kernel - VM PAGER part 2/2 - Expand vinitvmio() and vnode_pager_alloc()
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blob5fd1a34ac04b67bdb035d69de1ab33d22e8b65f6
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
40 static int hammer_unload_inode(struct hammer_inode *ip);
41 static void hammer_free_inode(hammer_inode_t ip);
42 static void hammer_flush_inode_core(hammer_inode_t ip,
43 hammer_flush_group_t flg, int flags);
44 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45 #if 0
46 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
47 #endif
48 static int hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
49 hammer_flush_group_t flg);
50 static int hammer_setup_parent_inodes_helper(hammer_record_t record,
51 int depth, hammer_flush_group_t flg);
52 static void hammer_inode_wakereclaims(hammer_inode_t ip);
54 #ifdef DEBUG_TRUNCATE
55 extern struct hammer_inode *HammerTruncIp;
56 #endif
59 * RB-Tree support for inode structures
61 int
62 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
64 if (ip1->obj_localization < ip2->obj_localization)
65 return(-1);
66 if (ip1->obj_localization > ip2->obj_localization)
67 return(1);
68 if (ip1->obj_id < ip2->obj_id)
69 return(-1);
70 if (ip1->obj_id > ip2->obj_id)
71 return(1);
72 if (ip1->obj_asof < ip2->obj_asof)
73 return(-1);
74 if (ip1->obj_asof > ip2->obj_asof)
75 return(1);
76 return(0);
79 int
80 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
82 if (ip1->redo_fifo_start < ip2->redo_fifo_start)
83 return(-1);
84 if (ip1->redo_fifo_start > ip2->redo_fifo_start)
85 return(1);
86 return(0);
90 * RB-Tree support for inode structures / special LOOKUP_INFO
92 static int
93 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
95 if (info->obj_localization < ip->obj_localization)
96 return(-1);
97 if (info->obj_localization > ip->obj_localization)
98 return(1);
99 if (info->obj_id < ip->obj_id)
100 return(-1);
101 if (info->obj_id > ip->obj_id)
102 return(1);
103 if (info->obj_asof < ip->obj_asof)
104 return(-1);
105 if (info->obj_asof > ip->obj_asof)
106 return(1);
107 return(0);
111 * Used by hammer_scan_inode_snapshots() to locate all of an object's
112 * snapshots. Note that the asof field is not tested, which we can get
113 * away with because it is the lowest-priority field.
115 static int
116 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
118 hammer_inode_info_t info = data;
120 if (ip->obj_localization > info->obj_localization)
121 return(1);
122 if (ip->obj_localization < info->obj_localization)
123 return(-1);
124 if (ip->obj_id > info->obj_id)
125 return(1);
126 if (ip->obj_id < info->obj_id)
127 return(-1);
128 return(0);
132 * Used by hammer_unload_pseudofs() to locate all inodes associated with
133 * a particular PFS.
135 static int
136 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
138 u_int32_t localization = *(u_int32_t *)data;
139 if (ip->obj_localization > localization)
140 return(1);
141 if (ip->obj_localization < localization)
142 return(-1);
143 return(0);
147 * RB-Tree support for pseudofs structures
149 static int
150 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
152 if (p1->localization < p2->localization)
153 return(-1);
154 if (p1->localization > p2->localization)
155 return(1);
156 return(0);
160 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
161 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
162 hammer_inode_info_cmp, hammer_inode_info_t);
163 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
164 hammer_pfs_rb_compare, u_int32_t, localization);
167 * The kernel is not actively referencing this vnode but is still holding
168 * it cached.
170 * This is called from the frontend.
172 * MPALMOSTSAFE
175 hammer_vop_inactive(struct vop_inactive_args *ap)
177 struct hammer_inode *ip = VTOI(ap->a_vp);
180 * Degenerate case
182 if (ip == NULL) {
183 vrecycle(ap->a_vp);
184 return(0);
188 * If the inode no longer has visibility in the filesystem try to
189 * recycle it immediately, even if the inode is dirty. Recycling
190 * it quickly allows the system to reclaim buffer cache and VM
191 * resources which can matter a lot in a heavily loaded system.
193 * This can deadlock in vfsync() if we aren't careful.
195 * Do not queue the inode to the flusher if we still have visibility,
196 * otherwise namespace calls such as chmod will unnecessarily generate
197 * multiple inode updates.
199 if (ip->ino_data.nlinks == 0) {
200 get_mplock();
201 hammer_inode_unloadable_check(ip, 0);
202 if (ip->flags & HAMMER_INODE_MODMASK)
203 hammer_flush_inode(ip, 0);
204 vrecycle(ap->a_vp);
205 rel_mplock();
207 return(0);
211 * Release the vnode association. This is typically (but not always)
212 * the last reference on the inode.
214 * Once the association is lost we are on our own with regards to
215 * flushing the inode.
217 * We must interlock ip->vp so hammer_get_vnode() can avoid races.
220 hammer_vop_reclaim(struct vop_reclaim_args *ap)
222 struct hammer_inode *ip;
223 hammer_mount_t hmp;
224 struct vnode *vp;
226 vp = ap->a_vp;
228 if ((ip = vp->v_data) != NULL) {
229 hmp = ip->hmp;
230 hammer_lock_ex(&ip->lock);
231 vp->v_data = NULL;
232 ip->vp = NULL;
234 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
235 ++hammer_count_reclaiming;
236 ++hmp->inode_reclaims;
237 ip->flags |= HAMMER_INODE_RECLAIM;
239 hammer_unlock(&ip->lock);
240 hammer_rel_inode(ip, 1);
242 return(0);
246 * Return a locked vnode for the specified inode. The inode must be
247 * referenced but NOT LOCKED on entry and will remain referenced on
248 * return.
250 * Called from the frontend.
253 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
255 hammer_mount_t hmp;
256 struct vnode *vp;
257 int error = 0;
258 u_int8_t obj_type;
260 hmp = ip->hmp;
262 for (;;) {
263 if ((vp = ip->vp) == NULL) {
264 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
265 if (error)
266 break;
267 hammer_lock_ex(&ip->lock);
268 if (ip->vp != NULL) {
269 hammer_unlock(&ip->lock);
270 vp = *vpp;
271 vp->v_type = VBAD;
272 vx_put(vp);
273 continue;
275 hammer_ref(&ip->lock);
276 vp = *vpp;
277 ip->vp = vp;
279 obj_type = ip->ino_data.obj_type;
280 vp->v_type = hammer_get_vnode_type(obj_type);
282 hammer_inode_wakereclaims(ip);
284 switch(ip->ino_data.obj_type) {
285 case HAMMER_OBJTYPE_CDEV:
286 case HAMMER_OBJTYPE_BDEV:
287 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
288 addaliasu(vp, ip->ino_data.rmajor,
289 ip->ino_data.rminor);
290 break;
291 case HAMMER_OBJTYPE_FIFO:
292 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
293 break;
294 case HAMMER_OBJTYPE_REGFILE:
295 break;
296 default:
297 break;
301 * Only mark as the root vnode if the ip is not
302 * historical, otherwise the VFS cache will get
303 * confused. The other half of the special handling
304 * is in hammer_vop_nlookupdotdot().
306 * Pseudo-filesystem roots can be accessed via
307 * non-root filesystem paths and setting VROOT may
308 * confuse the namecache. Set VPFSROOT instead.
310 if (ip->obj_id == HAMMER_OBJID_ROOT &&
311 ip->obj_asof == hmp->asof) {
312 if (ip->obj_localization == 0)
313 vsetflags(vp, VROOT);
314 else
315 vsetflags(vp, VPFSROOT);
318 vp->v_data = (void *)ip;
319 /* vnode locked by getnewvnode() */
320 /* make related vnode dirty if inode dirty? */
321 hammer_unlock(&ip->lock);
322 if (vp->v_type == VREG) {
323 vinitvmio(vp, ip->ino_data.size,
324 hammer_blocksize(ip->ino_data.size),
325 hammer_blockoff(ip->ino_data.size));
327 break;
331 * Interlock vnode clearing. This does not prevent the
332 * vnode from going into a reclaimed state but it does
333 * prevent it from being destroyed or reused so the vget()
334 * will properly fail.
336 hammer_lock_ex(&ip->lock);
337 if ((vp = ip->vp) == NULL) {
338 hammer_unlock(&ip->lock);
339 continue;
341 vhold_interlocked(vp);
342 hammer_unlock(&ip->lock);
345 * loop if the vget fails (aka races), or if the vp
346 * no longer matches ip->vp.
348 if (vget(vp, LK_EXCLUSIVE) == 0) {
349 if (vp == ip->vp) {
350 vdrop(vp);
351 break;
353 vput(vp);
355 vdrop(vp);
357 *vpp = vp;
358 return(error);
362 * Locate all copies of the inode for obj_id compatible with the specified
363 * asof, reference, and issue the related call-back. This routine is used
364 * for direct-io invalidation and does not create any new inodes.
366 void
367 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
368 int (*callback)(hammer_inode_t ip, void *data),
369 void *data)
371 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
372 hammer_inode_info_cmp_all_history,
373 callback, iinfo);
377 * Acquire a HAMMER inode. The returned inode is not locked. These functions
378 * do not attach or detach the related vnode (use hammer_get_vnode() for
379 * that).
381 * The flags argument is only applied for newly created inodes, and only
382 * certain flags are inherited.
384 * Called from the frontend.
386 struct hammer_inode *
387 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
388 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
389 int flags, int *errorp)
391 hammer_mount_t hmp = trans->hmp;
392 struct hammer_node_cache *cachep;
393 struct hammer_inode_info iinfo;
394 struct hammer_cursor cursor;
395 struct hammer_inode *ip;
399 * Determine if we already have an inode cached. If we do then
400 * we are golden.
402 * If we find an inode with no vnode we have to mark the
403 * transaction such that hammer_inode_waitreclaims() is
404 * called later on to avoid building up an infinite number
405 * of inodes. Otherwise we can continue to * add new inodes
406 * faster then they can be disposed of, even with the tsleep
407 * delay.
409 * If we find a dummy inode we return a failure so dounlink
410 * (which does another lookup) doesn't try to mess with the
411 * link count. hammer_vop_nresolve() uses hammer_get_dummy_inode()
412 * to ref dummy inodes.
414 iinfo.obj_id = obj_id;
415 iinfo.obj_asof = asof;
416 iinfo.obj_localization = localization;
417 loop:
418 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
419 if (ip) {
420 if (ip->flags & HAMMER_INODE_DUMMY) {
421 *errorp = ENOENT;
422 return(NULL);
424 hammer_ref(&ip->lock);
425 *errorp = 0;
426 return(ip);
430 * Allocate a new inode structure and deal with races later.
432 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
433 ++hammer_count_inodes;
434 ++hmp->count_inodes;
435 ip->obj_id = obj_id;
436 ip->obj_asof = iinfo.obj_asof;
437 ip->obj_localization = localization;
438 ip->hmp = hmp;
439 ip->flags = flags & HAMMER_INODE_RO;
440 ip->cache[0].ip = ip;
441 ip->cache[1].ip = ip;
442 ip->cache[2].ip = ip;
443 ip->cache[3].ip = ip;
444 if (hmp->ronly)
445 ip->flags |= HAMMER_INODE_RO;
446 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
447 0x7FFFFFFFFFFFFFFFLL;
448 RB_INIT(&ip->rec_tree);
449 TAILQ_INIT(&ip->target_list);
450 hammer_ref(&ip->lock);
453 * Locate the on-disk inode. If this is a PFS root we always
454 * access the current version of the root inode and (if it is not
455 * a master) always access information under it with a snapshot
456 * TID.
458 * We cache recent inode lookups in this directory in dip->cache[2].
459 * If we can't find it we assume the inode we are looking for is
460 * close to the directory inode.
462 retry:
463 cachep = NULL;
464 if (dip) {
465 if (dip->cache[2].node)
466 cachep = &dip->cache[2];
467 else
468 cachep = &dip->cache[0];
470 hammer_init_cursor(trans, &cursor, cachep, NULL);
471 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
472 cursor.key_beg.obj_id = ip->obj_id;
473 cursor.key_beg.key = 0;
474 cursor.key_beg.create_tid = 0;
475 cursor.key_beg.delete_tid = 0;
476 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
477 cursor.key_beg.obj_type = 0;
479 cursor.asof = iinfo.obj_asof;
480 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
481 HAMMER_CURSOR_ASOF;
483 *errorp = hammer_btree_lookup(&cursor);
484 if (*errorp == EDEADLK) {
485 hammer_done_cursor(&cursor);
486 goto retry;
490 * On success the B-Tree lookup will hold the appropriate
491 * buffer cache buffers and provide a pointer to the requested
492 * information. Copy the information to the in-memory inode
493 * and cache the B-Tree node to improve future operations.
495 if (*errorp == 0) {
496 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
497 ip->ino_data = cursor.data->inode;
500 * cache[0] tries to cache the location of the object inode.
501 * The assumption is that it is near the directory inode.
503 * cache[1] tries to cache the location of the object data.
504 * We might have something in the governing directory from
505 * scan optimizations (see the strategy code in
506 * hammer_vnops.c).
508 * We update dip->cache[2], if possible, with the location
509 * of the object inode for future directory shortcuts.
511 hammer_cache_node(&ip->cache[0], cursor.node);
512 if (dip) {
513 if (dip->cache[3].node) {
514 hammer_cache_node(&ip->cache[1],
515 dip->cache[3].node);
517 hammer_cache_node(&dip->cache[2], cursor.node);
521 * The file should not contain any data past the file size
522 * stored in the inode. Setting save_trunc_off to the
523 * file size instead of max reduces B-Tree lookup overheads
524 * on append by allowing the flusher to avoid checking for
525 * record overwrites.
527 ip->save_trunc_off = ip->ino_data.size;
530 * Locate and assign the pseudofs management structure to
531 * the inode.
533 if (dip && dip->obj_localization == ip->obj_localization) {
534 ip->pfsm = dip->pfsm;
535 hammer_ref(&ip->pfsm->lock);
536 } else {
537 ip->pfsm = hammer_load_pseudofs(trans,
538 ip->obj_localization,
539 errorp);
540 *errorp = 0; /* ignore ENOENT */
545 * The inode is placed on the red-black tree and will be synced to
546 * the media when flushed or by the filesystem sync. If this races
547 * another instantiation/lookup the insertion will fail.
549 if (*errorp == 0) {
550 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
551 hammer_free_inode(ip);
552 hammer_done_cursor(&cursor);
553 goto loop;
555 ip->flags |= HAMMER_INODE_ONDISK;
556 } else {
557 if (ip->flags & HAMMER_INODE_RSV_INODES) {
558 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
559 --hmp->rsv_inodes;
562 hammer_free_inode(ip);
563 ip = NULL;
565 hammer_done_cursor(&cursor);
566 trans->flags |= HAMMER_TRANSF_NEWINODE;
567 return (ip);
571 * Get a dummy inode to placemark a broken directory entry.
573 struct hammer_inode *
574 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
575 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
576 int flags, int *errorp)
578 hammer_mount_t hmp = trans->hmp;
579 struct hammer_inode_info iinfo;
580 struct hammer_inode *ip;
583 * Determine if we already have an inode cached. If we do then
584 * we are golden.
586 * If we find an inode with no vnode we have to mark the
587 * transaction such that hammer_inode_waitreclaims() is
588 * called later on to avoid building up an infinite number
589 * of inodes. Otherwise we can continue to * add new inodes
590 * faster then they can be disposed of, even with the tsleep
591 * delay.
593 * If we find a non-fake inode we return an error. Only fake
594 * inodes can be returned by this routine.
596 iinfo.obj_id = obj_id;
597 iinfo.obj_asof = asof;
598 iinfo.obj_localization = localization;
599 loop:
600 *errorp = 0;
601 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
602 if (ip) {
603 if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
604 *errorp = ENOENT;
605 return(NULL);
607 hammer_ref(&ip->lock);
608 return(ip);
612 * Allocate a new inode structure and deal with races later.
614 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
615 ++hammer_count_inodes;
616 ++hmp->count_inodes;
617 ip->obj_id = obj_id;
618 ip->obj_asof = iinfo.obj_asof;
619 ip->obj_localization = localization;
620 ip->hmp = hmp;
621 ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
622 ip->cache[0].ip = ip;
623 ip->cache[1].ip = ip;
624 ip->cache[2].ip = ip;
625 ip->cache[3].ip = ip;
626 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
627 0x7FFFFFFFFFFFFFFFLL;
628 RB_INIT(&ip->rec_tree);
629 TAILQ_INIT(&ip->target_list);
630 hammer_ref(&ip->lock);
633 * Populate the dummy inode. Leave everything zero'd out.
635 * (ip->ino_leaf and ip->ino_data)
637 * Make the dummy inode a FIFO object which most copy programs
638 * will properly ignore.
640 ip->save_trunc_off = ip->ino_data.size;
641 ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
644 * Locate and assign the pseudofs management structure to
645 * the inode.
647 if (dip && dip->obj_localization == ip->obj_localization) {
648 ip->pfsm = dip->pfsm;
649 hammer_ref(&ip->pfsm->lock);
650 } else {
651 ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
652 errorp);
653 *errorp = 0; /* ignore ENOENT */
657 * The inode is placed on the red-black tree and will be synced to
658 * the media when flushed or by the filesystem sync. If this races
659 * another instantiation/lookup the insertion will fail.
661 * NOTE: Do not set HAMMER_INODE_ONDISK. The inode is a fake.
663 if (*errorp == 0) {
664 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
665 hammer_free_inode(ip);
666 goto loop;
668 } else {
669 if (ip->flags & HAMMER_INODE_RSV_INODES) {
670 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
671 --hmp->rsv_inodes;
673 hammer_free_inode(ip);
674 ip = NULL;
676 trans->flags |= HAMMER_TRANSF_NEWINODE;
677 return (ip);
681 * Return a referenced inode only if it is in our inode cache.
683 * Dummy inodes do not count.
685 struct hammer_inode *
686 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
687 hammer_tid_t asof, u_int32_t localization)
689 hammer_mount_t hmp = trans->hmp;
690 struct hammer_inode_info iinfo;
691 struct hammer_inode *ip;
693 iinfo.obj_id = obj_id;
694 iinfo.obj_asof = asof;
695 iinfo.obj_localization = localization;
697 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
698 if (ip) {
699 if (ip->flags & HAMMER_INODE_DUMMY)
700 ip = NULL;
701 else
702 hammer_ref(&ip->lock);
704 return(ip);
708 * Create a new filesystem object, returning the inode in *ipp. The
709 * returned inode will be referenced. The inode is created in-memory.
711 * If pfsm is non-NULL the caller wishes to create the root inode for
712 * a master PFS.
715 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
716 struct ucred *cred,
717 hammer_inode_t dip, const char *name, int namelen,
718 hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
720 hammer_mount_t hmp;
721 hammer_inode_t ip;
722 uid_t xuid;
723 int error;
724 int64_t namekey;
725 u_int32_t dummy;
727 hmp = trans->hmp;
729 ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
730 ++hammer_count_inodes;
731 ++hmp->count_inodes;
732 trans->flags |= HAMMER_TRANSF_NEWINODE;
734 if (pfsm) {
735 KKASSERT(pfsm->localization != 0);
736 ip->obj_id = HAMMER_OBJID_ROOT;
737 ip->obj_localization = pfsm->localization;
738 } else {
739 KKASSERT(dip != NULL);
740 namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
741 ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
742 ip->obj_localization = dip->obj_localization;
745 KKASSERT(ip->obj_id != 0);
746 ip->obj_asof = hmp->asof;
747 ip->hmp = hmp;
748 ip->flush_state = HAMMER_FST_IDLE;
749 ip->flags = HAMMER_INODE_DDIRTY |
750 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
751 ip->cache[0].ip = ip;
752 ip->cache[1].ip = ip;
753 ip->cache[2].ip = ip;
754 ip->cache[3].ip = ip;
756 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
757 /* ip->save_trunc_off = 0; (already zero) */
758 RB_INIT(&ip->rec_tree);
759 TAILQ_INIT(&ip->target_list);
761 ip->ino_data.atime = trans->time;
762 ip->ino_data.mtime = trans->time;
763 ip->ino_data.size = 0;
764 ip->ino_data.nlinks = 0;
767 * A nohistory designator on the parent directory is inherited by
768 * the child. We will do this even for pseudo-fs creation... the
769 * sysad can turn it off.
771 if (dip) {
772 ip->ino_data.uflags = dip->ino_data.uflags &
773 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
776 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
777 ip->ino_leaf.base.localization = ip->obj_localization +
778 HAMMER_LOCALIZE_INODE;
779 ip->ino_leaf.base.obj_id = ip->obj_id;
780 ip->ino_leaf.base.key = 0;
781 ip->ino_leaf.base.create_tid = 0;
782 ip->ino_leaf.base.delete_tid = 0;
783 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
784 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
786 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
787 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
788 ip->ino_data.mode = vap->va_mode;
789 ip->ino_data.ctime = trans->time;
792 * If we are running version 2 or greater directory entries are
793 * inode-localized instead of data-localized.
795 if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
796 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
797 ip->ino_data.cap_flags |=
798 HAMMER_INODE_CAP_DIR_LOCAL_INO;
803 * Setup the ".." pointer. This only needs to be done for directories
804 * but we do it for all objects as a recovery aid.
806 if (dip)
807 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
808 #if 0
810 * The parent_obj_localization field only applies to pseudo-fs roots.
811 * XXX this is no longer applicable, PFSs are no longer directly
812 * tied into the parent's directory structure.
814 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
815 ip->obj_id == HAMMER_OBJID_ROOT) {
816 ip->ino_data.ext.obj.parent_obj_localization =
817 dip->obj_localization;
819 #endif
821 switch(ip->ino_leaf.base.obj_type) {
822 case HAMMER_OBJTYPE_CDEV:
823 case HAMMER_OBJTYPE_BDEV:
824 ip->ino_data.rmajor = vap->va_rmajor;
825 ip->ino_data.rminor = vap->va_rminor;
826 break;
827 default:
828 break;
832 * Calculate default uid/gid and overwrite with information from
833 * the vap.
835 if (dip) {
836 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
837 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
838 xuid, cred, &vap->va_mode);
839 } else {
840 xuid = 0;
842 ip->ino_data.mode = vap->va_mode;
844 if (vap->va_vaflags & VA_UID_UUID_VALID)
845 ip->ino_data.uid = vap->va_uid_uuid;
846 else if (vap->va_uid != (uid_t)VNOVAL)
847 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
848 else
849 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
851 if (vap->va_vaflags & VA_GID_UUID_VALID)
852 ip->ino_data.gid = vap->va_gid_uuid;
853 else if (vap->va_gid != (gid_t)VNOVAL)
854 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
855 else if (dip)
856 ip->ino_data.gid = dip->ino_data.gid;
858 hammer_ref(&ip->lock);
860 if (pfsm) {
861 ip->pfsm = pfsm;
862 hammer_ref(&pfsm->lock);
863 error = 0;
864 } else if (dip->obj_localization == ip->obj_localization) {
865 ip->pfsm = dip->pfsm;
866 hammer_ref(&ip->pfsm->lock);
867 error = 0;
868 } else {
869 ip->pfsm = hammer_load_pseudofs(trans,
870 ip->obj_localization,
871 &error);
872 error = 0; /* ignore ENOENT */
875 if (error) {
876 hammer_free_inode(ip);
877 ip = NULL;
878 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
879 panic("hammer_create_inode: duplicate obj_id %llx",
880 (long long)ip->obj_id);
881 /* not reached */
882 hammer_free_inode(ip);
884 *ipp = ip;
885 return(error);
889 * Final cleanup / freeing of an inode structure
891 static void
892 hammer_free_inode(hammer_inode_t ip)
894 struct hammer_mount *hmp;
896 hmp = ip->hmp;
897 KKASSERT(ip->lock.refs == 1);
898 hammer_uncache_node(&ip->cache[0]);
899 hammer_uncache_node(&ip->cache[1]);
900 hammer_uncache_node(&ip->cache[2]);
901 hammer_uncache_node(&ip->cache[3]);
902 hammer_inode_wakereclaims(ip);
903 if (ip->objid_cache)
904 hammer_clear_objid(ip);
905 --hammer_count_inodes;
906 --hmp->count_inodes;
907 if (ip->pfsm) {
908 hammer_rel_pseudofs(hmp, ip->pfsm);
909 ip->pfsm = NULL;
911 kfree(ip, hmp->m_inodes);
912 ip = NULL;
916 * Retrieve pseudo-fs data. NULL will never be returned.
918 * If an error occurs *errorp will be set and a default template is returned,
919 * otherwise *errorp is set to 0. Typically when an error occurs it will
920 * be ENOENT.
922 hammer_pseudofs_inmem_t
923 hammer_load_pseudofs(hammer_transaction_t trans,
924 u_int32_t localization, int *errorp)
926 hammer_mount_t hmp = trans->hmp;
927 hammer_inode_t ip;
928 hammer_pseudofs_inmem_t pfsm;
929 struct hammer_cursor cursor;
930 int bytes;
932 retry:
933 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
934 if (pfsm) {
935 hammer_ref(&pfsm->lock);
936 *errorp = 0;
937 return(pfsm);
941 * PFS records are stored in the root inode (not the PFS root inode,
942 * but the real root). Avoid an infinite recursion if loading
943 * the PFS for the real root.
945 if (localization) {
946 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
947 HAMMER_MAX_TID,
948 HAMMER_DEF_LOCALIZATION, 0, errorp);
949 } else {
950 ip = NULL;
953 pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
954 pfsm->localization = localization;
955 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
956 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
958 hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
959 cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
960 HAMMER_LOCALIZE_MISC;
961 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
962 cursor.key_beg.create_tid = 0;
963 cursor.key_beg.delete_tid = 0;
964 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
965 cursor.key_beg.obj_type = 0;
966 cursor.key_beg.key = localization;
967 cursor.asof = HAMMER_MAX_TID;
968 cursor.flags |= HAMMER_CURSOR_ASOF;
970 if (ip)
971 *errorp = hammer_ip_lookup(&cursor);
972 else
973 *errorp = hammer_btree_lookup(&cursor);
974 if (*errorp == 0) {
975 *errorp = hammer_ip_resolve_data(&cursor);
976 if (*errorp == 0) {
977 if (cursor.data->pfsd.mirror_flags &
978 HAMMER_PFSD_DELETED) {
979 *errorp = ENOENT;
980 } else {
981 bytes = cursor.leaf->data_len;
982 if (bytes > sizeof(pfsm->pfsd))
983 bytes = sizeof(pfsm->pfsd);
984 bcopy(cursor.data, &pfsm->pfsd, bytes);
988 hammer_done_cursor(&cursor);
990 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
991 hammer_ref(&pfsm->lock);
992 if (ip)
993 hammer_rel_inode(ip, 0);
994 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
995 kfree(pfsm, hmp->m_misc);
996 goto retry;
998 return(pfsm);
1002 * Store pseudo-fs data. The backend will automatically delete any prior
1003 * on-disk pseudo-fs data but we have to delete in-memory versions.
1006 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1008 struct hammer_cursor cursor;
1009 hammer_record_t record;
1010 hammer_inode_t ip;
1011 int error;
1013 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1014 HAMMER_DEF_LOCALIZATION, 0, &error);
1015 retry:
1016 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1017 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1018 cursor.key_beg.localization = ip->obj_localization +
1019 HAMMER_LOCALIZE_MISC;
1020 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1021 cursor.key_beg.create_tid = 0;
1022 cursor.key_beg.delete_tid = 0;
1023 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1024 cursor.key_beg.obj_type = 0;
1025 cursor.key_beg.key = pfsm->localization;
1026 cursor.asof = HAMMER_MAX_TID;
1027 cursor.flags |= HAMMER_CURSOR_ASOF;
1030 * Replace any in-memory version of the record.
1032 error = hammer_ip_lookup(&cursor);
1033 if (error == 0 && hammer_cursor_inmem(&cursor)) {
1034 record = cursor.iprec;
1035 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1036 KKASSERT(cursor.deadlk_rec == NULL);
1037 hammer_ref(&record->lock);
1038 cursor.deadlk_rec = record;
1039 error = EDEADLK;
1040 } else {
1041 record->flags |= HAMMER_RECF_DELETED_FE;
1042 error = 0;
1047 * Allocate replacement general record. The backend flush will
1048 * delete any on-disk version of the record.
1050 if (error == 0 || error == ENOENT) {
1051 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1052 record->type = HAMMER_MEM_RECORD_GENERAL;
1054 record->leaf.base.localization = ip->obj_localization +
1055 HAMMER_LOCALIZE_MISC;
1056 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1057 record->leaf.base.key = pfsm->localization;
1058 record->leaf.data_len = sizeof(pfsm->pfsd);
1059 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1060 error = hammer_ip_add_record(trans, record);
1062 hammer_done_cursor(&cursor);
1063 if (error == EDEADLK)
1064 goto retry;
1065 hammer_rel_inode(ip, 0);
1066 return(error);
1070 * Create a root directory for a PFS if one does not alredy exist.
1072 * The PFS root stands alone so we must also bump the nlinks count
1073 * to prevent it from being destroyed on release.
1076 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1077 hammer_pseudofs_inmem_t pfsm)
1079 hammer_inode_t ip;
1080 struct vattr vap;
1081 int error;
1083 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1084 pfsm->localization, 0, &error);
1085 if (ip == NULL) {
1086 vattr_null(&vap);
1087 vap.va_mode = 0755;
1088 vap.va_type = VDIR;
1089 error = hammer_create_inode(trans, &vap, cred,
1090 NULL, NULL, 0,
1091 pfsm, &ip);
1092 if (error == 0) {
1093 ++ip->ino_data.nlinks;
1094 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
1097 if (ip)
1098 hammer_rel_inode(ip, 0);
1099 return(error);
1103 * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1104 * if we are unable to disassociate all the inodes.
1106 static
1108 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1110 int res;
1112 hammer_ref(&ip->lock);
1113 if (ip->lock.refs == 2 && ip->vp)
1114 vclean_unlocked(ip->vp);
1115 if (ip->lock.refs == 1 && ip->vp == NULL)
1116 res = 0;
1117 else
1118 res = -1; /* stop, someone is using the inode */
1119 hammer_rel_inode(ip, 0);
1120 return(res);
1124 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1126 int res;
1127 int try;
1129 for (try = res = 0; try < 4; ++try) {
1130 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1131 hammer_inode_pfs_cmp,
1132 hammer_unload_pseudofs_callback,
1133 &localization);
1134 if (res == 0 && try > 1)
1135 break;
1136 hammer_flusher_sync(trans->hmp);
1138 if (res != 0)
1139 res = ENOTEMPTY;
1140 return(res);
1145 * Release a reference on a PFS
1147 void
1148 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1150 hammer_unref(&pfsm->lock);
1151 if (pfsm->lock.refs == 0) {
1152 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1153 kfree(pfsm, hmp->m_misc);
1158 * Called by hammer_sync_inode().
1160 static int
1161 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1163 hammer_transaction_t trans = cursor->trans;
1164 hammer_record_t record;
1165 int error;
1166 int redirty;
1168 retry:
1169 error = 0;
1172 * If the inode has a presence on-disk then locate it and mark
1173 * it deleted, setting DELONDISK.
1175 * The record may or may not be physically deleted, depending on
1176 * the retention policy.
1178 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1179 HAMMER_INODE_ONDISK) {
1180 hammer_normalize_cursor(cursor);
1181 cursor->key_beg.localization = ip->obj_localization +
1182 HAMMER_LOCALIZE_INODE;
1183 cursor->key_beg.obj_id = ip->obj_id;
1184 cursor->key_beg.key = 0;
1185 cursor->key_beg.create_tid = 0;
1186 cursor->key_beg.delete_tid = 0;
1187 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1188 cursor->key_beg.obj_type = 0;
1189 cursor->asof = ip->obj_asof;
1190 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1191 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1192 cursor->flags |= HAMMER_CURSOR_BACKEND;
1194 error = hammer_btree_lookup(cursor);
1195 if (hammer_debug_inode)
1196 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1198 if (error == 0) {
1199 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1200 if (hammer_debug_inode)
1201 kprintf(" error %d\n", error);
1202 if (error == 0) {
1203 ip->flags |= HAMMER_INODE_DELONDISK;
1205 if (cursor->node)
1206 hammer_cache_node(&ip->cache[0], cursor->node);
1208 if (error == EDEADLK) {
1209 hammer_done_cursor(cursor);
1210 error = hammer_init_cursor(trans, cursor,
1211 &ip->cache[0], ip);
1212 if (hammer_debug_inode)
1213 kprintf("IPDED %p %d\n", ip, error);
1214 if (error == 0)
1215 goto retry;
1220 * Ok, write out the initial record or a new record (after deleting
1221 * the old one), unless the DELETED flag is set. This routine will
1222 * clear DELONDISK if it writes out a record.
1224 * Update our inode statistics if this is the first application of
1225 * the inode on-disk.
1227 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1229 * Generate a record and write it to the media. We clean-up
1230 * the state before releasing so we do not have to set-up
1231 * a flush_group.
1233 record = hammer_alloc_mem_record(ip, 0);
1234 record->type = HAMMER_MEM_RECORD_INODE;
1235 record->flush_state = HAMMER_FST_FLUSH;
1236 record->leaf = ip->sync_ino_leaf;
1237 record->leaf.base.create_tid = trans->tid;
1238 record->leaf.data_len = sizeof(ip->sync_ino_data);
1239 record->leaf.create_ts = trans->time32;
1240 record->data = (void *)&ip->sync_ino_data;
1241 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1244 * If this flag is set we cannot sync the new file size
1245 * because we haven't finished related truncations. The
1246 * inode will be flushed in another flush group to finish
1247 * the job.
1249 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1250 ip->sync_ino_data.size != ip->ino_data.size) {
1251 redirty = 1;
1252 ip->sync_ino_data.size = ip->ino_data.size;
1253 } else {
1254 redirty = 0;
1257 for (;;) {
1258 error = hammer_ip_sync_record_cursor(cursor, record);
1259 if (hammer_debug_inode)
1260 kprintf("GENREC %p rec %08x %d\n",
1261 ip, record->flags, error);
1262 if (error != EDEADLK)
1263 break;
1264 hammer_done_cursor(cursor);
1265 error = hammer_init_cursor(trans, cursor,
1266 &ip->cache[0], ip);
1267 if (hammer_debug_inode)
1268 kprintf("GENREC reinit %d\n", error);
1269 if (error)
1270 break;
1274 * Note: The record was never on the inode's record tree
1275 * so just wave our hands importantly and destroy it.
1277 record->flags |= HAMMER_RECF_COMMITTED;
1278 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1279 record->flush_state = HAMMER_FST_IDLE;
1280 ++ip->rec_generation;
1281 hammer_rel_mem_record(record);
1284 * Finish up.
1286 if (error == 0) {
1287 if (hammer_debug_inode)
1288 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1289 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1290 HAMMER_INODE_SDIRTY |
1291 HAMMER_INODE_ATIME |
1292 HAMMER_INODE_MTIME);
1293 ip->flags &= ~HAMMER_INODE_DELONDISK;
1294 if (redirty)
1295 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1298 * Root volume count of inodes
1300 hammer_sync_lock_sh(trans);
1301 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1302 hammer_modify_volume_field(trans,
1303 trans->rootvol,
1304 vol0_stat_inodes);
1305 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1306 hammer_modify_volume_done(trans->rootvol);
1307 ip->flags |= HAMMER_INODE_ONDISK;
1308 if (hammer_debug_inode)
1309 kprintf("NOWONDISK %p\n", ip);
1311 hammer_sync_unlock(trans);
1316 * If the inode has been destroyed, clean out any left-over flags
1317 * that may have been set by the frontend.
1319 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1320 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1321 HAMMER_INODE_SDIRTY |
1322 HAMMER_INODE_ATIME |
1323 HAMMER_INODE_MTIME);
1325 return(error);
1329 * Update only the itimes fields.
1331 * ATIME can be updated without generating any UNDO. MTIME is updated
1332 * with UNDO so it is guaranteed to be synchronized properly in case of
1333 * a crash.
1335 * Neither field is included in the B-Tree leaf element's CRC, which is how
1336 * we can get away with updating ATIME the way we do.
1338 static int
1339 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1341 hammer_transaction_t trans = cursor->trans;
1342 int error;
1344 retry:
1345 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1346 HAMMER_INODE_ONDISK) {
1347 return(0);
1350 hammer_normalize_cursor(cursor);
1351 cursor->key_beg.localization = ip->obj_localization +
1352 HAMMER_LOCALIZE_INODE;
1353 cursor->key_beg.obj_id = ip->obj_id;
1354 cursor->key_beg.key = 0;
1355 cursor->key_beg.create_tid = 0;
1356 cursor->key_beg.delete_tid = 0;
1357 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1358 cursor->key_beg.obj_type = 0;
1359 cursor->asof = ip->obj_asof;
1360 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1361 cursor->flags |= HAMMER_CURSOR_ASOF;
1362 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1363 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1364 cursor->flags |= HAMMER_CURSOR_BACKEND;
1366 error = hammer_btree_lookup(cursor);
1367 if (error == 0) {
1368 hammer_cache_node(&ip->cache[0], cursor->node);
1369 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1371 * Updating MTIME requires an UNDO. Just cover
1372 * both atime and mtime.
1374 hammer_sync_lock_sh(trans);
1375 hammer_modify_buffer(trans, cursor->data_buffer,
1376 HAMMER_ITIMES_BASE(&cursor->data->inode),
1377 HAMMER_ITIMES_BYTES);
1378 cursor->data->inode.atime = ip->sync_ino_data.atime;
1379 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1380 hammer_modify_buffer_done(cursor->data_buffer);
1381 hammer_sync_unlock(trans);
1382 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1384 * Updating atime only can be done in-place with
1385 * no UNDO.
1387 hammer_sync_lock_sh(trans);
1388 hammer_modify_buffer(trans, cursor->data_buffer,
1389 NULL, 0);
1390 cursor->data->inode.atime = ip->sync_ino_data.atime;
1391 hammer_modify_buffer_done(cursor->data_buffer);
1392 hammer_sync_unlock(trans);
1394 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1396 if (error == EDEADLK) {
1397 hammer_done_cursor(cursor);
1398 error = hammer_init_cursor(trans, cursor,
1399 &ip->cache[0], ip);
1400 if (error == 0)
1401 goto retry;
1403 return(error);
1407 * Release a reference on an inode, flush as requested.
1409 * On the last reference we queue the inode to the flusher for its final
1410 * disposition.
1412 void
1413 hammer_rel_inode(struct hammer_inode *ip, int flush)
1415 /*hammer_mount_t hmp = ip->hmp;*/
1418 * Handle disposition when dropping the last ref.
1420 for (;;) {
1421 if (ip->lock.refs == 1) {
1423 * Determine whether on-disk action is needed for
1424 * the inode's final disposition.
1426 KKASSERT(ip->vp == NULL);
1427 hammer_inode_unloadable_check(ip, 0);
1428 if (ip->flags & HAMMER_INODE_MODMASK) {
1429 hammer_flush_inode(ip, 0);
1430 } else if (ip->lock.refs == 1) {
1431 hammer_unload_inode(ip);
1432 break;
1434 } else {
1435 if (flush)
1436 hammer_flush_inode(ip, 0);
1439 * The inode still has multiple refs, try to drop
1440 * one ref.
1442 KKASSERT(ip->lock.refs >= 1);
1443 if (ip->lock.refs > 1) {
1444 hammer_unref(&ip->lock);
1445 break;
1452 * Unload and destroy the specified inode. Must be called with one remaining
1453 * reference. The reference is disposed of.
1455 * The inode must be completely clean.
1457 static int
1458 hammer_unload_inode(struct hammer_inode *ip)
1460 hammer_mount_t hmp = ip->hmp;
1462 KASSERT(ip->lock.refs == 1,
1463 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
1464 KKASSERT(ip->vp == NULL);
1465 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1466 KKASSERT(ip->cursor_ip_refs == 0);
1467 KKASSERT(hammer_notlocked(&ip->lock));
1468 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1470 KKASSERT(RB_EMPTY(&ip->rec_tree));
1471 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1473 if (ip->flags & HAMMER_INODE_RDIRTY) {
1474 RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1475 ip->flags &= ~HAMMER_INODE_RDIRTY;
1477 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1479 hammer_free_inode(ip);
1480 return(0);
1484 * Called during unmounting if a critical error occured. The in-memory
1485 * inode and all related structures are destroyed.
1487 * If a critical error did not occur the unmount code calls the standard
1488 * release and asserts that the inode is gone.
1491 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1493 hammer_record_t rec;
1496 * Get rid of the inodes in-memory records, regardless of their
1497 * state, and clear the mod-mask.
1499 while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1500 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1501 rec->target_ip = NULL;
1502 if (rec->flush_state == HAMMER_FST_SETUP)
1503 rec->flush_state = HAMMER_FST_IDLE;
1505 while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1506 if (rec->flush_state == HAMMER_FST_FLUSH)
1507 --rec->flush_group->refs;
1508 else
1509 hammer_ref(&rec->lock);
1510 KKASSERT(rec->lock.refs == 1);
1511 rec->flush_state = HAMMER_FST_IDLE;
1512 rec->flush_group = NULL;
1513 rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1514 rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1515 ++ip->rec_generation;
1516 hammer_rel_mem_record(rec);
1518 ip->flags &= ~HAMMER_INODE_MODMASK;
1519 ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1520 KKASSERT(ip->vp == NULL);
1523 * Remove the inode from any flush group, force it idle. FLUSH
1524 * and SETUP states have an inode ref.
1526 switch(ip->flush_state) {
1527 case HAMMER_FST_FLUSH:
1528 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1529 --ip->flush_group->refs;
1530 ip->flush_group = NULL;
1531 /* fall through */
1532 case HAMMER_FST_SETUP:
1533 hammer_unref(&ip->lock);
1534 ip->flush_state = HAMMER_FST_IDLE;
1535 /* fall through */
1536 case HAMMER_FST_IDLE:
1537 break;
1541 * There shouldn't be any associated vnode. The unload needs at
1542 * least one ref, if we do have a vp steal its ip ref.
1544 if (ip->vp) {
1545 kprintf("hammer_destroy_inode_callback: Unexpected "
1546 "vnode association ip %p vp %p\n", ip, ip->vp);
1547 ip->vp->v_data = NULL;
1548 ip->vp = NULL;
1549 } else {
1550 hammer_ref(&ip->lock);
1552 hammer_unload_inode(ip);
1553 return(0);
1557 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1558 * the read-only flag for cached inodes.
1560 * This routine is called from a RB_SCAN().
1563 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1565 hammer_mount_t hmp = ip->hmp;
1567 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1568 ip->flags |= HAMMER_INODE_RO;
1569 else
1570 ip->flags &= ~HAMMER_INODE_RO;
1571 return(0);
1575 * A transaction has modified an inode, requiring updates as specified by
1576 * the passed flags.
1578 * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1579 * and not including size changes due to write-append
1580 * (but other size changes are included).
1581 * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1582 * write-append.
1583 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1584 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1585 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1586 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1588 void
1589 hammer_modify_inode(hammer_inode_t ip, int flags)
1592 * ronly of 0 or 2 does not trigger assertion.
1593 * 2 is a special error state
1595 KKASSERT(ip->hmp->ronly != 1 ||
1596 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1597 HAMMER_INODE_SDIRTY |
1598 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1599 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1600 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1601 ip->flags |= HAMMER_INODE_RSV_INODES;
1602 ++ip->hmp->rsv_inodes;
1605 ip->flags |= flags;
1609 * Request that an inode be flushed. This whole mess cannot block and may
1610 * recurse (if not synchronous). Once requested HAMMER will attempt to
1611 * actively flush the inode until the flush can be done.
1613 * The inode may already be flushing, or may be in a setup state. We can
1614 * place the inode in a flushing state if it is currently idle and flag it
1615 * to reflush if it is currently flushing.
1617 * Upon return if the inode could not be flushed due to a setup
1618 * dependancy, then it will be automatically flushed when the dependancy
1619 * is satisfied.
1621 void
1622 hammer_flush_inode(hammer_inode_t ip, int flags)
1624 hammer_mount_t hmp;
1625 hammer_flush_group_t flg;
1626 int good;
1629 * next_flush_group is the first flush group we can place the inode
1630 * in. It may be NULL. If it becomes full we append a new flush
1631 * group and make that the next_flush_group.
1633 hmp = ip->hmp;
1634 while ((flg = hmp->next_flush_group) != NULL) {
1635 KKASSERT(flg->running == 0);
1636 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1637 break;
1638 hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1639 hammer_flusher_async(ip->hmp, flg);
1641 if (flg == NULL) {
1642 flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1643 hmp->next_flush_group = flg;
1644 RB_INIT(&flg->flush_tree);
1645 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1649 * Trivial 'nothing to flush' case. If the inode is in a SETUP
1650 * state we have to put it back into an IDLE state so we can
1651 * drop the extra ref.
1653 * If we have a parent dependancy we must still fall through
1654 * so we can run it.
1656 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1657 if (ip->flush_state == HAMMER_FST_SETUP &&
1658 TAILQ_EMPTY(&ip->target_list)) {
1659 ip->flush_state = HAMMER_FST_IDLE;
1660 hammer_rel_inode(ip, 0);
1662 if (ip->flush_state == HAMMER_FST_IDLE)
1663 return;
1667 * Our flush action will depend on the current state.
1669 switch(ip->flush_state) {
1670 case HAMMER_FST_IDLE:
1672 * We have no dependancies and can flush immediately. Some
1673 * our children may not be flushable so we have to re-test
1674 * with that additional knowledge.
1676 hammer_flush_inode_core(ip, flg, flags);
1677 break;
1678 case HAMMER_FST_SETUP:
1680 * Recurse upwards through dependancies via target_list
1681 * and start their flusher actions going if possible.
1683 * 'good' is our connectivity. -1 means we have none and
1684 * can't flush, 0 means there weren't any dependancies, and
1685 * 1 means we have good connectivity.
1687 good = hammer_setup_parent_inodes(ip, 0, flg);
1689 if (good >= 0) {
1691 * We can continue if good >= 0. Determine how
1692 * many records under our inode can be flushed (and
1693 * mark them).
1695 hammer_flush_inode_core(ip, flg, flags);
1696 } else {
1698 * Parent has no connectivity, tell it to flush
1699 * us as soon as it does.
1701 * The REFLUSH flag is also needed to trigger
1702 * dependancy wakeups.
1704 ip->flags |= HAMMER_INODE_CONN_DOWN |
1705 HAMMER_INODE_REFLUSH;
1706 if (flags & HAMMER_FLUSH_SIGNAL) {
1707 ip->flags |= HAMMER_INODE_RESIGNAL;
1708 hammer_flusher_async(ip->hmp, flg);
1711 break;
1712 case HAMMER_FST_FLUSH:
1714 * We are already flushing, flag the inode to reflush
1715 * if needed after it completes its current flush.
1717 * The REFLUSH flag is also needed to trigger
1718 * dependancy wakeups.
1720 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1721 ip->flags |= HAMMER_INODE_REFLUSH;
1722 if (flags & HAMMER_FLUSH_SIGNAL) {
1723 ip->flags |= HAMMER_INODE_RESIGNAL;
1724 hammer_flusher_async(ip->hmp, flg);
1726 break;
1731 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1732 * ip which reference our ip.
1734 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1735 * so for now do not ref/deref the structures. Note that if we use the
1736 * ref/rel code later, the rel CAN block.
1738 static int
1739 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1740 hammer_flush_group_t flg)
1742 hammer_record_t depend;
1743 int good;
1744 int r;
1747 * If we hit our recursion limit and we have parent dependencies
1748 * We cannot continue. Returning < 0 will cause us to be flagged
1749 * for reflush. Returning -2 cuts off additional dependency checks
1750 * because they are likely to also hit the depth limit.
1752 * We cannot return < 0 if there are no dependencies or there might
1753 * not be anything to wakeup (ip).
1755 if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1756 kprintf("HAMMER Warning: depth limit reached on "
1757 "setup recursion, inode %p %016llx\n",
1758 ip, (long long)ip->obj_id);
1759 return(-2);
1763 * Scan dependencies
1765 good = 0;
1766 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1767 r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1768 KKASSERT(depend->target_ip == ip);
1769 if (r < 0 && good == 0)
1770 good = -1;
1771 if (r > 0)
1772 good = 1;
1775 * If we failed due to the recursion depth limit then stop
1776 * now.
1778 if (r == -2)
1779 break;
1781 return(good);
1785 * This helper function takes a record representing the dependancy between
1786 * the parent inode and child inode.
1788 * record->ip = parent inode
1789 * record->target_ip = child inode
1791 * We are asked to recurse upwards and convert the record from SETUP
1792 * to FLUSH if possible.
1794 * Return 1 if the record gives us connectivity
1796 * Return 0 if the record is not relevant
1798 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1800 static int
1801 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1802 hammer_flush_group_t flg)
1804 hammer_mount_t hmp;
1805 hammer_inode_t pip;
1806 int good;
1808 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1809 pip = record->ip;
1810 hmp = pip->hmp;
1813 * If the record is already flushing, is it in our flush group?
1815 * If it is in our flush group but it is a general record or a
1816 * delete-on-disk, it does not improve our connectivity (return 0),
1817 * and if the target inode is not trying to destroy itself we can't
1818 * allow the operation yet anyway (the second return -1).
1820 if (record->flush_state == HAMMER_FST_FLUSH) {
1822 * If not in our flush group ask the parent to reflush
1823 * us as soon as possible.
1825 if (record->flush_group != flg) {
1826 pip->flags |= HAMMER_INODE_REFLUSH;
1827 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1828 return(-1);
1832 * If in our flush group everything is already set up,
1833 * just return whether the record will improve our
1834 * visibility or not.
1836 if (record->type == HAMMER_MEM_RECORD_ADD)
1837 return(1);
1838 return(0);
1842 * It must be a setup record. Try to resolve the setup dependancies
1843 * by recursing upwards so we can place ip on the flush list.
1845 * Limit ourselves to 20 levels of recursion to avoid blowing out
1846 * the kernel stack. If we hit the recursion limit we can't flush
1847 * until the parent flushes. The parent will flush independantly
1848 * on its own and ultimately a deep recursion will be resolved.
1850 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1852 good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1855 * If good < 0 the parent has no connectivity and we cannot safely
1856 * flush the directory entry, which also means we can't flush our
1857 * ip. Flag us for downward recursion once the parent's
1858 * connectivity is resolved. Flag the parent for [re]flush or it
1859 * may not check for downward recursions.
1861 if (good < 0) {
1862 pip->flags |= HAMMER_INODE_REFLUSH;
1863 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1864 return(good);
1868 * We are go, place the parent inode in a flushing state so we can
1869 * place its record in a flushing state. Note that the parent
1870 * may already be flushing. The record must be in the same flush
1871 * group as the parent.
1873 if (pip->flush_state != HAMMER_FST_FLUSH)
1874 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1875 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1876 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1878 #if 0
1879 if (record->type == HAMMER_MEM_RECORD_DEL &&
1880 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1882 * Regardless of flushing state we cannot sync this path if the
1883 * record represents a delete-on-disk but the target inode
1884 * is not ready to sync its own deletion.
1886 * XXX need to count effective nlinks to determine whether
1887 * the flush is ok, otherwise removing a hardlink will
1888 * just leave the DEL record to rot.
1890 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1891 return(-1);
1892 } else
1893 #endif
1894 if (pip->flush_group == flg) {
1896 * Because we have not calculated nlinks yet we can just
1897 * set records to the flush state if the parent is in
1898 * the same flush group as we are.
1900 record->flush_state = HAMMER_FST_FLUSH;
1901 record->flush_group = flg;
1902 ++record->flush_group->refs;
1903 hammer_ref(&record->lock);
1906 * A general directory-add contributes to our visibility.
1908 * Otherwise it is probably a directory-delete or
1909 * delete-on-disk record and does not contribute to our
1910 * visbility (but we can still flush it).
1912 if (record->type == HAMMER_MEM_RECORD_ADD)
1913 return(1);
1914 return(0);
1915 } else {
1917 * If the parent is not in our flush group we cannot
1918 * flush this record yet, there is no visibility.
1919 * We tell the parent to reflush and mark ourselves
1920 * so the parent knows it should flush us too.
1922 pip->flags |= HAMMER_INODE_REFLUSH;
1923 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1924 return(-1);
1929 * This is the core routine placing an inode into the FST_FLUSH state.
1931 static void
1932 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1934 int go_count;
1937 * Set flush state and prevent the flusher from cycling into
1938 * the next flush group. Do not place the ip on the list yet.
1939 * Inodes not in the idle state get an extra reference.
1941 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1942 if (ip->flush_state == HAMMER_FST_IDLE)
1943 hammer_ref(&ip->lock);
1944 ip->flush_state = HAMMER_FST_FLUSH;
1945 ip->flush_group = flg;
1946 ++ip->hmp->flusher.group_lock;
1947 ++ip->hmp->count_iqueued;
1948 ++hammer_count_iqueued;
1949 ++flg->total_count;
1950 hammer_redo_fifo_start_flush(ip);
1953 * If the flush group reaches the autoflush limit we want to signal
1954 * the flusher. This is particularly important for remove()s.
1956 * If the default hammer_limit_reclaim is changed via sysctl
1957 * make sure we don't hit a degenerate case where we don't start
1958 * a flush but blocked on further inode ops.
1960 if (flg->total_count == hammer_autoflush ||
1961 flg->total_count >= hammer_limit_reclaim / 4)
1962 flags |= HAMMER_FLUSH_SIGNAL;
1964 #if 0
1966 * We need to be able to vfsync/truncate from the backend.
1968 * XXX Any truncation from the backend will acquire the vnode
1969 * independently.
1971 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1972 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1973 ip->flags |= HAMMER_INODE_VHELD;
1974 vref(ip->vp);
1976 #endif
1979 * Figure out how many in-memory records we can actually flush
1980 * (not including inode meta-data, buffers, etc).
1982 KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
1983 if (flags & HAMMER_FLUSH_RECURSION) {
1985 * If this is a upwards recursion we do not want to
1986 * recurse down again!
1988 go_count = 1;
1989 #if 0
1990 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1992 * No new records are added if we must complete a flush
1993 * from a previous cycle, but we do have to move the records
1994 * from the previous cycle to the current one.
1996 #if 0
1997 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1998 hammer_syncgrp_child_callback, NULL);
1999 #endif
2000 go_count = 1;
2001 #endif
2002 } else {
2004 * Normal flush, scan records and bring them into the flush.
2005 * Directory adds and deletes are usually skipped (they are
2006 * grouped with the related inode rather then with the
2007 * directory).
2009 * go_count can be negative, which means the scan aborted
2010 * due to the flush group being over-full and we should
2011 * flush what we have.
2013 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2014 hammer_setup_child_callback, NULL);
2018 * This is a more involved test that includes go_count. If we
2019 * can't flush, flag the inode and return. If go_count is 0 we
2020 * were are unable to flush any records in our rec_tree and
2021 * must ignore the XDIRTY flag.
2023 if (go_count == 0) {
2024 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2025 --ip->hmp->count_iqueued;
2026 --hammer_count_iqueued;
2028 --flg->total_count;
2029 ip->flush_state = HAMMER_FST_SETUP;
2030 ip->flush_group = NULL;
2031 #if 0
2032 if (ip->flags & HAMMER_INODE_VHELD) {
2033 ip->flags &= ~HAMMER_INODE_VHELD;
2034 vrele(ip->vp);
2036 #endif
2039 * REFLUSH is needed to trigger dependancy wakeups
2040 * when an inode is in SETUP.
2042 ip->flags |= HAMMER_INODE_REFLUSH;
2043 if (flags & HAMMER_FLUSH_SIGNAL) {
2044 ip->flags |= HAMMER_INODE_RESIGNAL;
2045 hammer_flusher_async(ip->hmp, flg);
2047 if (--ip->hmp->flusher.group_lock == 0)
2048 wakeup(&ip->hmp->flusher.group_lock);
2049 return;
2054 * Snapshot the state of the inode for the backend flusher.
2056 * We continue to retain save_trunc_off even when all truncations
2057 * have been resolved as an optimization to determine if we can
2058 * skip the B-Tree lookup for overwrite deletions.
2060 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2061 * and stays in ip->flags. Once set, it stays set until the
2062 * inode is destroyed.
2064 if (ip->flags & HAMMER_INODE_TRUNCATED) {
2065 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2066 ip->sync_trunc_off = ip->trunc_off;
2067 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2068 ip->flags &= ~HAMMER_INODE_TRUNCATED;
2069 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2072 * The save_trunc_off used to cache whether the B-Tree
2073 * holds any records past that point is not used until
2074 * after the truncation has succeeded, so we can safely
2075 * set it now.
2077 if (ip->save_trunc_off > ip->sync_trunc_off)
2078 ip->save_trunc_off = ip->sync_trunc_off;
2080 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2081 ~HAMMER_INODE_TRUNCATED);
2082 ip->sync_ino_leaf = ip->ino_leaf;
2083 ip->sync_ino_data = ip->ino_data;
2084 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2085 #ifdef DEBUG_TRUNCATE
2086 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2087 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2088 #endif
2091 * The flusher list inherits our inode and reference.
2093 KKASSERT(flg->running == 0);
2094 RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2095 if (--ip->hmp->flusher.group_lock == 0)
2096 wakeup(&ip->hmp->flusher.group_lock);
2098 if (flags & HAMMER_FLUSH_SIGNAL) {
2099 hammer_flusher_async(ip->hmp, flg);
2104 * Callback for scan of ip->rec_tree. Try to include each record in our
2105 * flush. ip->flush_group has been set but the inode has not yet been
2106 * moved into a flushing state.
2108 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2109 * both inodes.
2111 * We return 1 for any record placed or found in FST_FLUSH, which prevents
2112 * the caller from shortcutting the flush.
2114 static int
2115 hammer_setup_child_callback(hammer_record_t rec, void *data)
2117 hammer_flush_group_t flg;
2118 hammer_inode_t target_ip;
2119 hammer_inode_t ip;
2120 int r;
2123 * Records deleted or committed by the backend are ignored.
2124 * Note that the flush detects deleted frontend records at
2125 * multiple points to deal with races. This is just the first
2126 * line of defense. The only time HAMMER_RECF_DELETED_FE cannot
2127 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2128 * messes up link-count calculations.
2130 * NOTE: Don't get confused between record deletion and, say,
2131 * directory entry deletion. The deletion of a directory entry
2132 * which is on-media has nothing to do with the record deletion
2133 * flags.
2135 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2136 HAMMER_RECF_COMMITTED)) {
2137 if (rec->flush_state == HAMMER_FST_FLUSH) {
2138 KKASSERT(rec->flush_group == rec->ip->flush_group);
2139 r = 1;
2140 } else {
2141 r = 0;
2143 return(r);
2147 * If the record is in an idle state it has no dependancies and
2148 * can be flushed.
2150 ip = rec->ip;
2151 flg = ip->flush_group;
2152 r = 0;
2154 switch(rec->flush_state) {
2155 case HAMMER_FST_IDLE:
2157 * The record has no setup dependancy, we can flush it.
2159 KKASSERT(rec->target_ip == NULL);
2160 rec->flush_state = HAMMER_FST_FLUSH;
2161 rec->flush_group = flg;
2162 ++flg->refs;
2163 hammer_ref(&rec->lock);
2164 r = 1;
2165 break;
2166 case HAMMER_FST_SETUP:
2168 * The record has a setup dependancy. These are typically
2169 * directory entry adds and deletes. Such entries will be
2170 * flushed when their inodes are flushed so we do not
2171 * usually have to add them to the flush here. However,
2172 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2173 * it is asking us to flush this record (and it).
2175 target_ip = rec->target_ip;
2176 KKASSERT(target_ip != NULL);
2177 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2180 * If the target IP is already flushing in our group
2181 * we could associate the record, but target_ip has
2182 * already synced ino_data to sync_ino_data and we
2183 * would also have to adjust nlinks. Plus there are
2184 * ordering issues for adds and deletes.
2186 * Reflush downward if this is an ADD, and upward if
2187 * this is a DEL.
2189 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2190 if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
2191 ip->flags |= HAMMER_INODE_REFLUSH;
2192 else
2193 target_ip->flags |= HAMMER_INODE_REFLUSH;
2194 break;
2198 * Target IP is not yet flushing. This can get complex
2199 * because we have to be careful about the recursion.
2201 * Directories create an issue for us in that if a flush
2202 * of a directory is requested the expectation is to flush
2203 * any pending directory entries, but this will cause the
2204 * related inodes to recursively flush as well. We can't
2205 * really defer the operation so just get as many as we
2206 * can and
2208 #if 0
2209 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2210 (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2212 * We aren't reclaiming and the target ip was not
2213 * previously prevented from flushing due to this
2214 * record dependancy. Do not flush this record.
2216 /*r = 0;*/
2217 } else
2218 #endif
2219 if (flg->total_count + flg->refs >
2220 ip->hmp->undo_rec_limit) {
2222 * Our flush group is over-full and we risk blowing
2223 * out the UNDO FIFO. Stop the scan, flush what we
2224 * have, then reflush the directory.
2226 * The directory may be forced through multiple
2227 * flush groups before it can be completely
2228 * flushed.
2230 ip->flags |= HAMMER_INODE_RESIGNAL |
2231 HAMMER_INODE_REFLUSH;
2232 r = -1;
2233 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2235 * If the target IP is not flushing we can force
2236 * it to flush, even if it is unable to write out
2237 * any of its own records we have at least one in
2238 * hand that we CAN deal with.
2240 rec->flush_state = HAMMER_FST_FLUSH;
2241 rec->flush_group = flg;
2242 ++flg->refs;
2243 hammer_ref(&rec->lock);
2244 hammer_flush_inode_core(target_ip, flg,
2245 HAMMER_FLUSH_RECURSION);
2246 r = 1;
2247 } else {
2249 * General or delete-on-disk record.
2251 * XXX this needs help. If a delete-on-disk we could
2252 * disconnect the target. If the target has its own
2253 * dependancies they really need to be flushed.
2255 * XXX
2257 rec->flush_state = HAMMER_FST_FLUSH;
2258 rec->flush_group = flg;
2259 ++flg->refs;
2260 hammer_ref(&rec->lock);
2261 hammer_flush_inode_core(target_ip, flg,
2262 HAMMER_FLUSH_RECURSION);
2263 r = 1;
2265 break;
2266 case HAMMER_FST_FLUSH:
2268 * The flush_group should already match.
2270 KKASSERT(rec->flush_group == flg);
2271 r = 1;
2272 break;
2274 return(r);
2277 #if 0
2279 * This version just moves records already in a flush state to the new
2280 * flush group and that is it.
2282 static int
2283 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2285 hammer_inode_t ip = rec->ip;
2287 switch(rec->flush_state) {
2288 case HAMMER_FST_FLUSH:
2289 KKASSERT(rec->flush_group == ip->flush_group);
2290 break;
2291 default:
2292 break;
2294 return(0);
2296 #endif
2299 * Wait for a previously queued flush to complete.
2301 * If a critical error occured we don't try to wait.
2303 void
2304 hammer_wait_inode(hammer_inode_t ip)
2306 hammer_flush_group_t flg;
2308 flg = NULL;
2309 if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2310 while (ip->flush_state != HAMMER_FST_IDLE &&
2311 (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2312 if (ip->flush_state == HAMMER_FST_SETUP)
2313 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2314 if (ip->flush_state != HAMMER_FST_IDLE) {
2315 ip->flags |= HAMMER_INODE_FLUSHW;
2316 tsleep(&ip->flags, 0, "hmrwin", 0);
2323 * Called by the backend code when a flush has been completed.
2324 * The inode has already been removed from the flush list.
2326 * A pipelined flush can occur, in which case we must re-enter the
2327 * inode on the list and re-copy its fields.
2329 void
2330 hammer_flush_inode_done(hammer_inode_t ip, int error)
2332 hammer_mount_t hmp;
2333 int dorel;
2335 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2337 hmp = ip->hmp;
2340 * Auto-reflush if the backend could not completely flush
2341 * the inode. This fixes a case where a deferred buffer flush
2342 * could cause fsync to return early.
2344 if (ip->sync_flags & HAMMER_INODE_MODMASK)
2345 ip->flags |= HAMMER_INODE_REFLUSH;
2348 * Merge left-over flags back into the frontend and fix the state.
2349 * Incomplete truncations are retained by the backend.
2351 ip->error = error;
2352 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2353 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2356 * The backend may have adjusted nlinks, so if the adjusted nlinks
2357 * does not match the fronttend set the frontend's DDIRTY flag again.
2359 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2360 ip->flags |= HAMMER_INODE_DDIRTY;
2363 * Fix up the dirty buffer status.
2365 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2366 ip->flags |= HAMMER_INODE_BUFS;
2368 hammer_redo_fifo_end_flush(ip);
2371 * Re-set the XDIRTY flag if some of the inode's in-memory records
2372 * could not be flushed.
2374 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2375 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2376 (!RB_EMPTY(&ip->rec_tree) &&
2377 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2380 * Do not lose track of inodes which no longer have vnode
2381 * assocations, otherwise they may never get flushed again.
2383 * The reflush flag can be set superfluously, causing extra pain
2384 * for no reason. If the inode is no longer modified it no longer
2385 * needs to be flushed.
2387 if (ip->flags & HAMMER_INODE_MODMASK) {
2388 if (ip->vp == NULL)
2389 ip->flags |= HAMMER_INODE_REFLUSH;
2390 } else {
2391 ip->flags &= ~HAMMER_INODE_REFLUSH;
2395 * Adjust the flush state.
2397 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2399 * We were unable to flush out all our records, leave the
2400 * inode in a flush state and in the current flush group.
2401 * The flush group will be re-run.
2403 * This occurs if the UNDO block gets too full or there is
2404 * too much dirty meta-data and allows the flusher to
2405 * finalize the UNDO block and then re-flush.
2407 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2408 dorel = 0;
2409 } else {
2411 * Remove from the flush_group
2413 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2414 ip->flush_group = NULL;
2416 #if 0
2418 * Clean up the vnode ref and tracking counts.
2420 if (ip->flags & HAMMER_INODE_VHELD) {
2421 ip->flags &= ~HAMMER_INODE_VHELD;
2422 vrele(ip->vp);
2424 #endif
2425 --hmp->count_iqueued;
2426 --hammer_count_iqueued;
2429 * And adjust the state.
2431 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2432 ip->flush_state = HAMMER_FST_IDLE;
2433 dorel = 1;
2434 } else {
2435 ip->flush_state = HAMMER_FST_SETUP;
2436 dorel = 0;
2440 * If the frontend is waiting for a flush to complete,
2441 * wake it up.
2443 if (ip->flags & HAMMER_INODE_FLUSHW) {
2444 ip->flags &= ~HAMMER_INODE_FLUSHW;
2445 wakeup(&ip->flags);
2449 * If the frontend made more changes and requested another
2450 * flush, then try to get it running.
2452 * Reflushes are aborted when the inode is errored out.
2454 if (ip->flags & HAMMER_INODE_REFLUSH) {
2455 ip->flags &= ~HAMMER_INODE_REFLUSH;
2456 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2457 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2458 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2459 } else {
2460 hammer_flush_inode(ip, 0);
2466 * If we have no parent dependancies we can clear CONN_DOWN
2468 if (TAILQ_EMPTY(&ip->target_list))
2469 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2472 * If the inode is now clean drop the space reservation.
2474 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2475 (ip->flags & HAMMER_INODE_RSV_INODES)) {
2476 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2477 --hmp->rsv_inodes;
2480 if (dorel)
2481 hammer_rel_inode(ip, 0);
2485 * Called from hammer_sync_inode() to synchronize in-memory records
2486 * to the media.
2488 static int
2489 hammer_sync_record_callback(hammer_record_t record, void *data)
2491 hammer_cursor_t cursor = data;
2492 hammer_transaction_t trans = cursor->trans;
2493 hammer_mount_t hmp = trans->hmp;
2494 int error;
2497 * Skip records that do not belong to the current flush.
2499 ++hammer_stats_record_iterations;
2500 if (record->flush_state != HAMMER_FST_FLUSH)
2501 return(0);
2503 #if 1
2504 if (record->flush_group != record->ip->flush_group) {
2505 kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2506 if (hammer_debug_critical)
2507 Debugger("blah2");
2508 return(0);
2510 #endif
2511 KKASSERT(record->flush_group == record->ip->flush_group);
2514 * Interlock the record using the BE flag. Once BE is set the
2515 * frontend cannot change the state of FE.
2517 * NOTE: If FE is set prior to us setting BE we still sync the
2518 * record out, but the flush completion code converts it to
2519 * a delete-on-disk record instead of destroying it.
2521 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2522 record->flags |= HAMMER_RECF_INTERLOCK_BE;
2525 * The backend has already disposed of the record.
2527 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2528 error = 0;
2529 goto done;
2533 * If the whole inode is being deleting all on-disk records will
2534 * be deleted very soon, we can't sync any new records to disk
2535 * because they will be deleted in the same transaction they were
2536 * created in (delete_tid == create_tid), which will assert.
2538 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2539 * that we currently panic on.
2541 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2542 switch(record->type) {
2543 case HAMMER_MEM_RECORD_DATA:
2545 * We don't have to do anything, if the record was
2546 * committed the space will have been accounted for
2547 * in the blockmap.
2549 /* fall through */
2550 case HAMMER_MEM_RECORD_GENERAL:
2552 * Set deleted-by-backend flag. Do not set the
2553 * backend committed flag, because we are throwing
2554 * the record away.
2556 record->flags |= HAMMER_RECF_DELETED_BE;
2557 ++record->ip->rec_generation;
2558 error = 0;
2559 goto done;
2560 case HAMMER_MEM_RECORD_ADD:
2561 panic("hammer_sync_record_callback: illegal add "
2562 "during inode deletion record %p", record);
2563 break; /* NOT REACHED */
2564 case HAMMER_MEM_RECORD_INODE:
2565 panic("hammer_sync_record_callback: attempt to "
2566 "sync inode record %p?", record);
2567 break; /* NOT REACHED */
2568 case HAMMER_MEM_RECORD_DEL:
2570 * Follow through and issue the on-disk deletion
2572 break;
2577 * If DELETED_FE is set special handling is needed for directory
2578 * entries. Dependant pieces related to the directory entry may
2579 * have already been synced to disk. If this occurs we have to
2580 * sync the directory entry and then change the in-memory record
2581 * from an ADD to a DELETE to cover the fact that it's been
2582 * deleted by the frontend.
2584 * A directory delete covering record (MEM_RECORD_DEL) can never
2585 * be deleted by the frontend.
2587 * Any other record type (aka DATA) can be deleted by the frontend.
2588 * XXX At the moment the flusher must skip it because there may
2589 * be another data record in the flush group for the same block,
2590 * meaning that some frontend data changes can leak into the backend's
2591 * synchronization point.
2593 if (record->flags & HAMMER_RECF_DELETED_FE) {
2594 if (record->type == HAMMER_MEM_RECORD_ADD) {
2596 * Convert a front-end deleted directory-add to
2597 * a directory-delete entry later.
2599 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2600 } else {
2602 * Dispose of the record (race case). Mark as
2603 * deleted by backend (and not committed).
2605 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2606 record->flags |= HAMMER_RECF_DELETED_BE;
2607 ++record->ip->rec_generation;
2608 error = 0;
2609 goto done;
2614 * Assign the create_tid for new records. Deletions already
2615 * have the record's entire key properly set up.
2617 if (record->type != HAMMER_MEM_RECORD_DEL) {
2618 record->leaf.base.create_tid = trans->tid;
2619 record->leaf.create_ts = trans->time32;
2623 * This actually moves the record to the on-media B-Tree. We
2624 * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2625 * indicating that the related REDO_WRITE(s) have been committed.
2627 * During recovery any REDO_TERM's within the nominal recovery span
2628 * are ignored since the related meta-data is being undone, causing
2629 * any matching REDO_WRITEs to execute. The REDO_TERMs outside
2630 * the nominal recovery span will match against REDO_WRITEs and
2631 * prevent them from being executed (because the meta-data has
2632 * already been synchronized).
2634 if (record->flags & HAMMER_RECF_REDO) {
2635 KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2636 hammer_generate_redo(trans, record->ip,
2637 record->leaf.base.key -
2638 record->leaf.data_len,
2639 HAMMER_REDO_TERM_WRITE,
2640 NULL,
2641 record->leaf.data_len);
2643 for (;;) {
2644 error = hammer_ip_sync_record_cursor(cursor, record);
2645 if (error != EDEADLK)
2646 break;
2647 hammer_done_cursor(cursor);
2648 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2649 record->ip);
2650 if (error)
2651 break;
2653 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2655 if (error)
2656 error = -error;
2657 done:
2658 hammer_flush_record_done(record, error);
2661 * Do partial finalization if we have built up too many dirty
2662 * buffers. Otherwise a buffer cache deadlock can occur when
2663 * doing things like creating tens of thousands of tiny files.
2665 * We must release our cursor lock to avoid a 3-way deadlock
2666 * due to the exclusive sync lock the finalizer must get.
2668 * WARNING: See warnings in hammer_unlock_cursor() function.
2670 if (hammer_flusher_meta_limit(hmp)) {
2671 hammer_unlock_cursor(cursor);
2672 hammer_flusher_finalize(trans, 0);
2673 hammer_lock_cursor(cursor);
2676 return(error);
2680 * Backend function called by the flusher to sync an inode to media.
2683 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2685 struct hammer_cursor cursor;
2686 hammer_node_t tmp_node;
2687 hammer_record_t depend;
2688 hammer_record_t next;
2689 int error, tmp_error;
2690 u_int64_t nlinks;
2692 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2693 return(0);
2695 error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2696 if (error)
2697 goto done;
2700 * Any directory records referencing this inode which are not in
2701 * our current flush group must adjust our nlink count for the
2702 * purposes of synchronizating to disk.
2704 * Records which are in our flush group can be unlinked from our
2705 * inode now, potentially allowing the inode to be physically
2706 * deleted.
2708 * This cannot block.
2710 nlinks = ip->ino_data.nlinks;
2711 next = TAILQ_FIRST(&ip->target_list);
2712 while ((depend = next) != NULL) {
2713 next = TAILQ_NEXT(depend, target_entry);
2714 if (depend->flush_state == HAMMER_FST_FLUSH &&
2715 depend->flush_group == ip->flush_group) {
2717 * If this is an ADD that was deleted by the frontend
2718 * the frontend nlinks count will have already been
2719 * decremented, but the backend is going to sync its
2720 * directory entry and must account for it. The
2721 * record will be converted to a delete-on-disk when
2722 * it gets synced.
2724 * If the ADD was not deleted by the frontend we
2725 * can remove the dependancy from our target_list.
2727 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2728 ++nlinks;
2729 } else {
2730 TAILQ_REMOVE(&ip->target_list, depend,
2731 target_entry);
2732 depend->target_ip = NULL;
2734 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2736 * Not part of our flush group and not deleted by
2737 * the front-end, adjust the link count synced to
2738 * the media (undo what the frontend did when it
2739 * queued the record).
2741 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2742 switch(depend->type) {
2743 case HAMMER_MEM_RECORD_ADD:
2744 --nlinks;
2745 break;
2746 case HAMMER_MEM_RECORD_DEL:
2747 ++nlinks;
2748 break;
2749 default:
2750 break;
2756 * Set dirty if we had to modify the link count.
2758 if (ip->sync_ino_data.nlinks != nlinks) {
2759 KKASSERT((int64_t)nlinks >= 0);
2760 ip->sync_ino_data.nlinks = nlinks;
2761 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2765 * If there is a trunction queued destroy any data past the (aligned)
2766 * truncation point. Userland will have dealt with the buffer
2767 * containing the truncation point for us.
2769 * We don't flush pending frontend data buffers until after we've
2770 * dealt with the truncation.
2772 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2774 * Interlock trunc_off. The VOP front-end may continue to
2775 * make adjustments to it while we are blocked.
2777 off_t trunc_off;
2778 off_t aligned_trunc_off;
2779 int blkmask;
2781 trunc_off = ip->sync_trunc_off;
2782 blkmask = hammer_blocksize(trunc_off) - 1;
2783 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2786 * Delete any whole blocks on-media. The front-end has
2787 * already cleaned out any partial block and made it
2788 * pending. The front-end may have updated trunc_off
2789 * while we were blocked so we only use sync_trunc_off.
2791 * This operation can blow out the buffer cache, EWOULDBLOCK
2792 * means we were unable to complete the deletion. The
2793 * deletion will update sync_trunc_off in that case.
2795 error = hammer_ip_delete_range(&cursor, ip,
2796 aligned_trunc_off,
2797 0x7FFFFFFFFFFFFFFFLL, 2);
2798 if (error == EWOULDBLOCK) {
2799 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2800 error = 0;
2801 goto defer_buffer_flush;
2804 if (error)
2805 goto done;
2808 * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
2810 * XXX we do this even if we did not previously generate
2811 * a REDO_TRUNC record. This operation may enclosed the
2812 * range for multiple prior truncation entries in the REDO
2813 * log.
2815 if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
2816 (ip->flags & HAMMER_INODE_RDIRTY)) {
2817 hammer_generate_redo(trans, ip, aligned_trunc_off,
2818 HAMMER_REDO_TERM_TRUNC,
2819 NULL, 0);
2823 * Clear the truncation flag on the backend after we have
2824 * completed the deletions. Backend data is now good again
2825 * (including new records we are about to sync, below).
2827 * Leave sync_trunc_off intact. As we write additional
2828 * records the backend will update sync_trunc_off. This
2829 * tells the backend whether it can skip the overwrite
2830 * test. This should work properly even when the backend
2831 * writes full blocks where the truncation point straddles
2832 * the block because the comparison is against the base
2833 * offset of the record.
2835 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2836 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2837 } else {
2838 error = 0;
2842 * Now sync related records. These will typically be directory
2843 * entries, records tracking direct-writes, or delete-on-disk records.
2845 if (error == 0) {
2846 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2847 hammer_sync_record_callback, &cursor);
2848 if (tmp_error < 0)
2849 tmp_error = -error;
2850 if (tmp_error)
2851 error = tmp_error;
2853 hammer_cache_node(&ip->cache[1], cursor.node);
2856 * Re-seek for inode update, assuming our cache hasn't been ripped
2857 * out from under us.
2859 if (error == 0) {
2860 tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
2861 if (tmp_node) {
2862 hammer_cursor_downgrade(&cursor);
2863 hammer_lock_sh(&tmp_node->lock);
2864 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2865 hammer_cursor_seek(&cursor, tmp_node, 0);
2866 hammer_unlock(&tmp_node->lock);
2867 hammer_rel_node(tmp_node);
2869 error = 0;
2873 * If we are deleting the inode the frontend had better not have
2874 * any active references on elements making up the inode.
2876 * The call to hammer_ip_delete_clean() cleans up auxillary records
2877 * but not DB or DATA records. Those must have already been deleted
2878 * by the normal truncation mechanic.
2880 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2881 RB_EMPTY(&ip->rec_tree) &&
2882 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2883 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2884 int count1 = 0;
2886 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2887 if (error == 0) {
2888 ip->flags |= HAMMER_INODE_DELETED;
2889 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2890 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2891 KKASSERT(RB_EMPTY(&ip->rec_tree));
2894 * Set delete_tid in both the frontend and backend
2895 * copy of the inode record. The DELETED flag handles
2896 * this, do not set DDIRTY.
2898 ip->ino_leaf.base.delete_tid = trans->tid;
2899 ip->sync_ino_leaf.base.delete_tid = trans->tid;
2900 ip->ino_leaf.delete_ts = trans->time32;
2901 ip->sync_ino_leaf.delete_ts = trans->time32;
2905 * Adjust the inode count in the volume header
2907 hammer_sync_lock_sh(trans);
2908 if (ip->flags & HAMMER_INODE_ONDISK) {
2909 hammer_modify_volume_field(trans,
2910 trans->rootvol,
2911 vol0_stat_inodes);
2912 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2913 hammer_modify_volume_done(trans->rootvol);
2915 hammer_sync_unlock(trans);
2919 if (error)
2920 goto done;
2921 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2923 defer_buffer_flush:
2925 * Now update the inode's on-disk inode-data and/or on-disk record.
2926 * DELETED and ONDISK are managed only in ip->flags.
2928 * In the case of a defered buffer flush we still update the on-disk
2929 * inode to satisfy visibility requirements if there happen to be
2930 * directory dependancies.
2932 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2933 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2935 * If deleted and on-disk, don't set any additional flags.
2936 * the delete flag takes care of things.
2938 * Clear flags which may have been set by the frontend.
2940 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2941 HAMMER_INODE_SDIRTY |
2942 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2943 HAMMER_INODE_DELETING);
2944 break;
2945 case HAMMER_INODE_DELETED:
2947 * Take care of the case where a deleted inode was never
2948 * flushed to the disk in the first place.
2950 * Clear flags which may have been set by the frontend.
2952 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2953 HAMMER_INODE_SDIRTY |
2954 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2955 HAMMER_INODE_DELETING);
2956 while (RB_ROOT(&ip->rec_tree)) {
2957 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2958 hammer_ref(&record->lock);
2959 KKASSERT(record->lock.refs == 1);
2960 record->flags |= HAMMER_RECF_DELETED_BE;
2961 ++record->ip->rec_generation;
2962 hammer_rel_mem_record(record);
2964 break;
2965 case HAMMER_INODE_ONDISK:
2967 * If already on-disk, do not set any additional flags.
2969 break;
2970 default:
2972 * If not on-disk and not deleted, set DDIRTY to force
2973 * an initial record to be written.
2975 * Also set the create_tid in both the frontend and backend
2976 * copy of the inode record.
2978 ip->ino_leaf.base.create_tid = trans->tid;
2979 ip->ino_leaf.create_ts = trans->time32;
2980 ip->sync_ino_leaf.base.create_tid = trans->tid;
2981 ip->sync_ino_leaf.create_ts = trans->time32;
2982 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2983 break;
2987 * If DDIRTY or SDIRTY is set, write out a new record.
2988 * If the inode is already on-disk the old record is marked as
2989 * deleted.
2991 * If DELETED is set hammer_update_inode() will delete the existing
2992 * record without writing out a new one.
2994 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2996 if (ip->flags & HAMMER_INODE_DELETED) {
2997 error = hammer_update_inode(&cursor, ip);
2998 } else
2999 if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3000 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3001 error = hammer_update_itimes(&cursor, ip);
3002 } else
3003 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3004 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3005 error = hammer_update_inode(&cursor, ip);
3007 done:
3008 if (error) {
3009 hammer_critical_error(ip->hmp, ip, error,
3010 "while syncing inode");
3012 hammer_done_cursor(&cursor);
3013 return(error);
3017 * This routine is called when the OS is no longer actively referencing
3018 * the inode (but might still be keeping it cached), or when releasing
3019 * the last reference to an inode.
3021 * At this point if the inode's nlinks count is zero we want to destroy
3022 * it, which may mean destroying it on-media too.
3024 void
3025 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3027 struct vnode *vp;
3030 * Set the DELETING flag when the link count drops to 0 and the
3031 * OS no longer has any opens on the inode.
3033 * The backend will clear DELETING (a mod flag) and set DELETED
3034 * (a state flag) when it is actually able to perform the
3035 * operation.
3037 * Don't reflag the deletion if the flusher is currently syncing
3038 * one that was already flagged. A previously set DELETING flag
3039 * may bounce around flags and sync_flags until the operation is
3040 * completely done.
3042 if (ip->ino_data.nlinks == 0 &&
3043 ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3044 ip->flags |= HAMMER_INODE_DELETING;
3045 ip->flags |= HAMMER_INODE_TRUNCATED;
3046 ip->trunc_off = 0;
3047 vp = NULL;
3048 if (getvp) {
3049 if (hammer_get_vnode(ip, &vp) != 0)
3050 return;
3054 * Final cleanup
3056 if (ip->vp)
3057 nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0);
3058 if (getvp)
3059 vput(vp);
3064 * After potentially resolving a dependancy the inode is tested
3065 * to determine whether it needs to be reflushed.
3067 void
3068 hammer_test_inode(hammer_inode_t ip)
3070 if (ip->flags & HAMMER_INODE_REFLUSH) {
3071 ip->flags &= ~HAMMER_INODE_REFLUSH;
3072 hammer_ref(&ip->lock);
3073 if (ip->flags & HAMMER_INODE_RESIGNAL) {
3074 ip->flags &= ~HAMMER_INODE_RESIGNAL;
3075 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3076 } else {
3077 hammer_flush_inode(ip, 0);
3079 hammer_rel_inode(ip, 0);
3084 * Clear the RECLAIM flag on an inode. This occurs when the inode is
3085 * reassociated with a vp or just before it gets freed.
3087 * Pipeline wakeups to threads blocked due to an excessive number of
3088 * detached inodes. This typically occurs when atime updates accumulate
3089 * while scanning a directory tree.
3091 static void
3092 hammer_inode_wakereclaims(hammer_inode_t ip)
3094 struct hammer_reclaim *reclaim;
3095 hammer_mount_t hmp = ip->hmp;
3097 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3098 return;
3100 --hammer_count_reclaiming;
3101 --hmp->inode_reclaims;
3102 ip->flags &= ~HAMMER_INODE_RECLAIM;
3104 while ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3105 if (reclaim->count > 0 && --reclaim->count == 0) {
3106 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3107 wakeup(reclaim);
3109 if (hmp->inode_reclaims > hammer_limit_reclaim / 2)
3110 break;
3115 * Setup our reclaim pipeline. We only let so many detached (and dirty)
3116 * inodes build up before we start blocking. This routine is called
3117 * if a new inode is created or an inode is loaded from media.
3119 * When we block we don't care *which* inode has finished reclaiming,
3120 * as lone as one does.
3122 void
3123 hammer_inode_waitreclaims(hammer_mount_t hmp)
3125 struct hammer_reclaim reclaim;
3127 if (hmp->inode_reclaims < hammer_limit_reclaim)
3128 return;
3129 reclaim.count = 1;
3130 TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3131 tsleep(&reclaim, 0, "hmrrcm", hz);
3132 if (reclaim.count > 0)
3133 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3136 #if 0
3139 * XXX not used, doesn't work very well due to the large batching nature
3140 * of flushes.
3142 * A larger then normal backlog of inodes is sitting in the flusher,
3143 * enforce a general slowdown to let it catch up. This routine is only
3144 * called on completion of a non-flusher-related transaction which
3145 * performed B-Tree node I/O.
3147 * It is possible for the flusher to stall in a continuous load.
3148 * blogbench -i1000 -o seems to do a good job generating this sort of load.
3149 * If the flusher is unable to catch up the inode count can bloat until
3150 * we run out of kvm.
3152 * This is a bit of a hack.
3154 void
3155 hammer_inode_waithard(hammer_mount_t hmp)
3158 * Hysteresis.
3160 if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3161 if (hmp->inode_reclaims < hammer_limit_reclaim / 2 &&
3162 hmp->count_iqueued < hmp->count_inodes / 20) {
3163 hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3164 return;
3166 } else {
3167 if (hmp->inode_reclaims < hammer_limit_reclaim ||
3168 hmp->count_iqueued < hmp->count_inodes / 10) {
3169 return;
3171 hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3175 * Block for one flush cycle.
3177 hammer_flusher_wait_next(hmp);
3180 #endif