hammer2 - Fix bulkfree bug, Fix chain->parent bug, refactor dedup a bit
[dragonfly.git] / sys / vfs / hammer2 / hammer2_freemap.c
blob0eb336645ab3c490e1639926fa7db2f9dfee7461
1 /*
2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
46 #include "hammer2.h"
48 #define FREEMAP_DEBUG 0
50 struct hammer2_fiterate {
51 hammer2_off_t bpref;
52 hammer2_off_t bnext;
53 int loops;
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
58 static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
59 hammer2_blockref_t *bref, int radix,
60 hammer2_fiterate_t *iter, hammer2_tid_t mtid);
61 static void hammer2_freemap_init(hammer2_dev_t *hmp,
62 hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_dev_t *hmp,
64 hammer2_bmap_data_t *bmap, uint16_t class,
65 int n, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_chain_t **parentp,
67 hammer2_chain_t **chainp,
68 hammer2_fiterate_t *iter);
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
74 return(radix);
78 * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79 * bref. Return a combined media offset and physical size radix. Freemap
80 * chains use fixed storage offsets in the 4MB reserved area at the
81 * beginning of each 2GB zone
83 * Rotate between four possibilities. Theoretically this means we have three
84 * good freemaps in case of a crash which we can use as a base for the fixup
85 * scan at mount-time.
87 #define H2FMBASE(key, radix) ((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix) ((hammer2_off_t)1 << (radix))
90 static
91 int
92 hammer2_freemap_reserve(hammer2_chain_t *chain, int radix)
94 hammer2_blockref_t *bref = &chain->bref;
95 hammer2_off_t off;
96 int index;
97 int index_inc;
98 size_t bytes;
101 * Physical allocation size.
103 bytes = (size_t)1 << radix;
106 * Calculate block selection index 0..7 of current block. If this
107 * is the first allocation of the block (verses a modification of an
108 * existing block), we use index 0, otherwise we use the next rotating
109 * index.
111 if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
112 index = 0;
113 } else {
114 off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
115 (((hammer2_off_t)1 <<
116 HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
117 off = off / HAMMER2_PBUFSIZE;
118 KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
119 off < HAMMER2_ZONE_FREEMAP_END);
120 index = (int)(off - HAMMER2_ZONE_FREEMAP_00) /
121 HAMMER2_ZONE_FREEMAP_INC;
122 KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
123 if (++index == HAMMER2_NFREEMAPS)
124 index = 0;
128 * Calculate the block offset of the reserved block. This will
129 * point into the 4MB reserved area at the base of the appropriate
130 * 2GB zone, once added to the FREEMAP_x selection above.
132 index_inc = index * HAMMER2_ZONE_FREEMAP_INC;
134 switch(bref->keybits) {
135 /* case HAMMER2_FREEMAP_LEVEL6_RADIX: not applicable */
136 case HAMMER2_FREEMAP_LEVEL5_RADIX: /* 2EB */
137 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
138 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
139 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL5_RADIX) +
140 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
141 HAMMER2_ZONEFM_LEVEL5) * HAMMER2_PBUFSIZE;
142 break;
143 case HAMMER2_FREEMAP_LEVEL4_RADIX: /* 2EB */
144 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
145 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
146 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
147 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
148 HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
149 break;
150 case HAMMER2_FREEMAP_LEVEL3_RADIX: /* 2PB */
151 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
152 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
153 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
154 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
155 HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
156 break;
157 case HAMMER2_FREEMAP_LEVEL2_RADIX: /* 2TB */
158 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
159 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
160 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
161 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
162 HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
163 break;
164 case HAMMER2_FREEMAP_LEVEL1_RADIX: /* 2GB */
165 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
166 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
167 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
168 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
169 HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
170 break;
171 default:
172 panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
173 /* NOT REACHED */
174 off = (hammer2_off_t)-1;
175 break;
177 bref->data_off = off | radix;
178 #if FREEMAP_DEBUG
179 kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
180 bref->type, bref->key, bref->keybits, bref->data_off);
181 #endif
182 return (0);
186 * Normal freemap allocator
188 * Use available hints to allocate space using the freemap. Create missing
189 * freemap infrastructure on-the-fly as needed (including marking initial
190 * allocations using the iterator as allocated, instantiating new 2GB zones,
191 * and dealing with the end-of-media edge case).
193 * ip and bpref are only used as a heuristic to determine locality of
194 * reference. bref->key may also be used heuristically.
196 * This function is a NOP if bytes is 0.
199 hammer2_freemap_alloc(hammer2_chain_t *chain, size_t bytes)
201 hammer2_dev_t *hmp = chain->hmp;
202 hammer2_blockref_t *bref = &chain->bref;
203 hammer2_chain_t *parent;
204 hammer2_tid_t mtid;
205 int radix;
206 int error;
207 unsigned int hindex;
208 hammer2_fiterate_t iter;
211 * If allocating or downsizing to zero we just get rid of whatever
212 * data_off we had.
214 if (bytes == 0) {
215 chain->bref.data_off = 0;
216 return 0;
219 mtid = hammer2_trans_sub(hmp->spmp);
222 * Validate the allocation size. It must be a power of 2.
224 * For now require that the caller be aware of the minimum
225 * allocation (1K).
227 radix = hammer2_getradix(bytes);
228 KKASSERT((size_t)1 << radix == bytes);
230 if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
231 bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
233 * Freemap blocks themselves are assigned from the reserve
234 * area, not allocated from the freemap.
236 error = hammer2_freemap_reserve(chain, radix);
237 KKASSERT(error == 0);
239 return error;
242 KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
245 * Calculate the starting point for our allocation search.
247 * Each freemap leaf is dedicated to a specific freemap_radix.
248 * The freemap_radix can be more fine-grained than the device buffer
249 * radix which results in inodes being grouped together in their
250 * own segment, terminal-data (16K or less) and initial indirect
251 * block being grouped together, and then full-indirect and full-data
252 * blocks (64K) being grouped together.
254 * The single most important aspect of this is the inode grouping
255 * because that is what allows 'find' and 'ls' and other filesystem
256 * topology operations to run fast.
258 #if 0
259 if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
260 bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
261 else if (trans->tmp_bpref)
262 bpref = trans->tmp_bpref;
263 else if (trans->tmp_ip)
264 bpref = trans->tmp_ip->chain->bref.data_off;
265 else
266 #endif
268 * Heuristic tracking index. We would like one for each distinct
269 * bref type if possible. heur_freemap[] has room for two classes
270 * for each type. At a minimum we have to break-up our heuristic
271 * by device block sizes.
273 hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
274 KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
275 hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
276 hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
277 KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_SIZE);
279 iter.bpref = hmp->heur_freemap[hindex];
282 * Make sure bpref is in-bounds. It's ok if bpref covers a zone's
283 * reserved area, the try code will iterate past it.
285 if (iter.bpref > hmp->voldata.volu_size)
286 iter.bpref = hmp->voldata.volu_size - 1;
289 * Iterate the freemap looking for free space before and after.
291 parent = &hmp->fchain;
292 hammer2_chain_ref(parent);
293 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
294 error = EAGAIN;
295 iter.bnext = iter.bpref;
296 iter.loops = 0;
298 while (error == EAGAIN) {
299 error = hammer2_freemap_try_alloc(&parent, bref, radix,
300 &iter, mtid);
302 hmp->heur_freemap[hindex] = iter.bnext;
303 hammer2_chain_unlock(parent);
304 hammer2_chain_drop(parent);
306 KKASSERT(error == 0);
308 return (error);
311 static int
312 hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
313 hammer2_blockref_t *bref, int radix,
314 hammer2_fiterate_t *iter, hammer2_tid_t mtid)
316 hammer2_dev_t *hmp = (*parentp)->hmp;
317 hammer2_off_t l0size;
318 hammer2_off_t l1size;
319 hammer2_off_t l1mask;
320 hammer2_key_t key_dummy;
321 hammer2_chain_t *chain;
322 hammer2_off_t key;
323 size_t bytes;
324 uint16_t class;
325 int error = 0;
326 int cache_index = -1;
329 * Calculate the number of bytes being allocated, the number
330 * of contiguous bits of bitmap being allocated, and the bitmap
331 * mask.
333 * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
334 * mask calculation.
336 bytes = (size_t)1 << radix;
337 class = (bref->type << 8) | hammer2_devblkradix(radix);
340 * Lookup the level1 freemap chain, creating and initializing one
341 * if necessary. Intermediate levels will be created automatically
342 * when necessary by hammer2_chain_create().
344 key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
345 l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
346 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
347 l1mask = l1size - 1;
349 chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
350 &cache_index,
351 HAMMER2_LOOKUP_ALWAYS |
352 HAMMER2_LOOKUP_MATCHIND);
354 if (chain == NULL) {
356 * Create the missing leaf, be sure to initialize
357 * the auxillary freemap tracking information in
358 * the bref.check.freemap structure.
360 #if 0
361 kprintf("freemap create L1 @ %016jx bpref %016jx\n",
362 key, iter->bpref);
363 #endif
364 error = hammer2_chain_create(parentp, &chain,
365 hmp->spmp, HAMMER2_METH_DEFAULT,
366 key, HAMMER2_FREEMAP_LEVEL1_RADIX,
367 HAMMER2_BREF_TYPE_FREEMAP_LEAF,
368 HAMMER2_FREEMAP_LEVELN_PSIZE,
369 mtid, 0, 0);
370 KKASSERT(error == 0);
371 if (error == 0) {
372 hammer2_chain_modify(chain, mtid, 0, 0);
373 bzero(&chain->data->bmdata[0],
374 HAMMER2_FREEMAP_LEVELN_PSIZE);
375 chain->bref.check.freemap.bigmask = (uint32_t)-1;
376 chain->bref.check.freemap.avail = l1size;
377 /* bref.methods should already be inherited */
379 hammer2_freemap_init(hmp, key, chain);
381 } else if (chain->error) {
383 * Error during lookup.
385 kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n",
386 (intmax_t)bref->data_off,
387 hammer2_error_str(chain->error));
388 error = EIO;
389 } else if ((chain->bref.check.freemap.bigmask &
390 ((size_t)1 << radix)) == 0) {
392 * Already flagged as not having enough space
394 error = ENOSPC;
395 } else {
397 * Modify existing chain to setup for adjustment.
399 hammer2_chain_modify(chain, mtid, 0, 0);
403 * Scan 2MB entries.
405 if (error == 0) {
406 hammer2_bmap_data_t *bmap;
407 hammer2_key_t base_key;
408 int count;
409 int start;
410 int n;
412 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
413 start = (int)((iter->bnext - key) >>
414 HAMMER2_FREEMAP_LEVEL0_RADIX);
415 KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
416 hammer2_chain_modify(chain, mtid, 0, 0);
418 error = ENOSPC;
419 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
420 int availchk;
422 if (start + count >= HAMMER2_FREEMAP_COUNT &&
423 start - count < 0) {
424 break;
428 * Calculate bmap pointer
430 * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
432 n = start + count;
433 bmap = &chain->data->bmdata[n];
435 if (n >= HAMMER2_FREEMAP_COUNT) {
436 availchk = 0;
437 } else if (bmap->avail) {
438 availchk = 1;
439 } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
440 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
441 availchk = 1;
442 } else {
443 availchk = 0;
446 if (availchk &&
447 (bmap->class == 0 || bmap->class == class)) {
448 base_key = key + n * l0size;
449 error = hammer2_bmap_alloc(hmp, bmap,
450 class, n, radix,
451 &base_key);
452 if (error != ENOSPC) {
453 key = base_key;
454 break;
459 * Must recalculate after potentially having called
460 * hammer2_bmap_alloc() above in case chain was
461 * reallocated.
463 * NOTE: bmap pointer is invalid if n < 0.
465 n = start - count;
466 bmap = &chain->data->bmdata[n];
467 if (n < 0) {
468 availchk = 0;
469 } else if (bmap->avail) {
470 availchk = 1;
471 } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
472 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
473 availchk = 1;
474 } else {
475 availchk = 0;
478 if (availchk &&
479 (bmap->class == 0 || bmap->class == class)) {
480 base_key = key + n * l0size;
481 error = hammer2_bmap_alloc(hmp, bmap,
482 class, n, radix,
483 &base_key);
484 if (error != ENOSPC) {
485 key = base_key;
486 break;
490 if (error == ENOSPC) {
491 chain->bref.check.freemap.bigmask &=
492 (uint32_t)~((size_t)1 << radix);
494 /* XXX also scan down from original count */
497 if (error == 0) {
499 * Assert validity. Must be beyond the static allocator used
500 * by newfs_hammer2 (and thus also beyond the aux area),
501 * not go past the volume size, and must not be in the
502 * reserved segment area for a zone.
504 KKASSERT(key >= hmp->voldata.allocator_beg &&
505 key + bytes <= hmp->voldata.volu_size);
506 KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
507 bref->data_off = key | radix;
510 * Record dedupability. The dedup bits are cleared
511 * when bulkfree transitions the freemap from 11->10,
512 * and asserted to be clear on the 10->00 transition.
514 * We must record the bitmask with the chain locked
515 * at the time we set the allocation bits to avoid
516 * racing a bulkfree.
518 if (bref->type == HAMMER2_BREF_TYPE_DATA)
519 hammer2_io_dedup_set(hmp, bref);
520 #if 0
521 kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
522 chain,
523 bref->key, bref->data_off, chain->bref.data_off);
524 #endif
525 } else if (error == ENOSPC) {
527 * Return EAGAIN with next iteration in iter->bnext, or
528 * return ENOSPC if the allocation map has been exhausted.
530 error = hammer2_freemap_iterate(parentp, &chain, iter);
534 * Cleanup
536 if (chain) {
537 hammer2_chain_unlock(chain);
538 hammer2_chain_drop(chain);
540 return (error);
544 * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
546 * If the linear iterator is mid-block we use it directly (the bitmap should
547 * already be marked allocated), otherwise we search for a block in the bitmap
548 * that fits the allocation request.
550 * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
551 * to fully allocated and adjusts the linear allocator to allow the
552 * remaining space to be allocated.
554 static
556 hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap,
557 uint16_t class, int n, int radix, hammer2_key_t *basep)
559 size_t size;
560 size_t bgsize;
561 int bmradix;
562 hammer2_bitmap_t bmmask;
563 int offset;
564 int i;
565 int j;
568 * Take into account 2-bits per block when calculating bmradix.
570 size = (size_t)1 << radix;
572 if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
573 bmradix = 2;
574 /* (16K) 2 bits per allocation block */
575 } else {
576 bmradix = (hammer2_bitmap_t)2 <<
577 (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
578 /* (32K-256K) 4, 8, 16, 32 bits per allocation block */
582 * Use the linear iterator to pack small allocations, otherwise
583 * fall-back to finding a free 16KB chunk. The linear iterator
584 * is only valid when *NOT* on a freemap chunking boundary (16KB).
585 * If it is the bitmap must be scanned. It can become invalid
586 * once we pack to the boundary. We adjust it after a bitmap
587 * allocation only for sub-16KB allocations (so the perfectly good
588 * previous value can still be used for fragments when 16KB+
589 * allocations are made inbetween fragmentary allocations).
591 * Beware of hardware artifacts when bmradix == 64 (intermediate
592 * result can wind up being '1' instead of '0' if hardware masks
593 * bit-count & 63).
595 * NOTE: j needs to be even in the j= calculation. As an artifact
596 * of the /2 division, our bitmask has to clear bit 0.
598 * NOTE: TODO this can leave little unallocatable fragments lying
599 * around.
601 if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
602 HAMMER2_FREEMAP_BLOCK_SIZE &&
603 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
604 bmap->linear < HAMMER2_SEGSIZE) {
605 KKASSERT(bmap->linear >= 0 &&
606 bmap->linear + size <= HAMMER2_SEGSIZE &&
607 (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
608 offset = bmap->linear;
609 i = offset / (HAMMER2_SEGSIZE / 8);
610 j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
611 bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
612 HAMMER2_BMAP_ALLONES :
613 ((hammer2_bitmap_t)1 << bmradix) - 1;
614 bmmask <<= j;
615 bmap->linear = offset + size;
616 } else {
617 for (i = 0; i < HAMMER2_BMAP_ELEMENTS; ++i) {
618 bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
619 HAMMER2_BMAP_ALLONES :
620 ((hammer2_bitmap_t)1 << bmradix) - 1;
621 for (j = 0;
622 j < HAMMER2_BMAP_BITS_PER_ELEMENT;
623 j += bmradix) {
624 if ((bmap->bitmapq[i] & bmmask) == 0)
625 goto success;
626 bmmask <<= bmradix;
629 /*fragments might remain*/
630 /*KKASSERT(bmap->avail == 0);*/
631 return (ENOSPC);
632 success:
633 offset = i * (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS) +
634 (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
635 if (size & HAMMER2_FREEMAP_BLOCK_MASK)
636 bmap->linear = offset + size;
639 /* 8 x (64/2) -> 256 x 16K -> 4MB */
640 KKASSERT(i >= 0 && i < HAMMER2_BMAP_ELEMENTS);
643 * Optimize the buffer cache to avoid unnecessary read-before-write
644 * operations.
646 * The device block size could be larger than the allocation size
647 * so the actual bitmap test is somewhat more involved. We have
648 * to use a compatible buffer size for this operation.
650 if ((bmap->bitmapq[i] & bmmask) == 0 &&
651 hammer2_devblksize(size) != size) {
652 size_t psize = hammer2_devblksize(size);
653 hammer2_off_t pmask = (hammer2_off_t)psize - 1;
654 int pbmradix = (hammer2_bitmap_t)2 <<
655 (hammer2_devblkradix(radix) -
656 HAMMER2_FREEMAP_BLOCK_RADIX);
657 hammer2_bitmap_t pbmmask;
658 int pradix = hammer2_getradix(psize);
660 pbmmask = (pbmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
661 HAMMER2_BMAP_ALLONES :
662 ((hammer2_bitmap_t)1 << pbmradix) - 1;
663 while ((pbmmask & bmmask) == 0)
664 pbmmask <<= pbmradix;
666 #if 0
667 kprintf("%016jx mask %016jx %016jx %016jx (%zd/%zd)\n",
668 *basep + offset, bmap->bitmapq[i],
669 pbmmask, bmmask, size, psize);
670 #endif
672 if ((bmap->bitmapq[i] & pbmmask) == 0) {
673 hammer2_io_newq(hmp, HAMMER2_BREF_TYPE_FREEMAP_LEAF,
674 (*basep + (offset & ~pmask)) |
675 pradix, psize);
679 #if 0
681 * When initializing a new inode segment also attempt to initialize
682 * an adjacent segment. Be careful not to index beyond the array
683 * bounds.
685 * We do this to try to localize inode accesses to improve
686 * directory scan rates. XXX doesn't improve scan rates.
688 if (size == HAMMER2_INODE_BYTES) {
689 if (n & 1) {
690 if (bmap[-1].radix == 0 && bmap[-1].avail)
691 bmap[-1].radix = radix;
692 } else {
693 if (bmap[1].radix == 0 && bmap[1].avail)
694 bmap[1].radix = radix;
697 #endif
699 * Calculate the bitmap-granular change in bgsize for the volume
700 * header. We cannot use the fine-grained change here because
701 * the bulkfree code can't undo it. If the bitmap element is already
702 * marked allocated it has already been accounted for.
704 if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
705 if (bmap->bitmapq[i] & bmmask)
706 bgsize = 0;
707 else
708 bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
709 } else {
710 bgsize = size;
714 * Adjust the bitmap, set the class (it might have been 0),
715 * and available bytes, update the allocation offset (*basep)
716 * from the L0 base to the actual offset.
718 * avail must reflect the bitmap-granular availability. The allocator
719 * tests will also check the linear iterator.
721 bmap->bitmapq[i] |= bmmask;
722 bmap->class = class;
723 bmap->avail -= bgsize;
724 *basep += offset;
727 * Adjust the volume header's allocator_free parameter. This
728 * parameter has to be fixed up by bulkfree which has no way to
729 * figure out sub-16K chunking, so it must be adjusted by the
730 * bitmap-granular size.
732 if (bgsize) {
733 hammer2_voldata_lock(hmp);
734 hammer2_voldata_modify(hmp);
735 hmp->voldata.allocator_free -= bgsize;
736 hammer2_voldata_unlock(hmp);
739 return(0);
742 static
743 void
744 hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key,
745 hammer2_chain_t *chain)
747 hammer2_off_t l1size;
748 hammer2_off_t lokey;
749 hammer2_off_t hikey;
750 hammer2_bmap_data_t *bmap;
751 int count;
753 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
756 * Calculate the portion of the 2GB map that should be initialized
757 * as free. Portions below or after will be initialized as allocated.
758 * SEGMASK-align the areas so we don't have to worry about sub-scans
759 * or endianess when using memset.
761 * (1) Ensure that all statically allocated space from newfs_hammer2
762 * is marked allocated.
764 * (2) Ensure that the reserved area is marked allocated (typically
765 * the first 4MB of the 2GB area being represented).
767 * (3) Ensure that any trailing space at the end-of-volume is marked
768 * allocated.
770 * WARNING! It is possible for lokey to be larger than hikey if the
771 * entire 2GB segment is within the static allocation.
773 lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
774 ~HAMMER2_SEGMASK64;
776 if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
777 HAMMER2_ZONE_SEG64) {
778 lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
779 HAMMER2_ZONE_SEG64;
782 hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
783 if (hikey > hmp->voldata.volu_size) {
784 hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
787 chain->bref.check.freemap.avail =
788 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
789 bmap = &chain->data->bmdata[0];
791 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
792 if (key < lokey || key >= hikey) {
793 memset(bmap->bitmapq, -1,
794 sizeof(bmap->bitmapq));
795 bmap->avail = 0;
796 bmap->linear = HAMMER2_SEGSIZE;
797 chain->bref.check.freemap.avail -=
798 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
799 } else {
800 bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
802 key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
803 ++bmap;
808 * The current Level 1 freemap has been exhausted, iterate to the next
809 * one, return ENOSPC if no freemaps remain.
811 * XXX this should rotate back to the beginning to handle freed-up space
812 * XXX or use intermediate entries to locate free space. TODO
814 static int
815 hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
816 hammer2_fiterate_t *iter)
818 hammer2_dev_t *hmp = (*parentp)->hmp;
820 iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
821 iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
822 if (iter->bnext >= hmp->voldata.volu_size) {
823 iter->bnext = 0;
824 if (++iter->loops == 2)
825 return (ENOSPC);
827 return(EAGAIN);
831 * Adjust the bit-pattern for data in the freemap bitmap according to
832 * (how). This code is called from on-mount recovery to fixup (mark
833 * as allocated) blocks whos freemap upates might not have been committed
834 * in the last crash and is used by the bulk freemap scan to stage frees.
836 * WARNING! Cannot be called with a empty-data bref (radix == 0).
838 * XXX currently disabled when how == 0 (the normal real-time case). At
839 * the moment we depend on the bulk freescan to actually free blocks. It
840 * will still call this routine with a non-zero how to stage possible frees
841 * and to do the actual free.
843 void
844 hammer2_freemap_adjust(hammer2_dev_t *hmp, hammer2_blockref_t *bref,
845 int how)
847 hammer2_off_t data_off = bref->data_off;
848 hammer2_chain_t *chain;
849 hammer2_chain_t *parent;
850 hammer2_bmap_data_t *bmap;
851 hammer2_key_t key;
852 hammer2_key_t key_dummy;
853 hammer2_off_t l0size;
854 hammer2_off_t l1size;
855 hammer2_off_t l1mask;
856 hammer2_tid_t mtid;
857 hammer2_bitmap_t *bitmap;
858 const hammer2_bitmap_t bmmask00 = 0;
859 hammer2_bitmap_t bmmask01;
860 hammer2_bitmap_t bmmask10;
861 hammer2_bitmap_t bmmask11;
862 size_t bytes;
863 uint16_t class;
864 int radix;
865 int start;
866 int count;
867 int modified = 0;
868 int cache_index = -1;
869 int error;
870 size_t bgsize = 0;
872 KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
874 mtid = hammer2_trans_sub(hmp->spmp);
876 radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
877 KKASSERT(radix != 0);
878 data_off &= ~HAMMER2_OFF_MASK_RADIX;
879 KKASSERT(radix <= HAMMER2_RADIX_MAX);
881 if (radix)
882 bytes = (size_t)1 << radix;
883 else
884 bytes = 0;
885 class = (bref->type << 8) | hammer2_devblkradix(radix);
888 * We can't adjust the freemap for data allocations made by
889 * newfs_hammer2.
891 if (data_off < hmp->voldata.allocator_beg)
892 return;
894 KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
897 * Lookup the level1 freemap chain. The chain must exist.
899 key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
900 l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
901 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
902 l1mask = l1size - 1;
904 parent = &hmp->fchain;
905 hammer2_chain_ref(parent);
906 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
908 chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
909 &cache_index,
910 HAMMER2_LOOKUP_ALWAYS |
911 HAMMER2_LOOKUP_MATCHIND);
914 * Stop early if we are trying to free something but no leaf exists.
916 if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
917 kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
918 (intmax_t)bref->data_off);
919 goto done;
921 if (chain->error) {
922 kprintf("hammer2_freemap_adjust: %016jx: error %s\n",
923 (intmax_t)bref->data_off,
924 hammer2_error_str(chain->error));
925 hammer2_chain_unlock(chain);
926 hammer2_chain_drop(chain);
927 chain = NULL;
928 goto done;
932 * Create any missing leaf(s) if we are doing a recovery (marking
933 * the block(s) as being allocated instead of being freed). Be sure
934 * to initialize the auxillary freemap tracking info in the
935 * bref.check.freemap structure.
937 if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
938 error = hammer2_chain_create(&parent, &chain,
939 hmp->spmp, HAMMER2_METH_DEFAULT,
940 key, HAMMER2_FREEMAP_LEVEL1_RADIX,
941 HAMMER2_BREF_TYPE_FREEMAP_LEAF,
942 HAMMER2_FREEMAP_LEVELN_PSIZE,
943 mtid, 0, 0);
945 if (hammer2_debug & 0x0040) {
946 kprintf("fixup create chain %p %016jx:%d\n",
947 chain, chain->bref.key, chain->bref.keybits);
950 if (error == 0) {
951 hammer2_chain_modify(chain, mtid, 0, 0);
952 bzero(&chain->data->bmdata[0],
953 HAMMER2_FREEMAP_LEVELN_PSIZE);
954 chain->bref.check.freemap.bigmask = (uint32_t)-1;
955 chain->bref.check.freemap.avail = l1size;
956 /* bref.methods should already be inherited */
958 hammer2_freemap_init(hmp, key, chain);
960 /* XXX handle error */
963 #if FREEMAP_DEBUG
964 kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
965 chain->bref.type, chain->bref.key,
966 chain->bref.keybits, chain->bref.data_off);
967 #endif
970 * Calculate the bitmask (runs in 2-bit pairs).
972 start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
973 bmmask01 = (hammer2_bitmap_t)1 << start;
974 bmmask10 = (hammer2_bitmap_t)2 << start;
975 bmmask11 = (hammer2_bitmap_t)3 << start;
978 * Fixup the bitmap. Partial blocks cannot be fully freed unless
979 * a bulk scan is able to roll them up.
981 if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
982 count = 1;
983 if (how == HAMMER2_FREEMAP_DOREALFREE)
984 how = HAMMER2_FREEMAP_DOMAYFREE;
985 } else {
986 count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
990 * [re]load the bmap and bitmap pointers. Each bmap entry covers
991 * a 2MB swath. The bmap itself (LEVEL1) covers 2GB.
993 * Be sure to reset the linear iterator to ensure that the adjustment
994 * is not ignored.
996 again:
997 bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
998 (HAMMER2_FREEMAP_COUNT - 1)];
999 bitmap = &bmap->bitmapq[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
1001 if (modified)
1002 bmap->linear = 0;
1004 while (count) {
1005 KKASSERT(bmmask11);
1006 if (how == HAMMER2_FREEMAP_DORECOVER) {
1008 * Recovery request, mark as allocated.
1010 if ((*bitmap & bmmask11) != bmmask11) {
1011 if (modified == 0) {
1012 hammer2_chain_modify(chain, mtid, 0, 0);
1013 modified = 1;
1014 goto again;
1016 if ((*bitmap & bmmask11) == bmmask00) {
1017 bmap->avail -=
1018 HAMMER2_FREEMAP_BLOCK_SIZE;
1019 bgsize += HAMMER2_FREEMAP_BLOCK_SIZE;
1021 if (bmap->class == 0)
1022 bmap->class = class;
1023 *bitmap |= bmmask11;
1024 if (hammer2_debug & 0x0040) {
1025 kprintf("hammer2_freemap_recover: "
1026 "fixup type=%02x "
1027 "block=%016jx/%zd\n",
1028 bref->type, data_off, bytes);
1030 } else {
1032 kprintf("hammer2_freemap_recover: good "
1033 "type=%02x block=%016jx/%zd\n",
1034 bref->type, data_off, bytes);
1038 #if 0
1040 * XXX this stuff doesn't work, avail is miscalculated and
1041 * code 10 means something else now.
1043 else if ((*bitmap & bmmask11) == bmmask11) {
1045 * Mayfree/Realfree request and bitmap is currently
1046 * marked as being fully allocated.
1048 if (!modified) {
1049 hammer2_chain_modify(chain, 0);
1050 modified = 1;
1051 goto again;
1053 if (how == HAMMER2_FREEMAP_DOREALFREE)
1054 *bitmap &= ~bmmask11;
1055 else
1056 *bitmap = (*bitmap & ~bmmask11) | bmmask10;
1057 } else if ((*bitmap & bmmask11) == bmmask10) {
1059 * Mayfree/Realfree request and bitmap is currently
1060 * marked as being possibly freeable.
1062 if (how == HAMMER2_FREEMAP_DOREALFREE) {
1063 if (!modified) {
1064 hammer2_chain_modify(chain, 0);
1065 modified = 1;
1066 goto again;
1068 *bitmap &= ~bmmask11;
1070 } else {
1072 * 01 - Not implemented, currently illegal state
1073 * 00 - Not allocated at all, illegal free.
1075 panic("hammer2_freemap_adjust: "
1076 "Illegal state %08x(%08x)",
1077 *bitmap, *bitmap & bmmask11);
1079 #endif
1080 --count;
1081 bmmask01 <<= 2;
1082 bmmask10 <<= 2;
1083 bmmask11 <<= 2;
1085 #if HAMMER2_BMAP_ELEMENTS != 8
1086 #error "hammer2_freemap.c: HAMMER2_BMAP_ELEMENTS expected to be 8"
1087 #endif
1088 if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1089 bmap->avail += 1 << radix;
1090 KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1091 if (bmap->avail == HAMMER2_SEGSIZE &&
1092 bmap->bitmapq[0] == 0 &&
1093 bmap->bitmapq[1] == 0 &&
1094 bmap->bitmapq[2] == 0 &&
1095 bmap->bitmapq[3] == 0 &&
1096 bmap->bitmapq[4] == 0 &&
1097 bmap->bitmapq[5] == 0 &&
1098 bmap->bitmapq[6] == 0 &&
1099 bmap->bitmapq[7] == 0) {
1100 key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1101 kprintf("Freeseg %016jx\n", (intmax_t)key);
1102 bmap->class = 0;
1107 * chain->bref.check.freemap.bigmask (XXX)
1109 * Setting bigmask is a hint to the allocation code that there might
1110 * be something allocatable. We also set this in recovery... it
1111 * doesn't hurt and we might want to use the hint for other validation
1112 * operations later on.
1114 if (modified)
1115 chain->bref.check.freemap.bigmask |= 1 << radix;
1117 hammer2_chain_unlock(chain);
1118 hammer2_chain_drop(chain);
1119 done:
1120 hammer2_chain_unlock(parent);
1121 hammer2_chain_drop(parent);
1123 if (bgsize) {
1124 hammer2_voldata_lock(hmp);
1125 hammer2_voldata_modify(hmp);
1126 hmp->voldata.allocator_free -= bgsize;
1127 hammer2_voldata_unlock(hmp);
1132 * Validate the freemap, in three stages.
1134 * stage-1 ALLOCATED -> POSSIBLY FREE
1135 * POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1137 * This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1138 * The POSSIBLY FREE state does not mean that a block is actually free
1139 * and may be transitioned back to ALLOCATED in stage-2.
1141 * This is typically done during normal filesystem operations when
1142 * something is deleted or a block is replaced.
1144 * This is done by bulkfree in-bulk after a memory-bounded meta-data
1145 * scan to try to determine what might be freeable.
1147 * This can be done unconditionally through a freemap scan when the
1148 * intention is to brute-force recover the proper state of the freemap.
1150 * stage-2 POSSIBLY FREE -> ALLOCATED (scan metadata topology)
1152 * This is done by bulkfree during a meta-data scan to ensure that
1153 * all blocks still actually allocated by the filesystem are marked
1154 * as such.
1156 * NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1157 * the bulkfree stage-2 and stage-3 is running. The live filesystem
1158 * will use the alternative POSSIBLY FREE type (2) to prevent
1159 * stage-3 from improperly transitioning unvetted possibly-free
1160 * blocks to FREE.
1162 * stage-3 POSSIBLY FREE (type 1) -> FREE (scan freemap)
1164 * This is done by bulkfree to finalize POSSIBLY FREE states.