "Mylex AcceleRAID 352"},
177 {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX, "Mylex AcceleRAID 170"},
178 {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX, "Mylex AcceleRAID 160"},
179 {0, 0, 0, 0, 0, 0}
182 /********************************************************************************
183 * Compare the provided PCI device with the list we support.
185 static int
186 mly_probe(device_t dev)
188 struct mly_ident *m;
190 debug_called(1);
192 for (m = mly_identifiers; m->vendor != 0; m++) {
193 if ((m->vendor == pci_get_vendor(dev)) &&
194 (m->device == pci_get_device(dev)) &&
195 ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
196 (m->subdevice == pci_get_subdevice(dev))))) {
198 device_set_desc(dev, m->desc);
199 return(BUS_PROBE_DEFAULT); /* allow room to be overridden */
202 return(ENXIO);
205 /********************************************************************************
206 * Initialise the controller and softc
208 static int
209 mly_attach(device_t dev)
211 struct mly_softc *sc = device_get_softc(dev);
212 int error;
214 debug_called(1);
216 sc->mly_dev = dev;
218 #ifdef MLY_DEBUG
219 if (device_get_unit(sc->mly_dev) == 0)
220 mly_softc0 = sc;
221 #endif
224 * Do PCI-specific initialisation.
226 if ((error = mly_pci_attach(sc)) != 0)
227 goto out;
229 callout_init(&sc->mly_periodic);
230 callout_init(&sc->mly_timeout);
233 * Initialise per-controller queues.
235 mly_initq_free(sc);
236 mly_initq_busy(sc);
237 mly_initq_complete(sc);
240 * Initialise command-completion task.
242 TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
244 /* disable interrupts before we start talking to the controller */
245 MLY_MASK_INTERRUPTS(sc);
248 * Wait for the controller to come ready, handshake with the firmware if required.
249 * This is typically only necessary on platforms where the controller BIOS does not
250 * run.
252 if ((error = mly_fwhandshake(sc)))
253 goto out;
256 * Allocate initial command buffers.
258 if ((error = mly_alloc_commands(sc)))
259 goto out;
262 * Obtain controller feature information
264 if ((error = mly_get_controllerinfo(sc)))
265 goto out;
268 * Reallocate command buffers now we know how many we want.
270 mly_release_commands(sc);
271 if ((error = mly_alloc_commands(sc)))
272 goto out;
275 * Get the current event counter for health purposes, populate the initial
276 * health status buffer.
278 if ((error = mly_get_eventstatus(sc)))
279 goto out;
282 * Enable memory-mailbox mode.
284 if ((error = mly_enable_mmbox(sc)))
285 goto out;
288 * Attach to CAM.
290 if ((error = mly_cam_attach(sc)))
291 goto out;
294 * Print a little information about the controller
296 mly_describe_controller(sc);
299 * Mark all attached devices for rescan.
301 mly_scan_devices(sc);
304 * Instigate the first status poll immediately. Rescan completions won't
305 * happen until interrupts are enabled, which should still be before
306 * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
308 mly_periodic(sc);
311 * Create the control device.
313 sc->mly_dev_t = make_dev(&mly_ops, device_get_unit(sc->mly_dev),
314 UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
315 "mly%d", device_get_unit(sc->mly_dev));
316 sc->mly_dev_t->si_drv1 = sc;
318 /* enable interrupts now */
319 MLY_UNMASK_INTERRUPTS(sc);
321 #ifdef MLY_DEBUG
322 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
323 (timeout_t *)mly_timeout, sc);
324 #endif
326 out:
327 if (error != 0)
328 mly_free(sc);
329 return(error);
332 /********************************************************************************
333 * Perform PCI-specific initialisation.
335 static int
336 mly_pci_attach(struct mly_softc *sc)
338 int i, error;
339 u_int32_t command;
341 debug_called(1);
343 /* assume failure is 'not configured' */
344 error = ENXIO;
347 * Verify that the adapter is correctly set up in PCI space.
349 * XXX we shouldn't do this; the PCI code should.
351 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
352 command |= PCIM_CMD_BUSMASTEREN;
353 pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
354 command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
355 if (!(command & PCIM_CMD_BUSMASTEREN)) {
356 mly_printf(sc, "can't enable busmaster feature\n");
357 goto fail;
359 if ((command & PCIM_CMD_MEMEN) == 0) {
360 mly_printf(sc, "memory window not available\n");
361 goto fail;
365 * Allocate the PCI register window.
367 sc->mly_regs_rid = PCIR_BAR(0); /* first base address register */
368 if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
369 SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
370 mly_printf(sc, "can't allocate register window\n");
371 goto fail;
373 sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
374 sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
377 * Allocate and connect our interrupt.
379 sc->mly_irq_rid = 0;
380 if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
381 &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
382 mly_printf(sc, "can't allocate interrupt\n");
383 goto fail;
385 error = bus_setup_intr(sc->mly_dev, sc->mly_irq, 0,
386 mly_intr, sc, &sc->mly_intr, NULL);
387 if (error) {
388 mly_printf(sc, "can't set up interrupt\n");
389 goto fail;
392 /* assume failure is 'out of memory' */
393 error = ENOMEM;
396 * Allocate the parent bus DMA tag appropriate for our PCI interface.
398 * Note that all of these controllers are 64-bit capable.
400 if (bus_dma_tag_create(NULL, /* parent */
401 1, 0, /* alignment, boundary */
402 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
403 BUS_SPACE_MAXADDR, /* highaddr */
404 NULL, NULL, /* filter, filterarg */
405 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
406 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
407 BUS_DMA_ALLOCNOW, /* flags */
408 &sc->mly_parent_dmat)) {
409 mly_printf(sc, "can't allocate parent DMA tag\n");
410 goto fail;
414 * Create DMA tag for mapping buffers into controller-addressable space.
416 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
417 1, 0, /* alignment, boundary */
418 BUS_SPACE_MAXADDR, /* lowaddr */
419 BUS_SPACE_MAXADDR, /* highaddr */
420 NULL, NULL, /* filter, filterarg */
421 MAXBSIZE, MLY_MAX_SGENTRIES, /* maxsize, nsegments */
422 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
423 0, /* flags */
424 &sc->mly_buffer_dmat)) {
425 mly_printf(sc, "can't allocate buffer DMA tag\n");
426 goto fail;
430 * Initialise the DMA tag for command packets.
432 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
433 1, 0, /* alignment, boundary */
434 BUS_SPACE_MAXADDR, /* lowaddr */
435 BUS_SPACE_MAXADDR, /* highaddr */
436 NULL, NULL, /* filter, filterarg */
437 sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1, /* maxsize, nsegments */
438 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
439 BUS_DMA_ALLOCNOW, /* flags */
440 &sc->mly_packet_dmat)) {
441 mly_printf(sc, "can't allocate command packet DMA tag\n");
442 goto fail;
446 * Detect the hardware interface version
448 for (i = 0; mly_identifiers[i].vendor != 0; i++) {
449 if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
450 (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
451 sc->mly_hwif = mly_identifiers[i].hwif;
452 switch(sc->mly_hwif) {
453 case MLY_HWIF_I960RX:
454 debug(1, "set hardware up for i960RX");
455 sc->mly_doorbell_true = 0x00;
456 sc->mly_command_mailbox = MLY_I960RX_COMMAND_MAILBOX;
457 sc->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
458 sc->mly_idbr = MLY_I960RX_IDBR;
459 sc->mly_odbr = MLY_I960RX_ODBR;
460 sc->mly_error_status = MLY_I960RX_ERROR_STATUS;
461 sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
462 sc->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
463 break;
464 case MLY_HWIF_STRONGARM:
465 debug(1, "set hardware up for StrongARM");
466 sc->mly_doorbell_true = 0xff; /* doorbell 'true' is 0 */
467 sc->mly_command_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
468 sc->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
469 sc->mly_idbr = MLY_STRONGARM_IDBR;
470 sc->mly_odbr = MLY_STRONGARM_ODBR;
471 sc->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
472 sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
473 sc->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
474 break;
476 break;
481 * Create the scatter/gather mappings.
483 if ((error = mly_sg_map(sc)))
484 goto fail;
487 * Allocate and map the memory mailbox
489 if ((error = mly_mmbox_map(sc)))
490 goto fail;
492 error = 0;
494 fail:
495 return(error);
498 /********************************************************************************
499 * Shut the controller down and detach all our resources.
501 static int
502 mly_detach(device_t dev)
504 int error;
506 if ((error = mly_shutdown(dev)) != 0)
507 return(error);
509 mly_free(device_get_softc(dev));
510 return(0);
513 /********************************************************************************
514 * Bring the controller to a state where it can be safely left alone.
516 * Note that it should not be necessary to wait for any outstanding commands,
517 * as they should be completed prior to calling here.
519 * XXX this applies for I/O, but not status polls; we should beware of
520 * the case where a status command is running while we detach.
522 static int
523 mly_shutdown(device_t dev)
525 struct mly_softc *sc = device_get_softc(dev);
527 debug_called(1);
529 if (sc->mly_state & MLY_STATE_OPEN)
530 return(EBUSY);
532 /* kill the periodic event */
533 callout_stop(&sc->mly_periodic);
535 /* flush controller */
536 mly_printf(sc, "flushing cache...");
537 kprintf("%s\n", mly_flush(sc) ? "failed" : "done");
539 MLY_MASK_INTERRUPTS(sc);
541 return(0);
544 /*******************************************************************************
545 * Take an interrupt, or be poked by other code to look for interrupt-worthy
546 * status.
548 static void
549 mly_intr(void *arg)
551 struct mly_softc *sc = (struct mly_softc *)arg;
553 debug_called(2);
555 mly_done(sc);
558 /********************************************************************************
559 ********************************************************************************
560 Bus-dependant Resource Management
561 ********************************************************************************
562 ********************************************************************************/
564 /********************************************************************************
565 * Allocate memory for the scatter/gather tables
567 static int
568 mly_sg_map(struct mly_softc *sc)
570 size_t segsize;
572 debug_called(1);
575 * Create a single tag describing a region large enough to hold all of
576 * the s/g lists we will need.
578 segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
579 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
580 1, 0, /* alignment,boundary */
581 BUS_SPACE_MAXADDR, /* lowaddr */
582 BUS_SPACE_MAXADDR, /* highaddr */
583 NULL, NULL, /* filter, filterarg */
584 segsize, 1, /* maxsize, nsegments */
585 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
586 BUS_DMA_ALLOCNOW, /* flags */
587 &sc->mly_sg_dmat)) {
588 mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
589 return(ENOMEM);
593 * Allocate enough s/g maps for all commands and permanently map them into
594 * controller-visible space.
596 * XXX this assumes we can get enough space for all the s/g maps in one
597 * contiguous slab.
599 if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
600 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
601 mly_printf(sc, "can't allocate s/g table\n");
602 return(ENOMEM);
604 if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
605 segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
606 return (ENOMEM);
607 return(0);
610 /********************************************************************************
611 * Save the physical address of the base of the s/g table.
613 static void
614 mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
616 struct mly_softc *sc = (struct mly_softc *)arg;
618 debug_called(1);
620 /* save base of s/g table's address in bus space */
621 sc->mly_sg_busaddr = segs->ds_addr;
624 /********************************************************************************
625 * Allocate memory for the memory-mailbox interface
627 static int
628 mly_mmbox_map(struct mly_softc *sc)
632 * Create a DMA tag for a single contiguous region large enough for the
633 * memory mailbox structure.
635 if (bus_dma_tag_create(sc->mly_parent_dmat, /* parent */
636 1, 0, /* alignment,boundary */
637 BUS_SPACE_MAXADDR, /* lowaddr */
638 BUS_SPACE_MAXADDR, /* highaddr */
639 NULL, NULL, /* filter, filterarg */
640 sizeof(struct mly_mmbox), 1, /* maxsize, nsegments */
641 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
642 BUS_DMA_ALLOCNOW, /* flags */
643 &sc->mly_mmbox_dmat)) {
644 mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
645 return(ENOMEM);
649 * Allocate the buffer
651 if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
652 mly_printf(sc, "can't allocate memory mailbox\n");
653 return(ENOMEM);
655 if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
656 sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
657 BUS_DMA_NOWAIT) != 0)
658 return (ENOMEM);
659 bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
660 return(0);
664 /********************************************************************************
665 * Save the physical address of the memory mailbox
667 static void
668 mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
670 struct mly_softc *sc = (struct mly_softc *)arg;
672 debug_called(1);
674 sc->mly_mmbox_busaddr = segs->ds_addr;
677 /********************************************************************************
678 * Free all of the resources associated with (sc)
680 * Should not be called if the controller is active.
682 static void
683 mly_free(struct mly_softc *sc)
686 debug_called(1);
688 /* Remove the management device */
689 destroy_dev(sc->mly_dev_t);
691 /* detach from CAM */
692 mly_cam_detach(sc);
694 /* release command memory */
695 mly_release_commands(sc);
697 /* throw away the controllerinfo structure */
698 if (sc->mly_controllerinfo != NULL)
699 kfree(sc->mly_controllerinfo, M_DEVBUF);
701 /* throw away the controllerparam structure */
702 if (sc->mly_controllerparam != NULL)
703 kfree(sc->mly_controllerparam, M_DEVBUF);
705 /* destroy data-transfer DMA tag */
706 if (sc->mly_buffer_dmat)
707 bus_dma_tag_destroy(sc->mly_buffer_dmat);
709 /* free and destroy DMA memory and tag for s/g lists */
710 if (sc->mly_sg_table) {
711 bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
712 bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
714 if (sc->mly_sg_dmat)
715 bus_dma_tag_destroy(sc->mly_sg_dmat);
717 /* free and destroy DMA memory and tag for memory mailbox */
718 if (sc->mly_mmbox) {
719 bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
720 bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
722 if (sc->mly_mmbox_dmat)
723 bus_dma_tag_destroy(sc->mly_mmbox_dmat);
725 /* disconnect the interrupt handler */
726 if (sc->mly_intr)
727 bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
728 if (sc->mly_irq != NULL)
729 bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
731 /* destroy the parent DMA tag */
732 if (sc->mly_parent_dmat)
733 bus_dma_tag_destroy(sc->mly_parent_dmat);
735 /* release the register window mapping */
736 if (sc->mly_regs_resource != NULL)
737 bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
740 /********************************************************************************
741 ********************************************************************************
742 Command Wrappers
743 ********************************************************************************
744 ********************************************************************************/
746 /********************************************************************************
747 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
749 static int
750 mly_get_controllerinfo(struct mly_softc *sc)
752 struct mly_command_ioctl mci;
753 u_int8_t status;
754 int error;
756 debug_called(1);
758 if (sc->mly_controllerinfo != NULL)
759 kfree(sc->mly_controllerinfo, M_DEVBUF);
761 /* build the getcontrollerinfo ioctl and send it */
762 bzero(&mci, sizeof(mci));
763 sc->mly_controllerinfo = NULL;
764 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
765 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
766 &status, NULL, NULL)))
767 return(error);
768 if (status != 0)
769 return(EIO);
771 if (sc->mly_controllerparam != NULL)
772 kfree(sc->mly_controllerparam, M_DEVBUF);
774 /* build the getcontrollerparameter ioctl and send it */
775 bzero(&mci, sizeof(mci));
776 sc->mly_controllerparam = NULL;
777 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
778 if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
779 &status, NULL, NULL)))
780 return(error);
781 if (status != 0)
782 return(EIO);
784 return(0);
787 /********************************************************************************
788 * Schedule all possible devices for a rescan.
791 static void
792 mly_scan_devices(struct mly_softc *sc)
794 int bus, target;
796 debug_called(1);
799 * Clear any previous BTL information.
801 bzero(&sc->mly_btl, sizeof(sc->mly_btl));
804 * Mark all devices as requiring a rescan, and let the next
805 * periodic scan collect them.
807 for (bus = 0; bus < sc->mly_cam_channels; bus++)
808 if (MLY_BUS_IS_VALID(sc, bus))
809 for (target = 0; target < MLY_MAX_TARGETS; target++)
810 sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
814 /********************************************************************************
815 * Rescan a device, possibly as a consequence of getting an event which suggests
816 * that it may have changed.
818 * If we suffer resource starvation, we can abandon the rescan as we'll be
819 * retried.
821 static void
822 mly_rescan_btl(struct mly_softc *sc, int bus, int target)
824 struct mly_command *mc;
825 struct mly_command_ioctl *mci;
827 debug_called(1);
829 /* check that this bus is valid */
830 if (!MLY_BUS_IS_VALID(sc, bus))
831 return;
833 /* get a command */
834 if (mly_alloc_command(sc, &mc))
835 return;
837 /* set up the data buffer */
838 mc->mc_data = kmalloc(sizeof(union mly_devinfo), M_DEVBUF, M_INTWAIT | M_ZERO);
839 mc->mc_flags |= MLY_CMD_DATAIN;
840 mc->mc_complete = mly_complete_rescan;
843 * Build the ioctl.
845 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
846 mci->opcode = MDACMD_IOCTL;
847 mci->addr.phys.controller = 0;
848 mci->timeout.value = 30;
849 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
850 if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
851 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
852 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
853 mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
854 debug(1, "logical device %d", mci->addr.log.logdev);
855 } else {
856 mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
857 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
858 mci->addr.phys.lun = 0;
859 mci->addr.phys.target = target;
860 mci->addr.phys.channel = bus;
861 debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
865 * Dispatch the command. If we successfully send the command, clear the rescan
866 * bit.
868 if (mly_start(mc) != 0) {
869 mly_release_command(mc);
870 } else {
871 sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN; /* success */
875 /********************************************************************************
876 * Handle the completion of a rescan operation
878 static void
879 mly_complete_rescan(struct mly_command *mc)
881 struct mly_softc *sc = mc->mc_sc;
882 struct mly_ioctl_getlogdevinfovalid *ldi;
883 struct mly_ioctl_getphysdevinfovalid *pdi;
884 struct mly_command_ioctl *mci;
885 struct mly_btl btl, *btlp;
886 int bus, target, rescan;
888 debug_called(1);
891 * Recover the bus and target from the command. We need these even in
892 * the case where we don't have a useful response.
894 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
895 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
896 bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
897 target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
898 } else {
899 bus = mci->addr.phys.channel;
900 target = mci->addr.phys.target;
902 /* XXX validate bus/target? */
904 /* the default result is 'no device' */
905 bzero(&btl, sizeof(btl));
907 /* if the rescan completed OK, we have possibly-new BTL data */
908 if (mc->mc_status == 0) {
909 if (mc->mc_length == sizeof(*ldi)) {
910 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
911 if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
912 (MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
913 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
914 bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
915 MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
916 /* XXX what can we do about this? */
918 btl.mb_flags = MLY_BTL_LOGICAL;
919 btl.mb_type = ldi->raid_level;
920 btl.mb_state = ldi->state;
921 debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
922 mly_describe_code(mly_table_device_type, ldi->raid_level),
923 mly_describe_code(mly_table_device_state, ldi->state));
924 } else if (mc->mc_length == sizeof(*pdi)) {
925 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
926 if ((pdi->channel != bus) || (pdi->target != target)) {
927 mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
928 bus, target, pdi->channel, pdi->target);
929 /* XXX what can we do about this? */
931 btl.mb_flags = MLY_BTL_PHYSICAL;
932 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
933 btl.mb_state = pdi->state;
934 btl.mb_speed = pdi->speed;
935 btl.mb_width = pdi->width;
936 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
937 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
938 debug(1, "BTL rescan for %d:%d returns %s", bus, target,
939 mly_describe_code(mly_table_device_state, pdi->state));
940 } else {
941 mly_printf(sc, "BTL rescan result invalid\n");
945 kfree(mc->mc_data, M_DEVBUF);
946 mly_release_command(mc);
949 * Decide whether we need to rescan the device.
951 rescan = 0;
953 /* device type changes (usually between 'nothing' and 'something') */
954 btlp = &sc->mly_btl[bus][target];
955 if (btl.mb_flags != btlp->mb_flags) {
956 debug(1, "flags changed, rescanning");
957 rescan = 1;
960 /* XXX other reasons? */
963 * Update BTL information.
965 *btlp = btl;
968 * Perform CAM rescan if required.
970 if (rescan)
971 mly_cam_rescan_btl(sc, bus, target);
974 /********************************************************************************
975 * Get the current health status and set the 'next event' counter to suit.
977 static int
978 mly_get_eventstatus(struct mly_softc *sc)
980 struct mly_command_ioctl mci;
981 struct mly_health_status *mh;
982 u_int8_t status;
983 int error;
985 /* build the gethealthstatus ioctl and send it */
986 bzero(&mci, sizeof(mci));
987 mh = NULL;
988 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
990 if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
991 return(error);
992 if (status != 0)
993 return(EIO);
995 /* get the event counter */
996 sc->mly_event_change = mh->change_counter;
997 sc->mly_event_waiting = mh->next_event;
998 sc->mly_event_counter = mh->next_event;
1000 /* save the health status into the memory mailbox */
1001 bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1003 debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1005 kfree(mh, M_DEVBUF);
1006 return(0);
1009 /********************************************************************************
1010 * Enable the memory mailbox mode.
1012 static int
1013 mly_enable_mmbox(struct mly_softc *sc)
1015 struct mly_command_ioctl mci;
1016 u_int8_t *sp, status;
1017 int error;
1019 debug_called(1);
1021 /* build the ioctl and send it */
1022 bzero(&mci, sizeof(mci));
1023 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1024 /* set buffer addresses */
1025 mci.param.setmemorymailbox.command_mailbox_physaddr =
1026 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1027 mci.param.setmemorymailbox.status_mailbox_physaddr =
1028 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1029 mci.param.setmemorymailbox.health_buffer_physaddr =
1030 sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1032 /* set buffer sizes - abuse of data_size field is revolting */
1033 sp = (u_int8_t *)&mci.data_size;
1034 sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1035 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1036 mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1038 debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1039 mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1040 mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1041 mci.param.setmemorymailbox.health_buffer_physaddr,
1042 mci.param.setmemorymailbox.health_buffer_size);
1044 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1045 return(error);
1046 if (status != 0)
1047 return(EIO);
1048 sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1049 debug(1, "memory mailbox active");
1050 return(0);
1053 /********************************************************************************
1054 * Flush all pending I/O from the controller.
1056 static int
1057 mly_flush(struct mly_softc *sc)
1059 struct mly_command_ioctl mci;
1060 u_int8_t status;
1061 int error;
1063 debug_called(1);
1065 /* build the ioctl */
1066 bzero(&mci, sizeof(mci));
1067 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1068 mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1070 /* pass it off to the controller */
1071 if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1072 return(error);
1074 return((status == 0) ? 0 : EIO);
1077 /********************************************************************************
1078 * Perform an ioctl command.
1080 * If (data) is not NULL, the command requires data transfer. If (*data) is NULL
1081 * the command requires data transfer from the controller, and we will allocate
1082 * a buffer for it. If (*data) is not NULL, the command requires data transfer
1083 * to the controller.
1085 * XXX passing in the whole ioctl structure is ugly. Better ideas?
1087 * XXX we don't even try to handle the case where datasize > 4k. We should.
1089 static int
1090 mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1091 u_int8_t *status, void *sense_buffer, size_t *sense_length)
1093 struct mly_command *mc;
1094 struct mly_command_ioctl *mci;
1095 int error;
1097 debug_called(1);
1099 mc = NULL;
1100 if (mly_alloc_command(sc, &mc)) {
1101 error = ENOMEM;
1102 goto out;
1105 /* copy the ioctl structure, but save some important fields and then fixup */
1106 mci = &mc->mc_packet->ioctl;
1107 ioctl->sense_buffer_address = mci->sense_buffer_address;
1108 ioctl->maximum_sense_size = mci->maximum_sense_size;
1109 *mci = *ioctl;
1110 mci->opcode = MDACMD_IOCTL;
1111 mci->timeout.value = 30;
1112 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1114 /* handle the data buffer */
1115 if (data != NULL) {
1116 if (*data == NULL) {
1117 /* allocate data buffer */
1118 mc->mc_data = kmalloc(datasize, M_DEVBUF, M_INTWAIT);
1119 mc->mc_flags |= MLY_CMD_DATAIN;
1120 } else {
1121 mc->mc_data = *data;
1122 mc->mc_flags |= MLY_CMD_DATAOUT;
1124 mc->mc_length = datasize;
1125 mc->mc_packet->generic.data_size = datasize;
1128 /* run the command */
1129 if ((error = mly_immediate_command(mc)))
1130 goto out;
1132 /* clean up and return any data */
1133 *status = mc->mc_status;
1134 if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1135 bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1136 *sense_length = mc->mc_sense;
1137 goto out;
1140 /* should we return a data pointer? */
1141 if ((data != NULL) && (*data == NULL))
1142 *data = mc->mc_data;
1144 /* command completed OK */
1145 error = 0;
1147 out:
1148 if (mc != NULL) {
1149 /* do we need to free a data buffer we allocated? */
1150 if (error && (mc->mc_data != NULL) && (*data == NULL))
1151 kfree(mc->mc_data, M_DEVBUF);
1152 mly_release_command(mc);
1154 return(error);
1157 /********************************************************************************
1158 * Check for event(s) outstanding in the controller.
1160 static void
1161 mly_check_event(struct mly_softc *sc)
1165 * The controller may have updated the health status information,
1166 * so check for it here. Note that the counters are all in host memory,
1167 * so this check is very cheap. Also note that we depend on checking on
1168 * completion
1170 if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1171 sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1172 debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1173 sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1174 sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1176 /* wake up anyone that might be interested in this */
1177 wakeup(&sc->mly_event_change);
1179 if (sc->mly_event_counter != sc->mly_event_waiting)
1180 mly_fetch_event(sc);
1183 /********************************************************************************
1184 * Fetch one event from the controller.
1186 * If we fail due to resource starvation, we'll be retried the next time a
1187 * command completes.
1189 static void
1190 mly_fetch_event(struct mly_softc *sc)
1192 struct mly_command *mc;
1193 struct mly_command_ioctl *mci;
1194 u_int32_t event;
1196 debug_called(1);
1198 /* get a command */
1199 if (mly_alloc_command(sc, &mc))
1200 return;
1202 /* set up the data buffer */
1203 mc->mc_data = kmalloc(sizeof(struct mly_event), M_DEVBUF, M_INTWAIT|M_ZERO);
1204 mc->mc_length = sizeof(struct mly_event);
1205 mc->mc_flags |= MLY_CMD_DATAIN;
1206 mc->mc_complete = mly_complete_event;
1209 * Get an event number to fetch. It's possible that we've raced with another
1210 * context for the last event, in which case there will be no more events.
1212 crit_enter();
1213 if (sc->mly_event_counter == sc->mly_event_waiting) {
1214 mly_release_command(mc);
1215 crit_exit();
1216 return;
1218 event = sc->mly_event_counter++;
1219 crit_exit();
1222 * Build the ioctl.
1224 * At this point we are committed to sending this request, as it
1225 * will be the only one constructed for this particular event number.
1227 mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1228 mci->opcode = MDACMD_IOCTL;
1229 mci->data_size = sizeof(struct mly_event);
1230 mci->addr.phys.lun = (event >> 16) & 0xff;
1231 mci->addr.phys.target = (event >> 24) & 0xff;
1232 mci->addr.phys.channel = 0;
1233 mci->addr.phys.controller = 0;
1234 mci->timeout.value = 30;
1235 mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1236 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1237 mci->param.getevent.sequence_number_low = event & 0xffff;
1239 debug(1, "fetch event %u", event);
1242 * Submit the command.
1244 * Note that failure of mly_start() will result in this event never being
1245 * fetched.
1247 if (mly_start(mc) != 0) {
1248 mly_printf(sc, "couldn't fetch event %u\n", event);
1249 mly_release_command(mc);
1253 /********************************************************************************
1254 * Handle the completion of an event poll.
1256 static void
1257 mly_complete_event(struct mly_command *mc)
1259 struct mly_softc *sc = mc->mc_sc;
1260 struct mly_event *me = (struct mly_event *)mc->mc_data;
1262 debug_called(1);
1265 * If the event was successfully fetched, process it.
1267 if (mc->mc_status == SCSI_STATUS_OK) {
1268 mly_process_event(sc, me);
1269 kfree(me, M_DEVBUF);
1271 mly_release_command(mc);
1274 * Check for another event.
1276 mly_check_event(sc);
1279 /********************************************************************************
1280 * Process a controller event.
1282 static void
1283 mly_process_event(struct mly_softc *sc, struct mly_event *me)
1285 struct scsi_sense_data *ssd = (struct scsi_sense_data *)&me->sense[0];
1286 char *fp, *tp;
1287 int bus, target, event, class, action;
1288 char hexstr[2][12];
1290 * Errors can be reported using vendor-unique sense data. In this case, the
1291 * event code will be 0x1c (Request sense data present), the sense key will
1292 * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1293 * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1294 * and low seven bits of the ASC (low seven bits of the high byte).
1296 if ((me->code == 0x1c) &&
1297 ((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1298 (ssd->add_sense_code & 0x80)) {
1299 event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1300 } else {
1301 event = me->code;
1304 /* look up event, get codes */
1305 fp = mly_describe_code(mly_table_event, event);
1307 debug(1, "Event %d code 0x%x", me->sequence_number, me->code);
1309 /* quiet event? */
1310 class = fp[0];
1311 if (isupper(class) && bootverbose)
1312 class = tolower(class);
1314 /* get action code, text string */
1315 action = fp[1];
1316 tp = &fp[2];
1319 * Print some information about the event.
1321 * This code uses a table derived from the corresponding portion of the Linux
1322 * driver, and thus the parser is very similar.
1324 switch(class) {
1325 case 'p': /* error on physical device */
1326 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1327 if (action == 'r')
1328 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1329 break;
1330 case 'l': /* error on logical unit */
1331 case 'm': /* message about logical unit */
1332 bus = MLY_LOGDEV_BUS(sc, me->lun);
1333 target = MLY_LOGDEV_TARGET(sc, me->lun);
1334 mly_name_device(sc, bus, target);
1335 mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1336 if (action == 'r')
1337 sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1338 break;
1339 case 's': /* report of sense data */
1340 if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1341 (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1342 (ssd->add_sense_code == 0x04) &&
1343 ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1344 break; /* ignore NO_SENSE or NOT_READY in one case */
1346 mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1347 mly_printf(sc, " sense key %d asc %02x ascq %02x\n",
1348 ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1349 mly_printf(sc, " info %s csi %s\n", hexncpy(ssd->info, 4, hexstr[0], 12, NULL),
1350 hexncpy(ssd->cmd_spec_info, 4, hexstr[1], 12, NULL));
1351 if (action == 'r')
1352 sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1353 break;
1354 case 'e':
1355 mly_printf(sc, tp, me->target, me->lun);
1356 kprintf("\n");
1357 break;
1358 case 'c':
1359 mly_printf(sc, "controller %s\n", tp);
1360 break;
1361 case '?':
1362 mly_printf(sc, "%s - %d\n", tp, me->code);
1363 break;
1364 default: /* probably a 'noisy' event being ignored */
1365 break;
1369 /********************************************************************************
1370 * Perform periodic activities.
1372 static void
1373 mly_periodic(void *data)
1375 struct mly_softc *sc = (struct mly_softc *)data;
1376 int bus, target;
1378 debug_called(2);
1381 * Scan devices.
1383 for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1384 if (MLY_BUS_IS_VALID(sc, bus)) {
1385 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1387 /* ignore the controller in this scan */
1388 if (target == sc->mly_controllerparam->initiator_id)
1389 continue;
1391 /* perform device rescan? */
1392 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1393 mly_rescan_btl(sc, bus, target);
1398 /* check for controller events */
1399 mly_check_event(sc);
1401 /* reschedule ourselves */
1402 callout_reset(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz, mly_periodic, sc);
1405 /********************************************************************************
1406 ********************************************************************************
1407 Command Processing
1408 ********************************************************************************
1409 ********************************************************************************/
1411 /********************************************************************************
1412 * Run a command and wait for it to complete.
1415 static int
1416 mly_immediate_command(struct mly_command *mc)
1418 struct mly_softc *sc = mc->mc_sc;
1419 int error;
1421 debug_called(1);
1423 /* spinning at splcam is ugly, but we're only used during controller init */
1424 crit_enter();
1425 if ((error = mly_start(mc))) {
1426 crit_exit();
1427 return(error);
1430 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1431 /* sleep on the command */
1432 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1433 tsleep(mc, 0, "mlywait", 0);
1435 } else {
1436 /* spin and collect status while we do */
1437 while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1438 mly_done(mc->mc_sc);
1441 crit_exit();
1442 return(0);
1445 /********************************************************************************
1446 * Deliver a command to the controller.
1448 * XXX it would be good to just queue commands that we can't submit immediately
1449 * and send them later, but we probably want a wrapper for that so that
1450 * we don't hang on a failed submission for an immediate command.
1452 static int
1453 mly_start(struct mly_command *mc)
1455 struct mly_softc *sc = mc->mc_sc;
1456 union mly_command_packet *pkt;
1458 debug_called(2);
1461 * Set the command up for delivery to the controller.
1463 mly_map_command(mc);
1464 mc->mc_packet->generic.command_id = mc->mc_slot;
1466 #ifdef MLY_DEBUG
1467 mc->mc_timestamp = time_uptime;
1468 #endif
1470 crit_enter();
1473 * Do we have to use the hardware mailbox?
1475 if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1477 * Check to see if the controller is ready for us.
1479 if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1480 crit_exit();
1481 return(EBUSY);
1483 mc->mc_flags |= MLY_CMD_BUSY;
1486 * It's ready, send the command.
1488 MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1489 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1491 } else { /* use memory-mailbox mode */
1493 pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1495 /* check to see if the next index is free yet */
1496 if (pkt->mmbox.flag != 0) {
1497 crit_exit();
1498 return(EBUSY);
1500 mc->mc_flags |= MLY_CMD_BUSY;
1502 /* copy in new command */
1503 bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1504 /* barrier to ensure completion of previous write before we write the flag */
1505 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1506 BUS_SPACE_BARRIER_WRITE);
1507 /* copy flag last */
1508 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1509 /* barrier to ensure completion of previous write before we notify the controller */
1510 bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1511 BUS_SPACE_BARRIER_WRITE);
1513 /* signal controller, update index */
1514 MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1515 sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1518 mly_enqueue_busy(mc);
1519 crit_exit();
1520 return(0);
1523 /********************************************************************************
1524 * Pick up command status from the controller, schedule a completion event
1526 static void
1527 mly_done(struct mly_softc *sc)
1529 struct mly_command *mc;
1530 union mly_status_packet *sp;
1531 u_int16_t slot;
1532 int worked;
1534 crit_enter();
1535 worked = 0;
1537 /* pick up hardware-mailbox commands */
1538 if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1539 slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1540 if (slot < MLY_SLOT_MAX) {
1541 mc = &sc->mly_command[slot - MLY_SLOT_START];
1542 mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1543 mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1544 mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1545 mly_remove_busy(mc);
1546 mc->mc_flags &= ~MLY_CMD_BUSY;
1547 mly_enqueue_complete(mc);
1548 worked = 1;
1549 } else {
1550 /* slot 0xffff may mean "extremely bogus command" */
1551 mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1553 /* unconditionally acknowledge status */
1554 MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1555 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1558 /* pick up memory-mailbox commands */
1559 if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1560 for (;;) {
1561 sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1563 /* check for more status */
1564 if (sp->mmbox.flag == 0)
1565 break;
1567 /* get slot number */
1568 slot = sp->status.command_id;
1569 if (slot < MLY_SLOT_MAX) {
1570 mc = &sc->mly_command[slot - MLY_SLOT_START];
1571 mc->mc_status = sp->status.status;
1572 mc->mc_sense = sp->status.sense_length;
1573 mc->mc_resid = sp->status.residue;
1574 mly_remove_busy(mc);
1575 mc->mc_flags &= ~MLY_CMD_BUSY;
1576 mly_enqueue_complete(mc);
1577 worked = 1;
1578 } else {
1579 /* slot 0xffff may mean "extremely bogus command" */
1580 mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1581 slot, sc->mly_mmbox_status_index);
1584 /* clear and move to next index */
1585 sp->mmbox.flag = 0;
1586 sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1588 /* acknowledge that we have collected status value(s) */
1589 MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1592 crit_exit();
1593 if (worked) {
1594 if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1595 taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1596 else
1597 mly_complete(sc, 0);
1601 /********************************************************************************
1602 * Process completed commands
1604 static void
1605 mly_complete(void *context, int pending)
1607 struct mly_softc *sc = (struct mly_softc *)context;
1608 struct mly_command *mc;
1609 void (* mc_complete)(struct mly_command *mc);
1612 debug_called(2);
1615 * Spin pulling commands off the completed queue and processing them.
1617 while ((mc = mly_dequeue_complete(sc)) != NULL) {
1620 * Free controller resources, mark command complete.
1622 * Note that as soon as we mark the command complete, it may be freed
1623 * out from under us, so we need to save the mc_complete field in
1624 * order to later avoid dereferencing mc. (We would not expect to
1625 * have a polling/sleeping consumer with mc_complete != NULL).
1627 mly_unmap_command(mc);
1628 mc_complete = mc->mc_complete;
1629 mc->mc_flags |= MLY_CMD_COMPLETE;
1632 * Call completion handler or wake up sleeping consumer.
1634 if (mc_complete != NULL) {
1635 mc_complete(mc);
1636 } else {
1637 wakeup(mc);
1642 * XXX if we are deferring commands due to controller-busy status, we should
1643 * retry submitting them here.
1647 /********************************************************************************
1648 ********************************************************************************
1649 Command Buffer Management
1650 ********************************************************************************
1651 ********************************************************************************/
1653 /********************************************************************************
1654 * Allocate a command.
1656 static int
1657 mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1659 struct mly_command *mc;
1661 debug_called(3);
1663 if ((mc = mly_dequeue_free(sc)) == NULL) {
1664 *mcp = NULL; /* avoid gcc warning */
1665 return(ENOMEM);
1668 *mcp = mc;
1669 return(0);
1672 /********************************************************************************
1673 * Release a command back to the freelist.
1675 static void
1676 mly_release_command(struct mly_command *mc)
1678 debug_called(3);
1681 * Fill in parts of the command that may cause confusion if
1682 * a consumer doesn't when we are later allocated.
1684 mc->mc_data = NULL;
1685 mc->mc_flags = 0;
1686 mc->mc_complete = NULL;
1687 mc->mc_private = NULL;
1690 * By default, we set up to overwrite the command packet with
1691 * sense information.
1693 mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1694 mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1696 mly_enqueue_free(mc);
1699 /********************************************************************************
1700 * Map helper for command allocation.
1702 static void
1703 mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1705 struct mly_softc *sc = (struct mly_softc *)arg;
1707 debug_called(1);
1709 sc->mly_packetphys = segs[0].ds_addr;
1712 /********************************************************************************
1713 * Allocate and initialise command and packet structures.
1715 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1716 * allocation to that number. If we don't yet know how many commands the
1717 * controller supports, allocate a very small set (suitable for initialisation
1718 * purposes only).
1720 static int
1721 mly_alloc_commands(struct mly_softc *sc)
1723 struct mly_command *mc;
1724 int i, ncmd;
1726 if (sc->mly_controllerinfo == NULL) {
1727 ncmd = 4;
1728 } else {
1729 ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1733 * Allocate enough space for all the command packets in one chunk and
1734 * map them permanently into controller-visible space.
1736 if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1737 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1738 return(ENOMEM);
1740 if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1741 ncmd * sizeof(union mly_command_packet),
1742 mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1743 return (ENOMEM);
1745 for (i = 0; i < ncmd; i++) {
1746 mc = &sc->mly_command[i];
1747 bzero(mc, sizeof(*mc));
1748 mc->mc_sc = sc;
1749 mc->mc_slot = MLY_SLOT_START + i;
1750 mc->mc_packet = sc->mly_packet + i;
1751 mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1752 if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1753 mly_release_command(mc);
1755 return(0);
1758 /********************************************************************************
1759 * Free all the storage held by commands.
1761 * Must be called with all commands on the free list.
1763 static void
1764 mly_release_commands(struct mly_softc *sc)
1766 struct mly_command *mc;
1768 /* throw away command buffer DMA maps */
1769 while (mly_alloc_command(sc, &mc) == 0)
1770 bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1772 /* release the packet storage */
1773 if (sc->mly_packet != NULL) {
1774 bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1775 bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1776 sc->mly_packet = NULL;
1781 /********************************************************************************
1782 * Command-mapping helper function - populate this command's s/g table
1783 * with the s/g entries for its data.
1785 static void
1786 mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1788 struct mly_command *mc = (struct mly_command *)arg;
1789 struct mly_softc *sc = mc->mc_sc;
1790 struct mly_command_generic *gen = &(mc->mc_packet->generic);
1791 struct mly_sg_entry *sg;
1792 int i, tabofs;
1794 debug_called(2);
1796 /* can we use the transfer structure directly? */
1797 if (nseg <= 2) {
1798 sg = &gen->transfer.direct.sg[0];
1799 gen->command_control.extended_sg_table = 0;
1800 } else {
1801 tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1802 sg = sc->mly_sg_table + tabofs;
1803 gen->transfer.indirect.entries[0] = nseg;
1804 gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1805 gen->command_control.extended_sg_table = 1;
1808 /* copy the s/g table */
1809 for (i = 0; i < nseg; i++) {
1810 sg[i].physaddr = segs[i].ds_addr;
1811 sg[i].length = segs[i].ds_len;
1816 #if 0
1817 /********************************************************************************
1818 * Command-mapping helper function - save the cdb's physical address.
1820 * We don't support 'large' SCSI commands at this time, so this is unused.
1822 static void
1823 mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1825 struct mly_command *mc = (struct mly_command *)arg;
1827 debug_called(2);
1829 /* XXX can we safely assume that a CDB will never cross a page boundary? */
1830 if ((segs[0].ds_addr % PAGE_SIZE) >
1831 ((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1832 panic("cdb crosses page boundary");
1834 /* fix up fields in the command packet */
1835 mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1837 #endif
1839 /********************************************************************************
1840 * Map a command into controller-visible space
1842 static void
1843 mly_map_command(struct mly_command *mc)
1845 struct mly_softc *sc = mc->mc_sc;
1847 debug_called(2);
1849 /* don't map more than once */
1850 if (mc->mc_flags & MLY_CMD_MAPPED)
1851 return;
1853 /* does the command have a data buffer? */
1854 if (mc->mc_data != NULL) {
1855 bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1856 mly_map_command_sg, mc, 0);
1858 if (mc->mc_flags & MLY_CMD_DATAIN)
1859 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1860 if (mc->mc_flags & MLY_CMD_DATAOUT)
1861 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1863 mc->mc_flags |= MLY_CMD_MAPPED;
1866 /********************************************************************************
1867 * Unmap a command from controller-visible space
1869 static void
1870 mly_unmap_command(struct mly_command *mc)
1872 struct mly_softc *sc = mc->mc_sc;
1874 debug_called(2);
1876 if (!(mc->mc_flags & MLY_CMD_MAPPED))
1877 return;
1879 /* does the command have a data buffer? */
1880 if (mc->mc_data != NULL) {
1881 if (mc->mc_flags & MLY_CMD_DATAIN)
1882 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1883 if (mc->mc_flags & MLY_CMD_DATAOUT)
1884 bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1886 bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1888 mc->mc_flags &= ~MLY_CMD_MAPPED;
1892 /********************************************************************************
1893 ********************************************************************************
1894 CAM interface
1895 ********************************************************************************
1896 ********************************************************************************/
1898 /********************************************************************************
1899 * Attach the physical and virtual SCSI busses to CAM.
1901 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1902 * than the highest physical bus. Physical busses are only registered if
1903 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1905 * When we refer to a "bus", we are referring to the bus number registered with
1906 * the SIM, wheras a "channel" is a channel number given to the adapter. In order
1907 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1908 * interchangeably.
1910 static int
1911 mly_cam_attach(struct mly_softc *sc)
1913 struct cam_devq *devq;
1914 int chn, i;
1916 debug_called(1);
1919 * Allocate a devq for all our channels combined.
1921 if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1922 mly_printf(sc, "can't allocate CAM SIM queue\n");
1923 return(ENOMEM);
1927 * If physical channel registration has been requested, register these first.
1928 * Note that we enable tagged command queueing for physical channels.
1930 if (ktestenv("hw.mly.register_physical_channels")) {
1931 chn = 0;
1932 for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1934 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1935 device_get_unit(sc->mly_dev),
1936 &sim_mplock,
1937 sc->mly_controllerinfo->maximum_parallel_commands,
1938 1, devq)) == NULL) {
1939 return(ENOMEM);
1941 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1942 mly_printf(sc, "CAM XPT physical channel registration failed\n");
1943 return(ENXIO);
1945 debug(1, "registered physical channel %d", chn);
1950 * Register our virtual channels, with bus numbers matching channel numbers.
1952 chn = sc->mly_controllerinfo->physical_channels_present;
1953 for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1954 if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1955 device_get_unit(sc->mly_dev),
1956 &sim_mplock,
1957 sc->mly_controllerinfo->maximum_parallel_commands,
1958 0, devq)) == NULL) {
1959 return(ENOMEM);
1961 if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1962 mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1963 return(ENXIO);
1965 debug(1, "registered virtual channel %d", chn);
1969 * This is the total number of channels that (might have been) registered with
1970 * CAM. Some may not have been; check the mly_cam_sim array to be certain.
1972 sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1973 sc->mly_controllerinfo->virtual_channels_present;
1975 return(0);
1978 /********************************************************************************
1979 * Detach from CAM
1981 static void
1982 mly_cam_detach(struct mly_softc *sc)
1984 int i;
1986 debug_called(1);
1988 for (i = 0; i < sc->mly_cam_channels; i++) {
1989 if (sc->mly_cam_sim[i] != NULL) {
1990 xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1991 cam_sim_free(sc->mly_cam_sim[i]);
1994 if (sc->mly_cam_devq != NULL)
1995 cam_simq_release(sc->mly_cam_devq);
1998 /************************************************************************
1999 * Rescan a device.
2001 static void
2002 mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2004 union ccb *ccb;
2006 debug_called(1);
2008 if ((ccb = xpt_alloc_ccb()) == NULL) {
2009 mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2010 return;
2012 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
2013 cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2014 mly_printf(sc, "rescan failed (can't create path)\n");
2015 xpt_free_ccb(ccb);
2016 return;
2019 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5/*priority (low)*/);
2020 ccb->ccb_h.func_code = XPT_SCAN_LUN;
2021 ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2022 ccb->crcn.flags = CAM_FLAG_NONE;
2023 debug(1, "rescan target %d:%d", bus, target);
2024 xpt_action(ccb);
2027 static void
2028 mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2030 xpt_free_ccb(ccb);
2033 /********************************************************************************
2034 * Handle an action requested by CAM
2036 static void
2037 mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2039 struct mly_softc *sc = cam_sim_softc(sim);
2041 debug_called(2);
2043 switch (ccb->ccb_h.func_code) {
2045 /* perform SCSI I/O */
2046 case XPT_SCSI_IO:
2047 if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2048 return;
2049 break;
2051 /* perform geometry calculations */
2052 case XPT_CALC_GEOMETRY:
2054 struct ccb_calc_geometry *ccg = &ccb->ccg;
2055 u_int32_t secs_per_cylinder;
2057 debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2059 if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2060 ccg->heads = 255;
2061 ccg->secs_per_track = 63;
2062 } else { /* MLY_BIOSGEOM_2G */
2063 ccg->heads = 128;
2064 ccg->secs_per_track = 32;
2066 secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2067 ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2068 ccb->ccb_h.status = CAM_REQ_CMP;
2069 break;
2072 /* handle path attribute inquiry */
2073 case XPT_PATH_INQ:
2075 struct ccb_pathinq *cpi = &ccb->cpi;
2077 debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2079 cpi->version_num = 1;
2080 cpi->hba_inquiry = PI_TAG_ABLE; /* XXX extra flags for physical channels? */
2081 cpi->target_sprt = 0;
2082 cpi->hba_misc = 0;
2083 cpi->max_target = MLY_MAX_TARGETS - 1;
2084 cpi->max_lun = MLY_MAX_LUNS - 1;
2085 cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2086 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2087 strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2088 strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2089 cpi->unit_number = cam_sim_unit(sim);
2090 cpi->bus_id = cam_sim_bus(sim);
2091 cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
2092 cpi->transport = XPORT_SPI;
2093 cpi->transport_version = 2;
2094 cpi->protocol = PROTO_SCSI;
2095 cpi->protocol_version = SCSI_REV_2;
2096 ccb->ccb_h.status = CAM_REQ_CMP;
2097 break;
2100 case XPT_GET_TRAN_SETTINGS:
2102 struct ccb_trans_settings *cts = &ccb->cts;
2103 int bus, target;
2104 struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2105 struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2107 cts->protocol = PROTO_SCSI;
2108 cts->protocol_version = SCSI_REV_2;
2109 cts->transport = XPORT_SPI;
2110 cts->transport_version = 2;
2112 scsi->flags = 0;
2113 scsi->valid = 0;
2114 spi->flags = 0;
2115 spi->valid = 0;
2117 bus = cam_sim_bus(sim);
2118 target = cts->ccb_h.target_id;
2119 debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2120 /* logical device? */
2121 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2122 /* nothing special for these */
2123 /* physical device? */
2124 } else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2125 /* allow CAM to try tagged transactions */
2126 scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2127 scsi->valid |= CTS_SCSI_VALID_TQ;
2129 /* convert speed (MHz) to usec */
2130 if (sc->mly_btl[bus][target].mb_speed == 0) {
2131 spi->sync_period = 1000000 / 5;
2132 } else {
2133 spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2136 /* convert bus width to CAM internal encoding */
2137 switch (sc->mly_btl[bus][target].mb_width) {
2138 case 32:
2139 spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2140 break;
2141 case 16:
2142 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2143 break;
2144 case 8:
2145 default:
2146 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2147 break;
2149 spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2151 /* not a device, bail out */
2152 } else {
2153 cts->ccb_h.status = CAM_REQ_CMP_ERR;
2154 break;
2157 /* disconnect always OK */
2158 spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2159 spi->valid |= CTS_SPI_VALID_DISC;
2161 cts->ccb_h.status = CAM_REQ_CMP;
2162 break;
2165 default: /* we can't do this */
2166 debug(2, "unsupported func_code = 0x%x", ccb->ccb_h.func_code);
2167 ccb->ccb_h.status = CAM_REQ_INVALID;
2168 break;
2171 xpt_done(ccb);
2174 /********************************************************************************
2175 * Handle an I/O operation requested by CAM
2177 static int
2178 mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2180 struct mly_softc *sc = cam_sim_softc(sim);
2181 struct mly_command *mc;
2182 struct mly_command_scsi_small *ss;
2183 int bus, target;
2184 int error;
2186 bus = cam_sim_bus(sim);
2187 target = csio->ccb_h.target_id;
2189 debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2191 /* validate bus number */
2192 if (!MLY_BUS_IS_VALID(sc, bus)) {
2193 debug(0, " invalid bus %d", bus);
2194 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2197 /* check for I/O attempt to a protected device */
2198 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2199 debug(2, " device protected");
2200 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2203 /* check for I/O attempt to nonexistent device */
2204 if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2205 debug(2, " device %d:%d does not exist", bus, target);
2206 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2209 /* XXX increase if/when we support large SCSI commands */
2210 if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2211 debug(0, " command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2212 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2215 /* check that the CDB pointer is not to a physical address */
2216 if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2217 debug(0, " CDB pointer is to physical address");
2218 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2221 /* if there is data transfer, it must be to/from a virtual address */
2222 if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2223 if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
2224 debug(0, " data pointer is to physical address");
2225 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2227 if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
2228 debug(0, " data has premature s/g setup");
2229 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2233 /* abandon aborted ccbs or those that have failed validation */
2234 if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2235 debug(2, "abandoning CCB due to abort/validation failure");
2236 return(EINVAL);
2240 * Get a command, or push the ccb back to CAM and freeze the queue.
2242 if ((error = mly_alloc_command(sc, &mc))) {
2243 crit_enter();
2244 xpt_freeze_simq(sim, 1);
2245 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2246 sc->mly_qfrzn_cnt++;
2247 crit_exit();
2248 return(error);
2251 /* build the command */
2252 mc->mc_data = csio->data_ptr;
2253 mc->mc_length = csio->dxfer_len;
2254 mc->mc_complete = mly_cam_complete;
2255 mc->mc_private = csio;
2257 /* save the bus number in the ccb for later recovery XXX should be a better way */
2258 csio->ccb_h.sim_priv.entries[0].field = bus;
2260 /* build the packet for the controller */
2261 ss = &mc->mc_packet->scsi_small;
2262 ss->opcode = MDACMD_SCSI;
2263 if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2264 ss->command_control.disable_disconnect = 1;
2265 if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2266 ss->command_control.data_direction = MLY_CCB_WRITE;
2267 ss->data_size = csio->dxfer_len;
2268 ss->addr.phys.lun = csio->ccb_h.target_lun;
2269 ss->addr.phys.target = csio->ccb_h.target_id;
2270 ss->addr.phys.channel = bus;
2271 if (csio->ccb_h.timeout < (60 * 1000)) {
2272 ss->timeout.value = csio->ccb_h.timeout / 1000;
2273 ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2274 } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2275 ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2276 ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2277 } else {
2278 ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000); /* overflow? */
2279 ss->timeout.scale = MLY_TIMEOUT_HOURS;
2281 ss->maximum_sense_size = csio->sense_len;
2282 ss->cdb_length = csio->cdb_len;
2283 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2284 bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2285 } else {
2286 bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2289 /* give the command to the controller */
2290 if ((error = mly_start(mc))) {
2291 crit_enter();
2292 xpt_freeze_simq(sim, 1);
2293 csio->ccb_h.status |= CAM_REQUEUE_REQ;
2294 sc->mly_qfrzn_cnt++;
2295 crit_exit();
2296 return(error);
2299 return(0);
2302 /********************************************************************************
2303 * Check for possibly-completed commands.
2305 static void
2306 mly_cam_poll(struct cam_sim *sim)
2308 struct mly_softc *sc = cam_sim_softc(sim);
2310 debug_called(2);
2312 mly_done(sc);
2315 /********************************************************************************
2316 * Handle completion of a command - pass results back through the CCB
2318 static void
2319 mly_cam_complete(struct mly_command *mc)
2321 struct mly_softc *sc = mc->mc_sc;
2322 struct ccb_scsiio *csio = (struct ccb_scsiio *)mc->mc_private;
2323 struct scsi_inquiry_data *inq = (struct scsi_inquiry_data *)csio->data_ptr;
2324 struct mly_btl *btl;
2325 u_int8_t cmd;
2326 int bus, target;
2328 debug_called(2);
2330 csio->scsi_status = mc->mc_status;
2331 switch(mc->mc_status) {
2332 case SCSI_STATUS_OK:
2334 * In order to report logical device type and status, we overwrite
2335 * the result of the INQUIRY command to logical devices.
2337 bus = csio->ccb_h.sim_priv.entries[0].field;
2338 target = csio->ccb_h.target_id;
2339 /* XXX validate bus/target? */
2340 if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2341 if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2342 cmd = *csio->cdb_io.cdb_ptr;
2343 } else {
2344 cmd = csio->cdb_io.cdb_bytes[0];
2346 if (cmd == INQUIRY) {
2347 btl = &sc->mly_btl[bus][target];
2348 padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2349 padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2350 padstr(inq->revision, "MYLX", 4);
2354 debug(2, "SCSI_STATUS_OK");
2355 csio->ccb_h.status = CAM_REQ_CMP;
2356 break;
2358 case SCSI_STATUS_CHECK_COND:
2359 debug(1, "SCSI_STATUS_CHECK_COND sense %d resid %d", mc->mc_sense, mc->mc_resid);
2360 csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2361 bzero(&csio->sense_data, SSD_FULL_SIZE);
2362 bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2363 csio->sense_len = mc->mc_sense;
2364 csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2365 csio->resid = mc->mc_resid; /* XXX this is a signed value... */
2366 break;
2368 case SCSI_STATUS_BUSY:
2369 debug(1, "SCSI_STATUS_BUSY");
2370 csio->ccb_h.status = CAM_SCSI_BUSY;
2371 break;
2373 default:
2374 debug(1, "unknown status 0x%x", csio->scsi_status);
2375 csio->ccb_h.status = CAM_REQ_CMP_ERR;
2376 break;
2379 crit_enter();
2380 if (sc->mly_qfrzn_cnt) {
2381 csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2382 sc->mly_qfrzn_cnt--;
2384 crit_exit();
2386 xpt_done((union ccb *)csio);
2387 mly_release_command(mc);
2390 /********************************************************************************
2391 * Find a peripheral attahed at (bus),(target)
2393 static struct cam_periph *
2394 mly_find_periph(struct mly_softc *sc, int bus, int target)
2396 struct cam_periph *periph;
2397 struct cam_path *path;
2398 int status;
2400 status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2401 if (status == CAM_REQ_CMP) {
2402 periph = cam_periph_find(path, NULL);
2403 xpt_free_path(path);
2404 } else {
2405 periph = NULL;
2407 return(periph);
2410 /********************************************************************************
2411 * Name the device at (bus)(target)
2413 static int
2414 mly_name_device(struct mly_softc *sc, int bus, int target)
2416 struct cam_periph *periph;
2418 if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2419 ksprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2420 return(0);
2422 sc->mly_btl[bus][target].mb_name[0] = 0;
2423 return(ENOENT);
2426 /********************************************************************************
2427 ********************************************************************************
2428 Hardware Control
2429 ********************************************************************************
2430 ********************************************************************************/
2432 /********************************************************************************
2433 * Handshake with the firmware while the card is being initialised.
2435 static int
2436 mly_fwhandshake(struct mly_softc *sc)
2438 u_int8_t error, param0, param1;
2439 int spinup = 0;
2441 debug_called(1);
2443 /* set HM_STSACK and let the firmware initialise */
2444 MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2445 DELAY(1000); /* too short? */
2447 /* if HM_STSACK is still true, the controller is initialising */
2448 if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2449 return(0);
2450 mly_printf(sc, "controller initialisation started\n");
2452 /* spin waiting for initialisation to finish, or for a message to be delivered */
2453 while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2454 /* check for a message */
2455 if (MLY_ERROR_VALID(sc)) {
2456 error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2457 param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2458 param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2460 switch(error) {
2461 case MLY_MSG_SPINUP:
2462 if (!spinup) {
2463 mly_printf(sc, "drive spinup in progress\n");
2464 spinup = 1; /* only print this once (should print drive being spun?) */
2466 break;
2467 case MLY_MSG_RACE_RECOVERY_FAIL:
2468 mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2469 break;
2470 case MLY_MSG_RACE_IN_PROGRESS:
2471 mly_printf(sc, "mirror race recovery in progress\n");
2472 break;
2473 case MLY_MSG_RACE_ON_CRITICAL:
2474 mly_printf(sc, "mirror race recovery on a critical drive\n");
2475 break;
2476 case MLY_MSG_PARITY_ERROR:
2477 mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2478 return(ENXIO);
2479 default:
2480 mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2484 return(0);
2487 /********************************************************************************
2488 ********************************************************************************
2489 Debugging and Diagnostics
2490 ********************************************************************************
2491 ********************************************************************************/
2493 /********************************************************************************
2494 * Print some information about the controller.
2496 static void
2497 mly_describe_controller(struct mly_softc *sc)
2499 struct mly_ioctl_getcontrollerinfo *mi = sc->mly_controllerinfo;
2501 mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2502 mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2503 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, /* XXX turn encoding? */
2504 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2505 mi->memory_size);
2507 if (bootverbose) {
2508 mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2509 mly_describe_code(mly_table_oemname, mi->oem_information),
2510 mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2511 mi->interface_speed, mi->interface_width, mi->interface_name);
2512 mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2513 mi->memory_size, mi->memory_speed, mi->memory_width,
2514 mly_describe_code(mly_table_memorytype, mi->memory_type),
2515 mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2516 mi->cache_size);
2517 mly_printf(sc, "CPU: %s @ %dMHz\n",
2518 mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2519 if (mi->l2cache_size != 0)
2520 mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2521 if (mi->exmemory_size != 0)
2522 mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2523 mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2524 mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2525 mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2526 mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2527 mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2528 mi->maximum_block_count, mi->maximum_sg_entries);
2529 mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2530 mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2531 mly_printf(sc, "physical devices present %d\n",
2532 mi->physical_devices_present);
2533 mly_printf(sc, "physical disks present/offline %d/%d\n",
2534 mi->physical_disks_present, mi->physical_disks_offline);
2535 mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2536 mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2537 mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2538 mi->virtual_channels_possible);
2539 mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2540 mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2541 mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2545 #ifdef MLY_DEBUG
2546 /********************************************************************************
2547 * Print some controller state
2549 static void
2550 mly_printstate(struct mly_softc *sc)
2552 mly_printf(sc, "IDBR %02x ODBR %02x ERROR %02x (%x %x %x)\n",
2553 MLY_GET_REG(sc, sc->mly_idbr),
2554 MLY_GET_REG(sc, sc->mly_odbr),
2555 MLY_GET_REG(sc, sc->mly_error_status),
2556 sc->mly_idbr,
2557 sc->mly_odbr,
2558 sc->mly_error_status);
2559 mly_printf(sc, "IMASK %02x ISTATUS %02x\n",
2560 MLY_GET_REG(sc, sc->mly_interrupt_mask),
2561 MLY_GET_REG(sc, sc->mly_interrupt_status));
2562 mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2563 MLY_GET_REG(sc, sc->mly_command_mailbox),
2564 MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2565 MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2566 MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2567 MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2568 MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2569 MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2570 MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2571 mly_printf(sc, "STATUS %02x %02x %02x %02x %02x %02x %02x %02x\n",
2572 MLY_GET_REG(sc, sc->mly_status_mailbox),
2573 MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2574 MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2575 MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2576 MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2577 MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2578 MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2579 MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2580 mly_printf(sc, " %04x %08x\n",
2581 MLY_GET_REG2(sc, sc->mly_status_mailbox),
2582 MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2585 struct mly_softc *mly_softc0 = NULL;
2586 void
2587 mly_printstate0(void)
2589 if (mly_softc0 != NULL)
2590 mly_printstate(mly_softc0);
2593 /********************************************************************************
2594 * Print a command
2596 static void
2597 mly_print_command(struct mly_command *mc)
2599 struct mly_softc *sc = mc->mc_sc;
2601 mly_printf(sc, "COMMAND @ %p\n", mc);
2602 mly_printf(sc, " slot %d\n", mc->mc_slot);
2603 mly_printf(sc, " status 0x%x\n", mc->mc_status);
2604 mly_printf(sc, " sense len %d\n", mc->mc_sense);
2605 mly_printf(sc, " resid %d\n", mc->mc_resid);
2606 mly_printf(sc, " packet %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2607 if (mc->mc_packet != NULL)
2608 mly_print_packet(mc);
2609 mly_printf(sc, " data %p/%d\n", mc->mc_data, mc->mc_length);
2610 mly_printf(sc, " flags %pb%i\n",
2611 "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n",
2612 mc->mc_flags);
2613 mly_printf(sc, " complete %p\n", mc->mc_complete);
2614 mly_printf(sc, " private %p\n", mc->mc_private);
2617 /********************************************************************************
2618 * Print a command packet
2620 static void
2621 mly_print_packet(struct mly_command *mc)
2623 struct mly_softc *sc = mc->mc_sc;
2624 struct mly_command_generic *ge = (struct mly_command_generic *)mc->mc_packet;
2625 struct mly_command_scsi_small *ss = (struct mly_command_scsi_small *)mc->mc_packet;
2626 struct mly_command_scsi_large *sl = (struct mly_command_scsi_large *)mc->mc_packet;
2627 struct mly_command_ioctl *io = (struct mly_command_ioctl *)mc->mc_packet;
2628 int transfer;
2629 char hexstr[HEX_NCPYLEN(MLY_CMD_SCSI_SMALL_CDB)];
2631 mly_printf(sc, " command_id %d\n", ge->command_id);
2632 mly_printf(sc, " opcode %d\n", ge->opcode);
2633 mly_printf(sc, " command_control fua %d dpo %d est %d dd %s nas %d ddis %d\n",
2634 ge->command_control.force_unit_access,
2635 ge->command_control.disable_page_out,
2636 ge->command_control.extended_sg_table,
2637 (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2638 ge->command_control.no_auto_sense,
2639 ge->command_control.disable_disconnect);
2640 mly_printf(sc, " data_size %d\n", ge->data_size);
2641 mly_printf(sc, " sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2642 mly_printf(sc, " lun %d\n", ge->addr.phys.lun);
2643 mly_printf(sc, " target %d\n", ge->addr.phys.target);
2644 mly_printf(sc, " channel %d\n", ge->addr.phys.channel);
2645 mly_printf(sc, " logical device %d\n", ge->addr.log.logdev);
2646 mly_printf(sc, " controller %d\n", ge->addr.phys.controller);
2647 mly_printf(sc, " timeout %d %s\n",
2648 ge->timeout.value,
2649 (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2650 ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2651 mly_printf(sc, " maximum_sense_size %d\n", ge->maximum_sense_size);
2652 switch(ge->opcode) {
2653 case MDACMD_SCSIPT:
2654 case MDACMD_SCSI:
2655 mly_printf(sc, " cdb length %d\n", ss->cdb_length);
2656 mly_printf(sc, " cdb %s\n",
2657 hexncpy(ss->cdb, ss->cdb_length, hexstr, HEX_NCPYLEN(ss->cdb_length), " "));
2658 transfer = 1;
2659 break;
2660 case MDACMD_SCSILC:
2661 case MDACMD_SCSILCPT:
2662 mly_printf(sc, " cdb length %d\n", sl->cdb_length);
2663 mly_printf(sc, " cdb 0x%llx\n", sl->cdb_physaddr);
2664 transfer = 1;
2665 break;
2666 case MDACMD_IOCTL:
2667 mly_printf(sc, " sub_ioctl 0x%x\n", io->sub_ioctl);
2668 switch(io->sub_ioctl) {
2669 case MDACIOCTL_SETMEMORYMAILBOX:
2670 mly_printf(sc, " health_buffer_size %d\n",
2671 io->param.setmemorymailbox.health_buffer_size);
2672 mly_printf(sc, " health_buffer_phys 0x%llx\n",
2673 io->param.setmemorymailbox.health_buffer_physaddr);
2674 mly_printf(sc, " command_mailbox 0x%llx\n",
2675 io->param.setmemorymailbox.command_mailbox_physaddr);
2676 mly_printf(sc, " status_mailbox 0x%llx\n",
2677 io->param.setmemorymailbox.status_mailbox_physaddr);
2678 transfer = 0;
2679 break;
2681 case MDACIOCTL_SETREALTIMECLOCK:
2682 case MDACIOCTL_GETHEALTHSTATUS:
2683 case MDACIOCTL_GETCONTROLLERINFO:
2684 case MDACIOCTL_GETLOGDEVINFOVALID:
2685 case MDACIOCTL_GETPHYSDEVINFOVALID:
2686 case MDACIOCTL_GETPHYSDEVSTATISTICS:
2687 case MDACIOCTL_GETLOGDEVSTATISTICS:
2688 case MDACIOCTL_GETCONTROLLERSTATISTICS:
2689 case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2690 case MDACIOCTL_CREATENEWCONF:
2691 case MDACIOCTL_ADDNEWCONF:
2692 case MDACIOCTL_GETDEVCONFINFO:
2693 case MDACIOCTL_GETFREESPACELIST:
2694 case MDACIOCTL_MORE:
2695 case MDACIOCTL_SETPHYSDEVPARAMETER:
2696 case MDACIOCTL_GETPHYSDEVPARAMETER:
2697 case MDACIOCTL_GETLOGDEVPARAMETER:
2698 case MDACIOCTL_SETLOGDEVPARAMETER:
2699 mly_printf(sc, " param %10D\n", io->param.data.param, " ");
2700 transfer = 1;
2701 break;
2703 case MDACIOCTL_GETEVENT:
2704 mly_printf(sc, " event %d\n",
2705 io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2706 transfer = 1;
2707 break;
2709 case MDACIOCTL_SETRAIDDEVSTATE:
2710 mly_printf(sc, " state %d\n", io->param.setraiddevstate.state);
2711 transfer = 0;
2712 break;
2714 case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2715 mly_printf(sc, " raid_device %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2716 mly_printf(sc, " controller %d\n", io->param.xlatephysdevtoraiddev.controller);
2717 mly_printf(sc, " channel %d\n", io->param.xlatephysdevtoraiddev.channel);
2718 mly_printf(sc, " target %d\n", io->param.xlatephysdevtoraiddev.target);
2719 mly_printf(sc, " lun %d\n", io->param.xlatephysdevtoraiddev.lun);
2720 transfer = 0;
2721 break;
2723 case MDACIOCTL_GETGROUPCONFINFO:
2724 mly_printf(sc, " group %d\n", io->param.getgroupconfinfo.group);
2725 transfer = 1;
2726 break;
2728 case MDACIOCTL_GET_SUBSYSTEM_DATA:
2729 case MDACIOCTL_SET_SUBSYSTEM_DATA:
2730 case MDACIOCTL_STARTDISOCVERY:
2731 case MDACIOCTL_INITPHYSDEVSTART:
2732 case MDACIOCTL_INITPHYSDEVSTOP:
2733 case MDACIOCTL_INITRAIDDEVSTART:
2734 case MDACIOCTL_INITRAIDDEVSTOP:
2735 case MDACIOCTL_REBUILDRAIDDEVSTART:
2736 case MDACIOCTL_REBUILDRAIDDEVSTOP:
2737 case MDACIOCTL_MAKECONSISTENTDATASTART:
2738 case MDACIOCTL_MAKECONSISTENTDATASTOP:
2739 case MDACIOCTL_CONSISTENCYCHECKSTART:
2740 case MDACIOCTL_CONSISTENCYCHECKSTOP:
2741 case MDACIOCTL_RESETDEVICE:
2742 case MDACIOCTL_FLUSHDEVICEDATA:
2743 case MDACIOCTL_PAUSEDEVICE:
2744 case MDACIOCTL_UNPAUSEDEVICE:
2745 case MDACIOCTL_LOCATEDEVICE:
2746 case MDACIOCTL_SETMASTERSLAVEMODE:
2747 case MDACIOCTL_DELETERAIDDEV:
2748 case MDACIOCTL_REPLACEINTERNALDEV:
2749 case MDACIOCTL_CLEARCONF:
2750 case MDACIOCTL_GETCONTROLLERPARAMETER:
2751 case MDACIOCTL_SETCONTRLLERPARAMETER:
2752 case MDACIOCTL_CLEARCONFSUSPMODE:
2753 case MDACIOCTL_STOREIMAGE:
2754 case MDACIOCTL_READIMAGE:
2755 case MDACIOCTL_FLASHIMAGES:
2756 case MDACIOCTL_RENAMERAIDDEV:
2757 default: /* no idea what to print */
2758 transfer = 0;
2759 break;
2761 break;
2763 case MDACMD_IOCTLCHECK:
2764 case MDACMD_MEMCOPY:
2765 default:
2766 transfer = 0;
2767 break; /* print nothing */
2769 if (transfer) {
2770 if (ge->command_control.extended_sg_table) {
2771 mly_printf(sc, " sg table 0x%llx/%d\n",
2772 ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2773 } else {
2774 mly_printf(sc, " 0000 0x%llx/%lld\n",
2775 ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2776 mly_printf(sc, " 0001 0x%llx/%lld\n",
2777 ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2782 /********************************************************************************
2783 * Panic in a slightly informative fashion
2785 static void
2786 mly_panic(struct mly_softc *sc, char *reason)
2788 mly_printstate(sc);
2789 panic(reason);
2792 /********************************************************************************
2793 * Print queue statistics, callable from DDB.
2795 void
2796 mly_print_controller(int controller)
2798 struct mly_softc *sc;
2800 if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2801 kprintf("mly: controller %d invalid\n", controller);
2802 } else {
2803 device_printf(sc->mly_dev, "queue curr max\n");
2804 device_printf(sc->mly_dev, "free %04d/%04d\n",
2805 sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2806 device_printf(sc->mly_dev, "busy %04d/%04d\n",
2807 sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2808 device_printf(sc->mly_dev, "complete %04d/%04d\n",
2809 sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2812 #endif
2815 /********************************************************************************
2816 ********************************************************************************
2817 Control device interface
2818 ********************************************************************************
2819 ********************************************************************************/
2821 /********************************************************************************
2822 * Accept an open operation on the control device.
2824 static int
2825 mly_user_open(struct dev_open_args *ap)
2827 cdev_t dev = ap->a_head.a_dev;
2828 int unit = minor(dev);
2829 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2831 sc->mly_state |= MLY_STATE_OPEN;
2832 return(0);
2835 /********************************************************************************
2836 * Accept the last close on the control device.
2838 static int
2839 mly_user_close(struct dev_close_args *ap)
2841 cdev_t dev = ap->a_head.a_dev;
2842 int unit = minor(dev);
2843 struct mly_softc *sc = devclass_get_softc(devclass_find("mly"), unit);
2845 sc->mly_state &= ~MLY_STATE_OPEN;
2846 return (0);
2849 /********************************************************************************
2850 * Handle controller-specific control operations.
2852 static int
2853 mly_user_ioctl(struct dev_ioctl_args *ap)
2855 cdev_t dev = ap->a_head.a_dev;
2856 caddr_t addr = ap->a_data;
2857 u_long cmd = ap->a_cmd;
2858 struct mly_softc *sc = (struct mly_softc *)dev->si_drv1;
2859 struct mly_user_command *uc = (struct mly_user_command *)addr;
2860 struct mly_user_health *uh = (struct mly_user_health *)addr;
2862 switch(cmd) {
2863 case MLYIO_COMMAND:
2864 return(mly_user_command(sc, uc));
2865 case MLYIO_HEALTH:
2866 return(mly_user_health(sc, uh));
2867 default:
2868 return(ENOIOCTL);
2872 /********************************************************************************
2873 * Execute a command passed in from userspace.
2875 * The control structure contains the actual command for the controller, as well
2876 * as the user-space data pointer and data size, and an optional sense buffer
2877 * size/pointer. On completion, the data size is adjusted to the command
2878 * residual, and the sense buffer size to the size of the returned sense data.
2881 static int
2882 mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2884 struct mly_command *mc;
2885 int error;
2887 /* allocate a command */
2888 if (mly_alloc_command(sc, &mc)) {
2889 error = ENOMEM;
2890 goto out; /* XXX Linux version will wait for a command */
2893 /* handle data size/direction */
2894 mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2895 if (mc->mc_length > 0)
2896 mc->mc_data = kmalloc(mc->mc_length, M_DEVBUF, M_INTWAIT);
2897 if (uc->DataTransferLength > 0) {
2898 mc->mc_flags |= MLY_CMD_DATAIN;
2899 bzero(mc->mc_data, mc->mc_length);
2901 if (uc->DataTransferLength < 0) {
2902 mc->mc_flags |= MLY_CMD_DATAOUT;
2903 if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2904 goto out;
2907 /* copy the controller command */
2908 bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2910 /* clear command completion handler so that we get woken up */
2911 mc->mc_complete = NULL;
2913 /* execute the command */
2914 if ((error = mly_start(mc)) != 0)
2915 goto out;
2916 crit_enter();
2917 while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2918 tsleep(mc, 0, "mlyioctl", 0);
2919 crit_exit();
2921 /* return the data to userspace */
2922 if (uc->DataTransferLength > 0)
2923 if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2924 goto out;
2926 /* return the sense buffer to userspace */
2927 if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2928 if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2929 min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2930 goto out;
2933 /* return command results to userspace (caller will copy out) */
2934 uc->DataTransferLength = mc->mc_resid;
2935 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2936 uc->CommandStatus = mc->mc_status;
2937 error = 0;
2939 out:
2940 if (mc->mc_data != NULL)
2941 kfree(mc->mc_data, M_DEVBUF);
2942 if (mc != NULL)
2943 mly_release_command(mc);
2944 return(error);
2947 /********************************************************************************
2948 * Return health status to userspace. If the health change index in the user
2949 * structure does not match that currently exported by the controller, we
2950 * return the current status immediately. Otherwise, we block until either
2951 * interrupted or new status is delivered.
2953 static int
2954 mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2956 struct mly_health_status mh;
2957 int error;
2959 /* fetch the current health status from userspace */
2960 if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2961 return(error);
2963 /* spin waiting for a status update */
2964 crit_enter();
2965 error = EWOULDBLOCK;
2966 while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2967 error = tsleep(&sc->mly_event_change, PCATCH, "mlyhealth", 0);
2968 crit_exit();
2970 /* copy the controller's health status buffer out (there is a race here if it changes again) */
2971 error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2972 sizeof(uh->HealthStatusBuffer));
2973 return(error);
2976 #ifdef MLY_DEBUG
2977 static int
2978 mly_timeout(struct mly_softc *sc)
2980 struct mly_command *mc;
2981 int deadline;
2983 deadline = time_uptime - MLY_CMD_TIMEOUT;
2984 TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2985 if ((mc->mc_timestamp < deadline)) {
2986 device_printf(sc->mly_dev,
2987 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2988 (int)(time_uptime - mc->mc_timestamp));
2992 callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz,
2993 (timeout_t *)mly_timeout, sc);
2995 return (0);
2997 #endif