kernel - Remove some debug kprintf()s
[dragonfly.git] / sys / netinet / ip_input.c
blob226361401d30c9862a47f840d47e22d6147ddd70
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
98 #include <sys/mplock2.h>
100 #include <machine/stdarg.h>
102 #include <net/if.h>
103 #include <net/if_types.h>
104 #include <net/if_var.h>
105 #include <net/if_dl.h>
106 #include <net/pfil.h>
107 #include <net/route.h>
108 #include <net/netisr.h>
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/in_var.h>
113 #include <netinet/ip.h>
114 #include <netinet/in_pcb.h>
115 #include <netinet/ip_var.h>
116 #include <netinet/ip_icmp.h>
117 #include <netinet/ip_divert.h>
118 #include <netinet/ip_flow.h>
120 #include <sys/thread2.h>
121 #include <sys/msgport2.h>
122 #include <net/netmsg2.h>
124 #include <sys/socketvar.h>
126 #include <net/ipfw/ip_fw.h>
127 #include <net/dummynet/ip_dummynet.h>
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #include <netproto/key/key.h>
132 #endif
134 #ifdef FAST_IPSEC
135 #include <netproto/ipsec/ipsec.h>
136 #include <netproto/ipsec/key.h>
137 #endif
139 int rsvp_on = 0;
140 static int ip_rsvp_on;
141 struct socket *ip_rsvpd;
143 int ip_mpsafe = 1;
144 TUNABLE_INT("net.inet.ip.mpsafe", &ip_mpsafe);
146 int ipforwarding = 0;
147 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
148 &ipforwarding, 0, "Enable IP forwarding between interfaces");
150 static int ipsendredirects = 1; /* XXX */
151 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
152 &ipsendredirects, 0, "Enable sending IP redirects");
154 int ip_defttl = IPDEFTTL;
155 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
156 &ip_defttl, 0, "Maximum TTL on IP packets");
158 static int ip_dosourceroute = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
160 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
162 static int ip_acceptsourceroute = 0;
163 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
164 CTLFLAG_RW, &ip_acceptsourceroute, 0,
165 "Enable accepting source routed IP packets");
167 static int ip_keepfaith = 0;
168 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
169 &ip_keepfaith, 0,
170 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
172 static int nipq = 0; /* total # of reass queues */
173 static int maxnipq;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
175 &maxnipq, 0,
176 "Maximum number of IPv4 fragment reassembly queue entries");
178 static int maxfragsperpacket;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
180 &maxfragsperpacket, 0,
181 "Maximum number of IPv4 fragments allowed per packet");
183 static int ip_sendsourcequench = 0;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
185 &ip_sendsourcequench, 0,
186 "Enable the transmission of source quench packets");
188 int ip_do_randomid = 1;
189 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
190 &ip_do_randomid, 0,
191 "Assign random ip_id values");
193 * XXX - Setting ip_checkinterface mostly implements the receive side of
194 * the Strong ES model described in RFC 1122, but since the routing table
195 * and transmit implementation do not implement the Strong ES model,
196 * setting this to 1 results in an odd hybrid.
198 * XXX - ip_checkinterface currently must be disabled if you use ipnat
199 * to translate the destination address to another local interface.
201 * XXX - ip_checkinterface must be disabled if you add IP aliases
202 * to the loopback interface instead of the interface where the
203 * packets for those addresses are received.
205 static int ip_checkinterface = 0;
206 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
207 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
209 #ifdef DIAGNOSTIC
210 static int ipprintfs = 0;
211 #endif
213 extern int udp_mpsafe_proto;
214 extern int tcp_mpsafe_proto;
216 extern struct domain inetdomain;
217 extern struct protosw inetsw[];
218 u_char ip_protox[IPPROTO_MAX];
219 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
220 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
221 /* inet addr hash table */
222 u_long in_ifaddrhmask; /* mask for hash table */
224 struct ip_stats ipstats_percpu[MAXCPU];
225 #ifdef SMP
226 static int
227 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
229 int cpu, error = 0;
231 for (cpu = 0; cpu < ncpus; ++cpu) {
232 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
233 sizeof(struct ip_stats))))
234 break;
235 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
236 sizeof(struct ip_stats))))
237 break;
240 return (error);
242 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
243 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
244 #else
245 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
246 &ipstat, ip_stats, "IP statistics");
247 #endif
249 /* Packet reassembly stuff */
250 #define IPREASS_NHASH_LOG2 6
251 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
252 #define IPREASS_HMASK (IPREASS_NHASH - 1)
253 #define IPREASS_HASH(x,y) \
254 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
256 static struct ipq ipq[IPREASS_NHASH];
258 #ifdef IPCTL_DEFMTU
259 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
260 &ip_mtu, 0, "Default MTU");
261 #endif
263 #ifdef IPSTEALTH
264 static int ipstealth = 0;
265 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
266 #else
267 static const int ipstealth = 0;
268 #endif
270 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
272 struct pfil_head inet_pfil_hook;
275 * struct ip_srcrt_opt is used to store packet state while it travels
276 * through the stack.
278 * XXX Note that the code even makes assumptions on the size and
279 * alignment of fields inside struct ip_srcrt so e.g. adding some
280 * fields will break the code. This needs to be fixed.
282 * We need to save the IP options in case a protocol wants to respond
283 * to an incoming packet over the same route if the packet got here
284 * using IP source routing. This allows connection establishment and
285 * maintenance when the remote end is on a network that is not known
286 * to us.
288 struct ip_srcrt {
289 struct in_addr dst; /* final destination */
290 char nop; /* one NOP to align */
291 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
292 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
295 struct ip_srcrt_opt {
296 int ip_nhops;
297 struct ip_srcrt ip_srcrt;
300 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
301 static struct malloc_pipe ipq_mpipe;
303 static void save_rte(struct mbuf *, u_char *, struct in_addr);
304 static int ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
305 static void ip_freef(struct ipq *);
306 static void ip_input_handler(struct netmsg *);
309 * IP initialization: fill in IP protocol switch table.
310 * All protocols not implemented in kernel go to raw IP protocol handler.
312 void
313 ip_init(void)
315 struct protosw *pr;
316 uint32_t flags;
317 int i;
318 #ifdef SMP
319 int cpu;
320 #endif
323 * Make sure we can handle a reasonable number of fragments but
324 * cap it at 4000 (XXX).
326 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
327 IFQ_MAXLEN, 4000, 0, NULL);
328 for (i = 0; i < ncpus; ++i) {
329 TAILQ_INIT(&in_ifaddrheads[i]);
330 in_ifaddrhashtbls[i] =
331 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
333 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
334 if (pr == NULL)
335 panic("ip_init");
336 for (i = 0; i < IPPROTO_MAX; i++)
337 ip_protox[i] = pr - inetsw;
338 for (pr = inetdomain.dom_protosw;
339 pr < inetdomain.dom_protoswNPROTOSW; pr++) {
340 if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
341 if (pr->pr_protocol != IPPROTO_RAW)
342 ip_protox[pr->pr_protocol] = pr - inetsw;
344 /* XXX */
345 switch (pr->pr_protocol) {
346 case IPPROTO_TCP:
347 if (tcp_mpsafe_proto)
348 pr->pr_flags |= PR_MPSAFE;
349 break;
351 case IPPROTO_UDP:
352 if (udp_mpsafe_proto)
353 pr->pr_flags |= PR_MPSAFE;
354 break;
359 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
360 inet_pfil_hook.ph_af = AF_INET;
361 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
362 kprintf("%s: WARNING: unable to register pfil hook, "
363 "error %d\n", __func__, i);
366 for (i = 0; i < IPREASS_NHASH; i++)
367 ipq[i].next = ipq[i].prev = &ipq[i];
369 maxnipq = nmbclusters / 32;
370 maxfragsperpacket = 16;
372 ip_id = time_second & 0xffff;
375 * Initialize IP statistics counters for each CPU.
378 #ifdef SMP
379 for (cpu = 0; cpu < ncpus; ++cpu) {
380 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
382 #else
383 bzero(&ipstat, sizeof(struct ip_stats));
384 #endif
386 #if defined(IPSEC) || defined(FAST_IPSEC)
387 /* XXX IPSEC is not MPSAFE yet */
388 flags = NETISR_FLAG_NOTMPSAFE;
389 #else
390 if (ip_mpsafe) {
391 kprintf("ip: MPSAFE\n");
392 flags = NETISR_FLAG_MPSAFE;
393 } else {
394 flags = NETISR_FLAG_NOTMPSAFE;
396 #endif
397 netisr_register(NETISR_IP, ip_mport_in, ip_mport_pktinfo,
398 ip_input_handler, flags);
401 /* Do transport protocol processing. */
402 static void
403 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
405 const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
408 * Switch out to protocol's input routine.
410 PR_GET_MPLOCK(pr);
411 pr->pr_input(m, hlen, ip->ip_p);
412 PR_REL_MPLOCK(pr);
415 static void
416 transport_processing_handler(netmsg_t netmsg)
418 struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
419 struct ip *ip;
420 int hlen;
422 ip = mtod(pmsg->nm_packet, struct ip *);
423 hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
425 transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
426 /* netmsg was embedded in the mbuf, do not reply! */
429 static void
430 ip_input_handler(struct netmsg *msg0)
432 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
434 ip_input(m);
435 /* msg0 was embedded in the mbuf, do not reply! */
439 * IP input routine. Checksum and byte swap header. If fragmented
440 * try to reassemble. Process options. Pass to next level.
442 void
443 ip_input(struct mbuf *m)
445 struct ip *ip;
446 struct in_ifaddr *ia = NULL;
447 struct in_ifaddr_container *iac;
448 int hlen, checkif;
449 u_short sum;
450 struct in_addr pkt_dst;
451 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
452 boolean_t needredispatch = FALSE;
453 struct in_addr odst; /* original dst address(NAT) */
454 struct m_tag *mtag;
455 struct sockaddr_in *next_hop = NULL;
456 #ifdef FAST_IPSEC
457 struct tdb_ident *tdbi;
458 struct secpolicy *sp;
459 int error;
460 #endif
462 M_ASSERTPKTHDR(m);
464 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
465 /* Next hop */
466 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
467 KKASSERT(mtag != NULL);
468 next_hop = m_tag_data(mtag);
471 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
472 /* dummynet already filtered us */
473 ip = mtod(m, struct ip *);
474 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
475 goto iphack;
478 ipstat.ips_total++;
480 /* length checks already done in ip_mport() */
481 KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
482 ip = mtod(m, struct ip *);
484 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
485 ipstat.ips_badvers++;
486 goto bad;
489 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
490 /* length checks already done in ip_mport() */
491 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
492 KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
494 /* 127/8 must not appear on wire - RFC1122 */
495 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
496 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
497 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
498 ipstat.ips_badaddr++;
499 goto bad;
503 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
504 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
505 } else {
506 if (hlen == sizeof(struct ip))
507 sum = in_cksum_hdr(ip);
508 else
509 sum = in_cksum(m, hlen);
511 if (sum != 0) {
512 ipstat.ips_badsum++;
513 goto bad;
516 #ifdef ALTQ
517 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
518 /* packet is dropped by traffic conditioner */
519 return;
521 #endif
523 * Convert fields to host representation.
525 ip->ip_len = ntohs(ip->ip_len);
526 ip->ip_off = ntohs(ip->ip_off);
528 /* length checks already done in ip_mport() */
529 KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
530 KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
533 * Trim mbufs if longer than the IP header would have us expect.
535 if (m->m_pkthdr.len > ip->ip_len) {
536 if (m->m_len == m->m_pkthdr.len) {
537 m->m_len = ip->ip_len;
538 m->m_pkthdr.len = ip->ip_len;
539 } else {
540 m_adj(m, ip->ip_len - m->m_pkthdr.len);
543 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
545 * Bypass packet filtering for packets from a tunnel (gif).
547 if (ipsec_gethist(m, NULL))
548 goto pass;
549 #endif
552 * IpHack's section.
553 * Right now when no processing on packet has done
554 * and it is still fresh out of network we do our black
555 * deals with it.
556 * - Firewall: deny/allow/divert
557 * - Xlate: translate packet's addr/port (NAT).
558 * - Pipe: pass pkt through dummynet.
559 * - Wrap: fake packet's addr/port <unimpl.>
560 * - Encapsulate: put it in another IP and send out. <unimp.>
563 iphack:
565 * If we've been forwarded from the output side, then
566 * skip the firewall a second time
568 if (next_hop != NULL)
569 goto ours;
571 /* No pfil hooks */
572 if (!pfil_has_hooks(&inet_pfil_hook)) {
573 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
575 * Strip dummynet tags from stranded packets
577 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
578 KKASSERT(mtag != NULL);
579 m_tag_delete(m, mtag);
580 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
582 goto pass;
586 * Run through list of hooks for input packets.
588 * NB: Beware of the destination address changing (e.g.
589 * by NAT rewriting). When this happens, tell
590 * ip_forward to do the right thing.
592 odst = ip->ip_dst;
593 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
594 return;
595 if (m == NULL) /* consumed by filter */
596 return;
597 ip = mtod(m, struct ip *);
598 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
599 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
601 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
602 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
603 KKASSERT(mtag != NULL);
604 next_hop = m_tag_data(mtag);
606 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
607 ip_dn_queue(m);
608 return;
610 if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
611 needredispatch = TRUE;
612 m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
614 pass:
616 * Process options and, if not destined for us,
617 * ship it on. ip_dooptions returns 1 when an
618 * error was detected (causing an icmp message
619 * to be sent and the original packet to be freed).
621 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
622 return;
624 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
625 * matter if it is destined to another node, or whether it is
626 * a multicast one, RSVP wants it! and prevents it from being forwarded
627 * anywhere else. Also checks if the rsvp daemon is running before
628 * grabbing the packet.
630 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
631 goto ours;
634 * Check our list of addresses, to see if the packet is for us.
635 * If we don't have any addresses, assume any unicast packet
636 * we receive might be for us (and let the upper layers deal
637 * with it).
639 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
640 !(m->m_flags & (M_MCAST | M_BCAST)))
641 goto ours;
644 * Cache the destination address of the packet; this may be
645 * changed by use of 'ipfw fwd'.
647 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
650 * Enable a consistency check between the destination address
651 * and the arrival interface for a unicast packet (the RFC 1122
652 * strong ES model) if IP forwarding is disabled and the packet
653 * is not locally generated and the packet is not subject to
654 * 'ipfw fwd'.
656 * XXX - Checking also should be disabled if the destination
657 * address is ipnat'ed to a different interface.
659 * XXX - Checking is incompatible with IP aliases added
660 * to the loopback interface instead of the interface where
661 * the packets are received.
663 checkif = ip_checkinterface &&
664 !ipforwarding &&
665 m->m_pkthdr.rcvif != NULL &&
666 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
667 next_hop == NULL;
670 * Check for exact addresses in the hash bucket.
672 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
673 ia = iac->ia;
676 * If the address matches, verify that the packet
677 * arrived via the correct interface if checking is
678 * enabled.
680 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
681 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
682 goto ours;
684 ia = NULL;
687 * Check for broadcast addresses.
689 * Only accept broadcast packets that arrive via the matching
690 * interface. Reception of forwarded directed broadcasts would
691 * be handled via ip_forward() and ether_output() with the loopback
692 * into the stack for SIMPLEX interfaces handled by ether_output().
694 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
695 struct ifaddr_container *ifac;
697 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
698 ifa_link) {
699 struct ifaddr *ifa = ifac->ifa;
701 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
702 continue;
703 if (ifa->ifa_addr->sa_family != AF_INET)
704 continue;
705 ia = ifatoia(ifa);
706 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
707 pkt_dst.s_addr)
708 goto ours;
709 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
710 goto ours;
711 #ifdef BOOTP_COMPAT
712 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
713 goto ours;
714 #endif
717 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
718 struct in_multi *inm;
720 /* XXX Multicast is not MPSAFE yet */
721 get_mplock();
723 if (ip_mrouter != NULL) {
725 * If we are acting as a multicast router, all
726 * incoming multicast packets are passed to the
727 * kernel-level multicast forwarding function.
728 * The packet is returned (relatively) intact; if
729 * ip_mforward() returns a non-zero value, the packet
730 * must be discarded, else it may be accepted below.
732 if (ip_mforward != NULL &&
733 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
734 rel_mplock();
735 ipstat.ips_cantforward++;
736 m_freem(m);
737 return;
741 * The process-level routing daemon needs to receive
742 * all multicast IGMP packets, whether or not this
743 * host belongs to their destination groups.
745 if (ip->ip_p == IPPROTO_IGMP) {
746 rel_mplock();
747 goto ours;
749 ipstat.ips_forward++;
752 * See if we belong to the destination multicast group on the
753 * arrival interface.
755 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
756 if (inm == NULL) {
757 rel_mplock();
758 ipstat.ips_notmember++;
759 m_freem(m);
760 return;
763 rel_mplock();
764 goto ours;
766 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
767 goto ours;
768 if (ip->ip_dst.s_addr == INADDR_ANY)
769 goto ours;
772 * FAITH(Firewall Aided Internet Translator)
774 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
775 if (ip_keepfaith) {
776 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
777 goto ours;
779 m_freem(m);
780 return;
784 * Not for us; forward if possible and desirable.
786 if (!ipforwarding) {
787 ipstat.ips_cantforward++;
788 m_freem(m);
789 } else {
790 #ifdef IPSEC
792 * Enforce inbound IPsec SPD.
794 if (ipsec4_in_reject(m, NULL)) {
795 ipsecstat.in_polvio++;
796 goto bad;
798 #endif
799 #ifdef FAST_IPSEC
800 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
801 crit_enter();
802 if (mtag != NULL) {
803 tdbi = (struct tdb_ident *)m_tag_data(mtag);
804 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
805 } else {
806 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
807 IP_FORWARDING, &error);
809 if (sp == NULL) { /* NB: can happen if error */
810 crit_exit();
811 /*XXX error stat???*/
812 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
813 goto bad;
817 * Check security policy against packet attributes.
819 error = ipsec_in_reject(sp, m);
820 KEY_FREESP(&sp);
821 crit_exit();
822 if (error) {
823 ipstat.ips_cantforward++;
824 goto bad;
826 #endif
827 ip_forward(m, using_srcrt, next_hop);
829 return;
831 ours:
834 * IPSTEALTH: Process non-routing options only
835 * if the packet is destined for us.
837 if (ipstealth &&
838 hlen > sizeof(struct ip) &&
839 ip_dooptions(m, 1, next_hop))
840 return;
842 /* Count the packet in the ip address stats */
843 if (ia != NULL) {
844 ia->ia_ifa.if_ipackets++;
845 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
849 * If offset or IP_MF are set, must reassemble.
850 * Otherwise, nothing need be done.
851 * (We could look in the reassembly queue to see
852 * if the packet was previously fragmented,
853 * but it's not worth the time; just let them time out.)
855 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
857 * Attempt reassembly; if it succeeds, proceed.
858 * ip_reass() will return a different mbuf.
860 m = ip_reass(m);
861 if (m == NULL)
862 return;
863 ip = mtod(m, struct ip *);
865 /* Get the header length of the reassembled packet */
866 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
868 needredispatch = TRUE;
869 } else {
870 ip->ip_len -= hlen;
873 #ifdef IPSEC
875 * enforce IPsec policy checking if we are seeing last header.
876 * note that we do not visit this with protocols with pcb layer
877 * code - like udp/tcp/raw ip.
879 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
880 ipsec4_in_reject(m, NULL)) {
881 ipsecstat.in_polvio++;
882 goto bad;
884 #endif
885 #if FAST_IPSEC
887 * enforce IPsec policy checking if we are seeing last header.
888 * note that we do not visit this with protocols with pcb layer
889 * code - like udp/tcp/raw ip.
891 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
893 * Check if the packet has already had IPsec processing
894 * done. If so, then just pass it along. This tag gets
895 * set during AH, ESP, etc. input handling, before the
896 * packet is returned to the ip input queue for delivery.
898 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
899 crit_enter();
900 if (mtag != NULL) {
901 tdbi = (struct tdb_ident *)m_tag_data(mtag);
902 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
903 } else {
904 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
905 IP_FORWARDING, &error);
907 if (sp != NULL) {
909 * Check security policy against packet attributes.
911 error = ipsec_in_reject(sp, m);
912 KEY_FREESP(&sp);
913 } else {
914 /* XXX error stat??? */
915 error = EINVAL;
916 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
917 goto bad;
919 crit_exit();
920 if (error)
921 goto bad;
923 #endif /* FAST_IPSEC */
926 * NOTE: ip_len in host form and adjusted down by hlen for
927 * protocol processing.
929 ipstat.ips_delivered++;
930 if (needredispatch) {
931 struct netmsg_packet *pmsg;
932 lwkt_port_t port;
934 ip->ip_off = htons(ip->ip_off);
935 ip->ip_len = htons(ip->ip_len + hlen);
936 port = ip_mport_in(&m);
937 if (port == NULL)
938 return;
940 pmsg = &m->m_hdr.mh_netmsg;
941 netmsg_init(&pmsg->nm_netmsg, NULL, &netisr_apanic_rport,
942 MSGF_MPSAFE, transport_processing_handler);
943 pmsg->nm_packet = m;
944 pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
946 ip = mtod(m, struct ip *);
947 ip->ip_len = ntohs(ip->ip_len) - hlen;
948 ip->ip_off = ntohs(ip->ip_off);
949 lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
950 } else {
951 transport_processing_oncpu(m, hlen, ip);
953 return;
955 bad:
956 m_freem(m);
960 * Take incoming datagram fragment and try to reassemble it into
961 * whole datagram. If a chain for reassembly of this datagram already
962 * exists, then it is given as fp; otherwise have to make a chain.
964 struct mbuf *
965 ip_reass(struct mbuf *m)
967 struct ip *ip = mtod(m, struct ip *);
968 struct mbuf *p = NULL, *q, *nq;
969 struct mbuf *n;
970 struct ipq *fp = NULL;
971 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
972 int i, next;
973 u_short sum;
975 /* If maxnipq is 0, never accept fragments. */
976 if (maxnipq == 0) {
977 ipstat.ips_fragments++;
978 ipstat.ips_fragdropped++;
979 m_freem(m);
980 return NULL;
983 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
985 * Look for queue of fragments of this datagram.
987 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
988 if (ip->ip_id == fp->ipq_id &&
989 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
990 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
991 ip->ip_p == fp->ipq_p)
992 goto found;
994 fp = NULL;
997 * Enforce upper bound on number of fragmented packets
998 * for which we attempt reassembly;
999 * If maxnipq is -1, accept all fragments without limitation.
1001 if (nipq > maxnipq && maxnipq > 0) {
1003 * drop something from the tail of the current queue
1004 * before proceeding further
1006 if (ipq[sum].prev == &ipq[sum]) { /* gak */
1007 for (i = 0; i < IPREASS_NHASH; i++) {
1008 if (ipq[i].prev != &ipq[i]) {
1009 ipstat.ips_fragtimeout +=
1010 ipq[i].prev->ipq_nfrags;
1011 ip_freef(ipq[i].prev);
1012 break;
1015 } else {
1016 ipstat.ips_fragtimeout +=
1017 ipq[sum].prev->ipq_nfrags;
1018 ip_freef(ipq[sum].prev);
1021 found:
1023 * Adjust ip_len to not reflect header,
1024 * convert offset of this to bytes.
1026 ip->ip_len -= hlen;
1027 if (ip->ip_off & IP_MF) {
1029 * Make sure that fragments have a data length
1030 * that's a non-zero multiple of 8 bytes.
1032 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1033 ipstat.ips_toosmall++; /* XXX */
1034 m_freem(m);
1035 return NULL;
1037 m->m_flags |= M_FRAG;
1038 } else
1039 m->m_flags &= ~M_FRAG;
1040 ip->ip_off <<= 3;
1042 ipstat.ips_fragments++;
1043 m->m_pkthdr.header = ip;
1046 * If the hardware has not done csum over this fragment
1047 * then csum_data is not valid at all.
1049 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1050 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1051 m->m_pkthdr.csum_data = 0;
1052 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1056 * Presence of header sizes in mbufs
1057 * would confuse code below.
1059 m->m_data += hlen;
1060 m->m_len -= hlen;
1063 * If first fragment to arrive, create a reassembly queue.
1065 if (fp == NULL) {
1066 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1067 goto dropfrag;
1068 insque(fp, &ipq[sum]);
1069 nipq++;
1070 fp->ipq_nfrags = 1;
1071 fp->ipq_ttl = IPFRAGTTL;
1072 fp->ipq_p = ip->ip_p;
1073 fp->ipq_id = ip->ip_id;
1074 fp->ipq_src = ip->ip_src;
1075 fp->ipq_dst = ip->ip_dst;
1076 fp->ipq_frags = m;
1077 m->m_nextpkt = NULL;
1078 goto inserted;
1079 } else {
1080 fp->ipq_nfrags++;
1083 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1086 * Find a segment which begins after this one does.
1088 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1089 if (GETIP(q)->ip_off > ip->ip_off)
1090 break;
1093 * If there is a preceding segment, it may provide some of
1094 * our data already. If so, drop the data from the incoming
1095 * segment. If it provides all of our data, drop us, otherwise
1096 * stick new segment in the proper place.
1098 * If some of the data is dropped from the the preceding
1099 * segment, then it's checksum is invalidated.
1101 if (p) {
1102 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1103 if (i > 0) {
1104 if (i >= ip->ip_len)
1105 goto dropfrag;
1106 m_adj(m, i);
1107 m->m_pkthdr.csum_flags = 0;
1108 ip->ip_off += i;
1109 ip->ip_len -= i;
1111 m->m_nextpkt = p->m_nextpkt;
1112 p->m_nextpkt = m;
1113 } else {
1114 m->m_nextpkt = fp->ipq_frags;
1115 fp->ipq_frags = m;
1119 * While we overlap succeeding segments trim them or,
1120 * if they are completely covered, dequeue them.
1122 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1123 q = nq) {
1124 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1125 if (i < GETIP(q)->ip_len) {
1126 GETIP(q)->ip_len -= i;
1127 GETIP(q)->ip_off += i;
1128 m_adj(q, i);
1129 q->m_pkthdr.csum_flags = 0;
1130 break;
1132 nq = q->m_nextpkt;
1133 m->m_nextpkt = nq;
1134 ipstat.ips_fragdropped++;
1135 fp->ipq_nfrags--;
1136 q->m_nextpkt = NULL;
1137 m_freem(q);
1140 inserted:
1142 * Check for complete reassembly and perform frag per packet
1143 * limiting.
1145 * Frag limiting is performed here so that the nth frag has
1146 * a chance to complete the packet before we drop the packet.
1147 * As a result, n+1 frags are actually allowed per packet, but
1148 * only n will ever be stored. (n = maxfragsperpacket.)
1151 next = 0;
1152 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1153 if (GETIP(q)->ip_off != next) {
1154 if (fp->ipq_nfrags > maxfragsperpacket) {
1155 ipstat.ips_fragdropped += fp->ipq_nfrags;
1156 ip_freef(fp);
1158 return (NULL);
1160 next += GETIP(q)->ip_len;
1162 /* Make sure the last packet didn't have the IP_MF flag */
1163 if (p->m_flags & M_FRAG) {
1164 if (fp->ipq_nfrags > maxfragsperpacket) {
1165 ipstat.ips_fragdropped += fp->ipq_nfrags;
1166 ip_freef(fp);
1168 return (NULL);
1172 * Reassembly is complete. Make sure the packet is a sane size.
1174 q = fp->ipq_frags;
1175 ip = GETIP(q);
1176 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1177 ipstat.ips_toolong++;
1178 ipstat.ips_fragdropped += fp->ipq_nfrags;
1179 ip_freef(fp);
1180 return (NULL);
1184 * Concatenate fragments.
1186 m = q;
1187 n = m->m_next;
1188 m->m_next = NULL;
1189 m_cat(m, n);
1190 nq = q->m_nextpkt;
1191 q->m_nextpkt = NULL;
1192 for (q = nq; q != NULL; q = nq) {
1193 nq = q->m_nextpkt;
1194 q->m_nextpkt = NULL;
1195 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1196 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1197 m_cat(m, q);
1201 * Clean up the 1's complement checksum. Carry over 16 bits must
1202 * be added back. This assumes no more then 65535 packet fragments
1203 * were reassembled. A second carry can also occur (but not a third).
1205 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1206 (m->m_pkthdr.csum_data >> 16);
1207 if (m->m_pkthdr.csum_data > 0xFFFF)
1208 m->m_pkthdr.csum_data -= 0xFFFF;
1211 * Create header for new ip packet by
1212 * modifying header of first packet;
1213 * dequeue and discard fragment reassembly header.
1214 * Make header visible.
1216 ip->ip_len = next;
1217 ip->ip_src = fp->ipq_src;
1218 ip->ip_dst = fp->ipq_dst;
1219 remque(fp);
1220 nipq--;
1221 mpipe_free(&ipq_mpipe, fp);
1222 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1223 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1224 /* some debugging cruft by sklower, below, will go away soon */
1225 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1226 int plen = 0;
1228 for (n = m; n; n = n->m_next)
1229 plen += n->m_len;
1230 m->m_pkthdr.len = plen;
1233 ipstat.ips_reassembled++;
1234 return (m);
1236 dropfrag:
1237 ipstat.ips_fragdropped++;
1238 if (fp != NULL)
1239 fp->ipq_nfrags--;
1240 m_freem(m);
1241 return (NULL);
1243 #undef GETIP
1247 * Free a fragment reassembly header and all
1248 * associated datagrams.
1250 static void
1251 ip_freef(struct ipq *fp)
1253 struct mbuf *q;
1255 while (fp->ipq_frags) {
1256 q = fp->ipq_frags;
1257 fp->ipq_frags = q->m_nextpkt;
1258 q->m_nextpkt = NULL;
1259 m_freem(q);
1261 remque(fp);
1262 mpipe_free(&ipq_mpipe, fp);
1263 nipq--;
1267 * IP timer processing;
1268 * if a timer expires on a reassembly
1269 * queue, discard it.
1271 void
1272 ip_slowtimo(void)
1274 struct ipq *fp;
1275 int i;
1277 crit_enter();
1278 for (i = 0; i < IPREASS_NHASH; i++) {
1279 fp = ipq[i].next;
1280 if (fp == NULL)
1281 continue;
1282 while (fp != &ipq[i]) {
1283 --fp->ipq_ttl;
1284 fp = fp->next;
1285 if (fp->prev->ipq_ttl == 0) {
1286 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1287 ip_freef(fp->prev);
1292 * If we are over the maximum number of fragments
1293 * (due to the limit being lowered), drain off
1294 * enough to get down to the new limit.
1296 if (maxnipq >= 0 && nipq > maxnipq) {
1297 for (i = 0; i < IPREASS_NHASH; i++) {
1298 while (nipq > maxnipq &&
1299 (ipq[i].next != &ipq[i])) {
1300 ipstat.ips_fragdropped +=
1301 ipq[i].next->ipq_nfrags;
1302 ip_freef(ipq[i].next);
1306 ipflow_slowtimo();
1307 crit_exit();
1311 * Drain off all datagram fragments.
1313 void
1314 ip_drain(void)
1316 int i;
1318 for (i = 0; i < IPREASS_NHASH; i++) {
1319 while (ipq[i].next != &ipq[i]) {
1320 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1321 ip_freef(ipq[i].next);
1324 in_rtqdrain();
1328 * Do option processing on a datagram,
1329 * possibly discarding it if bad options are encountered,
1330 * or forwarding it if source-routed.
1331 * The pass argument is used when operating in the IPSTEALTH
1332 * mode to tell what options to process:
1333 * [LS]SRR (pass 0) or the others (pass 1).
1334 * The reason for as many as two passes is that when doing IPSTEALTH,
1335 * non-routing options should be processed only if the packet is for us.
1336 * Returns 1 if packet has been forwarded/freed,
1337 * 0 if the packet should be processed further.
1339 static int
1340 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1342 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1343 struct ip *ip = mtod(m, struct ip *);
1344 u_char *cp;
1345 struct in_ifaddr *ia;
1346 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1347 boolean_t forward = FALSE;
1348 struct in_addr *sin, dst;
1349 n_time ntime;
1351 dst = ip->ip_dst;
1352 cp = (u_char *)(ip + 1);
1353 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1354 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1355 opt = cp[IPOPT_OPTVAL];
1356 if (opt == IPOPT_EOL)
1357 break;
1358 if (opt == IPOPT_NOP)
1359 optlen = 1;
1360 else {
1361 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1362 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1363 goto bad;
1365 optlen = cp[IPOPT_OLEN];
1366 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1367 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1368 goto bad;
1371 switch (opt) {
1373 default:
1374 break;
1377 * Source routing with record.
1378 * Find interface with current destination address.
1379 * If none on this machine then drop if strictly routed,
1380 * or do nothing if loosely routed.
1381 * Record interface address and bring up next address
1382 * component. If strictly routed make sure next
1383 * address is on directly accessible net.
1385 case IPOPT_LSRR:
1386 case IPOPT_SSRR:
1387 if (ipstealth && pass > 0)
1388 break;
1389 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1390 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1391 goto bad;
1393 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1394 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1395 goto bad;
1397 ipaddr.sin_addr = ip->ip_dst;
1398 ia = (struct in_ifaddr *)
1399 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1400 if (ia == NULL) {
1401 if (opt == IPOPT_SSRR) {
1402 type = ICMP_UNREACH;
1403 code = ICMP_UNREACH_SRCFAIL;
1404 goto bad;
1406 if (!ip_dosourceroute)
1407 goto nosourcerouting;
1409 * Loose routing, and not at next destination
1410 * yet; nothing to do except forward.
1412 break;
1414 off--; /* 0 origin */
1415 if (off > optlen - (int)sizeof(struct in_addr)) {
1417 * End of source route. Should be for us.
1419 if (!ip_acceptsourceroute)
1420 goto nosourcerouting;
1421 save_rte(m, cp, ip->ip_src);
1422 break;
1424 if (ipstealth)
1425 goto dropit;
1426 if (!ip_dosourceroute) {
1427 if (ipforwarding) {
1428 char buf[sizeof "aaa.bbb.ccc.ddd"];
1431 * Acting as a router, so generate ICMP
1433 nosourcerouting:
1434 strcpy(buf, inet_ntoa(ip->ip_dst));
1435 log(LOG_WARNING,
1436 "attempted source route from %s to %s\n",
1437 inet_ntoa(ip->ip_src), buf);
1438 type = ICMP_UNREACH;
1439 code = ICMP_UNREACH_SRCFAIL;
1440 goto bad;
1441 } else {
1443 * Not acting as a router,
1444 * so silently drop.
1446 dropit:
1447 ipstat.ips_cantforward++;
1448 m_freem(m);
1449 return (1);
1454 * locate outgoing interface
1456 memcpy(&ipaddr.sin_addr, cp + off,
1457 sizeof ipaddr.sin_addr);
1459 if (opt == IPOPT_SSRR) {
1460 #define INA struct in_ifaddr *
1461 #define SA struct sockaddr *
1462 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1463 == NULL)
1464 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1465 } else {
1466 ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1468 if (ia == NULL) {
1469 type = ICMP_UNREACH;
1470 code = ICMP_UNREACH_SRCFAIL;
1471 goto bad;
1473 ip->ip_dst = ipaddr.sin_addr;
1474 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1475 sizeof(struct in_addr));
1476 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1478 * Let ip_intr's mcast routing check handle mcast pkts
1480 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1481 break;
1483 case IPOPT_RR:
1484 if (ipstealth && pass == 0)
1485 break;
1486 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1487 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1488 goto bad;
1490 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1491 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1492 goto bad;
1495 * If no space remains, ignore.
1497 off--; /* 0 origin */
1498 if (off > optlen - (int)sizeof(struct in_addr))
1499 break;
1500 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1501 sizeof ipaddr.sin_addr);
1503 * locate outgoing interface; if we're the destination,
1504 * use the incoming interface (should be same).
1506 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1507 (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1508 type = ICMP_UNREACH;
1509 code = ICMP_UNREACH_HOST;
1510 goto bad;
1512 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1513 sizeof(struct in_addr));
1514 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1515 break;
1517 case IPOPT_TS:
1518 if (ipstealth && pass == 0)
1519 break;
1520 code = cp - (u_char *)ip;
1521 if (optlen < 4 || optlen > 40) {
1522 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1523 goto bad;
1525 if ((off = cp[IPOPT_OFFSET]) < 5) {
1526 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1527 goto bad;
1529 if (off > optlen - (int)sizeof(int32_t)) {
1530 cp[IPOPT_OFFSET + 1] += (1 << 4);
1531 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1532 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1533 goto bad;
1535 break;
1537 off--; /* 0 origin */
1538 sin = (struct in_addr *)(cp + off);
1539 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1541 case IPOPT_TS_TSONLY:
1542 break;
1544 case IPOPT_TS_TSANDADDR:
1545 if (off + sizeof(n_time) +
1546 sizeof(struct in_addr) > optlen) {
1547 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1548 goto bad;
1550 ipaddr.sin_addr = dst;
1551 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1552 m->m_pkthdr.rcvif);
1553 if (ia == NULL)
1554 continue;
1555 memcpy(sin, &IA_SIN(ia)->sin_addr,
1556 sizeof(struct in_addr));
1557 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1558 off += sizeof(struct in_addr);
1559 break;
1561 case IPOPT_TS_PRESPEC:
1562 if (off + sizeof(n_time) +
1563 sizeof(struct in_addr) > optlen) {
1564 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1565 goto bad;
1567 memcpy(&ipaddr.sin_addr, sin,
1568 sizeof(struct in_addr));
1569 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1570 continue;
1571 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1572 off += sizeof(struct in_addr);
1573 break;
1575 default:
1576 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1577 goto bad;
1579 ntime = iptime();
1580 memcpy(cp + off, &ntime, sizeof(n_time));
1581 cp[IPOPT_OFFSET] += sizeof(n_time);
1584 if (forward && ipforwarding) {
1585 ip_forward(m, TRUE, next_hop);
1586 return (1);
1588 return (0);
1589 bad:
1590 icmp_error(m, type, code, 0, 0);
1591 ipstat.ips_badoptions++;
1592 return (1);
1596 * Given address of next destination (final or next hop),
1597 * return internet address info of interface to be used to get there.
1599 struct in_ifaddr *
1600 ip_rtaddr(struct in_addr dst, struct route *ro0)
1602 struct route sro, *ro;
1603 struct sockaddr_in *sin;
1604 struct in_ifaddr *ia;
1606 if (ro0 != NULL) {
1607 ro = ro0;
1608 } else {
1609 bzero(&sro, sizeof(sro));
1610 ro = &sro;
1613 sin = (struct sockaddr_in *)&ro->ro_dst;
1615 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1616 if (ro->ro_rt != NULL) {
1617 RTFREE(ro->ro_rt);
1618 ro->ro_rt = NULL;
1620 sin->sin_family = AF_INET;
1621 sin->sin_len = sizeof *sin;
1622 sin->sin_addr = dst;
1623 rtalloc_ign(ro, RTF_PRCLONING);
1626 if (ro->ro_rt == NULL)
1627 return (NULL);
1629 ia = ifatoia(ro->ro_rt->rt_ifa);
1631 if (ro == &sro)
1632 RTFREE(ro->ro_rt);
1633 return ia;
1637 * Save incoming source route for use in replies,
1638 * to be picked up later by ip_srcroute if the receiver is interested.
1640 static void
1641 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1643 struct m_tag *mtag;
1644 struct ip_srcrt_opt *opt;
1645 unsigned olen;
1647 mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1648 if (mtag == NULL)
1649 return;
1650 opt = m_tag_data(mtag);
1652 olen = option[IPOPT_OLEN];
1653 #ifdef DIAGNOSTIC
1654 if (ipprintfs)
1655 kprintf("save_rte: olen %d\n", olen);
1656 #endif
1657 if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1658 m_tag_free(mtag);
1659 return;
1661 bcopy(option, opt->ip_srcrt.srcopt, olen);
1662 opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1663 opt->ip_srcrt.dst = dst;
1664 m_tag_prepend(m, mtag);
1668 * Retrieve incoming source route for use in replies,
1669 * in the same form used by setsockopt.
1670 * The first hop is placed before the options, will be removed later.
1672 struct mbuf *
1673 ip_srcroute(struct mbuf *m0)
1675 struct in_addr *p, *q;
1676 struct mbuf *m;
1677 struct m_tag *mtag;
1678 struct ip_srcrt_opt *opt;
1680 if (m0 == NULL)
1681 return NULL;
1683 mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1684 if (mtag == NULL)
1685 return NULL;
1686 opt = m_tag_data(mtag);
1688 if (opt->ip_nhops == 0)
1689 return (NULL);
1690 m = m_get(MB_DONTWAIT, MT_HEADER);
1691 if (m == NULL)
1692 return (NULL);
1694 #define OPTSIZ (sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1696 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1697 m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1698 sizeof(struct in_addr) + OPTSIZ;
1699 #ifdef DIAGNOSTIC
1700 if (ipprintfs) {
1701 kprintf("ip_srcroute: nhops %d mlen %d",
1702 opt->ip_nhops, m->m_len);
1704 #endif
1707 * First save first hop for return route
1709 p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1710 *(mtod(m, struct in_addr *)) = *p--;
1711 #ifdef DIAGNOSTIC
1712 if (ipprintfs)
1713 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1714 #endif
1717 * Copy option fields and padding (nop) to mbuf.
1719 opt->ip_srcrt.nop = IPOPT_NOP;
1720 opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1721 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1722 OPTSIZ);
1723 q = (struct in_addr *)(mtod(m, caddr_t) +
1724 sizeof(struct in_addr) + OPTSIZ);
1725 #undef OPTSIZ
1727 * Record return path as an IP source route,
1728 * reversing the path (pointers are now aligned).
1730 while (p >= opt->ip_srcrt.route) {
1731 #ifdef DIAGNOSTIC
1732 if (ipprintfs)
1733 kprintf(" %x", ntohl(q->s_addr));
1734 #endif
1735 *q++ = *p--;
1738 * Last hop goes to final destination.
1740 *q = opt->ip_srcrt.dst;
1741 m_tag_delete(m0, mtag);
1742 #ifdef DIAGNOSTIC
1743 if (ipprintfs)
1744 kprintf(" %x\n", ntohl(q->s_addr));
1745 #endif
1746 return (m);
1750 * Strip out IP options.
1752 void
1753 ip_stripoptions(struct mbuf *m)
1755 int datalen;
1756 struct ip *ip = mtod(m, struct ip *);
1757 caddr_t opts;
1758 int optlen;
1760 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1761 opts = (caddr_t)(ip + 1);
1762 datalen = m->m_len - (sizeof(struct ip) + optlen);
1763 bcopy(opts + optlen, opts, datalen);
1764 m->m_len -= optlen;
1765 if (m->m_flags & M_PKTHDR)
1766 m->m_pkthdr.len -= optlen;
1767 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1770 u_char inetctlerrmap[PRC_NCMDS] = {
1771 0, 0, 0, 0,
1772 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1773 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1774 EMSGSIZE, EHOSTUNREACH, 0, 0,
1775 0, 0, 0, 0,
1776 ENOPROTOOPT, ECONNREFUSED
1780 * Forward a packet. If some error occurs return the sender
1781 * an icmp packet. Note we can't always generate a meaningful
1782 * icmp message because icmp doesn't have a large enough repertoire
1783 * of codes and types.
1785 * If not forwarding, just drop the packet. This could be confusing
1786 * if ipforwarding was zero but some routing protocol was advancing
1787 * us as a gateway to somewhere. However, we must let the routing
1788 * protocol deal with that.
1790 * The using_srcrt parameter indicates whether the packet is being forwarded
1791 * via a source route.
1793 void
1794 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1796 struct ip *ip = mtod(m, struct ip *);
1797 struct rtentry *rt;
1798 struct route fwd_ro;
1799 int error, type = 0, code = 0, destmtu = 0;
1800 struct mbuf *mcopy;
1801 n_long dest;
1802 struct in_addr pkt_dst;
1804 dest = INADDR_ANY;
1806 * Cache the destination address of the packet; this may be
1807 * changed by use of 'ipfw fwd'.
1809 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1811 #ifdef DIAGNOSTIC
1812 if (ipprintfs)
1813 kprintf("forward: src %x dst %x ttl %x\n",
1814 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1815 #endif
1817 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1818 ipstat.ips_cantforward++;
1819 m_freem(m);
1820 return;
1822 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1823 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1824 return;
1827 bzero(&fwd_ro, sizeof(fwd_ro));
1828 ip_rtaddr(pkt_dst, &fwd_ro);
1829 if (fwd_ro.ro_rt == NULL) {
1830 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1831 return;
1833 rt = fwd_ro.ro_rt;
1836 * Save the IP header and at most 8 bytes of the payload,
1837 * in case we need to generate an ICMP message to the src.
1839 * XXX this can be optimized a lot by saving the data in a local
1840 * buffer on the stack (72 bytes at most), and only allocating the
1841 * mbuf if really necessary. The vast majority of the packets
1842 * are forwarded without having to send an ICMP back (either
1843 * because unnecessary, or because rate limited), so we are
1844 * really we are wasting a lot of work here.
1846 * We don't use m_copy() because it might return a reference
1847 * to a shared cluster. Both this function and ip_output()
1848 * assume exclusive access to the IP header in `m', so any
1849 * data in a cluster may change before we reach icmp_error().
1851 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1852 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1854 * It's probably ok if the pkthdr dup fails (because
1855 * the deep copy of the tag chain failed), but for now
1856 * be conservative and just discard the copy since
1857 * code below may some day want the tags.
1859 m_free(mcopy);
1860 mcopy = NULL;
1862 if (mcopy != NULL) {
1863 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1864 (int)ip->ip_len);
1865 mcopy->m_pkthdr.len = mcopy->m_len;
1866 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1869 if (!ipstealth)
1870 ip->ip_ttl -= IPTTLDEC;
1873 * If forwarding packet using same interface that it came in on,
1874 * perhaps should send a redirect to sender to shortcut a hop.
1875 * Only send redirect if source is sending directly to us,
1876 * and if packet was not source routed (or has any options).
1877 * Also, don't send redirect if forwarding using a default route
1878 * or a route modified by a redirect.
1880 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1881 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1882 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1883 ipsendredirects && !using_srcrt && next_hop == NULL) {
1884 u_long src = ntohl(ip->ip_src.s_addr);
1885 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1887 if (rt_ifa != NULL &&
1888 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1889 if (rt->rt_flags & RTF_GATEWAY)
1890 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1891 else
1892 dest = pkt_dst.s_addr;
1894 * Router requirements says to only send
1895 * host redirects.
1897 type = ICMP_REDIRECT;
1898 code = ICMP_REDIRECT_HOST;
1899 #ifdef DIAGNOSTIC
1900 if (ipprintfs)
1901 kprintf("redirect (%d) to %x\n", code, dest);
1902 #endif
1906 error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
1907 if (error == 0) {
1908 ipstat.ips_forward++;
1909 if (type == 0) {
1910 if (mcopy) {
1911 ipflow_create(&fwd_ro, mcopy);
1912 m_freem(mcopy);
1914 goto done;
1915 } else {
1916 ipstat.ips_redirectsent++;
1918 } else {
1919 ipstat.ips_cantforward++;
1922 if (mcopy == NULL)
1923 goto done;
1926 * Send ICMP message.
1929 switch (error) {
1931 case 0: /* forwarded, but need redirect */
1932 /* type, code set above */
1933 break;
1935 case ENETUNREACH: /* shouldn't happen, checked above */
1936 case EHOSTUNREACH:
1937 case ENETDOWN:
1938 case EHOSTDOWN:
1939 default:
1940 type = ICMP_UNREACH;
1941 code = ICMP_UNREACH_HOST;
1942 break;
1944 case EMSGSIZE:
1945 type = ICMP_UNREACH;
1946 code = ICMP_UNREACH_NEEDFRAG;
1947 #ifdef IPSEC
1949 * If the packet is routed over IPsec tunnel, tell the
1950 * originator the tunnel MTU.
1951 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1952 * XXX quickhack!!!
1954 if (fwd_ro.ro_rt != NULL) {
1955 struct secpolicy *sp = NULL;
1956 int ipsecerror;
1957 int ipsechdr;
1958 struct route *ro;
1960 sp = ipsec4_getpolicybyaddr(mcopy,
1961 IPSEC_DIR_OUTBOUND,
1962 IP_FORWARDING,
1963 &ipsecerror);
1965 if (sp == NULL)
1966 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
1967 else {
1968 /* count IPsec header size */
1969 ipsechdr = ipsec4_hdrsiz(mcopy,
1970 IPSEC_DIR_OUTBOUND,
1971 NULL);
1974 * find the correct route for outer IPv4
1975 * header, compute tunnel MTU.
1978 if (sp->req != NULL && sp->req->sav != NULL &&
1979 sp->req->sav->sah != NULL) {
1980 ro = &sp->req->sav->sah->sa_route;
1981 if (ro->ro_rt != NULL &&
1982 ro->ro_rt->rt_ifp != NULL) {
1983 destmtu =
1984 ro->ro_rt->rt_ifp->if_mtu;
1985 destmtu -= ipsechdr;
1989 key_freesp(sp);
1992 #elif FAST_IPSEC
1994 * If the packet is routed over IPsec tunnel, tell the
1995 * originator the tunnel MTU.
1996 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1997 * XXX quickhack!!!
1999 if (fwd_ro.ro_rt != NULL) {
2000 struct secpolicy *sp = NULL;
2001 int ipsecerror;
2002 int ipsechdr;
2003 struct route *ro;
2005 sp = ipsec_getpolicybyaddr(mcopy,
2006 IPSEC_DIR_OUTBOUND,
2007 IP_FORWARDING,
2008 &ipsecerror);
2010 if (sp == NULL)
2011 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2012 else {
2013 /* count IPsec header size */
2014 ipsechdr = ipsec4_hdrsiz(mcopy,
2015 IPSEC_DIR_OUTBOUND,
2016 NULL);
2019 * find the correct route for outer IPv4
2020 * header, compute tunnel MTU.
2023 if (sp->req != NULL &&
2024 sp->req->sav != NULL &&
2025 sp->req->sav->sah != NULL) {
2026 ro = &sp->req->sav->sah->sa_route;
2027 if (ro->ro_rt != NULL &&
2028 ro->ro_rt->rt_ifp != NULL) {
2029 destmtu =
2030 ro->ro_rt->rt_ifp->if_mtu;
2031 destmtu -= ipsechdr;
2035 KEY_FREESP(&sp);
2038 #else /* !IPSEC && !FAST_IPSEC */
2039 if (fwd_ro.ro_rt != NULL)
2040 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2041 #endif /*IPSEC*/
2042 ipstat.ips_cantfrag++;
2043 break;
2045 case ENOBUFS:
2047 * A router should not generate ICMP_SOURCEQUENCH as
2048 * required in RFC1812 Requirements for IP Version 4 Routers.
2049 * Source quench could be a big problem under DoS attacks,
2050 * or if the underlying interface is rate-limited.
2051 * Those who need source quench packets may re-enable them
2052 * via the net.inet.ip.sendsourcequench sysctl.
2054 if (!ip_sendsourcequench) {
2055 m_freem(mcopy);
2056 goto done;
2057 } else {
2058 type = ICMP_SOURCEQUENCH;
2059 code = 0;
2061 break;
2063 case EACCES: /* ipfw denied packet */
2064 m_freem(mcopy);
2065 goto done;
2067 icmp_error(mcopy, type, code, dest, destmtu);
2068 done:
2069 if (fwd_ro.ro_rt != NULL)
2070 RTFREE(fwd_ro.ro_rt);
2073 void
2074 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2075 struct mbuf *m)
2077 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2078 struct timeval tv;
2080 microtime(&tv);
2081 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2082 SCM_TIMESTAMP, SOL_SOCKET);
2083 if (*mp)
2084 mp = &(*mp)->m_next;
2086 if (inp->inp_flags & INP_RECVDSTADDR) {
2087 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2088 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2089 if (*mp)
2090 mp = &(*mp)->m_next;
2092 if (inp->inp_flags & INP_RECVTTL) {
2093 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2094 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2095 if (*mp)
2096 mp = &(*mp)->m_next;
2098 #ifdef notyet
2099 /* XXX
2100 * Moving these out of udp_input() made them even more broken
2101 * than they already were.
2103 /* options were tossed already */
2104 if (inp->inp_flags & INP_RECVOPTS) {
2105 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2106 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2107 if (*mp)
2108 mp = &(*mp)->m_next;
2110 /* ip_srcroute doesn't do what we want here, need to fix */
2111 if (inp->inp_flags & INP_RECVRETOPTS) {
2112 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2113 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2114 if (*mp)
2115 mp = &(*mp)->m_next;
2117 #endif
2118 if (inp->inp_flags & INP_RECVIF) {
2119 struct ifnet *ifp;
2120 struct sdlbuf {
2121 struct sockaddr_dl sdl;
2122 u_char pad[32];
2123 } sdlbuf;
2124 struct sockaddr_dl *sdp;
2125 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2127 if (((ifp = m->m_pkthdr.rcvif)) &&
2128 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2129 sdp = IF_LLSOCKADDR(ifp);
2131 * Change our mind and don't try copy.
2133 if ((sdp->sdl_family != AF_LINK) ||
2134 (sdp->sdl_len > sizeof(sdlbuf))) {
2135 goto makedummy;
2137 bcopy(sdp, sdl2, sdp->sdl_len);
2138 } else {
2139 makedummy:
2140 sdl2->sdl_len =
2141 offsetof(struct sockaddr_dl, sdl_data[0]);
2142 sdl2->sdl_family = AF_LINK;
2143 sdl2->sdl_index = 0;
2144 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2146 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2147 IP_RECVIF, IPPROTO_IP);
2148 if (*mp)
2149 mp = &(*mp)->m_next;
2154 * XXX these routines are called from the upper part of the kernel.
2156 * They could also be moved to ip_mroute.c, since all the RSVP
2157 * handling is done there already.
2160 ip_rsvp_init(struct socket *so)
2162 if (so->so_type != SOCK_RAW ||
2163 so->so_proto->pr_protocol != IPPROTO_RSVP)
2164 return EOPNOTSUPP;
2166 if (ip_rsvpd != NULL)
2167 return EADDRINUSE;
2169 ip_rsvpd = so;
2171 * This may seem silly, but we need to be sure we don't over-increment
2172 * the RSVP counter, in case something slips up.
2174 if (!ip_rsvp_on) {
2175 ip_rsvp_on = 1;
2176 rsvp_on++;
2179 return 0;
2183 ip_rsvp_done(void)
2185 ip_rsvpd = NULL;
2187 * This may seem silly, but we need to be sure we don't over-decrement
2188 * the RSVP counter, in case something slips up.
2190 if (ip_rsvp_on) {
2191 ip_rsvp_on = 0;
2192 rsvp_on--;
2194 return 0;
2197 void
2198 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2200 int off, proto;
2201 __va_list ap;
2203 __va_start(ap, m);
2204 off = __va_arg(ap, int);
2205 proto = __va_arg(ap, int);
2206 __va_end(ap);
2208 if (rsvp_input_p) { /* call the real one if loaded */
2209 rsvp_input_p(m, off, proto);
2210 return;
2213 /* Can still get packets with rsvp_on = 0 if there is a local member
2214 * of the group to which the RSVP packet is addressed. But in this
2215 * case we want to throw the packet away.
2218 if (!rsvp_on) {
2219 m_freem(m);
2220 return;
2223 if (ip_rsvpd != NULL) {
2224 rip_input(m, off, proto);
2225 return;
2227 /* Drop the packet */
2228 m_freem(m);