kernel - VM PAGER part 2/2 - Expand vinitvmio() and vnode_pager_alloc()
[dragonfly.git] / sys / vm / vnode_pager.c
blobd23c0e829d2e119da9a870bff77d990203f4e5fc
1 /*
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.43 2008/06/19 23:27:39 dillon Exp $
46 * Page to/from files (vnodes).
50 * TODO:
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/buf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/conf.h>
64 #include <sys/sfbuf.h>
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_map.h>
71 #include <vm/vnode_pager.h>
72 #include <vm/swap_pager.h>
73 #include <vm/vm_extern.h>
75 #include <sys/thread2.h>
76 #include <vm/vm_page2.h>
78 static void vnode_pager_dealloc (vm_object_t);
79 static int vnode_pager_getpage (vm_object_t, vm_page_t *, int);
80 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
81 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t);
83 struct pagerops vnodepagerops = {
84 vnode_pager_dealloc,
85 vnode_pager_getpage,
86 vnode_pager_putpages,
87 vnode_pager_haspage
90 static struct krate vbadrate = { 1 };
91 static struct krate vresrate = { 1 };
93 int vnode_pbuf_freecnt = -1; /* start out unlimited */
96 * Allocate a VM object for a vnode, typically a regular file vnode.
98 * Some additional information is required to generate a properly sized
99 * object which covers the entire buffer cache buffer straddling the file
100 * EOF. Userland does not see the extra pages as the VM fault code tests
101 * against v_filesize.
103 vm_object_t
104 vnode_pager_alloc(void *handle, off_t length, vm_prot_t prot, off_t offset,
105 int blksize, int boff)
107 vm_object_t object;
108 struct vnode *vp;
109 off_t loffset;
110 vm_pindex_t lsize;
113 * Pageout to vnode, no can do yet.
115 if (handle == NULL)
116 return (NULL);
119 * XXX hack - This initialization should be put somewhere else.
121 if (vnode_pbuf_freecnt < 0) {
122 vnode_pbuf_freecnt = nswbuf / 2 + 1;
125 vp = (struct vnode *) handle;
128 * Prevent race condition when allocating the object. This
129 * can happen with NFS vnodes since the nfsnode isn't locked.
131 while (vp->v_flag & VOLOCK) {
132 vsetflags(vp, VOWANT);
133 tsleep(vp, 0, "vnpobj", 0);
135 vsetflags(vp, VOLOCK);
138 * If the object is being terminated, wait for it to
139 * go away.
141 while (((object = vp->v_object) != NULL) &&
142 (object->flags & OBJ_DEAD)) {
143 vm_object_dead_sleep(object, "vadead");
146 if (vp->v_sysref.refcnt <= 0)
147 panic("vnode_pager_alloc: no vnode reference");
150 * Round up to the *next* block, then destroy the buffers in question.
151 * Since we are only removing some of the buffers we must rely on the
152 * scan count to determine whether a loop is necessary.
154 * Destroy any pages beyond the last buffer.
156 if (boff < 0)
157 boff = (int)(length % blksize);
158 if (boff)
159 loffset = length + (blksize - boff);
160 else
161 loffset = length;
162 lsize = OFF_TO_IDX(round_page64(loffset));
164 if (object == NULL) {
166 * And an object of the appropriate size
168 object = vm_object_allocate(OBJT_VNODE, lsize);
169 object->flags = 0;
170 object->handle = handle;
171 vp->v_object = object;
172 vp->v_filesize = length;
173 } else {
174 object->ref_count++;
175 if (object->size != lsize) {
176 kprintf("vnode_pager_alloc: Warning, objsize "
177 "mismatch %jd/%jd vp=%p obj=%p\n",
178 (intmax_t)object->size,
179 (intmax_t)lsize,
180 vp, object);
182 if (vp->v_filesize != length) {
183 kprintf("vnode_pager_alloc: Warning, filesize "
184 "mismatch %jd/%jd vp=%p obj=%p\n",
185 (intmax_t)vp->v_filesize,
186 (intmax_t)length,
187 vp, object);
190 vref(vp);
192 vclrflags(vp, VOLOCK);
193 if (vp->v_flag & VOWANT) {
194 vclrflags(vp, VOWANT);
195 wakeup(vp);
197 return (object);
201 * Add a ref to a vnode's existing VM object, return the object or
202 * NULL if the vnode did not have one. This does not create the
203 * object (we can't since we don't know what the proper blocksize/boff
204 * is to match the VFS's use of the buffer cache).
206 vm_object_t
207 vnode_pager_reference(struct vnode *vp)
209 vm_object_t object;
212 * Prevent race condition when allocating the object. This
213 * can happen with NFS vnodes since the nfsnode isn't locked.
215 while (vp->v_flag & VOLOCK) {
216 vsetflags(vp, VOWANT);
217 tsleep(vp, 0, "vnpobj", 0);
219 vsetflags(vp, VOLOCK);
222 * Prevent race conditions against deallocation of the VM
223 * object.
225 while (((object = vp->v_object) != NULL) &&
226 (object->flags & OBJ_DEAD)) {
227 vm_object_dead_sleep(object, "vadead");
231 * The object is expected to exist, the caller will handle
232 * NULL returns if it does not.
234 if (object) {
235 object->ref_count++;
236 vref(vp);
239 vclrflags(vp, VOLOCK);
240 if (vp->v_flag & VOWANT) {
241 vclrflags(vp, VOWANT);
242 wakeup(vp);
244 return (object);
247 static void
248 vnode_pager_dealloc(vm_object_t object)
250 struct vnode *vp = object->handle;
252 if (vp == NULL)
253 panic("vnode_pager_dealloc: pager already dealloced");
255 vm_object_pip_wait(object, "vnpdea");
257 object->handle = NULL;
258 object->type = OBJT_DEAD;
259 vp->v_object = NULL;
260 vp->v_filesize = NOOFFSET;
261 vclrflags(vp, VTEXT | VOBJBUF);
262 swap_pager_freespace_all(object);
266 * Return whether the vnode pager has the requested page. Return the
267 * number of disk-contiguous pages before and after the requested page,
268 * not including the requested page.
270 static boolean_t
271 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex)
273 struct vnode *vp = object->handle;
274 off_t loffset;
275 off_t doffset;
276 int voff;
277 int bsize;
278 int error;
281 * If no vp or vp is doomed or marked transparent to VM, we do not
282 * have the page.
284 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
285 return FALSE;
288 * If filesystem no longer mounted or offset beyond end of file we do
289 * not have the page.
291 loffset = IDX_TO_OFF(pindex);
293 if (vp->v_mount == NULL || loffset >= vp->v_filesize)
294 return FALSE;
296 bsize = vp->v_mount->mnt_stat.f_iosize;
297 voff = loffset % bsize;
300 * XXX
302 * BMAP returns byte counts before and after, where after
303 * is inclusive of the base page. haspage must return page
304 * counts before and after where after does not include the
305 * base page.
307 * BMAP is allowed to return a *after of 0 for backwards
308 * compatibility. The base page is still considered valid if
309 * no error is returned.
311 error = VOP_BMAP(vp, loffset - voff, &doffset, NULL, NULL, 0);
312 if (error)
313 return TRUE;
314 if (doffset == NOOFFSET)
315 return FALSE;
316 return TRUE;
320 * Lets the VM system know about a change in size for a file.
321 * We adjust our own internal size and flush any cached pages in
322 * the associated object that are affected by the size change.
324 * NOTE: This routine may be invoked as a result of a pager put
325 * operation (possibly at object termination time), so we must be careful.
327 * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
328 * we do not blow up on the case. nsize will always be >= 0, however.
330 void
331 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
333 vm_pindex_t nobjsize;
334 vm_pindex_t oobjsize;
335 vm_object_t object = vp->v_object;
337 if (object == NULL)
338 return;
341 * Hasn't changed size
343 if (nsize == vp->v_filesize)
344 return;
347 * Has changed size. Adjust the VM object's size and v_filesize
348 * before we start scanning pages to prevent new pages from being
349 * allocated during the scan.
351 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
352 oobjsize = object->size;
353 object->size = nobjsize;
356 * File has shrunk. Toss any cached pages beyond the new EOF.
358 if (nsize < vp->v_filesize) {
359 vp->v_filesize = nsize;
360 if (nobjsize < oobjsize) {
361 vm_object_page_remove(object, nobjsize, oobjsize,
362 FALSE);
365 * This gets rid of garbage at the end of a page that is now
366 * only partially backed by the vnode. Since we are setting
367 * the entire page valid & clean after we are done we have
368 * to be sure that the portion of the page within the file
369 * bounds is already valid. If it isn't then making it
370 * valid would create a corrupt block.
372 if (nsize & PAGE_MASK) {
373 vm_offset_t kva;
374 vm_page_t m;
376 do {
377 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
378 } while (m && vm_page_sleep_busy(m, TRUE, "vsetsz"));
380 if (m && m->valid) {
381 int base = (int)nsize & PAGE_MASK;
382 int size = PAGE_SIZE - base;
383 struct sf_buf *sf;
386 * Clear out partial-page garbage in case
387 * the page has been mapped.
389 * This is byte aligned.
391 vm_page_busy(m);
392 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
393 kva = sf_buf_kva(sf);
394 bzero((caddr_t)kva + base, size);
395 sf_buf_free(sf);
398 * XXX work around SMP data integrity race
399 * by unmapping the page from user processes.
400 * The garbage we just cleared may be mapped
401 * to a user process running on another cpu
402 * and this code is not running through normal
403 * I/O channels which handle SMP issues for
404 * us, so unmap page to synchronize all cpus.
406 * XXX should vm_pager_unmap_page() have
407 * dealt with this?
409 vm_page_protect(m, VM_PROT_NONE);
412 * Clear out partial-page dirty bits. This
413 * has the side effect of setting the valid
414 * bits, but that is ok. There are a bunch
415 * of places in the VM system where we expected
416 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
417 * case is one of them. If the page is still
418 * partially dirty, make it fully dirty.
420 * NOTE: We do not clear out the valid
421 * bits. This would prevent bogus_page
422 * replacement from working properly.
424 * NOTE: We do not want to clear the dirty
425 * bit for a partial DEV_BSIZE'd truncation!
426 * This is DEV_BSIZE aligned!
428 vm_page_clear_dirty_beg_nonincl(m, base, size);
429 if (m->dirty != 0)
430 m->dirty = VM_PAGE_BITS_ALL;
431 vm_page_wakeup(m);
434 } else {
435 vp->v_filesize = nsize;
440 * Release a page busied for a getpages operation. The page may have become
441 * wired (typically due to being used by the buffer cache) or otherwise been
442 * soft-busied and cannot be freed in that case. A held page can still be
443 * freed.
445 void
446 vnode_pager_freepage(vm_page_t m)
448 if (m->busy || m->wire_count) {
449 vm_page_activate(m);
450 vm_page_wakeup(m);
451 } else {
452 vm_page_free(m);
457 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
458 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
459 * vnode_pager_generic_getpages() to implement the previous behaviour.
461 * All other FS's should use the bypass to get to the local media
462 * backing vp's VOP_GETPAGES.
464 static int
465 vnode_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
467 int rtval;
468 struct vnode *vp;
470 vp = object->handle;
471 rtval = VOP_GETPAGES(vp, mpp, PAGE_SIZE, 0, 0, seqaccess);
472 if (rtval == EOPNOTSUPP)
473 panic("vnode_pager: vfs's must implement vop_getpages\n");
474 return rtval;
478 * This is now called from local media FS's to operate against their
479 * own vnodes if they fail to implement VOP_GETPAGES.
481 * With all the caching local media devices do these days there is really
482 * very little point to attempting to restrict the I/O size to contiguous
483 * blocks on-disk, especially if our caller thinks we need all the specified
484 * pages. Just construct and issue a READ.
487 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *mpp, int bytecount,
488 int reqpage, int seqaccess)
490 struct iovec aiov;
491 struct uio auio;
492 off_t foff;
493 int error;
494 int count;
495 int i;
496 int ioflags;
499 * Do not do anything if the vnode is bad.
501 if (vp->v_mount == NULL)
502 return VM_PAGER_BAD;
505 * Calculate the number of pages. Since we are paging in whole
506 * pages, adjust bytecount to be an integral multiple of the page
507 * size. It will be clipped to the file EOF later on.
509 bytecount = round_page(bytecount);
510 count = bytecount / PAGE_SIZE;
513 * We could check m[reqpage]->valid here and shortcut the operation,
514 * but doing so breaks read-ahead. Instead assume that the VM
515 * system has already done at least the check, don't worry about
516 * any races, and issue the VOP_READ to allow read-ahead to function.
518 * This keeps the pipeline full for I/O bound sequentially scanned
519 * mmap()'s
521 /* don't shortcut */
524 * Discard pages past the file EOF. If the requested page is past
525 * the file EOF we just leave its valid bits set to 0, the caller
526 * expects to maintain ownership of the requested page. If the
527 * entire range is past file EOF discard everything and generate
528 * a pagein error.
530 foff = IDX_TO_OFF(mpp[0]->pindex);
531 if (foff >= vp->v_filesize) {
532 for (i = 0; i < count; i++) {
533 if (i != reqpage)
534 vnode_pager_freepage(mpp[i]);
536 return VM_PAGER_ERROR;
539 if (foff + bytecount > vp->v_filesize) {
540 bytecount = vp->v_filesize - foff;
541 i = round_page(bytecount) / PAGE_SIZE;
542 while (count > i) {
543 --count;
544 if (count != reqpage)
545 vnode_pager_freepage(mpp[count]);
550 * The size of the transfer is bytecount. bytecount will be an
551 * integral multiple of the page size unless it has been clipped
552 * to the file EOF. The transfer cannot exceed the file EOF.
554 * When dealing with real devices we must round-up to the device
555 * sector size.
557 if (vp->v_type == VBLK || vp->v_type == VCHR) {
558 int secmask = vp->v_rdev->si_bsize_phys - 1;
559 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
560 bytecount = (bytecount + secmask) & ~secmask;
564 * Severe hack to avoid deadlocks with the buffer cache
566 for (i = 0; i < count; ++i) {
567 vm_page_t mt = mpp[i];
569 vm_page_io_start(mt);
570 vm_page_wakeup(mt);
574 * Issue the I/O with some read-ahead if bytecount > PAGE_SIZE
576 ioflags = IO_VMIO;
577 if (seqaccess)
578 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
580 aiov.iov_base = NULL;
581 aiov.iov_len = bytecount;
582 auio.uio_iov = &aiov;
583 auio.uio_iovcnt = 1;
584 auio.uio_offset = foff;
585 auio.uio_segflg = UIO_NOCOPY;
586 auio.uio_rw = UIO_READ;
587 auio.uio_resid = bytecount;
588 auio.uio_td = NULL;
589 mycpu->gd_cnt.v_vnodein++;
590 mycpu->gd_cnt.v_vnodepgsin += count;
592 error = VOP_READ(vp, &auio, ioflags, proc0.p_ucred);
595 * Severe hack to avoid deadlocks with the buffer cache
597 for (i = 0; i < count; ++i) {
598 vm_page_t mt = mpp[i];
600 while (vm_page_sleep_busy(mt, FALSE, "getpgs"))
602 vm_page_busy(mt);
603 vm_page_io_finish(mt);
607 * Calculate the actual number of bytes read and clean up the
608 * page list.
610 bytecount -= auio.uio_resid;
612 for (i = 0; i < count; ++i) {
613 vm_page_t mt = mpp[i];
615 if (i != reqpage) {
616 if (error == 0 && mt->valid) {
617 if (mt->flags & PG_WANTED)
618 vm_page_activate(mt);
619 else
620 vm_page_deactivate(mt);
621 vm_page_wakeup(mt);
622 } else {
623 vnode_pager_freepage(mt);
625 } else if (mt->valid == 0) {
626 if (error == 0) {
627 kprintf("page failed but no I/O error page %p object %p pindex %d\n", mt, mt->object, (int) mt->pindex);
628 /* whoops, something happened */
629 error = EINVAL;
631 } else if (mt->valid != VM_PAGE_BITS_ALL) {
633 * Zero-extend the requested page if necessary (if
634 * the filesystem is using a small block size).
636 vm_page_zero_invalid(mt, TRUE);
639 if (error) {
640 kprintf("vnode_pager_getpage: I/O read error\n");
642 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
646 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
647 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
648 * vnode_pager_generic_putpages() to implement the previous behaviour.
650 * Caller has already cleared the pmap modified bits, if any.
652 * All other FS's should use the bypass to get to the local media
653 * backing vp's VOP_PUTPAGES.
655 static void
656 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
657 boolean_t sync, int *rtvals)
659 int rtval;
660 struct vnode *vp;
661 int bytes = count * PAGE_SIZE;
664 * Force synchronous operation if we are extremely low on memory
665 * to prevent a low-memory deadlock. VOP operations often need to
666 * allocate more memory to initiate the I/O ( i.e. do a BMAP
667 * operation ). The swapper handles the case by limiting the amount
668 * of asynchronous I/O, but that sort of solution doesn't scale well
669 * for the vnode pager without a lot of work.
671 * Also, the backing vnode's iodone routine may not wake the pageout
672 * daemon up. This should be probably be addressed XXX.
675 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
676 sync |= OBJPC_SYNC;
679 * Call device-specific putpages function
681 vp = object->handle;
682 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
683 if (rtval == EOPNOTSUPP) {
684 kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
685 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
691 * This is now called from local media FS's to operate against their
692 * own vnodes if they fail to implement VOP_PUTPAGES.
694 * This is typically called indirectly via the pageout daemon and
695 * clustering has already typically occured, so in general we ask the
696 * underlying filesystem to write the data out asynchronously rather
697 * then delayed.
700 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
701 int flags, int *rtvals)
703 int i;
704 vm_object_t object;
705 int maxsize, ncount, count;
706 vm_ooffset_t poffset;
707 struct uio auio;
708 struct iovec aiov;
709 int error;
710 int ioflags;
712 object = vp->v_object;
713 count = bytecount / PAGE_SIZE;
715 for (i = 0; i < count; i++)
716 rtvals[i] = VM_PAGER_AGAIN;
718 if ((int) m[0]->pindex < 0) {
719 kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
720 (long)m[0]->pindex, m[0]->dirty);
721 rtvals[0] = VM_PAGER_BAD;
722 return VM_PAGER_BAD;
725 maxsize = count * PAGE_SIZE;
726 ncount = count;
728 poffset = IDX_TO_OFF(m[0]->pindex);
731 * If the page-aligned write is larger then the actual file we
732 * have to invalidate pages occuring beyond the file EOF.
734 * If the file EOF resides in the middle of a page we still clear
735 * all of that page's dirty bits later on. If we didn't it would
736 * endlessly re-write.
738 * We do not under any circumstances truncate the valid bits, as
739 * this will screw up bogus page replacement.
741 * The caller has already read-protected the pages. The VFS must
742 * use the buffer cache to wrap the pages. The pages might not
743 * be immediately flushed by the buffer cache but once under its
744 * control the pages themselves can wind up being marked clean
745 * and their covering buffer cache buffer can be marked dirty.
747 if (poffset + maxsize > vp->v_filesize) {
748 if (poffset < vp->v_filesize) {
749 maxsize = vp->v_filesize - poffset;
750 ncount = btoc(maxsize);
751 } else {
752 maxsize = 0;
753 ncount = 0;
755 if (ncount < count) {
756 for (i = ncount; i < count; i++) {
757 rtvals[i] = VM_PAGER_BAD;
763 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
764 * rather then a bdwrite() to prevent paging I/O from saturating
765 * the buffer cache. Dummy-up the sequential heuristic to cause
766 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
767 * the system decides how to cluster.
769 ioflags = IO_VMIO;
770 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
771 ioflags |= IO_SYNC;
772 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
773 ioflags |= IO_ASYNC;
774 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
775 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
777 aiov.iov_base = (caddr_t) 0;
778 aiov.iov_len = maxsize;
779 auio.uio_iov = &aiov;
780 auio.uio_iovcnt = 1;
781 auio.uio_offset = poffset;
782 auio.uio_segflg = UIO_NOCOPY;
783 auio.uio_rw = UIO_WRITE;
784 auio.uio_resid = maxsize;
785 auio.uio_td = NULL;
786 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
787 mycpu->gd_cnt.v_vnodeout++;
788 mycpu->gd_cnt.v_vnodepgsout += ncount;
790 if (error) {
791 krateprintf(&vbadrate,
792 "vnode_pager_putpages: I/O error %d\n", error);
794 if (auio.uio_resid) {
795 krateprintf(&vresrate,
796 "vnode_pager_putpages: residual I/O %zd at %lu\n",
797 auio.uio_resid, (u_long)m[0]->pindex);
799 if (error == 0) {
800 for (i = 0; i < ncount; i++) {
801 rtvals[i] = VM_PAGER_OK;
802 vm_page_undirty(m[i]);
805 return rtvals[0];
808 struct vnode *
809 vnode_pager_lock(vm_object_t object)
811 struct thread *td = curthread; /* XXX */
812 int error;
814 for (; object != NULL; object = object->backing_object) {
815 if (object->type != OBJT_VNODE)
816 continue;
817 if (object->flags & OBJ_DEAD)
818 return NULL;
820 for (;;) {
821 struct vnode *vp = object->handle;
822 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
823 if (error == 0) {
824 if (object->handle != vp) {
825 vput(vp);
826 continue;
828 return (vp);
830 if ((object->flags & OBJ_DEAD) ||
831 (object->type != OBJT_VNODE)) {
832 return NULL;
834 kprintf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
835 tsleep(object->handle, 0, "vnpgrl", hz);
838 return NULL;