If boot verbose, print asicrev, chiprev and bus type.
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
blob29aab108c12eb6af2295b8b9670d03ee4c2674dd
1 /*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34 * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.95 2008/07/05 13:37:17 sephe Exp $
39 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Engineer, Wind River Systems
46 * The Broadcom BCM5700 is based on technology originally developed by
47 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 * frames, highly configurable RX filtering, and 16 RX and TX queues
52 * (which, along with RX filter rules, can be used for QOS applications).
53 * Other features, such as TCP segmentation, may be available as part
54 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 * firmware images can be stored in hardware and need not be compiled
56 * into the driver.
58 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
61 * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63 * does not support external SSRAM.
65 * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 * brand name, which is functionally similar but lacks PCI-X support.
68 * Without external SSRAM, you can only have at most 4 TX rings,
69 * and the use of the mini RX ring is disabled. This seems to imply
70 * that these features are simply not available on the BCM5701. As a
71 * result, this driver does not implement any support for the mini RX
72 * ring.
75 #include "opt_polling.h"
76 #include "opt_ethernet.h"
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/kernel.h>
82 #include <sys/ktr.h>
83 #include <sys/interrupt.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/queue.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_types.h>
100 #include <net/ifq_var.h>
101 #include <net/vlan/if_vlan_var.h>
102 #include <net/vlan/if_vlan_ether.h>
104 #include <dev/netif/mii_layer/mii.h>
105 #include <dev/netif/mii_layer/miivar.h>
106 #include <dev/netif/mii_layer/brgphyreg.h>
108 #include <bus/pci/pcidevs.h>
109 #include <bus/pci/pcireg.h>
110 #include <bus/pci/pcivar.h>
112 #include <dev/netif/bge/if_bgereg.h>
114 /* "device miibus" required. See GENERIC if you get errors here. */
115 #include "miibus_if.h"
117 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
118 #define BGE_MIN_FRAME 60
121 * Various supported device vendors/types and their names. Note: the
122 * spec seems to indicate that the hardware still has Alteon's vendor
123 * ID burned into it, though it will always be overriden by the vendor
124 * ID in the EEPROM. Just to be safe, we cover all possibilities.
126 #define BGE_DEVDESC_MAX 64 /* Maximum device description length */
128 static struct bge_type bge_devs[] = {
129 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
130 "3COM 3C996 Gigabit Ethernet" },
132 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133 "Alteon BCM5700 Gigabit Ethernet" },
134 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135 "Alteon BCM5701 Gigabit Ethernet" },
137 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
138 "Altima AC1000 Gigabit Ethernet" },
139 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
140 "Altima AC1002 Gigabit Ethernet" },
141 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
142 "Altima AC9100 Gigabit Ethernet" },
144 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
145 "Apple BCM5701 Gigabit Ethernet" },
147 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
148 "Broadcom BCM5700 Gigabit Ethernet" },
149 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
150 "Broadcom BCM5701 Gigabit Ethernet" },
151 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
152 "Broadcom BCM5702 Gigabit Ethernet" },
153 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
154 "Broadcom BCM5702X Gigabit Ethernet" },
155 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
156 "Broadcom BCM5702 Gigabit Ethernet" },
157 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
158 "Broadcom BCM5703 Gigabit Ethernet" },
159 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
160 "Broadcom BCM5703X Gigabit Ethernet" },
161 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
162 "Broadcom BCM5703 Gigabit Ethernet" },
163 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
164 "Broadcom BCM5704C Dual Gigabit Ethernet" },
165 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
166 "Broadcom BCM5704S Dual Gigabit Ethernet" },
167 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
168 "Broadcom BCM5704S Dual Gigabit Ethernet" },
169 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
170 "Broadcom BCM5705 Gigabit Ethernet" },
171 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
172 "Broadcom BCM5705F Gigabit Ethernet" },
173 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
174 "Broadcom BCM5705K Gigabit Ethernet" },
175 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
176 "Broadcom BCM5705M Gigabit Ethernet" },
177 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
178 "Broadcom BCM5705M Gigabit Ethernet" },
179 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
180 "Broadcom BCM5714C Gigabit Ethernet" },
181 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
182 "Broadcom BCM5714S Gigabit Ethernet" },
183 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
184 "Broadcom BCM5715 Gigabit Ethernet" },
185 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
186 "Broadcom BCM5715S Gigabit Ethernet" },
187 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
188 "Broadcom BCM5720 Gigabit Ethernet" },
189 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
190 "Broadcom BCM5721 Gigabit Ethernet" },
191 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
192 "Broadcom BCM5722 Gigabit Ethernet" },
193 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
194 "Broadcom BCM5750 Gigabit Ethernet" },
195 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
196 "Broadcom BCM5750M Gigabit Ethernet" },
197 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
198 "Broadcom BCM5751 Gigabit Ethernet" },
199 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
200 "Broadcom BCM5751F Gigabit Ethernet" },
201 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
202 "Broadcom BCM5751M Gigabit Ethernet" },
203 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
204 "Broadcom BCM5752 Gigabit Ethernet" },
205 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
206 "Broadcom BCM5752M Gigabit Ethernet" },
207 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
208 "Broadcom BCM5753 Gigabit Ethernet" },
209 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
210 "Broadcom BCM5753F Gigabit Ethernet" },
211 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
212 "Broadcom BCM5753M Gigabit Ethernet" },
213 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
214 "Broadcom BCM5754 Gigabit Ethernet" },
215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
216 "Broadcom BCM5754M Gigabit Ethernet" },
217 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
218 "Broadcom BCM5755 Gigabit Ethernet" },
219 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
220 "Broadcom BCM5755M Gigabit Ethernet" },
221 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
222 "Broadcom BCM5756 Gigabit Ethernet" },
223 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
224 "Broadcom BCM5780 Gigabit Ethernet" },
225 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
226 "Broadcom BCM5780S Gigabit Ethernet" },
227 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
228 "Broadcom BCM5781 Gigabit Ethernet" },
229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
230 "Broadcom BCM5782 Gigabit Ethernet" },
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
232 "Broadcom BCM5786 Gigabit Ethernet" },
233 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
234 "Broadcom BCM5787 Gigabit Ethernet" },
235 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
236 "Broadcom BCM5787F Gigabit Ethernet" },
237 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
238 "Broadcom BCM5787M Gigabit Ethernet" },
239 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
240 "Broadcom BCM5788 Gigabit Ethernet" },
241 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
242 "Broadcom BCM5789 Gigabit Ethernet" },
243 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
244 "Broadcom BCM5901 Fast Ethernet" },
245 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
246 "Broadcom BCM5901A2 Fast Ethernet" },
247 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
248 "Broadcom BCM5903M Fast Ethernet" },
250 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
251 "SysKonnect Gigabit Ethernet" },
253 { 0, 0, NULL }
256 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
257 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
258 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
259 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
260 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
262 static int bge_probe(device_t);
263 static int bge_attach(device_t);
264 static int bge_detach(device_t);
265 static void bge_txeof(struct bge_softc *);
266 static void bge_rxeof(struct bge_softc *);
268 static void bge_tick(void *);
269 static void bge_stats_update(struct bge_softc *);
270 static void bge_stats_update_regs(struct bge_softc *);
271 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
273 #ifdef DEVICE_POLLING
274 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
275 #endif
276 static void bge_intr(void *);
277 static void bge_enable_intr(struct bge_softc *);
278 static void bge_disable_intr(struct bge_softc *);
279 static void bge_start(struct ifnet *);
280 static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
281 static void bge_init(void *);
282 static void bge_stop(struct bge_softc *);
283 static void bge_watchdog(struct ifnet *);
284 static void bge_shutdown(device_t);
285 static int bge_suspend(device_t);
286 static int bge_resume(device_t);
287 static int bge_ifmedia_upd(struct ifnet *);
288 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
290 static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
291 static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
293 static void bge_setmulti(struct bge_softc *);
294 static void bge_setpromisc(struct bge_softc *);
296 static int bge_alloc_jumbo_mem(struct bge_softc *);
297 static void bge_free_jumbo_mem(struct bge_softc *);
298 static struct bge_jslot
299 *bge_jalloc(struct bge_softc *);
300 static void bge_jfree(void *);
301 static void bge_jref(void *);
302 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
303 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
304 static int bge_init_rx_ring_std(struct bge_softc *);
305 static void bge_free_rx_ring_std(struct bge_softc *);
306 static int bge_init_rx_ring_jumbo(struct bge_softc *);
307 static void bge_free_rx_ring_jumbo(struct bge_softc *);
308 static void bge_free_tx_ring(struct bge_softc *);
309 static int bge_init_tx_ring(struct bge_softc *);
311 static int bge_chipinit(struct bge_softc *);
312 static int bge_blockinit(struct bge_softc *);
314 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
315 static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
316 #ifdef notdef
317 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
318 #endif
319 static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
320 static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
322 static int bge_miibus_readreg(device_t, int, int);
323 static int bge_miibus_writereg(device_t, int, int, int);
324 static void bge_miibus_statchg(device_t);
325 static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
326 static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
327 static void bge_copper_link_upd(struct bge_softc *, uint32_t);
329 static void bge_reset(struct bge_softc *);
331 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
332 static void bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
333 bus_size_t, int);
334 static int bge_dma_alloc(struct bge_softc *);
335 static void bge_dma_free(struct bge_softc *);
336 static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
337 bus_dma_tag_t *, bus_dmamap_t *,
338 void **, bus_addr_t *);
339 static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
341 static void bge_coal_change(struct bge_softc *);
342 static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
343 static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
344 static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
345 static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
346 static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
349 * Set following tunable to 1 for some IBM blade servers with the DNLK
350 * switch module. Auto negotiation is broken for those configurations.
352 static int bge_fake_autoneg = 0;
353 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
355 /* Interrupt moderation control variables. */
356 static int bge_rx_coal_ticks = 150; /* usec */
357 static int bge_tx_coal_ticks = 1000000; /* usec */
358 static int bge_rx_max_coal_bds = 16;
359 static int bge_tx_max_coal_bds = 32;
361 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
362 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
363 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
364 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
366 #if !defined(KTR_IF_BGE)
367 #define KTR_IF_BGE KTR_ALL
368 #endif
369 KTR_INFO_MASTER(if_bge);
370 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
371 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
372 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
373 #define logif(name) KTR_LOG(if_bge_ ## name)
375 static device_method_t bge_methods[] = {
376 /* Device interface */
377 DEVMETHOD(device_probe, bge_probe),
378 DEVMETHOD(device_attach, bge_attach),
379 DEVMETHOD(device_detach, bge_detach),
380 DEVMETHOD(device_shutdown, bge_shutdown),
381 DEVMETHOD(device_suspend, bge_suspend),
382 DEVMETHOD(device_resume, bge_resume),
384 /* bus interface */
385 DEVMETHOD(bus_print_child, bus_generic_print_child),
386 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
388 /* MII interface */
389 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
390 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
391 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
393 { 0, 0 }
396 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
397 static devclass_t bge_devclass;
399 DECLARE_DUMMY_MODULE(if_bge);
400 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
401 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
403 static uint32_t
404 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
406 device_t dev = sc->bge_dev;
407 uint32_t val;
409 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
410 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
411 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
412 return (val);
415 static void
416 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
418 device_t dev = sc->bge_dev;
420 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
421 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
422 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
425 #ifdef notdef
426 static uint32_t
427 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
429 device_t dev = sc->bge_dev;
431 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
432 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
434 #endif
436 static void
437 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
439 device_t dev = sc->bge_dev;
441 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
442 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
445 static void
446 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
448 CSR_WRITE_4(sc, off, val);
452 * Read a byte of data stored in the EEPROM at address 'addr.' The
453 * BCM570x supports both the traditional bitbang interface and an
454 * auto access interface for reading the EEPROM. We use the auto
455 * access method.
457 static uint8_t
458 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
460 int i;
461 uint32_t byte = 0;
464 * Enable use of auto EEPROM access so we can avoid
465 * having to use the bitbang method.
467 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
469 /* Reset the EEPROM, load the clock period. */
470 CSR_WRITE_4(sc, BGE_EE_ADDR,
471 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
472 DELAY(20);
474 /* Issue the read EEPROM command. */
475 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
477 /* Wait for completion */
478 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
479 DELAY(10);
480 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
481 break;
484 if (i == BGE_TIMEOUT) {
485 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
486 return(1);
489 /* Get result. */
490 byte = CSR_READ_4(sc, BGE_EE_DATA);
492 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
494 return(0);
498 * Read a sequence of bytes from the EEPROM.
500 static int
501 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
503 size_t i;
504 int err;
505 uint8_t byte;
507 for (byte = 0, err = 0, i = 0; i < len; i++) {
508 err = bge_eeprom_getbyte(sc, off + i, &byte);
509 if (err)
510 break;
511 *(dest + i) = byte;
514 return(err ? 1 : 0);
517 static int
518 bge_miibus_readreg(device_t dev, int phy, int reg)
520 struct bge_softc *sc = device_get_softc(dev);
521 struct ifnet *ifp = &sc->arpcom.ac_if;
522 uint32_t val, autopoll;
523 int i;
526 * Broadcom's own driver always assumes the internal
527 * PHY is at GMII address 1. On some chips, the PHY responds
528 * to accesses at all addresses, which could cause us to
529 * bogusly attach the PHY 32 times at probe type. Always
530 * restricting the lookup to address 1 is simpler than
531 * trying to figure out which chips revisions should be
532 * special-cased.
534 if (phy != 1)
535 return(0);
537 /* Reading with autopolling on may trigger PCI errors */
538 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
539 if (autopoll & BGE_MIMODE_AUTOPOLL) {
540 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
541 DELAY(40);
544 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
545 BGE_MIPHY(phy)|BGE_MIREG(reg));
547 for (i = 0; i < BGE_TIMEOUT; i++) {
548 DELAY(10);
549 val = CSR_READ_4(sc, BGE_MI_COMM);
550 if (!(val & BGE_MICOMM_BUSY))
551 break;
554 if (i == BGE_TIMEOUT) {
555 if_printf(ifp, "PHY read timed out "
556 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
557 val = 0;
558 goto done;
561 DELAY(5);
562 val = CSR_READ_4(sc, BGE_MI_COMM);
564 done:
565 if (autopoll & BGE_MIMODE_AUTOPOLL) {
566 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
567 DELAY(40);
570 if (val & BGE_MICOMM_READFAIL)
571 return(0);
573 return(val & 0xFFFF);
576 static int
577 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
579 struct bge_softc *sc = device_get_softc(dev);
580 uint32_t autopoll;
581 int i;
584 * See the related comment in bge_miibus_readreg()
586 if (phy != 1)
587 return(0);
589 /* Reading with autopolling on may trigger PCI errors */
590 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
591 if (autopoll & BGE_MIMODE_AUTOPOLL) {
592 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
593 DELAY(40);
596 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
597 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
599 for (i = 0; i < BGE_TIMEOUT; i++) {
600 DELAY(10);
601 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
602 DELAY(5);
603 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
604 break;
608 if (autopoll & BGE_MIMODE_AUTOPOLL) {
609 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
610 DELAY(40);
613 if (i == BGE_TIMEOUT) {
614 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
615 "(phy %d, reg %d, val %d)\n", phy, reg, val);
616 return(0);
619 return(0);
622 static void
623 bge_miibus_statchg(device_t dev)
625 struct bge_softc *sc;
626 struct mii_data *mii;
628 sc = device_get_softc(dev);
629 mii = device_get_softc(sc->bge_miibus);
631 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
632 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
633 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
634 } else {
635 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
638 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
639 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
640 } else {
641 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
646 * Memory management for jumbo frames.
648 static int
649 bge_alloc_jumbo_mem(struct bge_softc *sc)
651 struct ifnet *ifp = &sc->arpcom.ac_if;
652 struct bge_jslot *entry;
653 uint8_t *ptr;
654 bus_addr_t paddr;
655 int i, error;
658 * Create tag for jumbo mbufs.
659 * This is really a bit of a kludge. We allocate a special
660 * jumbo buffer pool which (thanks to the way our DMA
661 * memory allocation works) will consist of contiguous
662 * pages. This means that even though a jumbo buffer might
663 * be larger than a page size, we don't really need to
664 * map it into more than one DMA segment. However, the
665 * default mbuf tag will result in multi-segment mappings,
666 * so we have to create a special jumbo mbuf tag that
667 * lets us get away with mapping the jumbo buffers as
668 * a single segment. I think eventually the driver should
669 * be changed so that it uses ordinary mbufs and cluster
670 * buffers, i.e. jumbo frames can span multiple DMA
671 * descriptors. But that's a project for another day.
675 * Create DMA stuffs for jumbo RX ring.
677 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
678 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
679 &sc->bge_cdata.bge_rx_jumbo_ring_map,
680 (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
681 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
682 if (error) {
683 if_printf(ifp, "could not create jumbo RX ring\n");
684 return error;
688 * Create DMA stuffs for jumbo buffer block.
690 error = bge_dma_block_alloc(sc, BGE_JMEM,
691 &sc->bge_cdata.bge_jumbo_tag,
692 &sc->bge_cdata.bge_jumbo_map,
693 (void **)&sc->bge_ldata.bge_jumbo_buf,
694 &paddr);
695 if (error) {
696 if_printf(ifp, "could not create jumbo buffer\n");
697 return error;
700 SLIST_INIT(&sc->bge_jfree_listhead);
703 * Now divide it up into 9K pieces and save the addresses
704 * in an array. Note that we play an evil trick here by using
705 * the first few bytes in the buffer to hold the the address
706 * of the softc structure for this interface. This is because
707 * bge_jfree() needs it, but it is called by the mbuf management
708 * code which will not pass it to us explicitly.
710 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
711 entry = &sc->bge_cdata.bge_jslots[i];
712 entry->bge_sc = sc;
713 entry->bge_buf = ptr;
714 entry->bge_paddr = paddr;
715 entry->bge_inuse = 0;
716 entry->bge_slot = i;
717 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
719 ptr += BGE_JLEN;
720 paddr += BGE_JLEN;
722 return 0;
725 static void
726 bge_free_jumbo_mem(struct bge_softc *sc)
728 /* Destroy jumbo RX ring. */
729 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
730 sc->bge_cdata.bge_rx_jumbo_ring_map,
731 sc->bge_ldata.bge_rx_jumbo_ring);
733 /* Destroy jumbo buffer block. */
734 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
735 sc->bge_cdata.bge_jumbo_map,
736 sc->bge_ldata.bge_jumbo_buf);
740 * Allocate a jumbo buffer.
742 static struct bge_jslot *
743 bge_jalloc(struct bge_softc *sc)
745 struct bge_jslot *entry;
747 lwkt_serialize_enter(&sc->bge_jslot_serializer);
748 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
749 if (entry) {
750 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
751 entry->bge_inuse = 1;
752 } else {
753 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
755 lwkt_serialize_exit(&sc->bge_jslot_serializer);
756 return(entry);
760 * Adjust usage count on a jumbo buffer.
762 static void
763 bge_jref(void *arg)
765 struct bge_jslot *entry = (struct bge_jslot *)arg;
766 struct bge_softc *sc = entry->bge_sc;
768 if (sc == NULL)
769 panic("bge_jref: can't find softc pointer!");
771 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
772 panic("bge_jref: asked to reference buffer "
773 "that we don't manage!");
774 } else if (entry->bge_inuse == 0) {
775 panic("bge_jref: buffer already free!");
776 } else {
777 atomic_add_int(&entry->bge_inuse, 1);
782 * Release a jumbo buffer.
784 static void
785 bge_jfree(void *arg)
787 struct bge_jslot *entry = (struct bge_jslot *)arg;
788 struct bge_softc *sc = entry->bge_sc;
790 if (sc == NULL)
791 panic("bge_jfree: can't find softc pointer!");
793 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
794 panic("bge_jfree: asked to free buffer that we don't manage!");
795 } else if (entry->bge_inuse == 0) {
796 panic("bge_jfree: buffer already free!");
797 } else {
799 * Possible MP race to 0, use the serializer. The atomic insn
800 * is still needed for races against bge_jref().
802 lwkt_serialize_enter(&sc->bge_jslot_serializer);
803 atomic_subtract_int(&entry->bge_inuse, 1);
804 if (entry->bge_inuse == 0) {
805 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
806 entry, jslot_link);
808 lwkt_serialize_exit(&sc->bge_jslot_serializer);
814 * Intialize a standard receive ring descriptor.
816 static int
817 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
819 struct mbuf *m_new = NULL;
820 struct bge_dmamap_arg ctx;
821 bus_dma_segment_t seg;
822 struct bge_rx_bd *r;
823 int error;
825 if (m == NULL) {
826 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
827 if (m_new == NULL)
828 return ENOBUFS;
829 } else {
830 m_new = m;
831 m_new->m_data = m_new->m_ext.ext_buf;
833 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
835 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
836 m_adj(m_new, ETHER_ALIGN);
838 ctx.bge_maxsegs = 1;
839 ctx.bge_segs = &seg;
840 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
841 sc->bge_cdata.bge_rx_std_dmamap[i],
842 m_new, bge_dma_map_mbuf, &ctx,
843 BUS_DMA_NOWAIT);
844 if (error || ctx.bge_maxsegs == 0) {
845 if (m == NULL)
846 m_freem(m_new);
847 return ENOMEM;
850 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
852 r = &sc->bge_ldata.bge_rx_std_ring[i];
853 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
854 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
855 r->bge_flags = BGE_RXBDFLAG_END;
856 r->bge_len = m_new->m_len;
857 r->bge_idx = i;
859 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
860 sc->bge_cdata.bge_rx_std_dmamap[i],
861 BUS_DMASYNC_PREREAD);
862 return 0;
866 * Initialize a jumbo receive ring descriptor. This allocates
867 * a jumbo buffer from the pool managed internally by the driver.
869 static int
870 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
872 struct mbuf *m_new = NULL;
873 struct bge_jslot *buf;
874 struct bge_rx_bd *r;
875 bus_addr_t paddr;
877 if (m == NULL) {
878 /* Allocate the mbuf. */
879 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
880 if (m_new == NULL)
881 return(ENOBUFS);
883 /* Allocate the jumbo buffer */
884 buf = bge_jalloc(sc);
885 if (buf == NULL) {
886 m_freem(m_new);
887 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
888 "-- packet dropped!\n");
889 return ENOBUFS;
892 /* Attach the buffer to the mbuf. */
893 m_new->m_ext.ext_arg = buf;
894 m_new->m_ext.ext_buf = buf->bge_buf;
895 m_new->m_ext.ext_free = bge_jfree;
896 m_new->m_ext.ext_ref = bge_jref;
897 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
899 m_new->m_flags |= M_EXT;
900 } else {
901 KKASSERT(m->m_flags & M_EXT);
902 m_new = m;
903 buf = m_new->m_ext.ext_arg;
905 m_new->m_data = m_new->m_ext.ext_buf;
906 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
908 paddr = buf->bge_paddr;
909 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
910 m_adj(m_new, ETHER_ALIGN);
911 paddr += ETHER_ALIGN;
914 /* Set up the descriptor. */
915 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
917 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
918 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
919 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
920 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
921 r->bge_len = m_new->m_len;
922 r->bge_idx = i;
924 return 0;
928 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
929 * that's 1MB or memory, which is a lot. For now, we fill only the first
930 * 256 ring entries and hope that our CPU is fast enough to keep up with
931 * the NIC.
933 static int
934 bge_init_rx_ring_std(struct bge_softc *sc)
936 int i;
938 for (i = 0; i < BGE_SSLOTS; i++) {
939 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
940 return(ENOBUFS);
943 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
944 sc->bge_cdata.bge_rx_std_ring_map,
945 BUS_DMASYNC_PREWRITE);
947 sc->bge_std = i - 1;
948 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
950 return(0);
953 static void
954 bge_free_rx_ring_std(struct bge_softc *sc)
956 int i;
958 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
959 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
960 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
961 sc->bge_cdata.bge_rx_std_dmamap[i]);
962 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
963 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
965 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
966 sizeof(struct bge_rx_bd));
970 static int
971 bge_init_rx_ring_jumbo(struct bge_softc *sc)
973 int i;
974 struct bge_rcb *rcb;
976 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
977 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
978 return(ENOBUFS);
981 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
982 sc->bge_cdata.bge_rx_jumbo_ring_map,
983 BUS_DMASYNC_PREWRITE);
985 sc->bge_jumbo = i - 1;
987 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
988 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
989 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
991 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
993 return(0);
996 static void
997 bge_free_rx_ring_jumbo(struct bge_softc *sc)
999 int i;
1001 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1002 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1003 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1004 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1006 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1007 sizeof(struct bge_rx_bd));
1011 static void
1012 bge_free_tx_ring(struct bge_softc *sc)
1014 int i;
1016 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1017 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1018 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1019 sc->bge_cdata.bge_tx_dmamap[i]);
1020 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1021 sc->bge_cdata.bge_tx_chain[i] = NULL;
1023 bzero(&sc->bge_ldata.bge_tx_ring[i],
1024 sizeof(struct bge_tx_bd));
1028 static int
1029 bge_init_tx_ring(struct bge_softc *sc)
1031 sc->bge_txcnt = 0;
1032 sc->bge_tx_saved_considx = 0;
1033 sc->bge_tx_prodidx = 0;
1035 /* Initialize transmit producer index for host-memory send ring. */
1036 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1038 /* 5700 b2 errata */
1039 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1040 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1042 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1043 /* 5700 b2 errata */
1044 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1045 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1047 return(0);
1050 static void
1051 bge_setmulti(struct bge_softc *sc)
1053 struct ifnet *ifp;
1054 struct ifmultiaddr *ifma;
1055 uint32_t hashes[4] = { 0, 0, 0, 0 };
1056 int h, i;
1058 ifp = &sc->arpcom.ac_if;
1060 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1061 for (i = 0; i < 4; i++)
1062 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1063 return;
1066 /* First, zot all the existing filters. */
1067 for (i = 0; i < 4; i++)
1068 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1070 /* Now program new ones. */
1071 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1072 if (ifma->ifma_addr->sa_family != AF_LINK)
1073 continue;
1074 h = ether_crc32_le(
1075 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1076 ETHER_ADDR_LEN) & 0x7f;
1077 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1080 for (i = 0; i < 4; i++)
1081 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1085 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1086 * self-test results.
1088 static int
1089 bge_chipinit(struct bge_softc *sc)
1091 int i;
1092 uint32_t dma_rw_ctl;
1094 /* Set endian type before we access any non-PCI registers. */
1095 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1098 * Check the 'ROM failed' bit on the RX CPU to see if
1099 * self-tests passed.
1101 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1102 if_printf(&sc->arpcom.ac_if,
1103 "RX CPU self-diagnostics failed!\n");
1104 return(ENODEV);
1107 /* Clear the MAC control register */
1108 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1111 * Clear the MAC statistics block in the NIC's
1112 * internal memory.
1114 for (i = BGE_STATS_BLOCK;
1115 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1116 BGE_MEMWIN_WRITE(sc, i, 0);
1118 for (i = BGE_STATUS_BLOCK;
1119 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1120 BGE_MEMWIN_WRITE(sc, i, 0);
1122 /* Set up the PCI DMA control register. */
1123 if (sc->bge_flags & BGE_FLAG_PCIE) {
1124 /* PCI Express */
1125 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1126 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1127 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1128 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1129 /* PCI-X bus */
1130 if (BGE_IS_5714_FAMILY(sc)) {
1131 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1132 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1133 /* XXX magic values, Broadcom-supplied Linux driver */
1134 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1135 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1136 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1137 } else {
1138 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1140 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1142 * The 5704 uses a different encoding of read/write
1143 * watermarks.
1145 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1146 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1147 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1148 } else {
1149 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1150 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1152 (0x0F);
1156 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1157 * for hardware bugs.
1159 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1160 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1161 uint32_t tmp;
1163 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1164 if (tmp == 0x6 || tmp == 0x7)
1165 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1167 } else {
1168 /* Conventional PCI bus */
1169 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1171 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1172 (0x0F);
1175 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1176 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1177 sc->bge_asicrev == BGE_ASICREV_BCM5705)
1178 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1179 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1182 * Set up general mode register.
1184 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1185 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1186 BGE_MODECTL_TX_NO_PHDR_CSUM);
1189 * Disable memory write invalidate. Apparently it is not supported
1190 * properly by these devices.
1192 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1194 /* Set the timer prescaler (always 66Mhz) */
1195 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1197 return(0);
1200 static int
1201 bge_blockinit(struct bge_softc *sc)
1203 struct bge_rcb *rcb;
1204 bus_size_t vrcb;
1205 bge_hostaddr taddr;
1206 uint32_t val;
1207 int i;
1210 * Initialize the memory window pointer register so that
1211 * we can access the first 32K of internal NIC RAM. This will
1212 * allow us to set up the TX send ring RCBs and the RX return
1213 * ring RCBs, plus other things which live in NIC memory.
1215 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1217 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1219 if (!BGE_IS_5705_PLUS(sc)) {
1220 /* Configure mbuf memory pool */
1221 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1222 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1223 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1224 else
1225 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1227 /* Configure DMA resource pool */
1228 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1229 BGE_DMA_DESCRIPTORS);
1230 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1233 /* Configure mbuf pool watermarks */
1234 if (BGE_IS_5705_PLUS(sc)) {
1235 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1236 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1237 } else {
1238 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1239 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1241 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1243 /* Configure DMA resource watermarks */
1244 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1245 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1247 /* Enable buffer manager */
1248 if (!BGE_IS_5705_PLUS(sc)) {
1249 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1250 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1252 /* Poll for buffer manager start indication */
1253 for (i = 0; i < BGE_TIMEOUT; i++) {
1254 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1255 break;
1256 DELAY(10);
1259 if (i == BGE_TIMEOUT) {
1260 if_printf(&sc->arpcom.ac_if,
1261 "buffer manager failed to start\n");
1262 return(ENXIO);
1266 /* Enable flow-through queues */
1267 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1268 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1270 /* Wait until queue initialization is complete */
1271 for (i = 0; i < BGE_TIMEOUT; i++) {
1272 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1273 break;
1274 DELAY(10);
1277 if (i == BGE_TIMEOUT) {
1278 if_printf(&sc->arpcom.ac_if,
1279 "flow-through queue init failed\n");
1280 return(ENXIO);
1283 /* Initialize the standard RX ring control block */
1284 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1285 rcb->bge_hostaddr.bge_addr_lo =
1286 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1287 rcb->bge_hostaddr.bge_addr_hi =
1288 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1289 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1290 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1291 if (BGE_IS_5705_PLUS(sc))
1292 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1293 else
1294 rcb->bge_maxlen_flags =
1295 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1296 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1297 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1298 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1299 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1300 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1303 * Initialize the jumbo RX ring control block
1304 * We set the 'ring disabled' bit in the flags
1305 * field until we're actually ready to start
1306 * using this ring (i.e. once we set the MTU
1307 * high enough to require it).
1309 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1310 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1312 rcb->bge_hostaddr.bge_addr_lo =
1313 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1314 rcb->bge_hostaddr.bge_addr_hi =
1315 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1316 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1317 sc->bge_cdata.bge_rx_jumbo_ring_map,
1318 BUS_DMASYNC_PREREAD);
1319 rcb->bge_maxlen_flags =
1320 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1321 BGE_RCB_FLAG_RING_DISABLED);
1322 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1323 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1324 rcb->bge_hostaddr.bge_addr_hi);
1325 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1326 rcb->bge_hostaddr.bge_addr_lo);
1327 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1328 rcb->bge_maxlen_flags);
1329 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1331 /* Set up dummy disabled mini ring RCB */
1332 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1333 rcb->bge_maxlen_flags =
1334 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1335 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1336 rcb->bge_maxlen_flags);
1340 * Set the BD ring replentish thresholds. The recommended
1341 * values are 1/8th the number of descriptors allocated to
1342 * each ring.
1344 if (BGE_IS_5705_PLUS(sc))
1345 val = 8;
1346 else
1347 val = BGE_STD_RX_RING_CNT / 8;
1348 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1349 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1352 * Disable all unused send rings by setting the 'ring disabled'
1353 * bit in the flags field of all the TX send ring control blocks.
1354 * These are located in NIC memory.
1356 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1357 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1358 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1359 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1360 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1361 vrcb += sizeof(struct bge_rcb);
1364 /* Configure TX RCB 0 (we use only the first ring) */
1365 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1366 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1367 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1368 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1369 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1370 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1371 if (!BGE_IS_5705_PLUS(sc)) {
1372 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1373 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1376 /* Disable all unused RX return rings */
1377 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1378 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1379 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1380 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1381 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1382 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1383 BGE_RCB_FLAG_RING_DISABLED));
1384 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1385 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1386 (i * (sizeof(uint64_t))), 0);
1387 vrcb += sizeof(struct bge_rcb);
1390 /* Initialize RX ring indexes */
1391 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1392 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1393 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1396 * Set up RX return ring 0
1397 * Note that the NIC address for RX return rings is 0x00000000.
1398 * The return rings live entirely within the host, so the
1399 * nicaddr field in the RCB isn't used.
1401 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1402 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1403 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1404 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1405 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1406 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1407 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1409 /* Set random backoff seed for TX */
1410 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1411 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1412 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1413 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1414 BGE_TX_BACKOFF_SEED_MASK);
1416 /* Set inter-packet gap */
1417 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1420 * Specify which ring to use for packets that don't match
1421 * any RX rules.
1423 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1426 * Configure number of RX lists. One interrupt distribution
1427 * list, sixteen active lists, one bad frames class.
1429 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1431 /* Inialize RX list placement stats mask. */
1432 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1433 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1435 /* Disable host coalescing until we get it set up */
1436 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1438 /* Poll to make sure it's shut down. */
1439 for (i = 0; i < BGE_TIMEOUT; i++) {
1440 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1441 break;
1442 DELAY(10);
1445 if (i == BGE_TIMEOUT) {
1446 if_printf(&sc->arpcom.ac_if,
1447 "host coalescing engine failed to idle\n");
1448 return(ENXIO);
1451 /* Set up host coalescing defaults */
1452 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1453 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1454 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1455 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1456 if (!BGE_IS_5705_PLUS(sc)) {
1457 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1458 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1460 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1461 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1463 /* Set up address of statistics block */
1464 if (!BGE_IS_5705_PLUS(sc)) {
1465 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1466 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1467 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1468 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1470 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1471 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1472 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1475 /* Set up address of status block */
1476 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1477 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1478 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1479 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1480 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1481 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1483 /* Turn on host coalescing state machine */
1484 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1486 /* Turn on RX BD completion state machine and enable attentions */
1487 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1488 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1490 /* Turn on RX list placement state machine */
1491 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1493 /* Turn on RX list selector state machine. */
1494 if (!BGE_IS_5705_PLUS(sc))
1495 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1497 /* Turn on DMA, clear stats */
1498 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1499 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1500 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1501 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1502 ((sc->bge_flags & BGE_FLAG_TBI) ?
1503 BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1505 /* Set misc. local control, enable interrupts on attentions */
1506 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1508 #ifdef notdef
1509 /* Assert GPIO pins for PHY reset */
1510 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1511 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1512 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1513 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1514 #endif
1516 /* Turn on DMA completion state machine */
1517 if (!BGE_IS_5705_PLUS(sc))
1518 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1520 /* Turn on write DMA state machine */
1521 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1522 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1523 sc->bge_asicrev == BGE_ASICREV_BCM5787)
1524 val |= (1 << 29); /* Enable host coalescing bug fix. */
1525 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1527 /* Turn on read DMA state machine */
1528 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1529 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1531 /* Turn on RX data completion state machine */
1532 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1534 /* Turn on RX BD initiator state machine */
1535 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1537 /* Turn on RX data and RX BD initiator state machine */
1538 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1540 /* Turn on Mbuf cluster free state machine */
1541 if (!BGE_IS_5705_PLUS(sc))
1542 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1544 /* Turn on send BD completion state machine */
1545 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1547 /* Turn on send data completion state machine */
1548 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1550 /* Turn on send data initiator state machine */
1551 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1553 /* Turn on send BD initiator state machine */
1554 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1556 /* Turn on send BD selector state machine */
1557 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1559 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1560 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1561 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1563 /* ack/clear link change events */
1564 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1565 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1566 BGE_MACSTAT_LINK_CHANGED);
1567 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1569 /* Enable PHY auto polling (for MII/GMII only) */
1570 if (sc->bge_flags & BGE_FLAG_TBI) {
1571 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1572 } else {
1573 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1574 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1575 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1576 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1577 BGE_EVTENB_MI_INTERRUPT);
1582 * Clear any pending link state attention.
1583 * Otherwise some link state change events may be lost until attention
1584 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1585 * It's not necessary on newer BCM chips - perhaps enabling link
1586 * state change attentions implies clearing pending attention.
1588 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1589 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1590 BGE_MACSTAT_LINK_CHANGED);
1592 /* Enable link state change attentions. */
1593 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1595 return(0);
1599 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1600 * against our list and return its name if we find a match. Note
1601 * that since the Broadcom controller contains VPD support, we
1602 * can get the device name string from the controller itself instead
1603 * of the compiled-in string. This is a little slow, but it guarantees
1604 * we'll always announce the right product name.
1606 static int
1607 bge_probe(device_t dev)
1609 struct bge_softc *sc;
1610 struct bge_type *t;
1611 char *descbuf;
1612 uint16_t product, vendor;
1614 product = pci_get_device(dev);
1615 vendor = pci_get_vendor(dev);
1617 for (t = bge_devs; t->bge_name != NULL; t++) {
1618 if (vendor == t->bge_vid && product == t->bge_did)
1619 break;
1622 if (t->bge_name == NULL)
1623 return(ENXIO);
1625 sc = device_get_softc(dev);
1626 descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1627 ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1628 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1629 device_set_desc_copy(dev, descbuf);
1630 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1631 sc->bge_flags |= BGE_FLAG_NO_3LED;
1632 kfree(descbuf, M_TEMP);
1633 return(0);
1636 static int
1637 bge_attach(device_t dev)
1639 struct ifnet *ifp;
1640 struct bge_softc *sc;
1641 uint32_t hwcfg = 0;
1642 uint32_t mac_addr = 0;
1643 int error = 0, rid;
1644 uint8_t ether_addr[ETHER_ADDR_LEN];
1646 sc = device_get_softc(dev);
1647 sc->bge_dev = dev;
1648 callout_init(&sc->bge_stat_timer);
1649 lwkt_serialize_init(&sc->bge_jslot_serializer);
1652 * Map control/status registers.
1654 pci_enable_busmaster(dev);
1656 rid = BGE_PCI_BAR0;
1657 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1658 RF_ACTIVE);
1660 if (sc->bge_res == NULL) {
1661 device_printf(dev, "couldn't map memory\n");
1662 return ENXIO;
1665 sc->bge_btag = rman_get_bustag(sc->bge_res);
1666 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1668 /* Save ASIC rev. */
1669 sc->bge_chipid =
1670 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1671 BGE_PCIMISCCTL_ASICREV;
1672 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1673 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1675 /* Save chipset family. */
1676 switch (sc->bge_asicrev) {
1677 case BGE_ASICREV_BCM5700:
1678 case BGE_ASICREV_BCM5701:
1679 case BGE_ASICREV_BCM5703:
1680 case BGE_ASICREV_BCM5704:
1681 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1682 break;
1684 case BGE_ASICREV_BCM5714_A0:
1685 case BGE_ASICREV_BCM5780:
1686 case BGE_ASICREV_BCM5714:
1687 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1688 /* Fall through */
1690 case BGE_ASICREV_BCM5750:
1691 case BGE_ASICREV_BCM5752:
1692 case BGE_ASICREV_BCM5755:
1693 case BGE_ASICREV_BCM5787:
1694 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1695 /* Fall through */
1697 case BGE_ASICREV_BCM5705:
1698 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1699 break;
1703 * Set various quirk flags.
1706 sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1707 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1708 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1709 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1710 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1711 sc->bge_asicrev == BGE_ASICREV_BCM5906)
1712 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1714 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1715 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1716 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1718 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1719 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1720 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1722 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1723 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1725 if (BGE_IS_5705_PLUS(sc)) {
1726 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1727 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1728 uint32_t product = pci_get_device(dev);
1730 if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1731 product != PCI_PRODUCT_BROADCOM_BCM5756)
1732 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1733 if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1734 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1735 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1736 sc->bge_flags |= BGE_FLAG_BER_BUG;
1740 /* Allocate interrupt */
1741 rid = 0;
1743 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1744 RF_SHAREABLE | RF_ACTIVE);
1746 if (sc->bge_irq == NULL) {
1747 device_printf(dev, "couldn't map interrupt\n");
1748 error = ENXIO;
1749 goto fail;
1753 * Check if this is a PCI-X or PCI Express device.
1755 if (BGE_IS_5705_PLUS(sc)) {
1756 uint32_t reg;
1758 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1759 if ((reg & 0xff) == BGE_PCIE_CAPID)
1760 sc->bge_flags |= BGE_FLAG_PCIE;
1761 } else {
1763 * Check if the device is in PCI-X Mode.
1764 * (This bit is not valid on PCI Express controllers.)
1766 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1767 BGE_PCISTATE_PCI_BUSMODE) == 0)
1768 sc->bge_flags |= BGE_FLAG_PCIX;
1771 if (bootverbose) {
1772 device_printf(dev, "asic 0x%04x, chip 0x%04x, %s\n",
1773 sc->bge_asicrev, sc->bge_chiprev,
1774 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1775 : ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
1778 ifp = &sc->arpcom.ac_if;
1779 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1781 /* Try to reset the chip. */
1782 bge_reset(sc);
1784 if (bge_chipinit(sc)) {
1785 device_printf(dev, "chip initialization failed\n");
1786 error = ENXIO;
1787 goto fail;
1791 * Get station address from the EEPROM.
1793 mac_addr = bge_readmem_ind(sc, 0x0c14);
1794 if ((mac_addr >> 16) == 0x484b) {
1795 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1796 ether_addr[1] = (uint8_t)mac_addr;
1797 mac_addr = bge_readmem_ind(sc, 0x0c18);
1798 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1799 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1800 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1801 ether_addr[5] = (uint8_t)mac_addr;
1802 } else if (bge_read_eeprom(sc, ether_addr,
1803 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1804 device_printf(dev, "failed to read station address\n");
1805 error = ENXIO;
1806 goto fail;
1809 /* 5705/5750 limits RX return ring to 512 entries. */
1810 if (BGE_IS_5705_PLUS(sc))
1811 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1812 else
1813 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1815 error = bge_dma_alloc(sc);
1816 if (error)
1817 goto fail;
1819 /* Set default tuneable values. */
1820 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1821 sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1822 sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1823 sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1824 sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1826 /* Set up ifnet structure */
1827 ifp->if_softc = sc;
1828 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1829 ifp->if_ioctl = bge_ioctl;
1830 ifp->if_start = bge_start;
1831 #ifdef DEVICE_POLLING
1832 ifp->if_poll = bge_poll;
1833 #endif
1834 ifp->if_watchdog = bge_watchdog;
1835 ifp->if_init = bge_init;
1836 ifp->if_mtu = ETHERMTU;
1837 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1838 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1839 ifq_set_ready(&ifp->if_snd);
1842 * 5700 B0 chips do not support checksumming correctly due
1843 * to hardware bugs.
1845 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1846 ifp->if_capabilities |= IFCAP_HWCSUM;
1847 ifp->if_hwassist = BGE_CSUM_FEATURES;
1849 ifp->if_capenable = ifp->if_capabilities;
1852 * Figure out what sort of media we have by checking the
1853 * hardware config word in the first 32k of NIC internal memory,
1854 * or fall back to examining the EEPROM if necessary.
1855 * Note: on some BCM5700 cards, this value appears to be unset.
1856 * If that's the case, we have to rely on identifying the NIC
1857 * by its PCI subsystem ID, as we do below for the SysKonnect
1858 * SK-9D41.
1860 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1861 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1862 else {
1863 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1864 sizeof(hwcfg))) {
1865 device_printf(dev, "failed to read EEPROM\n");
1866 error = ENXIO;
1867 goto fail;
1869 hwcfg = ntohl(hwcfg);
1872 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1873 sc->bge_flags |= BGE_FLAG_TBI;
1875 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1876 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1877 sc->bge_flags |= BGE_FLAG_TBI;
1879 if (sc->bge_flags & BGE_FLAG_TBI) {
1880 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1881 bge_ifmedia_upd, bge_ifmedia_sts);
1882 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1883 ifmedia_add(&sc->bge_ifmedia,
1884 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1885 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1886 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1887 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1888 } else {
1890 * Do transceiver setup.
1892 if (mii_phy_probe(dev, &sc->bge_miibus,
1893 bge_ifmedia_upd, bge_ifmedia_sts)) {
1894 device_printf(dev, "MII without any PHY!\n");
1895 error = ENXIO;
1896 goto fail;
1901 * When using the BCM5701 in PCI-X mode, data corruption has
1902 * been observed in the first few bytes of some received packets.
1903 * Aligning the packet buffer in memory eliminates the corruption.
1904 * Unfortunately, this misaligns the packet payloads. On platforms
1905 * which do not support unaligned accesses, we will realign the
1906 * payloads by copying the received packets.
1908 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1909 (sc->bge_flags & BGE_FLAG_PCIX))
1910 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1912 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1913 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1914 sc->bge_link_upd = bge_bcm5700_link_upd;
1915 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1916 } else if (sc->bge_flags & BGE_FLAG_TBI) {
1917 sc->bge_link_upd = bge_tbi_link_upd;
1918 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1919 } else {
1920 sc->bge_link_upd = bge_copper_link_upd;
1921 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1925 * Create sysctl nodes.
1927 sysctl_ctx_init(&sc->bge_sysctl_ctx);
1928 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1929 SYSCTL_STATIC_CHILDREN(_hw),
1930 OID_AUTO,
1931 device_get_nameunit(dev),
1932 CTLFLAG_RD, 0, "");
1933 if (sc->bge_sysctl_tree == NULL) {
1934 device_printf(dev, "can't add sysctl node\n");
1935 error = ENXIO;
1936 goto fail;
1939 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1940 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1941 OID_AUTO, "rx_coal_ticks",
1942 CTLTYPE_INT | CTLFLAG_RW,
1943 sc, 0, bge_sysctl_rx_coal_ticks, "I",
1944 "Receive coalescing ticks (usec).");
1945 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1946 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1947 OID_AUTO, "tx_coal_ticks",
1948 CTLTYPE_INT | CTLFLAG_RW,
1949 sc, 0, bge_sysctl_tx_coal_ticks, "I",
1950 "Transmit coalescing ticks (usec).");
1951 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1952 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1953 OID_AUTO, "rx_max_coal_bds",
1954 CTLTYPE_INT | CTLFLAG_RW,
1955 sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1956 "Receive max coalesced BD count.");
1957 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1958 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1959 OID_AUTO, "tx_max_coal_bds",
1960 CTLTYPE_INT | CTLFLAG_RW,
1961 sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1962 "Transmit max coalesced BD count.");
1965 * Call MI attach routine.
1967 ether_ifattach(ifp, ether_addr, NULL);
1969 error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1970 bge_intr, sc, &sc->bge_intrhand,
1971 ifp->if_serializer);
1972 if (error) {
1973 ether_ifdetach(ifp);
1974 device_printf(dev, "couldn't set up irq\n");
1975 goto fail;
1978 ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq));
1979 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1981 return(0);
1982 fail:
1983 bge_detach(dev);
1984 return(error);
1987 static int
1988 bge_detach(device_t dev)
1990 struct bge_softc *sc = device_get_softc(dev);
1992 if (device_is_attached(dev)) {
1993 struct ifnet *ifp = &sc->arpcom.ac_if;
1995 lwkt_serialize_enter(ifp->if_serializer);
1996 bge_stop(sc);
1997 bge_reset(sc);
1998 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1999 lwkt_serialize_exit(ifp->if_serializer);
2001 ether_ifdetach(ifp);
2004 if (sc->bge_flags & BGE_FLAG_TBI)
2005 ifmedia_removeall(&sc->bge_ifmedia);
2006 if (sc->bge_miibus)
2007 device_delete_child(dev, sc->bge_miibus);
2008 bus_generic_detach(dev);
2010 if (sc->bge_irq != NULL)
2011 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2013 if (sc->bge_res != NULL)
2014 bus_release_resource(dev, SYS_RES_MEMORY,
2015 BGE_PCI_BAR0, sc->bge_res);
2017 if (sc->bge_sysctl_tree != NULL)
2018 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2020 bge_dma_free(sc);
2022 return 0;
2025 static void
2026 bge_reset(struct bge_softc *sc)
2028 device_t dev;
2029 uint32_t cachesize, command, pcistate, reset;
2030 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2031 int i, val = 0;
2033 dev = sc->bge_dev;
2035 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2036 if (sc->bge_flags & BGE_FLAG_PCIE)
2037 write_op = bge_writemem_direct;
2038 else
2039 write_op = bge_writemem_ind;
2040 } else {
2041 write_op = bge_writereg_ind;
2044 /* Save some important PCI state. */
2045 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2046 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2047 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2049 pci_write_config(dev, BGE_PCI_MISC_CTL,
2050 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2051 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2053 /* Disable fastboot on controllers that support it. */
2054 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2055 sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2056 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2057 if (bootverbose)
2058 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2059 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2063 * Write the magic number to SRAM at offset 0xB50.
2064 * When firmware finishes its initialization it will
2065 * write ~BGE_MAGIC_NUMBER to the same location.
2067 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2069 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2071 /* XXX: Broadcom Linux driver. */
2072 if (sc->bge_flags & BGE_FLAG_PCIE) {
2073 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
2074 CSR_WRITE_4(sc, 0x7e2c, 0x20);
2075 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2076 /* Prevent PCIE link training during global reset */
2077 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2078 reset |= (1<<29);
2083 * Set GPHY Power Down Override to leave GPHY
2084 * powered up in D0 uninitialized.
2086 if (BGE_IS_5705_PLUS(sc))
2087 reset |= 0x04000000;
2089 /* Issue global reset */
2090 write_op(sc, BGE_MISC_CFG, reset);
2092 DELAY(1000);
2094 /* XXX: Broadcom Linux driver. */
2095 if (sc->bge_flags & BGE_FLAG_PCIE) {
2096 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2097 uint32_t v;
2099 DELAY(500000); /* wait for link training to complete */
2100 v = pci_read_config(dev, 0xc4, 4);
2101 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2104 * Set PCIE max payload size to 128 bytes and
2105 * clear error status.
2107 pci_write_config(dev, 0xd8, 0xf5000, 4);
2110 /* Reset some of the PCI state that got zapped by reset */
2111 pci_write_config(dev, BGE_PCI_MISC_CTL,
2112 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2113 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2114 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2115 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2116 write_op(sc, BGE_MISC_CFG, (65 << 1));
2118 /* Enable memory arbiter. */
2119 if (BGE_IS_5714_FAMILY(sc)) {
2120 uint32_t val;
2122 val = CSR_READ_4(sc, BGE_MARB_MODE);
2123 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2124 } else {
2125 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2129 * Poll until we see the 1's complement of the magic number.
2130 * This indicates that the firmware initialization
2131 * is complete.
2133 for (i = 0; i < BGE_TIMEOUT; i++) {
2134 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2135 if (val == ~BGE_MAGIC_NUMBER)
2136 break;
2137 DELAY(10);
2140 if (i == BGE_TIMEOUT) {
2141 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2142 "found 0x%08x\n", val);
2143 return;
2147 * XXX Wait for the value of the PCISTATE register to
2148 * return to its original pre-reset state. This is a
2149 * fairly good indicator of reset completion. If we don't
2150 * wait for the reset to fully complete, trying to read
2151 * from the device's non-PCI registers may yield garbage
2152 * results.
2154 for (i = 0; i < BGE_TIMEOUT; i++) {
2155 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2156 break;
2157 DELAY(10);
2160 if (sc->bge_flags & BGE_FLAG_PCIE) {
2161 reset = bge_readmem_ind(sc, 0x7c00);
2162 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2165 /* Fix up byte swapping */
2166 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2167 BGE_MODECTL_BYTESWAP_DATA);
2169 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2172 * The 5704 in TBI mode apparently needs some special
2173 * adjustment to insure the SERDES drive level is set
2174 * to 1.2V.
2176 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2177 (sc->bge_flags & BGE_FLAG_TBI)) {
2178 uint32_t serdescfg;
2180 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2181 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2182 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2185 /* XXX: Broadcom Linux driver. */
2186 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2187 sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2188 uint32_t v;
2190 v = CSR_READ_4(sc, 0x7c00);
2191 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2194 DELAY(10000);
2198 * Frame reception handling. This is called if there's a frame
2199 * on the receive return list.
2201 * Note: we have to be able to handle two possibilities here:
2202 * 1) the frame is from the jumbo recieve ring
2203 * 2) the frame is from the standard receive ring
2206 static void
2207 bge_rxeof(struct bge_softc *sc)
2209 struct ifnet *ifp;
2210 int stdcnt = 0, jumbocnt = 0;
2211 #ifdef ETHER_INPUT_CHAIN
2212 struct mbuf_chain chain[MAXCPU];
2213 #endif
2215 if (sc->bge_rx_saved_considx ==
2216 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2217 return;
2219 #ifdef ETHER_INPUT_CHAIN
2220 ether_input_chain_init(chain);
2221 #endif
2223 ifp = &sc->arpcom.ac_if;
2225 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2226 sc->bge_cdata.bge_rx_return_ring_map,
2227 BUS_DMASYNC_POSTREAD);
2228 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2229 sc->bge_cdata.bge_rx_std_ring_map,
2230 BUS_DMASYNC_POSTREAD);
2231 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2232 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2233 sc->bge_cdata.bge_rx_jumbo_ring_map,
2234 BUS_DMASYNC_POSTREAD);
2237 while (sc->bge_rx_saved_considx !=
2238 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2239 struct bge_rx_bd *cur_rx;
2240 uint32_t rxidx;
2241 struct mbuf *m = NULL;
2242 uint16_t vlan_tag = 0;
2243 int have_tag = 0;
2245 cur_rx =
2246 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2248 rxidx = cur_rx->bge_idx;
2249 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2250 logif(rx_pkt);
2252 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2253 have_tag = 1;
2254 vlan_tag = cur_rx->bge_vlan_tag;
2257 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2258 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2259 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2260 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2261 jumbocnt++;
2262 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2263 ifp->if_ierrors++;
2264 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2265 continue;
2267 if (bge_newbuf_jumbo(sc,
2268 sc->bge_jumbo, NULL) == ENOBUFS) {
2269 ifp->if_ierrors++;
2270 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2271 continue;
2273 } else {
2274 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2275 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2276 sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2277 BUS_DMASYNC_POSTREAD);
2278 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2279 sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2280 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2281 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2282 stdcnt++;
2283 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2284 ifp->if_ierrors++;
2285 bge_newbuf_std(sc, sc->bge_std, m);
2286 continue;
2288 if (bge_newbuf_std(sc, sc->bge_std,
2289 NULL) == ENOBUFS) {
2290 ifp->if_ierrors++;
2291 bge_newbuf_std(sc, sc->bge_std, m);
2292 continue;
2296 ifp->if_ipackets++;
2297 #ifndef __i386__
2299 * The i386 allows unaligned accesses, but for other
2300 * platforms we must make sure the payload is aligned.
2302 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2303 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2304 cur_rx->bge_len);
2305 m->m_data += ETHER_ALIGN;
2307 #endif
2308 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2309 m->m_pkthdr.rcvif = ifp;
2311 if (ifp->if_capenable & IFCAP_RXCSUM) {
2312 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2313 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2314 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2315 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2317 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2318 m->m_pkthdr.len >= BGE_MIN_FRAME) {
2319 m->m_pkthdr.csum_data =
2320 cur_rx->bge_tcp_udp_csum;
2321 m->m_pkthdr.csum_flags |=
2322 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2327 * If we received a packet with a vlan tag, pass it
2328 * to vlan_input() instead of ether_input().
2330 if (have_tag) {
2331 m->m_flags |= M_VLANTAG;
2332 m->m_pkthdr.ether_vlantag = vlan_tag;
2333 have_tag = vlan_tag = 0;
2335 #ifdef ETHER_INPUT_CHAIN
2336 #ifdef ETHER_INPUT2
2337 ether_input_chain2(ifp, m, chain);
2338 #else
2339 ether_input_chain(ifp, m, chain);
2340 #endif
2341 #else
2342 ifp->if_input(ifp, m);
2343 #endif
2346 #ifdef ETHER_INPUT_CHAIN
2347 ether_input_dispatch(chain);
2348 #endif
2350 if (stdcnt > 0) {
2351 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2352 sc->bge_cdata.bge_rx_std_ring_map,
2353 BUS_DMASYNC_PREWRITE);
2356 if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2357 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2358 sc->bge_cdata.bge_rx_jumbo_ring_map,
2359 BUS_DMASYNC_PREWRITE);
2362 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2363 if (stdcnt)
2364 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2365 if (jumbocnt)
2366 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2369 static void
2370 bge_txeof(struct bge_softc *sc)
2372 struct bge_tx_bd *cur_tx = NULL;
2373 struct ifnet *ifp;
2375 if (sc->bge_tx_saved_considx ==
2376 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2377 return;
2379 ifp = &sc->arpcom.ac_if;
2381 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2382 sc->bge_cdata.bge_tx_ring_map,
2383 BUS_DMASYNC_POSTREAD);
2386 * Go through our tx ring and free mbufs for those
2387 * frames that have been sent.
2389 while (sc->bge_tx_saved_considx !=
2390 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2391 uint32_t idx = 0;
2393 idx = sc->bge_tx_saved_considx;
2394 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2395 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2396 ifp->if_opackets++;
2397 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2398 bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2399 sc->bge_cdata.bge_tx_dmamap[idx],
2400 BUS_DMASYNC_POSTWRITE);
2401 bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2402 sc->bge_cdata.bge_tx_dmamap[idx]);
2403 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2404 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2406 sc->bge_txcnt--;
2407 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2408 logif(tx_pkt);
2411 if (cur_tx != NULL &&
2412 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2413 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2414 ifp->if_flags &= ~IFF_OACTIVE;
2416 if (sc->bge_txcnt == 0)
2417 ifp->if_timer = 0;
2419 if (!ifq_is_empty(&ifp->if_snd))
2420 if_devstart(ifp);
2423 #ifdef DEVICE_POLLING
2425 static void
2426 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2428 struct bge_softc *sc = ifp->if_softc;
2429 uint32_t status;
2431 switch(cmd) {
2432 case POLL_REGISTER:
2433 bge_disable_intr(sc);
2434 break;
2435 case POLL_DEREGISTER:
2436 bge_enable_intr(sc);
2437 break;
2438 case POLL_AND_CHECK_STATUS:
2439 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2440 sc->bge_cdata.bge_status_map,
2441 BUS_DMASYNC_POSTREAD);
2444 * Process link state changes.
2446 status = CSR_READ_4(sc, BGE_MAC_STS);
2447 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2448 sc->bge_link_evt = 0;
2449 sc->bge_link_upd(sc, status);
2451 /* fall through */
2452 case POLL_ONLY:
2453 if (ifp->if_flags & IFF_RUNNING) {
2454 bge_rxeof(sc);
2455 bge_txeof(sc);
2457 break;
2461 #endif
2463 static void
2464 bge_intr(void *xsc)
2466 struct bge_softc *sc = xsc;
2467 struct ifnet *ifp = &sc->arpcom.ac_if;
2468 uint32_t status;
2470 logif(intr);
2473 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2474 * disable interrupts by writing nonzero like we used to, since with
2475 * our current organization this just gives complications and
2476 * pessimizations for re-enabling interrupts. We used to have races
2477 * instead of the necessary complications. Disabling interrupts
2478 * would just reduce the chance of a status update while we are
2479 * running (by switching to the interrupt-mode coalescence
2480 * parameters), but this chance is already very low so it is more
2481 * efficient to get another interrupt than prevent it.
2483 * We do the ack first to ensure another interrupt if there is a
2484 * status update after the ack. We don't check for the status
2485 * changing later because it is more efficient to get another
2486 * interrupt than prevent it, not quite as above (not checking is
2487 * a smaller optimization than not toggling the interrupt enable,
2488 * since checking doesn't involve PCI accesses and toggling require
2489 * the status check). So toggling would probably be a pessimization
2490 * even with MSI. It would only be needed for using a task queue.
2492 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2494 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2495 sc->bge_cdata.bge_status_map,
2496 BUS_DMASYNC_POSTREAD);
2499 * Process link state changes.
2501 status = CSR_READ_4(sc, BGE_MAC_STS);
2502 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2503 sc->bge_link_evt = 0;
2504 sc->bge_link_upd(sc, status);
2507 if (ifp->if_flags & IFF_RUNNING) {
2508 /* Check RX return ring producer/consumer */
2509 bge_rxeof(sc);
2511 /* Check TX ring producer/consumer */
2512 bge_txeof(sc);
2515 if (sc->bge_coal_chg)
2516 bge_coal_change(sc);
2519 static void
2520 bge_tick(void *xsc)
2522 struct bge_softc *sc = xsc;
2523 struct ifnet *ifp = &sc->arpcom.ac_if;
2525 lwkt_serialize_enter(ifp->if_serializer);
2527 if (BGE_IS_5705_PLUS(sc))
2528 bge_stats_update_regs(sc);
2529 else
2530 bge_stats_update(sc);
2532 if (sc->bge_flags & BGE_FLAG_TBI) {
2534 * Since in TBI mode auto-polling can't be used we should poll
2535 * link status manually. Here we register pending link event
2536 * and trigger interrupt.
2538 sc->bge_link_evt++;
2539 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2540 } else if (!sc->bge_link) {
2541 mii_tick(device_get_softc(sc->bge_miibus));
2544 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2546 lwkt_serialize_exit(ifp->if_serializer);
2549 static void
2550 bge_stats_update_regs(struct bge_softc *sc)
2552 struct ifnet *ifp = &sc->arpcom.ac_if;
2553 struct bge_mac_stats_regs stats;
2554 uint32_t *s;
2555 int i;
2557 s = (uint32_t *)&stats;
2558 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2559 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2560 s++;
2563 ifp->if_collisions +=
2564 (stats.dot3StatsSingleCollisionFrames +
2565 stats.dot3StatsMultipleCollisionFrames +
2566 stats.dot3StatsExcessiveCollisions +
2567 stats.dot3StatsLateCollisions) -
2568 ifp->if_collisions;
2571 static void
2572 bge_stats_update(struct bge_softc *sc)
2574 struct ifnet *ifp = &sc->arpcom.ac_if;
2575 bus_size_t stats;
2577 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2579 #define READ_STAT(sc, stats, stat) \
2580 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2582 ifp->if_collisions +=
2583 (READ_STAT(sc, stats,
2584 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2585 READ_STAT(sc, stats,
2586 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2587 READ_STAT(sc, stats,
2588 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2589 READ_STAT(sc, stats,
2590 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2591 ifp->if_collisions;
2593 #undef READ_STAT
2595 #ifdef notdef
2596 ifp->if_collisions +=
2597 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2598 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2599 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2600 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2601 ifp->if_collisions;
2602 #endif
2606 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2607 * pointers to descriptors.
2609 static int
2610 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2612 struct bge_tx_bd *d = NULL;
2613 uint16_t csum_flags = 0;
2614 struct bge_dmamap_arg ctx;
2615 bus_dma_segment_t segs[BGE_NSEG_NEW];
2616 bus_dmamap_t map;
2617 int error, maxsegs, idx, i;
2618 struct mbuf *m_head = *m_head0;
2620 if (m_head->m_pkthdr.csum_flags) {
2621 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2622 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2623 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2624 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2625 if (m_head->m_flags & M_LASTFRAG)
2626 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2627 else if (m_head->m_flags & M_FRAG)
2628 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2631 idx = *txidx;
2632 map = sc->bge_cdata.bge_tx_dmamap[idx];
2634 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2635 KASSERT(maxsegs >= BGE_NSEG_SPARE,
2636 ("not enough segments %d\n", maxsegs));
2638 if (maxsegs > BGE_NSEG_NEW)
2639 maxsegs = BGE_NSEG_NEW;
2642 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2643 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2644 * but when such padded frames employ the bge IP/TCP checksum
2645 * offload, the hardware checksum assist gives incorrect results
2646 * (possibly from incorporating its own padding into the UDP/TCP
2647 * checksum; who knows). If we pad such runts with zeros, the
2648 * onboard checksum comes out correct. We do this by pretending
2649 * the mbuf chain has too many fragments so the coalescing code
2650 * below can assemble the packet into a single buffer that's
2651 * padded out to the mininum frame size.
2653 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2654 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2655 error = EFBIG;
2656 } else {
2657 ctx.bge_segs = segs;
2658 ctx.bge_maxsegs = maxsegs;
2659 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2660 m_head, bge_dma_map_mbuf, &ctx,
2661 BUS_DMA_NOWAIT);
2663 if (error == EFBIG || ctx.bge_maxsegs == 0) {
2664 struct mbuf *m_new;
2666 m_new = m_defrag(m_head, MB_DONTWAIT);
2667 if (m_new == NULL) {
2668 if_printf(&sc->arpcom.ac_if,
2669 "could not defrag TX mbuf\n");
2670 error = ENOBUFS;
2671 goto back;
2672 } else {
2673 m_head = m_new;
2674 *m_head0 = m_head;
2678 * Manually pad short frames, and zero the pad space
2679 * to avoid leaking data.
2681 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2682 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2683 int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2685 bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2686 pad_len);
2687 m_head->m_pkthdr.len += pad_len;
2688 m_head->m_len = m_head->m_pkthdr.len;
2691 ctx.bge_segs = segs;
2692 ctx.bge_maxsegs = maxsegs;
2693 error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2694 m_head, bge_dma_map_mbuf, &ctx,
2695 BUS_DMA_NOWAIT);
2696 if (error || ctx.bge_maxsegs == 0) {
2697 if_printf(&sc->arpcom.ac_if,
2698 "could not defrag TX mbuf\n");
2699 if (error == 0)
2700 error = EFBIG;
2701 goto back;
2703 } else if (error) {
2704 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2705 goto back;
2708 bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2710 for (i = 0; ; i++) {
2711 d = &sc->bge_ldata.bge_tx_ring[idx];
2713 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2714 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2715 d->bge_len = segs[i].ds_len;
2716 d->bge_flags = csum_flags;
2718 if (i == ctx.bge_maxsegs - 1)
2719 break;
2720 BGE_INC(idx, BGE_TX_RING_CNT);
2722 /* Mark the last segment as end of packet... */
2723 d->bge_flags |= BGE_TXBDFLAG_END;
2725 /* Set vlan tag to the first segment of the packet. */
2726 d = &sc->bge_ldata.bge_tx_ring[*txidx];
2727 if (m_head->m_flags & M_VLANTAG) {
2728 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2729 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2730 } else {
2731 d->bge_vlan_tag = 0;
2735 * Insure that the map for this transmission is placed at
2736 * the array index of the last descriptor in this chain.
2738 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2739 sc->bge_cdata.bge_tx_dmamap[idx] = map;
2740 sc->bge_cdata.bge_tx_chain[idx] = m_head;
2741 sc->bge_txcnt += ctx.bge_maxsegs;
2743 BGE_INC(idx, BGE_TX_RING_CNT);
2744 *txidx = idx;
2745 back:
2746 if (error) {
2747 m_freem(m_head);
2748 *m_head0 = NULL;
2750 return error;
2754 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2755 * to the mbuf data regions directly in the transmit descriptors.
2757 static void
2758 bge_start(struct ifnet *ifp)
2760 struct bge_softc *sc = ifp->if_softc;
2761 struct mbuf *m_head = NULL;
2762 uint32_t prodidx;
2763 int need_trans;
2765 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2766 return;
2768 prodidx = sc->bge_tx_prodidx;
2770 need_trans = 0;
2771 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2772 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2773 if (m_head == NULL)
2774 break;
2777 * XXX
2778 * The code inside the if() block is never reached since we
2779 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2780 * requests to checksum TCP/UDP in a fragmented packet.
2782 * XXX
2783 * safety overkill. If this is a fragmented packet chain
2784 * with delayed TCP/UDP checksums, then only encapsulate
2785 * it if we have enough descriptors to handle the entire
2786 * chain at once.
2787 * (paranoia -- may not actually be needed)
2789 if ((m_head->m_flags & M_FIRSTFRAG) &&
2790 (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2791 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2792 m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2793 ifp->if_flags |= IFF_OACTIVE;
2794 ifq_prepend(&ifp->if_snd, m_head);
2795 break;
2800 * Sanity check: avoid coming within BGE_NSEG_RSVD
2801 * descriptors of the end of the ring. Also make
2802 * sure there are BGE_NSEG_SPARE descriptors for
2803 * jumbo buffers' defragmentation.
2805 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2806 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2807 ifp->if_flags |= IFF_OACTIVE;
2808 ifq_prepend(&ifp->if_snd, m_head);
2809 break;
2813 * Pack the data into the transmit ring. If we
2814 * don't have room, set the OACTIVE flag and wait
2815 * for the NIC to drain the ring.
2817 if (bge_encap(sc, &m_head, &prodidx)) {
2818 ifp->if_flags |= IFF_OACTIVE;
2819 break;
2821 need_trans = 1;
2823 ETHER_BPF_MTAP(ifp, m_head);
2826 if (!need_trans)
2827 return;
2829 /* Transmit */
2830 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2831 /* 5700 b2 errata */
2832 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2833 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2835 sc->bge_tx_prodidx = prodidx;
2838 * Set a timeout in case the chip goes out to lunch.
2840 ifp->if_timer = 5;
2843 static void
2844 bge_init(void *xsc)
2846 struct bge_softc *sc = xsc;
2847 struct ifnet *ifp = &sc->arpcom.ac_if;
2848 uint16_t *m;
2850 ASSERT_SERIALIZED(ifp->if_serializer);
2852 if (ifp->if_flags & IFF_RUNNING)
2853 return;
2855 /* Cancel pending I/O and flush buffers. */
2856 bge_stop(sc);
2857 bge_reset(sc);
2858 bge_chipinit(sc);
2861 * Init the various state machines, ring
2862 * control blocks and firmware.
2864 if (bge_blockinit(sc)) {
2865 if_printf(ifp, "initialization failure\n");
2866 return;
2869 /* Specify MTU. */
2870 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2871 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2873 /* Load our MAC address. */
2874 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2875 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2876 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2878 /* Enable or disable promiscuous mode as needed. */
2879 bge_setpromisc(sc);
2881 /* Program multicast filter. */
2882 bge_setmulti(sc);
2884 /* Init RX ring. */
2885 bge_init_rx_ring_std(sc);
2888 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2889 * memory to insure that the chip has in fact read the first
2890 * entry of the ring.
2892 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2893 uint32_t v, i;
2894 for (i = 0; i < 10; i++) {
2895 DELAY(20);
2896 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2897 if (v == (MCLBYTES - ETHER_ALIGN))
2898 break;
2900 if (i == 10)
2901 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2904 /* Init jumbo RX ring. */
2905 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2906 bge_init_rx_ring_jumbo(sc);
2908 /* Init our RX return ring index */
2909 sc->bge_rx_saved_considx = 0;
2911 /* Init TX ring. */
2912 bge_init_tx_ring(sc);
2914 /* Turn on transmitter */
2915 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2917 /* Turn on receiver */
2918 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2920 /* Tell firmware we're alive. */
2921 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2923 /* Enable host interrupts if polling(4) is not enabled. */
2924 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2925 #ifdef DEVICE_POLLING
2926 if (ifp->if_flags & IFF_POLLING)
2927 bge_disable_intr(sc);
2928 else
2929 #endif
2930 bge_enable_intr(sc);
2932 bge_ifmedia_upd(ifp);
2934 ifp->if_flags |= IFF_RUNNING;
2935 ifp->if_flags &= ~IFF_OACTIVE;
2937 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2941 * Set media options.
2943 static int
2944 bge_ifmedia_upd(struct ifnet *ifp)
2946 struct bge_softc *sc = ifp->if_softc;
2948 /* If this is a 1000baseX NIC, enable the TBI port. */
2949 if (sc->bge_flags & BGE_FLAG_TBI) {
2950 struct ifmedia *ifm = &sc->bge_ifmedia;
2952 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2953 return(EINVAL);
2955 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2956 case IFM_AUTO:
2958 * The BCM5704 ASIC appears to have a special
2959 * mechanism for programming the autoneg
2960 * advertisement registers in TBI mode.
2962 if (!bge_fake_autoneg &&
2963 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2964 uint32_t sgdig;
2966 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2967 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2968 sgdig |= BGE_SGDIGCFG_AUTO |
2969 BGE_SGDIGCFG_PAUSE_CAP |
2970 BGE_SGDIGCFG_ASYM_PAUSE;
2971 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2972 sgdig | BGE_SGDIGCFG_SEND);
2973 DELAY(5);
2974 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2976 break;
2977 case IFM_1000_SX:
2978 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2979 BGE_CLRBIT(sc, BGE_MAC_MODE,
2980 BGE_MACMODE_HALF_DUPLEX);
2981 } else {
2982 BGE_SETBIT(sc, BGE_MAC_MODE,
2983 BGE_MACMODE_HALF_DUPLEX);
2985 break;
2986 default:
2987 return(EINVAL);
2989 } else {
2990 struct mii_data *mii = device_get_softc(sc->bge_miibus);
2992 sc->bge_link_evt++;
2993 sc->bge_link = 0;
2994 if (mii->mii_instance) {
2995 struct mii_softc *miisc;
2997 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2998 mii_phy_reset(miisc);
3000 mii_mediachg(mii);
3002 return(0);
3006 * Report current media status.
3008 static void
3009 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3011 struct bge_softc *sc = ifp->if_softc;
3013 if (sc->bge_flags & BGE_FLAG_TBI) {
3014 ifmr->ifm_status = IFM_AVALID;
3015 ifmr->ifm_active = IFM_ETHER;
3016 if (CSR_READ_4(sc, BGE_MAC_STS) &
3017 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3018 ifmr->ifm_status |= IFM_ACTIVE;
3019 } else {
3020 ifmr->ifm_active |= IFM_NONE;
3021 return;
3024 ifmr->ifm_active |= IFM_1000_SX;
3025 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3026 ifmr->ifm_active |= IFM_HDX;
3027 else
3028 ifmr->ifm_active |= IFM_FDX;
3029 } else {
3030 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3032 mii_pollstat(mii);
3033 ifmr->ifm_active = mii->mii_media_active;
3034 ifmr->ifm_status = mii->mii_media_status;
3038 static int
3039 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3041 struct bge_softc *sc = ifp->if_softc;
3042 struct ifreq *ifr = (struct ifreq *)data;
3043 int mask, error = 0;
3045 ASSERT_SERIALIZED(ifp->if_serializer);
3047 switch (command) {
3048 case SIOCSIFMTU:
3049 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3050 (BGE_IS_JUMBO_CAPABLE(sc) &&
3051 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3052 error = EINVAL;
3053 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3054 ifp->if_mtu = ifr->ifr_mtu;
3055 ifp->if_flags &= ~IFF_RUNNING;
3056 bge_init(sc);
3058 break;
3059 case SIOCSIFFLAGS:
3060 if (ifp->if_flags & IFF_UP) {
3061 if (ifp->if_flags & IFF_RUNNING) {
3062 mask = ifp->if_flags ^ sc->bge_if_flags;
3065 * If only the state of the PROMISC flag
3066 * changed, then just use the 'set promisc
3067 * mode' command instead of reinitializing
3068 * the entire NIC. Doing a full re-init
3069 * means reloading the firmware and waiting
3070 * for it to start up, which may take a
3071 * second or two. Similarly for ALLMULTI.
3073 if (mask & IFF_PROMISC)
3074 bge_setpromisc(sc);
3075 if (mask & IFF_ALLMULTI)
3076 bge_setmulti(sc);
3077 } else {
3078 bge_init(sc);
3080 } else {
3081 if (ifp->if_flags & IFF_RUNNING)
3082 bge_stop(sc);
3084 sc->bge_if_flags = ifp->if_flags;
3085 break;
3086 case SIOCADDMULTI:
3087 case SIOCDELMULTI:
3088 if (ifp->if_flags & IFF_RUNNING)
3089 bge_setmulti(sc);
3090 break;
3091 case SIOCSIFMEDIA:
3092 case SIOCGIFMEDIA:
3093 if (sc->bge_flags & BGE_FLAG_TBI) {
3094 error = ifmedia_ioctl(ifp, ifr,
3095 &sc->bge_ifmedia, command);
3096 } else {
3097 struct mii_data *mii;
3099 mii = device_get_softc(sc->bge_miibus);
3100 error = ifmedia_ioctl(ifp, ifr,
3101 &mii->mii_media, command);
3103 break;
3104 case SIOCSIFCAP:
3105 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3106 if (mask & IFCAP_HWCSUM) {
3107 ifp->if_capenable ^= IFCAP_HWCSUM;
3108 if (IFCAP_HWCSUM & ifp->if_capenable)
3109 ifp->if_hwassist = BGE_CSUM_FEATURES;
3110 else
3111 ifp->if_hwassist = 0;
3113 break;
3114 default:
3115 error = ether_ioctl(ifp, command, data);
3116 break;
3118 return error;
3121 static void
3122 bge_watchdog(struct ifnet *ifp)
3124 struct bge_softc *sc = ifp->if_softc;
3126 if_printf(ifp, "watchdog timeout -- resetting\n");
3128 ifp->if_flags &= ~IFF_RUNNING;
3129 bge_init(sc);
3131 ifp->if_oerrors++;
3133 if (!ifq_is_empty(&ifp->if_snd))
3134 if_devstart(ifp);
3138 * Stop the adapter and free any mbufs allocated to the
3139 * RX and TX lists.
3141 static void
3142 bge_stop(struct bge_softc *sc)
3144 struct ifnet *ifp = &sc->arpcom.ac_if;
3145 struct ifmedia_entry *ifm;
3146 struct mii_data *mii = NULL;
3147 int mtmp, itmp;
3149 ASSERT_SERIALIZED(ifp->if_serializer);
3151 if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3152 mii = device_get_softc(sc->bge_miibus);
3154 callout_stop(&sc->bge_stat_timer);
3157 * Disable all of the receiver blocks
3159 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3160 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3161 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3162 if (!BGE_IS_5705_PLUS(sc))
3163 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3164 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3165 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3166 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3169 * Disable all of the transmit blocks
3171 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3172 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3173 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3174 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3175 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3176 if (!BGE_IS_5705_PLUS(sc))
3177 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3178 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3181 * Shut down all of the memory managers and related
3182 * state machines.
3184 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3185 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3186 if (!BGE_IS_5705_PLUS(sc))
3187 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3188 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3189 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3190 if (!BGE_IS_5705_PLUS(sc)) {
3191 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3192 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3195 /* Disable host interrupts. */
3196 bge_disable_intr(sc);
3199 * Tell firmware we're shutting down.
3201 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3203 /* Free the RX lists. */
3204 bge_free_rx_ring_std(sc);
3206 /* Free jumbo RX list. */
3207 if (BGE_IS_JUMBO_CAPABLE(sc))
3208 bge_free_rx_ring_jumbo(sc);
3210 /* Free TX buffers. */
3211 bge_free_tx_ring(sc);
3214 * Isolate/power down the PHY, but leave the media selection
3215 * unchanged so that things will be put back to normal when
3216 * we bring the interface back up.
3218 * 'mii' may be NULL in the following cases:
3219 * - The device uses TBI.
3220 * - bge_stop() is called by bge_detach().
3222 if (mii != NULL) {
3223 itmp = ifp->if_flags;
3224 ifp->if_flags |= IFF_UP;
3225 ifm = mii->mii_media.ifm_cur;
3226 mtmp = ifm->ifm_media;
3227 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3228 mii_mediachg(mii);
3229 ifm->ifm_media = mtmp;
3230 ifp->if_flags = itmp;
3233 sc->bge_link = 0;
3234 sc->bge_coal_chg = 0;
3236 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3238 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3239 ifp->if_timer = 0;
3243 * Stop all chip I/O so that the kernel's probe routines don't
3244 * get confused by errant DMAs when rebooting.
3246 static void
3247 bge_shutdown(device_t dev)
3249 struct bge_softc *sc = device_get_softc(dev);
3250 struct ifnet *ifp = &sc->arpcom.ac_if;
3252 lwkt_serialize_enter(ifp->if_serializer);
3253 bge_stop(sc);
3254 bge_reset(sc);
3255 lwkt_serialize_exit(ifp->if_serializer);
3258 static int
3259 bge_suspend(device_t dev)
3261 struct bge_softc *sc = device_get_softc(dev);
3262 struct ifnet *ifp = &sc->arpcom.ac_if;
3264 lwkt_serialize_enter(ifp->if_serializer);
3265 bge_stop(sc);
3266 lwkt_serialize_exit(ifp->if_serializer);
3268 return 0;
3271 static int
3272 bge_resume(device_t dev)
3274 struct bge_softc *sc = device_get_softc(dev);
3275 struct ifnet *ifp = &sc->arpcom.ac_if;
3277 lwkt_serialize_enter(ifp->if_serializer);
3279 if (ifp->if_flags & IFF_UP) {
3280 bge_init(sc);
3282 if (!ifq_is_empty(&ifp->if_snd))
3283 if_devstart(ifp);
3286 lwkt_serialize_exit(ifp->if_serializer);
3288 return 0;
3291 static void
3292 bge_setpromisc(struct bge_softc *sc)
3294 struct ifnet *ifp = &sc->arpcom.ac_if;
3296 if (ifp->if_flags & IFF_PROMISC)
3297 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3298 else
3299 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3302 static void
3303 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3305 struct bge_dmamap_arg *ctx = arg;
3307 if (error)
3308 return;
3310 KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3311 ("only one segment is allowed\n"));
3313 ctx->bge_segs[0] = *segs;
3316 static void
3317 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3318 bus_size_t mapsz __unused, int error)
3320 struct bge_dmamap_arg *ctx = arg;
3321 int i;
3323 if (error)
3324 return;
3326 if (nsegs > ctx->bge_maxsegs) {
3327 ctx->bge_maxsegs = 0;
3328 return;
3331 ctx->bge_maxsegs = nsegs;
3332 for (i = 0; i < nsegs; ++i)
3333 ctx->bge_segs[i] = segs[i];
3336 static void
3337 bge_dma_free(struct bge_softc *sc)
3339 int i;
3341 /* Destroy RX/TX mbuf DMA stuffs. */
3342 if (sc->bge_cdata.bge_mtag != NULL) {
3343 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3344 if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3345 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3346 sc->bge_cdata.bge_rx_std_dmamap[i]);
3350 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3351 if (sc->bge_cdata.bge_tx_dmamap[i]) {
3352 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3353 sc->bge_cdata.bge_tx_dmamap[i]);
3356 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3359 /* Destroy standard RX ring */
3360 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3361 sc->bge_cdata.bge_rx_std_ring_map,
3362 sc->bge_ldata.bge_rx_std_ring);
3364 if (BGE_IS_JUMBO_CAPABLE(sc))
3365 bge_free_jumbo_mem(sc);
3367 /* Destroy RX return ring */
3368 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3369 sc->bge_cdata.bge_rx_return_ring_map,
3370 sc->bge_ldata.bge_rx_return_ring);
3372 /* Destroy TX ring */
3373 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3374 sc->bge_cdata.bge_tx_ring_map,
3375 sc->bge_ldata.bge_tx_ring);
3377 /* Destroy status block */
3378 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3379 sc->bge_cdata.bge_status_map,
3380 sc->bge_ldata.bge_status_block);
3382 /* Destroy statistics block */
3383 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3384 sc->bge_cdata.bge_stats_map,
3385 sc->bge_ldata.bge_stats);
3387 /* Destroy the parent tag */
3388 if (sc->bge_cdata.bge_parent_tag != NULL)
3389 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3392 static int
3393 bge_dma_alloc(struct bge_softc *sc)
3395 struct ifnet *ifp = &sc->arpcom.ac_if;
3396 int nseg, i, error;
3399 * Allocate the parent bus DMA tag appropriate for PCI.
3401 error = bus_dma_tag_create(NULL, 1, 0,
3402 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3403 NULL, NULL,
3404 MAXBSIZE, BGE_NSEG_NEW,
3405 BUS_SPACE_MAXSIZE_32BIT,
3406 0, &sc->bge_cdata.bge_parent_tag);
3407 if (error) {
3408 if_printf(ifp, "could not allocate parent dma tag\n");
3409 return error;
3413 * Create DMA tag for mbufs.
3415 nseg = BGE_NSEG_NEW;
3416 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3417 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3418 NULL, NULL,
3419 MCLBYTES * nseg, nseg, MCLBYTES,
3420 BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3421 if (error) {
3422 if_printf(ifp, "could not allocate mbuf dma tag\n");
3423 return error;
3427 * Create DMA maps for TX/RX mbufs.
3429 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3430 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3431 &sc->bge_cdata.bge_rx_std_dmamap[i]);
3432 if (error) {
3433 int j;
3435 for (j = 0; j < i; ++j) {
3436 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3437 sc->bge_cdata.bge_rx_std_dmamap[j]);
3439 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3440 sc->bge_cdata.bge_mtag = NULL;
3442 if_printf(ifp, "could not create DMA map for RX\n");
3443 return error;
3447 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3448 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3449 &sc->bge_cdata.bge_tx_dmamap[i]);
3450 if (error) {
3451 int j;
3453 for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3454 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3455 sc->bge_cdata.bge_rx_std_dmamap[j]);
3457 for (j = 0; j < i; ++j) {
3458 bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3459 sc->bge_cdata.bge_tx_dmamap[j]);
3461 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3462 sc->bge_cdata.bge_mtag = NULL;
3464 if_printf(ifp, "could not create DMA map for TX\n");
3465 return error;
3470 * Create DMA stuffs for standard RX ring.
3472 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3473 &sc->bge_cdata.bge_rx_std_ring_tag,
3474 &sc->bge_cdata.bge_rx_std_ring_map,
3475 (void **)&sc->bge_ldata.bge_rx_std_ring,
3476 &sc->bge_ldata.bge_rx_std_ring_paddr);
3477 if (error) {
3478 if_printf(ifp, "could not create std RX ring\n");
3479 return error;
3483 * Create jumbo buffer pool.
3485 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3486 error = bge_alloc_jumbo_mem(sc);
3487 if (error) {
3488 if_printf(ifp, "could not create jumbo buffer pool\n");
3489 return error;
3494 * Create DMA stuffs for RX return ring.
3496 error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3497 &sc->bge_cdata.bge_rx_return_ring_tag,
3498 &sc->bge_cdata.bge_rx_return_ring_map,
3499 (void **)&sc->bge_ldata.bge_rx_return_ring,
3500 &sc->bge_ldata.bge_rx_return_ring_paddr);
3501 if (error) {
3502 if_printf(ifp, "could not create RX ret ring\n");
3503 return error;
3507 * Create DMA stuffs for TX ring.
3509 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3510 &sc->bge_cdata.bge_tx_ring_tag,
3511 &sc->bge_cdata.bge_tx_ring_map,
3512 (void **)&sc->bge_ldata.bge_tx_ring,
3513 &sc->bge_ldata.bge_tx_ring_paddr);
3514 if (error) {
3515 if_printf(ifp, "could not create TX ring\n");
3516 return error;
3520 * Create DMA stuffs for status block.
3522 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3523 &sc->bge_cdata.bge_status_tag,
3524 &sc->bge_cdata.bge_status_map,
3525 (void **)&sc->bge_ldata.bge_status_block,
3526 &sc->bge_ldata.bge_status_block_paddr);
3527 if (error) {
3528 if_printf(ifp, "could not create status block\n");
3529 return error;
3533 * Create DMA stuffs for statistics block.
3535 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3536 &sc->bge_cdata.bge_stats_tag,
3537 &sc->bge_cdata.bge_stats_map,
3538 (void **)&sc->bge_ldata.bge_stats,
3539 &sc->bge_ldata.bge_stats_paddr);
3540 if (error) {
3541 if_printf(ifp, "could not create stats block\n");
3542 return error;
3544 return 0;
3547 static int
3548 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3549 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3551 struct ifnet *ifp = &sc->arpcom.ac_if;
3552 struct bge_dmamap_arg ctx;
3553 bus_dma_segment_t seg;
3554 int error;
3557 * Create DMA tag
3559 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3560 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3561 NULL, NULL, size, 1, size, 0, tag);
3562 if (error) {
3563 if_printf(ifp, "could not allocate dma tag\n");
3564 return error;
3568 * Allocate DMA'able memory
3570 error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3571 map);
3572 if (error) {
3573 if_printf(ifp, "could not allocate dma memory\n");
3574 bus_dma_tag_destroy(*tag);
3575 *tag = NULL;
3576 return error;
3580 * Load the DMA'able memory
3582 ctx.bge_maxsegs = 1;
3583 ctx.bge_segs = &seg;
3584 error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3585 BUS_DMA_WAITOK);
3586 if (error) {
3587 if_printf(ifp, "could not load dma memory\n");
3588 bus_dmamem_free(*tag, *addr, *map);
3589 bus_dma_tag_destroy(*tag);
3590 *tag = NULL;
3591 return error;
3593 *paddr = ctx.bge_segs[0].ds_addr;
3595 return 0;
3598 static void
3599 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3601 if (tag != NULL) {
3602 bus_dmamap_unload(tag, map);
3603 bus_dmamem_free(tag, addr, map);
3604 bus_dma_tag_destroy(tag);
3609 * Grrr. The link status word in the status block does
3610 * not work correctly on the BCM5700 rev AX and BX chips,
3611 * according to all available information. Hence, we have
3612 * to enable MII interrupts in order to properly obtain
3613 * async link changes. Unfortunately, this also means that
3614 * we have to read the MAC status register to detect link
3615 * changes, thereby adding an additional register access to
3616 * the interrupt handler.
3618 * XXX: perhaps link state detection procedure used for
3619 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3621 static void
3622 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3624 struct ifnet *ifp = &sc->arpcom.ac_if;
3625 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3627 mii_pollstat(mii);
3629 if (!sc->bge_link &&
3630 (mii->mii_media_status & IFM_ACTIVE) &&
3631 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3632 sc->bge_link++;
3633 if (bootverbose)
3634 if_printf(ifp, "link UP\n");
3635 } else if (sc->bge_link &&
3636 (!(mii->mii_media_status & IFM_ACTIVE) ||
3637 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3638 sc->bge_link = 0;
3639 if (bootverbose)
3640 if_printf(ifp, "link DOWN\n");
3643 /* Clear the interrupt. */
3644 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3645 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3646 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3649 static void
3650 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3652 struct ifnet *ifp = &sc->arpcom.ac_if;
3654 #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3657 * Sometimes PCS encoding errors are detected in
3658 * TBI mode (on fiber NICs), and for some reason
3659 * the chip will signal them as link changes.
3660 * If we get a link change event, but the 'PCS
3661 * encoding error' bit in the MAC status register
3662 * is set, don't bother doing a link check.
3663 * This avoids spurious "gigabit link up" messages
3664 * that sometimes appear on fiber NICs during
3665 * periods of heavy traffic.
3667 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3668 if (!sc->bge_link) {
3669 sc->bge_link++;
3670 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3671 BGE_CLRBIT(sc, BGE_MAC_MODE,
3672 BGE_MACMODE_TBI_SEND_CFGS);
3674 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3676 if (bootverbose)
3677 if_printf(ifp, "link UP\n");
3679 ifp->if_link_state = LINK_STATE_UP;
3680 if_link_state_change(ifp);
3682 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3683 if (sc->bge_link) {
3684 sc->bge_link = 0;
3686 if (bootverbose)
3687 if_printf(ifp, "link DOWN\n");
3689 ifp->if_link_state = LINK_STATE_DOWN;
3690 if_link_state_change(ifp);
3694 #undef PCS_ENCODE_ERR
3696 /* Clear the attention. */
3697 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3698 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3699 BGE_MACSTAT_LINK_CHANGED);
3702 static void
3703 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3706 * Check that the AUTOPOLL bit is set before
3707 * processing the event as a real link change.
3708 * Turning AUTOPOLL on and off in the MII read/write
3709 * functions will often trigger a link status
3710 * interrupt for no reason.
3712 if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3713 struct ifnet *ifp = &sc->arpcom.ac_if;
3714 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3716 mii_pollstat(mii);
3718 if (!sc->bge_link &&
3719 (mii->mii_media_status & IFM_ACTIVE) &&
3720 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3721 sc->bge_link++;
3722 if (bootverbose)
3723 if_printf(ifp, "link UP\n");
3724 } else if (sc->bge_link &&
3725 (!(mii->mii_media_status & IFM_ACTIVE) ||
3726 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3727 sc->bge_link = 0;
3728 if (bootverbose)
3729 if_printf(ifp, "link DOWN\n");
3733 /* Clear the attention. */
3734 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3735 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3736 BGE_MACSTAT_LINK_CHANGED);
3739 static int
3740 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3742 struct bge_softc *sc = arg1;
3744 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3745 &sc->bge_rx_coal_ticks,
3746 BGE_RX_COAL_TICKS_CHG);
3749 static int
3750 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3752 struct bge_softc *sc = arg1;
3754 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3755 &sc->bge_tx_coal_ticks,
3756 BGE_TX_COAL_TICKS_CHG);
3759 static int
3760 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3762 struct bge_softc *sc = arg1;
3764 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3765 &sc->bge_rx_max_coal_bds,
3766 BGE_RX_MAX_COAL_BDS_CHG);
3769 static int
3770 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3772 struct bge_softc *sc = arg1;
3774 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3775 &sc->bge_tx_max_coal_bds,
3776 BGE_TX_MAX_COAL_BDS_CHG);
3779 static int
3780 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3781 uint32_t coal_chg_mask)
3783 struct bge_softc *sc = arg1;
3784 struct ifnet *ifp = &sc->arpcom.ac_if;
3785 int error = 0, v;
3787 lwkt_serialize_enter(ifp->if_serializer);
3789 v = *coal;
3790 error = sysctl_handle_int(oidp, &v, 0, req);
3791 if (!error && req->newptr != NULL) {
3792 if (v < 0) {
3793 error = EINVAL;
3794 } else {
3795 *coal = v;
3796 sc->bge_coal_chg |= coal_chg_mask;
3800 lwkt_serialize_exit(ifp->if_serializer);
3801 return error;
3804 static void
3805 bge_coal_change(struct bge_softc *sc)
3807 struct ifnet *ifp = &sc->arpcom.ac_if;
3808 uint32_t val;
3810 ASSERT_SERIALIZED(ifp->if_serializer);
3812 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3813 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3814 sc->bge_rx_coal_ticks);
3815 DELAY(10);
3816 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3818 if (bootverbose) {
3819 if_printf(ifp, "rx_coal_ticks -> %u\n",
3820 sc->bge_rx_coal_ticks);
3824 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3825 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3826 sc->bge_tx_coal_ticks);
3827 DELAY(10);
3828 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3830 if (bootverbose) {
3831 if_printf(ifp, "tx_coal_ticks -> %u\n",
3832 sc->bge_tx_coal_ticks);
3836 if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3837 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3838 sc->bge_rx_max_coal_bds);
3839 DELAY(10);
3840 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3842 if (bootverbose) {
3843 if_printf(ifp, "rx_max_coal_bds -> %u\n",
3844 sc->bge_rx_max_coal_bds);
3848 if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3849 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3850 sc->bge_tx_max_coal_bds);
3851 DELAY(10);
3852 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3854 if (bootverbose) {
3855 if_printf(ifp, "tx_max_coal_bds -> %u\n",
3856 sc->bge_tx_max_coal_bds);
3860 sc->bge_coal_chg = 0;
3863 static void
3864 bge_enable_intr(struct bge_softc *sc)
3866 struct ifnet *ifp = &sc->arpcom.ac_if;
3868 lwkt_serialize_handler_enable(ifp->if_serializer);
3871 * Enable interrupt.
3873 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3876 * Unmask the interrupt when we stop polling.
3878 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3881 * Trigger another interrupt, since above writing
3882 * to interrupt mailbox0 may acknowledge pending
3883 * interrupt.
3885 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3888 static void
3889 bge_disable_intr(struct bge_softc *sc)
3891 struct ifnet *ifp = &sc->arpcom.ac_if;
3894 * Mask the interrupt when we start polling.
3896 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3899 * Acknowledge possible asserted interrupt.
3901 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3903 lwkt_serialize_handler_disable(ifp->if_serializer);