Import of hostapd 0.4.9
[dragonfly.git] / contrib / hostapd-0.4.9 / md5.c
blob82388e086766e2806e1ba669b17be2c8bbc5c022
1 /*
2 * MD5 hash implementation and interface functions
3 * Copyright (c) 2003-2005, Jouni Malinen <jkmaline@cc.hut.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <string.h>
19 #include "common.h"
20 #include "md5.h"
21 #include "crypto.h"
24 /**
25 * hmac_md5_vector - HMAC-MD5 over data vector (RFC 2104)
26 * @key: Key for HMAC operations
27 * @key_len: Length of the key in bytes
28 * @num_elem: Number of elements in the data vector
29 * @addr: Pointers to the data areas
30 * @len: Lengths of the data blocks
31 * @mac: Buffer for the hash (16 bytes)
33 void hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
34 const u8 *addr[], const size_t *len, u8 *mac)
36 u8 k_pad[64]; /* padding - key XORd with ipad/opad */
37 u8 tk[16];
38 int i;
39 const u8 *_addr[6];
40 size_t _len[6];
42 if (num_elem > 5) {
44 * Fixed limit on the number of fragments to avoid having to
45 * allocate memory (which could fail).
47 return;
50 /* if key is longer than 64 bytes reset it to key = MD5(key) */
51 if (key_len > 64) {
52 md5_vector(1, &key, &key_len, tk);
53 key = tk;
54 key_len = 16;
57 /* the HMAC_MD5 transform looks like:
59 * MD5(K XOR opad, MD5(K XOR ipad, text))
61 * where K is an n byte key
62 * ipad is the byte 0x36 repeated 64 times
63 * opad is the byte 0x5c repeated 64 times
64 * and text is the data being protected */
66 /* start out by storing key in ipad */
67 memset(k_pad, 0, sizeof(k_pad));
68 memcpy(k_pad, key, key_len);
70 /* XOR key with ipad values */
71 for (i = 0; i < 64; i++)
72 k_pad[i] ^= 0x36;
74 /* perform inner MD5 */
75 _addr[0] = k_pad;
76 _len[0] = 64;
77 for (i = 0; i < num_elem; i++) {
78 _addr[i + 1] = addr[i];
79 _len[i + 1] = len[i];
81 md5_vector(1 + num_elem, _addr, _len, mac);
83 memset(k_pad, 0, sizeof(k_pad));
84 memcpy(k_pad, key, key_len);
85 /* XOR key with opad values */
86 for (i = 0; i < 64; i++)
87 k_pad[i] ^= 0x5c;
89 /* perform outer MD5 */
90 _addr[0] = k_pad;
91 _len[0] = 64;
92 _addr[1] = mac;
93 _len[1] = MD5_MAC_LEN;
94 md5_vector(2, _addr, _len, mac);
98 /**
99 * hmac_md5 - HMAC-MD5 over data buffer (RFC 2104)
100 * @key: Key for HMAC operations
101 * @key_len: Length of the key in bytes
102 * @data: Pointers to the data area
103 * @data_len: Length of the data area
104 * @mac: Buffer for the hash (16 bytes)
106 void hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
107 u8 *mac)
109 hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
113 #ifndef EAP_TLS_FUNCS
115 struct MD5Context {
116 u32 buf[4];
117 u32 bits[2];
118 u8 in[64];
121 static void MD5Init(struct MD5Context *context);
122 static void MD5Update(struct MD5Context *context, unsigned char const *buf,
123 unsigned len);
124 static void MD5Final(unsigned char digest[16], struct MD5Context *context);
125 static void MD5Transform(u32 buf[4], u32 const in[16]);
127 typedef struct MD5Context MD5_CTX;
131 * md5_vector - MD5 hash for data vector
132 * @num_elem: Number of elements in the data vector
133 * @addr: Pointers to the data areas
134 * @len: Lengths of the data blocks
135 * @mac: Buffer for the hash
137 void md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
139 MD5_CTX ctx;
140 int i;
142 MD5Init(&ctx);
143 for (i = 0; i < num_elem; i++)
144 MD5Update(&ctx, addr[i], len[i]);
145 MD5Final(mac, &ctx);
149 /* ===== start - public domain MD5 implementation ===== */
151 * This code implements the MD5 message-digest algorithm.
152 * The algorithm is due to Ron Rivest. This code was
153 * written by Colin Plumb in 1993, no copyright is claimed.
154 * This code is in the public domain; do with it what you wish.
156 * Equivalent code is available from RSA Data Security, Inc.
157 * This code has been tested against that, and is equivalent,
158 * except that you don't need to include two pages of legalese
159 * with every copy.
161 * To compute the message digest of a chunk of bytes, declare an
162 * MD5Context structure, pass it to MD5Init, call MD5Update as
163 * needed on buffers full of bytes, and then call MD5Final, which
164 * will fill a supplied 16-byte array with the digest.
167 #ifndef WORDS_BIGENDIAN
168 #define byteReverse(buf, len) /* Nothing */
169 #else
171 * Note: this code is harmless on little-endian machines.
173 static void byteReverse(unsigned char *buf, unsigned longs)
175 u32 t;
176 do {
177 t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
178 ((unsigned) buf[1] << 8 | buf[0]);
179 *(u32 *) buf = t;
180 buf += 4;
181 } while (--longs);
183 #endif
186 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
187 * initialization constants.
189 static void MD5Init(struct MD5Context *ctx)
191 ctx->buf[0] = 0x67452301;
192 ctx->buf[1] = 0xefcdab89;
193 ctx->buf[2] = 0x98badcfe;
194 ctx->buf[3] = 0x10325476;
196 ctx->bits[0] = 0;
197 ctx->bits[1] = 0;
201 * Update context to reflect the concatenation of another buffer full
202 * of bytes.
204 static void MD5Update(struct MD5Context *ctx, unsigned char const *buf,
205 unsigned len)
207 u32 t;
209 /* Update bitcount */
211 t = ctx->bits[0];
212 if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
213 ctx->bits[1]++; /* Carry from low to high */
214 ctx->bits[1] += len >> 29;
216 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
218 /* Handle any leading odd-sized chunks */
220 if (t) {
221 unsigned char *p = (unsigned char *) ctx->in + t;
223 t = 64 - t;
224 if (len < t) {
225 memcpy(p, buf, len);
226 return;
228 memcpy(p, buf, t);
229 byteReverse(ctx->in, 16);
230 MD5Transform(ctx->buf, (u32 *) ctx->in);
231 buf += t;
232 len -= t;
234 /* Process data in 64-byte chunks */
236 while (len >= 64) {
237 memcpy(ctx->in, buf, 64);
238 byteReverse(ctx->in, 16);
239 MD5Transform(ctx->buf, (u32 *) ctx->in);
240 buf += 64;
241 len -= 64;
244 /* Handle any remaining bytes of data. */
246 memcpy(ctx->in, buf, len);
250 * Final wrapup - pad to 64-byte boundary with the bit pattern
251 * 1 0* (64-bit count of bits processed, MSB-first)
253 static void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
255 unsigned count;
256 unsigned char *p;
258 /* Compute number of bytes mod 64 */
259 count = (ctx->bits[0] >> 3) & 0x3F;
261 /* Set the first char of padding to 0x80. This is safe since there is
262 always at least one byte free */
263 p = ctx->in + count;
264 *p++ = 0x80;
266 /* Bytes of padding needed to make 64 bytes */
267 count = 64 - 1 - count;
269 /* Pad out to 56 mod 64 */
270 if (count < 8) {
271 /* Two lots of padding: Pad the first block to 64 bytes */
272 memset(p, 0, count);
273 byteReverse(ctx->in, 16);
274 MD5Transform(ctx->buf, (u32 *) ctx->in);
276 /* Now fill the next block with 56 bytes */
277 memset(ctx->in, 0, 56);
278 } else {
279 /* Pad block to 56 bytes */
280 memset(p, 0, count - 8);
282 byteReverse(ctx->in, 14);
284 /* Append length in bits and transform */
285 ((u32 *) ctx->in)[14] = ctx->bits[0];
286 ((u32 *) ctx->in)[15] = ctx->bits[1];
288 MD5Transform(ctx->buf, (u32 *) ctx->in);
289 byteReverse((unsigned char *) ctx->buf, 4);
290 memcpy(digest, ctx->buf, 16);
291 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
294 /* The four core functions - F1 is optimized somewhat */
296 /* #define F1(x, y, z) (x & y | ~x & z) */
297 #define F1(x, y, z) (z ^ (x & (y ^ z)))
298 #define F2(x, y, z) F1(z, x, y)
299 #define F3(x, y, z) (x ^ y ^ z)
300 #define F4(x, y, z) (y ^ (x | ~z))
302 /* This is the central step in the MD5 algorithm. */
303 #define MD5STEP(f, w, x, y, z, data, s) \
304 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
307 * The core of the MD5 algorithm, this alters an existing MD5 hash to
308 * reflect the addition of 16 longwords of new data. MD5Update blocks
309 * the data and converts bytes into longwords for this routine.
311 static void MD5Transform(u32 buf[4], u32 const in[16])
313 register u32 a, b, c, d;
315 a = buf[0];
316 b = buf[1];
317 c = buf[2];
318 d = buf[3];
320 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
321 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
322 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
323 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
324 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
325 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
326 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
327 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
328 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
329 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
330 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
331 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
332 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
333 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
334 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
335 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
337 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
338 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
339 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
340 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
341 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
342 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
343 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
344 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
345 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
346 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
347 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
348 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
349 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
350 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
351 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
352 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
354 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
355 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
356 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
357 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
358 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
359 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
360 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
361 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
362 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
363 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
364 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
365 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
366 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
367 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
368 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
369 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
371 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
372 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
373 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
374 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
375 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
376 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
377 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
378 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
379 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
380 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
381 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
382 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
383 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
384 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
385 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
386 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
388 buf[0] += a;
389 buf[1] += b;
390 buf[2] += c;
391 buf[3] += d;
393 /* ===== end - public domain MD5 implementation ===== */
395 #endif /* !EAP_TLS_FUNCS */