kmalloc: Avoid code duplication.
[dragonfly.git] / sys / kern / kern_slaballoc.c
blob4522e61e74cd295b405f8fea09bbe7b762422a5e
1 /*
2 * (MPSAFE)
4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
5 *
6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved.
7 *
8 * This code is derived from software contributed to The DragonFly Project
9 * by Matthew Dillon <dillon@backplane.com>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * This module implements a slab allocator drop-in replacement for the
39 * kernel malloc().
41 * A slab allocator reserves a ZONE for each chunk size, then lays the
42 * chunks out in an array within the zone. Allocation and deallocation
43 * is nearly instantanious, and fragmentation/overhead losses are limited
44 * to a fixed worst-case amount.
46 * The downside of this slab implementation is in the chunk size
47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
48 * In a kernel implementation all this memory will be physical so
49 * the zone size is adjusted downward on machines with less physical
50 * memory. The upside is that overhead is bounded... this is the *worst*
51 * case overhead.
53 * Slab management is done on a per-cpu basis and no locking or mutexes
54 * are required, only a critical section. When one cpu frees memory
55 * belonging to another cpu's slab manager an asynchronous IPI message
56 * will be queued to execute the operation. In addition, both the
57 * high level slab allocator and the low level zone allocator optimize
58 * M_ZERO requests, and the slab allocator does not have to pre initialize
59 * the linked list of chunks.
61 * XXX Balancing is needed between cpus. Balance will be handled through
62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65 * the new zone should be restricted to M_USE_RESERVE requests only.
67 * Alloc Size Chunking Number of zones
68 * 0-127 8 16
69 * 128-255 16 8
70 * 256-511 32 8
71 * 512-1023 64 8
72 * 1024-2047 128 8
73 * 2048-4095 256 8
74 * 4096-8191 512 8
75 * 8192-16383 1024 8
76 * 16384-32767 2048 8
77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
79 * Allocations >= ZoneLimit go directly to kmem.
80 * (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
82 * Alignment properties:
83 * - All power-of-2 sized allocations are power-of-2 aligned.
84 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
85 * power-of-2 round up of 'size'.
86 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
87 * above table 'Chunking' column).
89 * API REQUIREMENTS AND SIDE EFFECTS
91 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
92 * have remained compatible with the following API requirements:
94 * + malloc(0) is allowed and returns non-NULL (ahc driver)
95 * + ability to allocate arbitrarily large chunks of memory
98 #include "opt_vm.h"
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/slaballoc.h>
104 #include <sys/mbuf.h>
105 #include <sys/vmmeter.h>
106 #include <sys/lock.h>
107 #include <sys/thread.h>
108 #include <sys/globaldata.h>
109 #include <sys/sysctl.h>
110 #include <sys/ktr.h>
112 #include <vm/vm.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
117 #include <vm/pmap.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
122 #include <machine/cpu.h>
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
127 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
129 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x"
130 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags
132 #if !defined(KTR_MEMORY)
133 #define KTR_MEMORY KTR_ALL
134 #endif
135 KTR_INFO_MASTER(memory);
136 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
137 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
145 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
146 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
148 #define logmemory(name, ptr, type, size, flags) \
149 KTR_LOG(memory_ ## name, ptr, type, size, flags)
150 #define logmemory_quick(name) \
151 KTR_LOG(memory_ ## name)
154 * Fixed globals (not per-cpu)
156 static int ZoneSize;
157 static int ZoneLimit;
158 static int ZonePageCount;
159 static uintptr_t ZoneMask;
160 static int ZoneBigAlloc; /* in KB */
161 static int ZoneGenAlloc; /* in KB */
162 struct malloc_type *kmemstatistics; /* exported to vmstat */
163 #ifdef INVARIANTS
164 static int32_t weirdary[16];
165 #endif
167 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
168 static void kmem_slab_free(void *ptr, vm_size_t bytes);
170 #if defined(INVARIANTS)
171 static void chunk_mark_allocated(SLZone *z, void *chunk);
172 static void chunk_mark_free(SLZone *z, void *chunk);
173 #else
174 #define chunk_mark_allocated(z, chunk)
175 #define chunk_mark_free(z, chunk)
176 #endif
179 * Misc constants. Note that allocations that are exact multiples of
180 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
182 #define ZONE_RELS_THRESH 32 /* threshold number of zones */
184 #ifdef INVARIANTS
186 * The WEIRD_ADDR is used as known text to copy into free objects to
187 * try to create deterministic failure cases if the data is accessed after
188 * free.
190 #define WEIRD_ADDR 0xdeadc0de
191 #endif
192 #define ZERO_LENGTH_PTR ((void *)-8)
195 * Misc global malloc buckets
198 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
199 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
200 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
201 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
203 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
204 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
207 * Initialize the slab memory allocator. We have to choose a zone size based
208 * on available physical memory. We choose a zone side which is approximately
209 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
210 * 128K. The zone size is limited to the bounds set in slaballoc.h
211 * (typically 32K min, 128K max).
213 static void kmeminit(void *dummy);
215 char *ZeroPage;
217 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
219 #ifdef INVARIANTS
221 * If enabled any memory allocated without M_ZERO is initialized to -1.
223 static int use_malloc_pattern;
224 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
225 &use_malloc_pattern, 0,
226 "Initialize memory to -1 if M_ZERO not specified");
227 #endif
229 static int ZoneRelsThresh = ZONE_RELS_THRESH;
230 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
231 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
232 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
233 static long SlabsAllocated;
234 static long SlabsFreed;
235 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
236 &SlabsAllocated, 0, "");
237 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
238 &SlabsFreed, 0, "");
239 static int SlabFreeToTail;
240 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
241 &SlabFreeToTail, 0, "");
243 static struct spinlock kmemstat_spin =
244 SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
247 * Returns the kernel memory size limit for the purposes of initializing
248 * various subsystem caches. The smaller of available memory and the KVM
249 * memory space is returned.
251 * The size in megabytes is returned.
253 size_t
254 kmem_lim_size(void)
256 size_t limsize;
258 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
259 if (limsize > KvaSize)
260 limsize = KvaSize;
261 return (limsize / (1024 * 1024));
264 static void
265 kmeminit(void *dummy)
267 size_t limsize;
268 int usesize;
269 #ifdef INVARIANTS
270 int i;
271 #endif
273 limsize = kmem_lim_size();
274 usesize = (int)(limsize * 1024); /* convert to KB */
277 * If the machine has a large KVM space and more than 8G of ram,
278 * double the zone release threshold to reduce SMP invalidations.
279 * If more than 16G of ram, do it again.
281 * The BIOS eats a little ram so add some slop. We want 8G worth of
282 * memory sticks to trigger the first adjustment.
284 if (ZoneRelsThresh == ZONE_RELS_THRESH) {
285 if (limsize >= 7 * 1024)
286 ZoneRelsThresh *= 2;
287 if (limsize >= 15 * 1024)
288 ZoneRelsThresh *= 2;
292 * Calculate the zone size. This typically calculates to
293 * ZALLOC_MAX_ZONE_SIZE
295 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
296 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
297 ZoneSize <<= 1;
298 ZoneLimit = ZoneSize / 4;
299 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
300 ZoneLimit = ZALLOC_ZONE_LIMIT;
301 ZoneMask = ~(uintptr_t)(ZoneSize - 1);
302 ZonePageCount = ZoneSize / PAGE_SIZE;
304 #ifdef INVARIANTS
305 for (i = 0; i < NELEM(weirdary); ++i)
306 weirdary[i] = WEIRD_ADDR;
307 #endif
309 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
311 if (bootverbose)
312 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
316 * (low level) Initialize slab-related elements in the globaldata structure.
318 * Occurs after kmeminit().
320 void
321 slab_gdinit(globaldata_t gd)
323 SLGlobalData *slgd;
324 int i;
326 slgd = &gd->gd_slab;
327 for (i = 0; i < NZONES; ++i)
328 TAILQ_INIT(&slgd->ZoneAry[i]);
329 TAILQ_INIT(&slgd->FreeZones);
330 TAILQ_INIT(&slgd->FreeOvZones);
334 * Initialize a malloc type tracking structure.
336 void
337 malloc_init(void *data)
339 struct malloc_type *type = data;
340 size_t limsize;
342 if (type->ks_magic != M_MAGIC)
343 panic("malloc type lacks magic");
345 if (type->ks_limit != 0)
346 return;
348 if (vmstats.v_page_count == 0)
349 panic("malloc_init not allowed before vm init");
351 limsize = kmem_lim_size() * (1024 * 1024);
352 type->ks_limit = limsize / 10;
354 spin_lock(&kmemstat_spin);
355 type->ks_next = kmemstatistics;
356 kmemstatistics = type;
357 spin_unlock(&kmemstat_spin);
360 void
361 malloc_uninit(void *data)
363 struct malloc_type *type = data;
364 struct malloc_type *t;
365 #ifdef INVARIANTS
366 int i;
367 long ttl;
368 #endif
370 if (type->ks_magic != M_MAGIC)
371 panic("malloc type lacks magic");
373 if (vmstats.v_page_count == 0)
374 panic("malloc_uninit not allowed before vm init");
376 if (type->ks_limit == 0)
377 panic("malloc_uninit on uninitialized type");
379 /* Make sure that all pending kfree()s are finished. */
380 lwkt_synchronize_ipiqs("muninit");
382 #ifdef INVARIANTS
384 * memuse is only correct in aggregation. Due to memory being allocated
385 * on one cpu and freed on another individual array entries may be
386 * negative or positive (canceling each other out).
388 for (i = ttl = 0; i < ncpus; ++i)
389 ttl += type->ks_use[i].memuse;
390 if (ttl) {
391 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
392 ttl, type->ks_shortdesc, i);
394 #endif
395 spin_lock(&kmemstat_spin);
396 if (type == kmemstatistics) {
397 kmemstatistics = type->ks_next;
398 } else {
399 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
400 if (t->ks_next == type) {
401 t->ks_next = type->ks_next;
402 break;
406 type->ks_next = NULL;
407 type->ks_limit = 0;
408 spin_unlock(&kmemstat_spin);
412 * Increase the kmalloc pool limit for the specified pool. No changes
413 * are the made if the pool would shrink.
415 void
416 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
418 if (type->ks_limit == 0)
419 malloc_init(type);
420 if (bytes == 0)
421 bytes = KvaSize;
422 if (type->ks_limit < bytes)
423 type->ks_limit = bytes;
426 void
427 kmalloc_set_unlimited(struct malloc_type *type)
429 type->ks_limit = kmem_lim_size() * (1024 * 1024);
433 * Dynamically create a malloc pool. This function is a NOP if *typep is
434 * already non-NULL.
436 void
437 kmalloc_create(struct malloc_type **typep, const char *descr)
439 struct malloc_type *type;
441 if (*typep == NULL) {
442 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
443 type->ks_magic = M_MAGIC;
444 type->ks_shortdesc = descr;
445 malloc_init(type);
446 *typep = type;
451 * Destroy a dynamically created malloc pool. This function is a NOP if
452 * the pool has already been destroyed.
454 void
455 kmalloc_destroy(struct malloc_type **typep)
457 if (*typep != NULL) {
458 malloc_uninit(*typep);
459 kfree(*typep, M_TEMP);
460 *typep = NULL;
465 * Calculate the zone index for the allocation request size and set the
466 * allocation request size to that particular zone's chunk size.
468 static __inline int
469 zoneindex(unsigned long *bytes, unsigned long *align)
471 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
473 if (n < 128) {
474 *bytes = n = (n + 7) & ~7;
475 *align = 8;
476 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
478 if (n < 256) {
479 *bytes = n = (n + 15) & ~15;
480 *align = 16;
481 return(n / 16 + 7);
483 if (n < 8192) {
484 if (n < 512) {
485 *bytes = n = (n + 31) & ~31;
486 *align = 32;
487 return(n / 32 + 15);
489 if (n < 1024) {
490 *bytes = n = (n + 63) & ~63;
491 *align = 64;
492 return(n / 64 + 23);
494 if (n < 2048) {
495 *bytes = n = (n + 127) & ~127;
496 *align = 128;
497 return(n / 128 + 31);
499 if (n < 4096) {
500 *bytes = n = (n + 255) & ~255;
501 *align = 256;
502 return(n / 256 + 39);
504 *bytes = n = (n + 511) & ~511;
505 *align = 512;
506 return(n / 512 + 47);
508 #if ZALLOC_ZONE_LIMIT > 8192
509 if (n < 16384) {
510 *bytes = n = (n + 1023) & ~1023;
511 *align = 1024;
512 return(n / 1024 + 55);
514 #endif
515 #if ZALLOC_ZONE_LIMIT > 16384
516 if (n < 32768) {
517 *bytes = n = (n + 2047) & ~2047;
518 *align = 2048;
519 return(n / 2048 + 63);
521 #endif
522 panic("Unexpected byte count %d", n);
523 return(0);
526 static __inline void
527 clean_zone_rchunks(SLZone *z)
529 SLChunk *bchunk;
531 while ((bchunk = z->z_RChunks) != NULL) {
532 cpu_ccfence();
533 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
534 *z->z_LChunksp = bchunk;
535 while (bchunk) {
536 chunk_mark_free(z, bchunk);
537 z->z_LChunksp = &bchunk->c_Next;
538 bchunk = bchunk->c_Next;
539 ++z->z_NFree;
541 break;
543 /* retry */
548 * If the zone becomes totally free and is not the only zone listed for a
549 * chunk size we move it to the FreeZones list. We always leave at least
550 * one zone per chunk size listed, even if it is freeable.
552 * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
553 * otherwise MP races can result in our free_remote code accessing a
554 * destroyed zone. The remote end interlocks z_RCount with z_RChunks
555 * so one has to test both z_NFree and z_RCount.
557 * Since this code can be called from an IPI callback, do *NOT* try to mess
558 * with kernel_map here. Hysteresis will be performed at kmalloc() time.
560 static __inline SLZone *
561 check_zone_free(SLGlobalData *slgd, SLZone *z)
563 SLZone *znext;
565 znext = TAILQ_NEXT(z, z_Entry);
566 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
567 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
568 int *kup;
570 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
572 z->z_Magic = -1;
573 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
574 ++slgd->NFreeZones;
575 kup = btokup(z);
576 *kup = 0;
578 return znext;
581 #ifdef SLAB_DEBUG
583 * Used to debug memory corruption issues. Record up to (typically 32)
584 * allocation sources for this zone (for a particular chunk size).
587 static void
588 slab_record_source(SLZone *z, const char *file, int line)
590 int i;
591 int b = line & (SLAB_DEBUG_ENTRIES - 1);
593 i = b;
594 do {
595 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
596 return;
597 if (z->z_Sources[i].file == NULL)
598 break;
599 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
600 } while (i != b);
601 z->z_Sources[i].file = file;
602 z->z_Sources[i].line = line;
605 #endif
607 static __inline unsigned long
608 powerof2_size(unsigned long size)
610 int i;
612 if (size == 0 || powerof2(size))
613 return size;
615 i = flsl(size);
616 return (1UL << i);
620 * kmalloc() (SLAB ALLOCATOR)
622 * Allocate memory via the slab allocator. If the request is too large,
623 * or if it page-aligned beyond a certain size, we fall back to the
624 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
625 * &SlabMisc if you don't care.
627 * M_RNOWAIT - don't block.
628 * M_NULLOK - return NULL instead of blocking.
629 * M_ZERO - zero the returned memory.
630 * M_USE_RESERVE - allow greater drawdown of the free list
631 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
632 * M_POWEROF2 - roundup size to the nearest power of 2
634 * MPSAFE
637 #ifdef SLAB_DEBUG
638 void *
639 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
640 const char *file, int line)
641 #else
642 void *
643 kmalloc(unsigned long size, struct malloc_type *type, int flags)
644 #endif
646 SLZone *z;
647 SLChunk *chunk;
648 SLGlobalData *slgd;
649 struct globaldata *gd;
650 unsigned long align;
651 int zi;
652 #ifdef INVARIANTS
653 int i;
654 #endif
656 logmemory_quick(malloc_beg);
657 gd = mycpu;
658 slgd = &gd->gd_slab;
661 * XXX silly to have this in the critical path.
663 if (type->ks_limit == 0) {
664 crit_enter();
665 malloc_init(type);
666 crit_exit();
668 ++type->ks_use[gd->gd_cpuid].calls;
670 if (flags & M_POWEROF2)
671 size = powerof2_size(size);
674 * Handle the case where the limit is reached. Panic if we can't return
675 * NULL. The original malloc code looped, but this tended to
676 * simply deadlock the computer.
678 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
679 * to determine if a more complete limit check should be done. The
680 * actual memory use is tracked via ks_use[cpu].memuse.
682 while (type->ks_loosememuse >= type->ks_limit) {
683 int i;
684 long ttl;
686 for (i = ttl = 0; i < ncpus; ++i)
687 ttl += type->ks_use[i].memuse;
688 type->ks_loosememuse = ttl; /* not MP synchronized */
689 if ((ssize_t)ttl < 0) /* deal with occassional race */
690 ttl = 0;
691 if (ttl >= type->ks_limit) {
692 if (flags & M_NULLOK) {
693 logmemory(malloc_end, NULL, type, size, flags);
694 return(NULL);
696 panic("%s: malloc limit exceeded", type->ks_shortdesc);
701 * Handle the degenerate size == 0 case. Yes, this does happen.
702 * Return a special pointer. This is to maintain compatibility with
703 * the original malloc implementation. Certain devices, such as the
704 * adaptec driver, not only allocate 0 bytes, they check for NULL and
705 * also realloc() later on. Joy.
707 if (size == 0) {
708 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
709 return(ZERO_LENGTH_PTR);
713 * Handle hysteresis from prior frees here in malloc(). We cannot
714 * safely manipulate the kernel_map in free() due to free() possibly
715 * being called via an IPI message or from sensitive interrupt code.
717 * NOTE: ku_pagecnt must be cleared before we free the slab or we
718 * might race another cpu allocating the kva and setting
719 * ku_pagecnt.
721 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
722 crit_enter();
723 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */
724 int *kup;
726 z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
727 KKASSERT(z != NULL);
728 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
729 --slgd->NFreeZones;
730 kup = btokup(z);
731 *kup = 0;
732 kmem_slab_free(z, ZoneSize); /* may block */
733 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
735 crit_exit();
739 * XXX handle oversized frees that were queued from kfree().
741 while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
742 crit_enter();
743 if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
744 vm_size_t tsize;
746 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
747 TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
748 tsize = z->z_ChunkSize;
749 kmem_slab_free(z, tsize); /* may block */
750 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
752 crit_exit();
756 * Handle large allocations directly. There should not be very many of
757 * these so performance is not a big issue.
759 * The backend allocator is pretty nasty on a SMP system. Use the
760 * slab allocator for one and two page-sized chunks even though we lose
761 * some efficiency. XXX maybe fix mmio and the elf loader instead.
763 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
764 int *kup;
766 size = round_page(size);
767 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
768 if (chunk == NULL) {
769 logmemory(malloc_end, NULL, type, size, flags);
770 return(NULL);
772 atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
773 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
774 flags |= M_PASSIVE_ZERO;
775 kup = btokup(chunk);
776 *kup = size / PAGE_SIZE;
777 crit_enter();
778 goto done;
782 * Attempt to allocate out of an existing zone. First try the free list,
783 * then allocate out of unallocated space. If we find a good zone move
784 * it to the head of the list so later allocations find it quickly
785 * (we might have thousands of zones in the list).
787 * Note: zoneindex() will panic of size is too large.
789 zi = zoneindex(&size, &align);
790 KKASSERT(zi < NZONES);
791 crit_enter();
793 if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
795 * Locate a chunk - we have to have at least one. If this is the
796 * last chunk go ahead and do the work to retrieve chunks freed
797 * from remote cpus, and if the zone is still empty move it off
798 * the ZoneAry.
800 if (--z->z_NFree <= 0) {
801 KKASSERT(z->z_NFree == 0);
804 * WARNING! This code competes with other cpus. It is ok
805 * for us to not drain RChunks here but we might as well, and
806 * it is ok if more accumulate after we're done.
808 * Set RSignal before pulling rchunks off, indicating that we
809 * will be moving ourselves off of the ZoneAry. Remote ends will
810 * read RSignal before putting rchunks on thus interlocking
811 * their IPI signaling.
813 if (z->z_RChunks == NULL)
814 atomic_swap_int(&z->z_RSignal, 1);
816 clean_zone_rchunks(z);
819 * Remove from the zone list if no free chunks remain.
820 * Clear RSignal
822 if (z->z_NFree == 0) {
823 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
824 } else {
825 z->z_RSignal = 0;
830 * Fast path, we have chunks available in z_LChunks.
832 chunk = z->z_LChunks;
833 if (chunk) {
834 chunk_mark_allocated(z, chunk);
835 z->z_LChunks = chunk->c_Next;
836 if (z->z_LChunks == NULL)
837 z->z_LChunksp = &z->z_LChunks;
838 #ifdef SLAB_DEBUG
839 slab_record_source(z, file, line);
840 #endif
841 goto done;
845 * No chunks are available in LChunks, the free chunk MUST be
846 * in the never-before-used memory area, controlled by UIndex.
848 * The consequences are very serious if our zone got corrupted so
849 * we use an explicit panic rather than a KASSERT.
851 if (z->z_UIndex + 1 != z->z_NMax)
852 ++z->z_UIndex;
853 else
854 z->z_UIndex = 0;
856 if (z->z_UIndex == z->z_UEndIndex)
857 panic("slaballoc: corrupted zone");
859 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
860 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
861 flags &= ~M_ZERO;
862 flags |= M_PASSIVE_ZERO;
864 chunk_mark_allocated(z, chunk);
865 #ifdef SLAB_DEBUG
866 slab_record_source(z, file, line);
867 #endif
868 goto done;
872 * If all zones are exhausted we need to allocate a new zone for this
873 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
874 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
875 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
876 * we do not pre-zero it because we do not want to mess up the L1 cache.
878 * At least one subsystem, the tty code (see CROUND) expects power-of-2
879 * allocations to be power-of-2 aligned. We maintain compatibility by
880 * adjusting the base offset below.
883 int off;
884 int *kup;
886 if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
887 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
888 --slgd->NFreeZones;
889 bzero(z, sizeof(SLZone));
890 z->z_Flags |= SLZF_UNOTZEROD;
891 } else {
892 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
893 if (z == NULL)
894 goto fail;
895 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
899 * How big is the base structure?
901 #if defined(INVARIANTS)
903 * Make room for z_Bitmap. An exact calculation is somewhat more
904 * complicated so don't make an exact calculation.
906 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
907 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
908 #else
909 off = sizeof(SLZone);
910 #endif
913 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
914 * Otherwise properly align the data according to the chunk size.
916 if (powerof2(size))
917 align = size;
918 off = roundup2(off, align);
920 z->z_Magic = ZALLOC_SLAB_MAGIC;
921 z->z_ZoneIndex = zi;
922 z->z_NMax = (ZoneSize - off) / size;
923 z->z_NFree = z->z_NMax - 1;
924 z->z_BasePtr = (char *)z + off;
925 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
926 z->z_ChunkSize = size;
927 z->z_CpuGd = gd;
928 z->z_Cpu = gd->gd_cpuid;
929 z->z_LChunksp = &z->z_LChunks;
930 #ifdef SLAB_DEBUG
931 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
932 bzero(z->z_Sources, sizeof(z->z_Sources));
933 #endif
934 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
935 TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
936 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
937 flags &= ~M_ZERO; /* already zero'd */
938 flags |= M_PASSIVE_ZERO;
940 kup = btokup(z);
941 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
942 chunk_mark_allocated(z, chunk);
943 #ifdef SLAB_DEBUG
944 slab_record_source(z, file, line);
945 #endif
948 * Slide the base index for initial allocations out of the next
949 * zone we create so we do not over-weight the lower part of the
950 * cpu memory caches.
952 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
953 & (ZALLOC_MAX_ZONE_SIZE - 1);
956 done:
957 ++type->ks_use[gd->gd_cpuid].inuse;
958 type->ks_use[gd->gd_cpuid].memuse += size;
959 type->ks_loosememuse += size; /* not MP synchronized */
960 crit_exit();
962 if (flags & M_ZERO)
963 bzero(chunk, size);
964 #ifdef INVARIANTS
965 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
966 if (use_malloc_pattern) {
967 for (i = 0; i < size; i += sizeof(int)) {
968 *(int *)((char *)chunk + i) = -1;
971 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
973 #endif
974 logmemory(malloc_end, chunk, type, size, flags);
975 return(chunk);
976 fail:
977 crit_exit();
978 logmemory(malloc_end, NULL, type, size, flags);
979 return(NULL);
983 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE)
985 * Generally speaking this routine is not called very often and we do
986 * not attempt to optimize it beyond reusing the same pointer if the
987 * new size fits within the chunking of the old pointer's zone.
989 #ifdef SLAB_DEBUG
990 void *
991 krealloc_debug(void *ptr, unsigned long size,
992 struct malloc_type *type, int flags,
993 const char *file, int line)
994 #else
995 void *
996 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
997 #endif
999 unsigned long osize;
1000 unsigned long align;
1001 SLZone *z;
1002 void *nptr;
1003 int *kup;
1005 KKASSERT((flags & M_ZERO) == 0); /* not supported */
1007 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1008 return(kmalloc_debug(size, type, flags, file, line));
1009 if (size == 0) {
1010 kfree(ptr, type);
1011 return(NULL);
1015 * Handle oversized allocations. XXX we really should require that a
1016 * size be passed to free() instead of this nonsense.
1018 kup = btokup(ptr);
1019 if (*kup > 0) {
1020 osize = *kup << PAGE_SHIFT;
1021 if (osize == round_page(size))
1022 return(ptr);
1023 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1024 return(NULL);
1025 bcopy(ptr, nptr, min(size, osize));
1026 kfree(ptr, type);
1027 return(nptr);
1031 * Get the original allocation's zone. If the new request winds up
1032 * using the same chunk size we do not have to do anything.
1034 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1035 kup = btokup(z);
1036 KKASSERT(*kup < 0);
1037 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1040 * Allocate memory for the new request size. Note that zoneindex has
1041 * already adjusted the request size to the appropriate chunk size, which
1042 * should optimize our bcopy(). Then copy and return the new pointer.
1044 * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1045 * necessary align the result.
1047 * We can only zoneindex (to align size to the chunk size) if the new
1048 * size is not too large.
1050 if (size < ZoneLimit) {
1051 zoneindex(&size, &align);
1052 if (z->z_ChunkSize == size)
1053 return(ptr);
1055 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1056 return(NULL);
1057 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1058 kfree(ptr, type);
1059 return(nptr);
1063 * Return the kmalloc limit for this type, in bytes.
1065 long
1066 kmalloc_limit(struct malloc_type *type)
1068 if (type->ks_limit == 0) {
1069 crit_enter();
1070 if (type->ks_limit == 0)
1071 malloc_init(type);
1072 crit_exit();
1074 return(type->ks_limit);
1078 * Allocate a copy of the specified string.
1080 * (MP SAFE) (MAY BLOCK)
1082 #ifdef SLAB_DEBUG
1083 char *
1084 kstrdup_debug(const char *str, struct malloc_type *type,
1085 const char *file, int line)
1086 #else
1087 char *
1088 kstrdup(const char *str, struct malloc_type *type)
1089 #endif
1091 int zlen; /* length inclusive of terminating NUL */
1092 char *nstr;
1094 if (str == NULL)
1095 return(NULL);
1096 zlen = strlen(str) + 1;
1097 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1098 bcopy(str, nstr, zlen);
1099 return(nstr);
1102 #ifdef SLAB_DEBUG
1103 char *
1104 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1105 const char *file, int line)
1106 #else
1107 char *
1108 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1109 #endif
1111 int zlen; /* length inclusive of terminating NUL */
1112 char *nstr;
1114 if (str == NULL)
1115 return(NULL);
1116 zlen = strnlen(str, maxlen) + 1;
1117 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1118 bcopy(str, nstr, zlen);
1119 nstr[zlen - 1] = '\0';
1120 return(nstr);
1124 * Notify our cpu that a remote cpu has freed some chunks in a zone that
1125 * we own. RCount will be bumped so the memory should be good, but validate
1126 * that it really is.
1128 static void
1129 kfree_remote(void *ptr)
1131 SLGlobalData *slgd;
1132 SLZone *z;
1133 int nfree;
1134 int *kup;
1136 slgd = &mycpu->gd_slab;
1137 z = ptr;
1138 kup = btokup(z);
1139 KKASSERT(*kup == -((int)mycpuid + 1));
1140 KKASSERT(z->z_RCount > 0);
1141 atomic_subtract_int(&z->z_RCount, 1);
1143 logmemory(free_rem_beg, z, NULL, 0L, 0);
1144 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1145 KKASSERT(z->z_Cpu == mycpu->gd_cpuid);
1146 nfree = z->z_NFree;
1149 * Indicate that we will no longer be off of the ZoneAry by
1150 * clearing RSignal.
1152 if (z->z_RChunks)
1153 z->z_RSignal = 0;
1156 * Atomically extract the bchunks list and then process it back
1157 * into the lchunks list. We want to append our bchunks to the
1158 * lchunks list and not prepend since we likely do not have
1159 * cache mastership of the related data (not that it helps since
1160 * we are using c_Next).
1162 clean_zone_rchunks(z);
1163 if (z->z_NFree && nfree == 0) {
1164 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1167 check_zone_free(slgd, z);
1168 logmemory(free_rem_end, z, NULL, 0L, 0);
1172 * free (SLAB ALLOCATOR)
1174 * Free a memory block previously allocated by malloc. Note that we do not
1175 * attempt to update ks_loosememuse as MP races could prevent us from
1176 * checking memory limits in malloc.
1178 * MPSAFE
1180 void
1181 kfree(void *ptr, struct malloc_type *type)
1183 SLZone *z;
1184 SLChunk *chunk;
1185 SLGlobalData *slgd;
1186 struct globaldata *gd;
1187 int *kup;
1188 unsigned long size;
1189 SLChunk *bchunk;
1190 int rsignal;
1192 logmemory_quick(free_beg);
1193 gd = mycpu;
1194 slgd = &gd->gd_slab;
1196 if (ptr == NULL)
1197 panic("trying to free NULL pointer");
1200 * Handle special 0-byte allocations
1202 if (ptr == ZERO_LENGTH_PTR) {
1203 logmemory(free_zero, ptr, type, -1UL, 0);
1204 logmemory_quick(free_end);
1205 return;
1209 * Panic on bad malloc type
1211 if (type->ks_magic != M_MAGIC)
1212 panic("free: malloc type lacks magic");
1215 * Handle oversized allocations. XXX we really should require that a
1216 * size be passed to free() instead of this nonsense.
1218 * This code is never called via an ipi.
1220 kup = btokup(ptr);
1221 if (*kup > 0) {
1222 size = *kup << PAGE_SHIFT;
1223 *kup = 0;
1224 #ifdef INVARIANTS
1225 KKASSERT(sizeof(weirdary) <= size);
1226 bcopy(weirdary, ptr, sizeof(weirdary));
1227 #endif
1229 * NOTE: For oversized allocations we do not record the
1230 * originating cpu. It gets freed on the cpu calling
1231 * kfree(). The statistics are in aggregate.
1233 * note: XXX we have still inherited the interrupts-can't-block
1234 * assumption. An interrupt thread does not bump
1235 * gd_intr_nesting_level so check TDF_INTTHREAD. This is
1236 * primarily until we can fix softupdate's assumptions about free().
1238 crit_enter();
1239 --type->ks_use[gd->gd_cpuid].inuse;
1240 type->ks_use[gd->gd_cpuid].memuse -= size;
1241 if (mycpu->gd_intr_nesting_level ||
1242 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1243 logmemory(free_ovsz_delayed, ptr, type, size, 0);
1244 z = (SLZone *)ptr;
1245 z->z_Magic = ZALLOC_OVSZ_MAGIC;
1246 z->z_ChunkSize = size;
1248 TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1249 crit_exit();
1250 } else {
1251 crit_exit();
1252 logmemory(free_ovsz, ptr, type, size, 0);
1253 kmem_slab_free(ptr, size); /* may block */
1254 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1256 logmemory_quick(free_end);
1257 return;
1261 * Zone case. Figure out the zone based on the fact that it is
1262 * ZoneSize aligned.
1264 z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1265 kup = btokup(z);
1266 KKASSERT(*kup < 0);
1267 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1270 * If we do not own the zone then use atomic ops to free to the
1271 * remote cpu linked list and notify the target zone using a
1272 * passive message.
1274 * The target zone cannot be deallocated while we own a chunk of it,
1275 * so the zone header's storage is stable until the very moment
1276 * we adjust z_RChunks. After that we cannot safely dereference (z).
1278 * (no critical section needed)
1280 if (z->z_CpuGd != gd) {
1282 * Making these adjustments now allow us to avoid passing (type)
1283 * to the remote cpu. Note that inuse/memuse is being
1284 * adjusted on OUR cpu, not the zone cpu, but it should all still
1285 * sum up properly and cancel out.
1287 crit_enter();
1288 --type->ks_use[gd->gd_cpuid].inuse;
1289 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1290 crit_exit();
1293 * WARNING! This code competes with other cpus. Once we
1294 * successfully link the chunk to RChunks the remote
1295 * cpu can rip z's storage out from under us.
1297 * Bumping RCount prevents z's storage from getting
1298 * ripped out.
1300 rsignal = z->z_RSignal;
1301 cpu_lfence();
1302 if (rsignal)
1303 atomic_add_int(&z->z_RCount, 1);
1305 chunk = ptr;
1306 for (;;) {
1307 bchunk = z->z_RChunks;
1308 cpu_ccfence();
1309 chunk->c_Next = bchunk;
1310 cpu_sfence();
1312 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1313 break;
1317 * We have to signal the remote cpu if our actions will cause
1318 * the remote zone to be placed back on ZoneAry so it can
1319 * move the zone back on.
1321 * We only need to deal with NULL->non-NULL RChunk transitions
1322 * and only if z_RSignal is set. We interlock by reading rsignal
1323 * before adding our chunk to RChunks. This should result in
1324 * virtually no IPI traffic.
1326 * We can use a passive IPI to reduce overhead even further.
1328 if (bchunk == NULL && rsignal) {
1329 logmemory(free_request, ptr, type,
1330 (unsigned long)z->z_ChunkSize, 0);
1331 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1332 /* z can get ripped out from under us from this point on */
1333 } else if (rsignal) {
1334 atomic_subtract_int(&z->z_RCount, 1);
1335 /* z can get ripped out from under us from this point on */
1337 logmemory_quick(free_end);
1338 return;
1342 * kfree locally
1344 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1346 crit_enter();
1347 chunk = ptr;
1348 chunk_mark_free(z, chunk);
1351 * Put weird data into the memory to detect modifications after freeing,
1352 * illegal pointer use after freeing (we should fault on the odd address),
1353 * and so forth. XXX needs more work, see the old malloc code.
1355 #ifdef INVARIANTS
1356 if (z->z_ChunkSize < sizeof(weirdary))
1357 bcopy(weirdary, chunk, z->z_ChunkSize);
1358 else
1359 bcopy(weirdary, chunk, sizeof(weirdary));
1360 #endif
1363 * Add this free non-zero'd chunk to a linked list for reuse. Add
1364 * to the front of the linked list so it is more likely to be
1365 * reallocated, since it is already in our L1 cache.
1367 #ifdef INVARIANTS
1368 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1369 panic("BADFREE %p", chunk);
1370 #endif
1371 chunk->c_Next = z->z_LChunks;
1372 z->z_LChunks = chunk;
1373 if (chunk->c_Next == NULL)
1374 z->z_LChunksp = &chunk->c_Next;
1376 #ifdef INVARIANTS
1377 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1378 panic("BADFREE2");
1379 #endif
1382 * Bump the number of free chunks. If it becomes non-zero the zone
1383 * must be added back onto the appropriate list. A fully allocated
1384 * zone that sees its first free is considered 'mature' and is placed
1385 * at the head, giving the system time to potentially free the remaining
1386 * entries even while other allocations are going on and making the zone
1387 * freeable.
1389 if (z->z_NFree++ == 0) {
1390 if (SlabFreeToTail)
1391 TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1392 else
1393 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1396 --type->ks_use[z->z_Cpu].inuse;
1397 type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize;
1399 check_zone_free(slgd, z);
1400 logmemory_quick(free_end);
1401 crit_exit();
1405 * Cleanup slabs which are hanging around due to RChunks or which are wholely
1406 * free and can be moved to the free list if not moved by other means.
1408 * Called once every 10 seconds on all cpus.
1410 void
1411 slab_cleanup(void)
1413 SLGlobalData *slgd = &mycpu->gd_slab;
1414 SLZone *z;
1415 int i;
1417 crit_enter();
1418 for (i = 0; i < NZONES; ++i) {
1419 if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1420 continue;
1423 * Scan zones.
1425 while (z) {
1427 * Shift all RChunks to the end of the LChunks list. This is
1428 * an O(1) operation.
1430 * Then free the zone if possible.
1432 clean_zone_rchunks(z);
1433 z = check_zone_free(slgd, z);
1436 crit_exit();
1439 #if defined(INVARIANTS)
1442 * Helper routines for sanity checks
1444 static void
1445 chunk_mark_allocated(SLZone *z, void *chunk)
1447 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1448 uint32_t *bitptr;
1450 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1451 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1452 ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1453 bitptr = &z->z_Bitmap[bitdex >> 5];
1454 bitdex &= 31;
1455 KASSERT((*bitptr & (1 << bitdex)) == 0,
1456 ("memory chunk %p is already allocated!", chunk));
1457 *bitptr |= 1 << bitdex;
1460 static void
1461 chunk_mark_free(SLZone *z, void *chunk)
1463 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1464 uint32_t *bitptr;
1466 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1467 KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1468 ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1469 bitptr = &z->z_Bitmap[bitdex >> 5];
1470 bitdex &= 31;
1471 KASSERT((*bitptr & (1 << bitdex)) != 0,
1472 ("memory chunk %p is already free!", chunk));
1473 *bitptr &= ~(1 << bitdex);
1476 #endif
1479 * kmem_slab_alloc()
1481 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1482 * specified alignment. M_* flags are expected in the flags field.
1484 * Alignment must be a multiple of PAGE_SIZE.
1486 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1487 * but when we move zalloc() over to use this function as its backend
1488 * we will have to switch to kreserve/krelease and call reserve(0)
1489 * after the new space is made available.
1491 * Interrupt code which has preempted other code is not allowed to
1492 * use PQ_CACHE pages. However, if an interrupt thread is run
1493 * non-preemptively or blocks and then runs non-preemptively, then
1494 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX
1496 static void *
1497 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1499 vm_size_t i;
1500 vm_offset_t addr;
1501 int count, vmflags, base_vmflags;
1502 vm_page_t mbase = NULL;
1503 vm_page_t m;
1504 thread_t td;
1506 size = round_page(size);
1507 addr = vm_map_min(&kernel_map);
1509 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1510 crit_enter();
1511 vm_map_lock(&kernel_map);
1512 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1513 vm_map_unlock(&kernel_map);
1514 if ((flags & M_NULLOK) == 0)
1515 panic("kmem_slab_alloc(): kernel_map ran out of space!");
1516 vm_map_entry_release(count);
1517 crit_exit();
1518 return(NULL);
1522 * kernel_object maps 1:1 to kernel_map.
1524 vm_object_hold(&kernel_object);
1525 vm_object_reference_locked(&kernel_object);
1526 vm_map_insert(&kernel_map, &count,
1527 &kernel_object, NULL,
1528 addr, addr, addr + size,
1529 VM_MAPTYPE_NORMAL,
1530 VM_SUBSYS_KMALLOC,
1531 VM_PROT_ALL, VM_PROT_ALL, 0);
1532 vm_object_drop(&kernel_object);
1533 vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1534 vm_map_unlock(&kernel_map);
1536 td = curthread;
1538 base_vmflags = 0;
1539 if (flags & M_ZERO)
1540 base_vmflags |= VM_ALLOC_ZERO;
1541 if (flags & M_USE_RESERVE)
1542 base_vmflags |= VM_ALLOC_SYSTEM;
1543 if (flags & M_USE_INTERRUPT_RESERVE)
1544 base_vmflags |= VM_ALLOC_INTERRUPT;
1545 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1546 panic("kmem_slab_alloc: bad flags %08x (%p)",
1547 flags, ((int **)&size)[-1]);
1551 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only
1552 * be set if we are not preempting.
1554 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1555 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1556 * implied in this case), though I'm not sure if we really need to
1557 * do that.
1559 vmflags = base_vmflags;
1560 if (flags & M_WAITOK) {
1561 if (td->td_preempted)
1562 vmflags |= VM_ALLOC_SYSTEM;
1563 else
1564 vmflags |= VM_ALLOC_NORMAL;
1567 vm_object_hold(&kernel_object);
1568 for (i = 0; i < size; i += PAGE_SIZE) {
1569 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1570 if (i == 0)
1571 mbase = m;
1574 * If the allocation failed we either return NULL or we retry.
1576 * If M_WAITOK is specified we wait for more memory and retry.
1577 * If M_WAITOK is specified from a preemption we yield instead of
1578 * wait. Livelock will not occur because the interrupt thread
1579 * will not be preempting anyone the second time around after the
1580 * yield.
1582 if (m == NULL) {
1583 if (flags & M_WAITOK) {
1584 if (td->td_preempted) {
1585 lwkt_switch();
1586 } else {
1587 vm_wait(0);
1589 i -= PAGE_SIZE; /* retry */
1590 continue;
1592 break;
1597 * Check and deal with an allocation failure
1599 if (i != size) {
1600 while (i != 0) {
1601 i -= PAGE_SIZE;
1602 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1603 /* page should already be busy */
1604 vm_page_free(m);
1606 vm_map_lock(&kernel_map);
1607 vm_map_delete(&kernel_map, addr, addr + size, &count);
1608 vm_map_unlock(&kernel_map);
1609 vm_object_drop(&kernel_object);
1611 vm_map_entry_release(count);
1612 crit_exit();
1613 return(NULL);
1617 * Success!
1619 * NOTE: The VM pages are still busied. mbase points to the first one
1620 * but we have to iterate via vm_page_next()
1622 vm_object_drop(&kernel_object);
1623 crit_exit();
1626 * Enter the pages into the pmap and deal with M_ZERO.
1628 m = mbase;
1629 i = 0;
1631 while (i < size) {
1633 * page should already be busy
1635 m->valid = VM_PAGE_BITS_ALL;
1636 vm_page_wire(m);
1637 pmap_enter(&kernel_pmap, addr + i, m,
1638 VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1639 if (flags & M_ZERO)
1640 pagezero((char *)addr + i);
1641 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1642 vm_page_flag_set(m, PG_REFERENCED);
1643 vm_page_wakeup(m);
1645 i += PAGE_SIZE;
1646 vm_object_hold(&kernel_object);
1647 m = vm_page_next(m);
1648 vm_object_drop(&kernel_object);
1650 smp_invltlb();
1651 vm_map_entry_release(count);
1652 atomic_add_long(&SlabsAllocated, 1);
1653 return((void *)addr);
1657 * kmem_slab_free()
1659 static void
1660 kmem_slab_free(void *ptr, vm_size_t size)
1662 crit_enter();
1663 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1664 atomic_add_long(&SlabsFreed, 1);
1665 crit_exit();
1668 void *
1669 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1670 int flags)
1672 #if (__VM_CACHELINE_SIZE == 32)
1673 #define CAN_CACHEALIGN(sz) ((sz) >= 256)
1674 #elif (__VM_CACHELINE_SIZE == 64)
1675 #define CAN_CACHEALIGN(sz) ((sz) >= 512)
1676 #elif (__VM_CACHELINE_SIZE == 128)
1677 #define CAN_CACHEALIGN(sz) ((sz) >= 1024)
1678 #else
1679 #error "unsupported cacheline size"
1680 #endif
1682 void *ret;
1684 if (size_alloc < __VM_CACHELINE_SIZE)
1685 size_alloc = __VM_CACHELINE_SIZE;
1686 else if (!CAN_CACHEALIGN(size_alloc))
1687 flags |= M_POWEROF2;
1689 ret = kmalloc(size_alloc, type, flags);
1690 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1691 ("%p(%lu) not cacheline %d aligned",
1692 ret, size_alloc, __VM_CACHELINE_SIZE));
1693 return ret;
1695 #undef CAN_CACHEALIGN