HAMMER 60E/Many: Mirroring, bug fixes
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
blob25ee834b22053252cab1b600e457e37fd27ec8ed
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.64 2008/07/07 00:24:31 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
79 * up the boundaries).
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 hammer_base_elm_t key2, hammer_base_elm_t dest);
96 * Iterate records after a search. The cursor is iterated forwards past
97 * the current record until a record matching the key-range requirements
98 * is found. ENOENT is returned if the iteration goes past the ending
99 * key.
101 * The iteration is inclusive of key_beg and can be inclusive or exclusive
102 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
105 * may be modified by B-Tree functions.
107 * cursor->key_beg may or may not be modified by this function during
108 * the iteration. XXX future - in case of an inverted lock we may have
109 * to reinitiate the lookup and set key_beg to properly pick up where we
110 * left off.
112 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
115 hammer_btree_iterate(hammer_cursor_t cursor)
117 hammer_node_ondisk_t node;
118 hammer_btree_elm_t elm;
119 int error;
120 int r;
121 int s;
124 * Skip past the current record
126 node = cursor->node->ondisk;
127 if (node == NULL)
128 return(ENOENT);
129 if (cursor->index < node->count &&
130 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
131 ++cursor->index;
135 * Loop until an element is found or we are done.
137 for (;;) {
139 * We iterate up the tree and then index over one element
140 * while we are at the last element in the current node.
142 * If we are at the root of the filesystem, cursor_up
143 * returns ENOENT.
145 * XXX this could be optimized by storing the information in
146 * the parent reference.
148 * XXX we can lose the node lock temporarily, this could mess
149 * up our scan.
151 ++hammer_stats_btree_iterations;
152 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
154 if (cursor->index == node->count) {
155 if (hammer_debug_btree) {
156 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
157 cursor->node->node_offset,
158 cursor->index,
159 (cursor->parent ? cursor->parent->node_offset : -1),
160 cursor->parent_index,
161 curthread);
163 KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
164 error = hammer_cursor_up(cursor);
165 if (error)
166 break;
167 /* reload stale pointer */
168 node = cursor->node->ondisk;
169 KKASSERT(cursor->index != node->count);
172 * If we are reblocking we want to return internal
173 * nodes.
175 if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
176 cursor->flags |= HAMMER_CURSOR_ATEDISK;
177 return(0);
179 ++cursor->index;
180 continue;
184 * Check internal or leaf element. Determine if the record
185 * at the cursor has gone beyond the end of our range.
187 * We recurse down through internal nodes.
189 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
190 elm = &node->elms[cursor->index];
192 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
193 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
194 if (hammer_debug_btree) {
195 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
196 cursor->node->node_offset,
197 cursor->index,
198 elm[0].internal.base.obj_id,
199 elm[0].internal.base.rec_type,
200 elm[0].internal.base.key,
201 elm[0].internal.base.localization,
203 curthread
205 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
206 cursor->node->node_offset,
207 cursor->index + 1,
208 elm[1].internal.base.obj_id,
209 elm[1].internal.base.rec_type,
210 elm[1].internal.base.key,
211 elm[1].internal.base.localization,
216 if (r < 0) {
217 error = ENOENT;
218 break;
220 if (r == 0 && (cursor->flags &
221 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
222 error = ENOENT;
223 break;
225 KKASSERT(s <= 0);
228 * Better not be zero
230 KKASSERT(elm->internal.subtree_offset != 0);
233 * If running the mirror filter see if we can skip
234 * the entire sub-tree.
236 if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
237 if (elm->internal.mirror_tid <
238 cursor->mirror_tid) {
239 ++cursor->index;
240 continue;
244 error = hammer_cursor_down(cursor);
245 if (error)
246 break;
247 KKASSERT(cursor->index == 0);
248 /* reload stale pointer */
249 node = cursor->node->ondisk;
250 continue;
251 } else {
252 elm = &node->elms[cursor->index];
253 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
254 if (hammer_debug_btree) {
255 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
256 cursor->node->node_offset,
257 cursor->index,
258 (elm[0].leaf.base.btype ?
259 elm[0].leaf.base.btype : '?'),
260 elm[0].leaf.base.obj_id,
261 elm[0].leaf.base.rec_type,
262 elm[0].leaf.base.key,
263 elm[0].leaf.base.localization,
267 if (r < 0) {
268 error = ENOENT;
269 break;
273 * We support both end-inclusive and
274 * end-exclusive searches.
276 if (r == 0 &&
277 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
278 error = ENOENT;
279 break;
282 switch(elm->leaf.base.btype) {
283 case HAMMER_BTREE_TYPE_RECORD:
284 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
285 hammer_btree_chkts(cursor->asof, &elm->base)) {
286 ++cursor->index;
287 continue;
289 break;
290 default:
291 error = EINVAL;
292 break;
294 if (error)
295 break;
298 * node pointer invalid after loop
302 * Return entry
304 if (hammer_debug_btree) {
305 int i = cursor->index;
306 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
307 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
308 cursor->node, i,
309 elm->internal.base.obj_id,
310 elm->internal.base.rec_type,
311 elm->internal.base.key,
312 elm->internal.base.localization
315 return(0);
317 return(error);
321 * Iterate in the reverse direction. This is used by the pruning code to
322 * avoid overlapping records.
325 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
327 hammer_node_ondisk_t node;
328 hammer_btree_elm_t elm;
329 int error;
330 int r;
331 int s;
334 * Skip past the current record. For various reasons the cursor
335 * may end up set to -1 or set to point at the end of the current
336 * node. These cases must be addressed.
338 node = cursor->node->ondisk;
339 if (node == NULL)
340 return(ENOENT);
341 if (cursor->index != -1 &&
342 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
343 --cursor->index;
345 if (cursor->index == cursor->node->ondisk->count)
346 --cursor->index;
349 * Loop until an element is found or we are done.
351 for (;;) {
352 ++hammer_stats_btree_iterations;
353 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
356 * We iterate up the tree and then index over one element
357 * while we are at the last element in the current node.
359 if (cursor->index == -1) {
360 error = hammer_cursor_up(cursor);
361 if (error) {
362 cursor->index = 0; /* sanity */
363 break;
365 /* reload stale pointer */
366 node = cursor->node->ondisk;
367 KKASSERT(cursor->index != node->count);
368 --cursor->index;
369 continue;
373 * Check internal or leaf element. Determine if the record
374 * at the cursor has gone beyond the end of our range.
376 * We recurse down through internal nodes.
378 KKASSERT(cursor->index != node->count);
379 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
380 elm = &node->elms[cursor->index];
381 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
382 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
383 if (hammer_debug_btree) {
384 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
385 cursor->node->node_offset,
386 cursor->index,
387 elm[0].internal.base.obj_id,
388 elm[0].internal.base.rec_type,
389 elm[0].internal.base.key,
390 elm[0].internal.base.localization,
393 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
394 cursor->node->node_offset,
395 cursor->index + 1,
396 elm[1].internal.base.obj_id,
397 elm[1].internal.base.rec_type,
398 elm[1].internal.base.key,
399 elm[1].internal.base.localization,
404 if (s >= 0) {
405 error = ENOENT;
406 break;
408 KKASSERT(r >= 0);
411 * Better not be zero
413 KKASSERT(elm->internal.subtree_offset != 0);
415 error = hammer_cursor_down(cursor);
416 if (error)
417 break;
418 KKASSERT(cursor->index == 0);
419 /* reload stale pointer */
420 node = cursor->node->ondisk;
422 /* this can assign -1 if the leaf was empty */
423 cursor->index = node->count - 1;
424 continue;
425 } else {
426 elm = &node->elms[cursor->index];
427 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
428 if (hammer_debug_btree) {
429 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
430 cursor->node->node_offset,
431 cursor->index,
432 (elm[0].leaf.base.btype ?
433 elm[0].leaf.base.btype : '?'),
434 elm[0].leaf.base.obj_id,
435 elm[0].leaf.base.rec_type,
436 elm[0].leaf.base.key,
437 elm[0].leaf.base.localization,
441 if (s > 0) {
442 error = ENOENT;
443 break;
446 switch(elm->leaf.base.btype) {
447 case HAMMER_BTREE_TYPE_RECORD:
448 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
449 hammer_btree_chkts(cursor->asof, &elm->base)) {
450 --cursor->index;
451 continue;
453 break;
454 default:
455 error = EINVAL;
456 break;
458 if (error)
459 break;
462 * node pointer invalid after loop
466 * Return entry
468 if (hammer_debug_btree) {
469 int i = cursor->index;
470 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
471 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
472 cursor->node, i,
473 elm->internal.base.obj_id,
474 elm->internal.base.rec_type,
475 elm->internal.base.key,
476 elm->internal.base.localization
479 return(0);
481 return(error);
485 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
486 * could not be found, EDEADLK if inserting and a retry is needed, and a
487 * fatal error otherwise. When retrying, the caller must terminate the
488 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
490 * The cursor is suitably positioned for a deletion on success, and suitably
491 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
492 * specified.
494 * The cursor may begin anywhere, the search will traverse the tree in
495 * either direction to locate the requested element.
497 * Most of the logic implementing historical searches is handled here. We
498 * do an initial lookup with create_tid set to the asof TID. Due to the
499 * way records are laid out, a backwards iteration may be required if
500 * ENOENT is returned to locate the historical record. Here's the
501 * problem:
503 * create_tid: 10 15 20
504 * LEAF1 LEAF2
505 * records: (11) (18)
507 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
508 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
509 * not visible and thus causes ENOENT to be returned. We really need
510 * to check record 11 in LEAF1. If it also fails then the search fails
511 * (e.g. it might represent the range 11-16 and thus still not match our
512 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
513 * further iterations.
515 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
516 * and the cursor->create_check TID if an iteration might be needed.
517 * In the above example create_check would be set to 14.
520 hammer_btree_lookup(hammer_cursor_t cursor)
522 int error;
524 ++hammer_stats_btree_lookups;
525 if (cursor->flags & HAMMER_CURSOR_ASOF) {
526 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
527 cursor->key_beg.create_tid = cursor->asof;
528 for (;;) {
529 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
530 error = btree_search(cursor, 0);
531 if (error != ENOENT ||
532 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
534 * Stop if no error.
535 * Stop if error other then ENOENT.
536 * Stop if ENOENT and not special case.
538 break;
540 if (hammer_debug_btree) {
541 kprintf("CREATE_CHECK %016llx\n",
542 cursor->create_check);
544 cursor->key_beg.create_tid = cursor->create_check;
545 /* loop */
547 } else {
548 error = btree_search(cursor, 0);
550 if (error == 0)
551 error = hammer_btree_extract(cursor, cursor->flags);
552 return(error);
556 * Execute the logic required to start an iteration. The first record
557 * located within the specified range is returned and iteration control
558 * flags are adjusted for successive hammer_btree_iterate() calls.
561 hammer_btree_first(hammer_cursor_t cursor)
563 int error;
565 error = hammer_btree_lookup(cursor);
566 if (error == ENOENT) {
567 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
568 error = hammer_btree_iterate(cursor);
570 cursor->flags |= HAMMER_CURSOR_ATEDISK;
571 return(error);
575 * Similarly but for an iteration in the reverse direction.
577 * Set ATEDISK when iterating backwards to skip the current entry,
578 * which after an ENOENT lookup will be pointing beyond our end point.
581 hammer_btree_last(hammer_cursor_t cursor)
583 struct hammer_base_elm save;
584 int error;
586 save = cursor->key_beg;
587 cursor->key_beg = cursor->key_end;
588 error = hammer_btree_lookup(cursor);
589 cursor->key_beg = save;
590 if (error == ENOENT ||
591 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
592 cursor->flags |= HAMMER_CURSOR_ATEDISK;
593 error = hammer_btree_iterate_reverse(cursor);
595 cursor->flags |= HAMMER_CURSOR_ATEDISK;
596 return(error);
600 * Extract the record and/or data associated with the cursor's current
601 * position. Any prior record or data stored in the cursor is replaced.
602 * The cursor must be positioned at a leaf node.
604 * NOTE: All extractions occur at the leaf of the B-Tree.
607 hammer_btree_extract(hammer_cursor_t cursor, int flags)
609 hammer_mount_t hmp;
610 hammer_node_ondisk_t node;
611 hammer_btree_elm_t elm;
612 hammer_off_t data_off;
613 int32_t data_len;
614 int error;
617 * The case where the data reference resolves to the same buffer
618 * as the record reference must be handled.
620 node = cursor->node->ondisk;
621 elm = &node->elms[cursor->index];
622 cursor->data = NULL;
623 hmp = cursor->node->hmp;
626 * There is nothing to extract for an internal element.
628 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
629 return(EINVAL);
632 * Only record types have data.
634 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
635 cursor->leaf = &elm->leaf;
637 if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
638 return(0);
639 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
640 return(0);
641 data_off = elm->leaf.data_offset;
642 data_len = elm->leaf.data_len;
643 if (data_off == 0)
644 return(0);
647 * Load the data
649 KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
650 cursor->data = hammer_bread_ext(hmp, data_off, data_len,
651 &error, &cursor->data_buffer);
652 if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0)
653 Debugger("CRC FAILED: DATA");
654 return(error);
659 * Insert a leaf element into the B-Tree at the current cursor position.
660 * The cursor is positioned such that the element at and beyond the cursor
661 * are shifted to make room for the new record.
663 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
664 * flag set and that call must return ENOENT before this function can be
665 * called.
667 * The caller may depend on the cursor's exclusive lock after return to
668 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
670 * ENOSPC is returned if there is no room to insert a new record.
673 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
674 int *doprop)
676 hammer_node_ondisk_t node;
677 int i;
678 int error;
680 *doprop = 0;
681 if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
682 return(error);
683 ++hammer_stats_btree_inserts;
686 * Insert the element at the leaf node and update the count in the
687 * parent. It is possible for parent to be NULL, indicating that
688 * the filesystem's ROOT B-Tree node is a leaf itself, which is
689 * possible. The root inode can never be deleted so the leaf should
690 * never be empty.
692 * Remember that the right-hand boundary is not included in the
693 * count.
695 hammer_modify_node_all(cursor->trans, cursor->node);
696 node = cursor->node->ondisk;
697 i = cursor->index;
698 KKASSERT(elm->base.btype != 0);
699 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
700 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
701 if (i != node->count) {
702 bcopy(&node->elms[i], &node->elms[i+1],
703 (node->count - i) * sizeof(*elm));
705 node->elms[i].leaf = *elm;
706 ++node->count;
709 * Update the leaf node's aggregate mirror_tid for mirroring
710 * support.
712 if (node->mirror_tid < elm->base.delete_tid) {
713 node->mirror_tid = elm->base.delete_tid;
714 *doprop = 1;
716 if (node->mirror_tid < elm->base.create_tid) {
717 node->mirror_tid = elm->base.create_tid;
718 *doprop = 1;
720 hammer_modify_node_done(cursor->node);
723 * Debugging sanity checks.
725 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
726 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
727 if (i) {
728 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
730 if (i != node->count - 1)
731 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
733 return(0);
737 * Delete a record from the B-Tree at the current cursor position.
738 * The cursor is positioned such that the current element is the one
739 * to be deleted.
741 * On return the cursor will be positioned after the deleted element and
742 * MAY point to an internal node. It will be suitable for the continuation
743 * of an iteration but not for an insertion or deletion.
745 * Deletions will attempt to partially rebalance the B-Tree in an upward
746 * direction, but will terminate rather then deadlock. Empty internal nodes
747 * are never allowed by a deletion which deadlocks may end up giving us an
748 * empty leaf. The pruner will clean up and rebalance the tree.
750 * This function can return EDEADLK, requiring the caller to retry the
751 * operation after clearing the deadlock.
754 hammer_btree_delete(hammer_cursor_t cursor)
756 hammer_node_ondisk_t ondisk;
757 hammer_node_t node;
758 hammer_node_t parent;
759 int error;
760 int i;
762 if ((error = hammer_cursor_upgrade(cursor)) != 0)
763 return(error);
764 ++hammer_stats_btree_deletes;
767 * Delete the element from the leaf node.
769 * Remember that leaf nodes do not have boundaries.
771 node = cursor->node;
772 ondisk = node->ondisk;
773 i = cursor->index;
775 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
776 KKASSERT(i >= 0 && i < ondisk->count);
777 hammer_modify_node_all(cursor->trans, node);
778 if (i + 1 != ondisk->count) {
779 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
780 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
782 --ondisk->count;
783 hammer_modify_node_done(node);
784 hammer_cursor_deleted_element(node, i);
787 * Validate local parent
789 if (ondisk->parent) {
790 parent = cursor->parent;
792 KKASSERT(parent != NULL);
793 KKASSERT(parent->node_offset == ondisk->parent);
797 * If the leaf becomes empty it must be detached from the parent,
798 * potentially recursing through to the filesystem root.
800 * This may reposition the cursor at one of the parent's of the
801 * current node.
803 * Ignore deadlock errors, that simply means that btree_remove
804 * was unable to recurse and had to leave us with an empty leaf.
806 KKASSERT(cursor->index <= ondisk->count);
807 if (ondisk->count == 0) {
808 error = btree_remove(cursor);
809 if (error == EDEADLK)
810 error = 0;
811 } else {
812 error = 0;
814 KKASSERT(cursor->parent == NULL ||
815 cursor->parent_index < cursor->parent->ondisk->count);
816 return(error);
820 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
822 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
824 * The search can begin ANYWHERE in the B-Tree. As a first step the search
825 * iterates up the tree as necessary to properly position itself prior to
826 * actually doing the sarch.
828 * INSERTIONS: The search will split full nodes and leaves on its way down
829 * and guarentee that the leaf it ends up on is not full. If we run out
830 * of space the search continues to the leaf (to position the cursor for
831 * the spike), but ENOSPC is returned.
833 * The search is only guarenteed to end up on a leaf if an error code of 0
834 * is returned, or if inserting and an error code of ENOENT is returned.
835 * Otherwise it can stop at an internal node. On success a search returns
836 * a leaf node.
838 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
839 * filesystem, and it is not simple code. Please note the following facts:
841 * - Internal node recursions have a boundary on the left AND right. The
842 * right boundary is non-inclusive. The create_tid is a generic part
843 * of the key for internal nodes.
845 * - Leaf nodes contain terminal elements only now.
847 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
848 * historical search. ASOF and INSERT are mutually exclusive. When
849 * doing an as-of lookup btree_search() checks for a right-edge boundary
850 * case. If while recursing down the left-edge differs from the key
851 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
852 * with cursor->create_check. This is used by btree_lookup() to iterate.
853 * The iteration backwards because as-of searches can wind up going
854 * down the wrong branch of the B-Tree.
856 static
858 btree_search(hammer_cursor_t cursor, int flags)
860 hammer_node_ondisk_t node;
861 hammer_btree_elm_t elm;
862 int error;
863 int enospc = 0;
864 int i;
865 int r;
866 int s;
868 flags |= cursor->flags;
869 ++hammer_stats_btree_searches;
871 if (hammer_debug_btree) {
872 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
873 cursor->node->node_offset,
874 cursor->index,
875 cursor->key_beg.obj_id,
876 cursor->key_beg.rec_type,
877 cursor->key_beg.key,
878 cursor->key_beg.create_tid,
879 cursor->key_beg.localization,
880 curthread
882 if (cursor->parent)
883 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
884 cursor->parent->node_offset, cursor->parent_index,
885 cursor->left_bound->obj_id,
886 cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
887 cursor->right_bound->obj_id,
888 cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
889 cursor->left_bound,
890 &cursor->parent->ondisk->elms[cursor->parent_index],
891 cursor->right_bound,
892 &cursor->parent->ondisk->elms[cursor->parent_index+1]
897 * Move our cursor up the tree until we find a node whos range covers
898 * the key we are trying to locate.
900 * The left bound is inclusive, the right bound is non-inclusive.
901 * It is ok to cursor up too far.
903 for (;;) {
904 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
905 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
906 if (r >= 0 && s < 0)
907 break;
908 KKASSERT(cursor->parent);
909 ++hammer_stats_btree_iterations;
910 error = hammer_cursor_up(cursor);
911 if (error)
912 goto done;
916 * The delete-checks below are based on node, not parent. Set the
917 * initial delete-check based on the parent.
919 if (r == 1) {
920 KKASSERT(cursor->left_bound->create_tid != 1);
921 cursor->create_check = cursor->left_bound->create_tid - 1;
922 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
926 * We better have ended up with a node somewhere.
928 KKASSERT(cursor->node != NULL);
931 * If we are inserting we can't start at a full node if the parent
932 * is also full (because there is no way to split the node),
933 * continue running up the tree until the requirement is satisfied
934 * or we hit the root of the filesystem.
936 * (If inserting we aren't doing an as-of search so we don't have
937 * to worry about create_check).
939 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
940 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
941 if (btree_node_is_full(cursor->node->ondisk) == 0)
942 break;
943 } else {
944 if (btree_node_is_full(cursor->node->ondisk) ==0)
945 break;
947 if (cursor->node->ondisk->parent == 0 ||
948 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
949 break;
951 ++hammer_stats_btree_iterations;
952 error = hammer_cursor_up(cursor);
953 /* node may have become stale */
954 if (error)
955 goto done;
959 * Push down through internal nodes to locate the requested key.
961 node = cursor->node->ondisk;
962 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
964 * Scan the node to find the subtree index to push down into.
965 * We go one-past, then back-up.
967 * We must proactively remove deleted elements which may
968 * have been left over from a deadlocked btree_remove().
970 * The left and right boundaries are included in the loop
971 * in order to detect edge cases.
973 * If the separator only differs by create_tid (r == 1)
974 * and we are doing an as-of search, we may end up going
975 * down a branch to the left of the one containing the
976 * desired key. This requires numerous special cases.
978 ++hammer_stats_btree_iterations;
979 if (hammer_debug_btree) {
980 kprintf("SEARCH-I %016llx count=%d\n",
981 cursor->node->node_offset,
982 node->count);
986 * Try to shortcut the search before dropping into the
987 * linear loop. Locate the first node where r <= 1.
989 i = hammer_btree_search_node(&cursor->key_beg, node);
990 while (i <= node->count) {
991 ++hammer_stats_btree_elements;
992 elm = &node->elms[i];
993 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
994 if (hammer_debug_btree > 2) {
995 kprintf(" IELM %p %d r=%d\n",
996 &node->elms[i], i, r);
998 if (r < 0)
999 break;
1000 if (r == 1) {
1001 KKASSERT(elm->base.create_tid != 1);
1002 cursor->create_check = elm->base.create_tid - 1;
1003 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1005 ++i;
1007 if (hammer_debug_btree) {
1008 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1009 i, node->count, r);
1013 * These cases occur when the parent's idea of the boundary
1014 * is wider then the child's idea of the boundary, and
1015 * require special handling. If not inserting we can
1016 * terminate the search early for these cases but the
1017 * child's boundaries cannot be unconditionally modified.
1019 if (i == 0) {
1021 * If i == 0 the search terminated to the LEFT of the
1022 * left_boundary but to the RIGHT of the parent's left
1023 * boundary.
1025 u_int8_t save;
1027 elm = &node->elms[0];
1030 * If we aren't inserting we can stop here.
1032 if ((flags & (HAMMER_CURSOR_INSERT |
1033 HAMMER_CURSOR_PRUNING)) == 0) {
1034 cursor->index = 0;
1035 return(ENOENT);
1039 * Correct a left-hand boundary mismatch.
1041 * We can only do this if we can upgrade the lock,
1042 * and synchronized as a background cursor (i.e.
1043 * inserting or pruning).
1045 * WARNING: We can only do this if inserting, i.e.
1046 * we are running on the backend.
1048 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1049 return(error);
1050 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1051 hammer_modify_node_field(cursor->trans, cursor->node,
1052 elms[0]);
1053 save = node->elms[0].base.btype;
1054 node->elms[0].base = *cursor->left_bound;
1055 node->elms[0].base.btype = save;
1056 hammer_modify_node_done(cursor->node);
1057 } else if (i == node->count + 1) {
1059 * If i == node->count + 1 the search terminated to
1060 * the RIGHT of the right boundary but to the LEFT
1061 * of the parent's right boundary. If we aren't
1062 * inserting we can stop here.
1064 * Note that the last element in this case is
1065 * elms[i-2] prior to adjustments to 'i'.
1067 --i;
1068 if ((flags & (HAMMER_CURSOR_INSERT |
1069 HAMMER_CURSOR_PRUNING)) == 0) {
1070 cursor->index = i;
1071 return (ENOENT);
1075 * Correct a right-hand boundary mismatch.
1076 * (actual push-down record is i-2 prior to
1077 * adjustments to i).
1079 * We can only do this if we can upgrade the lock,
1080 * and synchronized as a background cursor (i.e.
1081 * inserting or pruning).
1083 * WARNING: We can only do this if inserting, i.e.
1084 * we are running on the backend.
1086 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1087 return(error);
1088 elm = &node->elms[i];
1089 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1090 hammer_modify_node(cursor->trans, cursor->node,
1091 &elm->base, sizeof(elm->base));
1092 elm->base = *cursor->right_bound;
1093 hammer_modify_node_done(cursor->node);
1094 --i;
1095 } else {
1097 * The push-down index is now i - 1. If we had
1098 * terminated on the right boundary this will point
1099 * us at the last element.
1101 --i;
1103 cursor->index = i;
1104 elm = &node->elms[i];
1106 if (hammer_debug_btree) {
1107 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1108 "key=%016llx cre=%016llx lo=%02x\n",
1109 cursor->node->node_offset,
1111 elm->internal.base.obj_id,
1112 elm->internal.base.rec_type,
1113 elm->internal.base.key,
1114 elm->internal.base.create_tid,
1115 elm->internal.base.localization
1120 * We better have a valid subtree offset.
1122 KKASSERT(elm->internal.subtree_offset != 0);
1125 * Handle insertion and deletion requirements.
1127 * If inserting split full nodes. The split code will
1128 * adjust cursor->node and cursor->index if the current
1129 * index winds up in the new node.
1131 * If inserting and a left or right edge case was detected,
1132 * we cannot correct the left or right boundary and must
1133 * prepend and append an empty leaf node in order to make
1134 * the boundary correction.
1136 * If we run out of space we set enospc and continue on
1137 * to a leaf to provide the spike code with a good point
1138 * of entry.
1140 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1141 if (btree_node_is_full(node)) {
1142 error = btree_split_internal(cursor);
1143 if (error) {
1144 if (error != ENOSPC)
1145 goto done;
1146 enospc = 1;
1149 * reload stale pointers
1151 i = cursor->index;
1152 node = cursor->node->ondisk;
1157 * Push down (push into new node, existing node becomes
1158 * the parent) and continue the search.
1160 error = hammer_cursor_down(cursor);
1161 /* node may have become stale */
1162 if (error)
1163 goto done;
1164 node = cursor->node->ondisk;
1168 * We are at a leaf, do a linear search of the key array.
1170 * On success the index is set to the matching element and 0
1171 * is returned.
1173 * On failure the index is set to the insertion point and ENOENT
1174 * is returned.
1176 * Boundaries are not stored in leaf nodes, so the index can wind
1177 * up to the left of element 0 (index == 0) or past the end of
1178 * the array (index == node->count). It is also possible that the
1179 * leaf might be empty.
1181 ++hammer_stats_btree_iterations;
1182 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1183 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1184 if (hammer_debug_btree) {
1185 kprintf("SEARCH-L %016llx count=%d\n",
1186 cursor->node->node_offset,
1187 node->count);
1191 * Try to shortcut the search before dropping into the
1192 * linear loop. Locate the first node where r <= 1.
1194 i = hammer_btree_search_node(&cursor->key_beg, node);
1195 while (i < node->count) {
1196 ++hammer_stats_btree_elements;
1197 elm = &node->elms[i];
1199 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1201 if (hammer_debug_btree > 1)
1202 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1205 * We are at a record element. Stop if we've flipped past
1206 * key_beg, not counting the create_tid test. Allow the
1207 * r == 1 case (key_beg > element but differs only by its
1208 * create_tid) to fall through to the AS-OF check.
1210 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1212 if (r < 0)
1213 goto failed;
1214 if (r > 1) {
1215 ++i;
1216 continue;
1220 * Check our as-of timestamp against the element.
1222 if (flags & HAMMER_CURSOR_ASOF) {
1223 if (hammer_btree_chkts(cursor->asof,
1224 &node->elms[i].base) != 0) {
1225 ++i;
1226 continue;
1228 /* success */
1229 } else {
1230 if (r > 0) { /* can only be +1 */
1231 ++i;
1232 continue;
1234 /* success */
1236 cursor->index = i;
1237 error = 0;
1238 if (hammer_debug_btree) {
1239 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1240 cursor->node->node_offset, i);
1242 goto done;
1246 * The search of the leaf node failed. i is the insertion point.
1248 failed:
1249 if (hammer_debug_btree) {
1250 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1251 cursor->node->node_offset, i);
1255 * No exact match was found, i is now at the insertion point.
1257 * If inserting split a full leaf before returning. This
1258 * may have the side effect of adjusting cursor->node and
1259 * cursor->index.
1261 cursor->index = i;
1262 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1263 btree_node_is_full(node)) {
1264 error = btree_split_leaf(cursor);
1265 if (error) {
1266 if (error != ENOSPC)
1267 goto done;
1268 enospc = 1;
1271 * reload stale pointers
1273 /* NOT USED
1274 i = cursor->index;
1275 node = &cursor->node->internal;
1280 * We reached a leaf but did not find the key we were looking for.
1281 * If this is an insert we will be properly positioned for an insert
1282 * (ENOENT) or spike (ENOSPC) operation.
1284 error = enospc ? ENOSPC : ENOENT;
1285 done:
1286 return(error);
1290 * Heuristical search for the first element whos comparison is <= 1. May
1291 * return an index whos compare result is > 1 but may only return an index
1292 * whos compare result is <= 1 if it is the first element with that result.
1295 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1297 int b;
1298 int s;
1299 int i;
1300 int r;
1303 * Don't bother if the node does not have very many elements
1305 b = 0;
1306 s = node->count;
1307 while (s - b > 4) {
1308 i = b + (s - b) / 2;
1309 ++hammer_stats_btree_elements;
1310 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1311 if (r <= 1) {
1312 s = i;
1313 } else {
1314 b = i;
1317 return(b);
1321 /************************************************************************
1322 * SPLITTING AND MERGING *
1323 ************************************************************************
1325 * These routines do all the dirty work required to split and merge nodes.
1329 * Split an internal node into two nodes and move the separator at the split
1330 * point to the parent.
1332 * (cursor->node, cursor->index) indicates the element the caller intends
1333 * to push into. We will adjust node and index if that element winds
1334 * up in the split node.
1336 * If we are at the root of the filesystem a new root must be created with
1337 * two elements, one pointing to the original root and one pointing to the
1338 * newly allocated split node.
1340 static
1342 btree_split_internal(hammer_cursor_t cursor)
1344 hammer_node_ondisk_t ondisk;
1345 hammer_node_t node;
1346 hammer_node_t parent;
1347 hammer_node_t new_node;
1348 hammer_btree_elm_t elm;
1349 hammer_btree_elm_t parent_elm;
1350 hammer_node_locklist_t locklist = NULL;
1351 hammer_mount_t hmp = cursor->trans->hmp;
1352 int parent_index;
1353 int made_root;
1354 int split;
1355 int error;
1356 int i;
1357 const int esize = sizeof(*elm);
1359 error = hammer_btree_lock_children(cursor, &locklist);
1360 if (error)
1361 goto done;
1362 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1363 goto done;
1364 ++hammer_stats_btree_splits;
1367 * We are splitting but elms[split] will be promoted to the parent,
1368 * leaving the right hand node with one less element. If the
1369 * insertion point will be on the left-hand side adjust the split
1370 * point to give the right hand side one additional node.
1372 node = cursor->node;
1373 ondisk = node->ondisk;
1374 split = (ondisk->count + 1) / 2;
1375 if (cursor->index <= split)
1376 --split;
1379 * If we are at the root of the filesystem, create a new root node
1380 * with 1 element and split normally. Avoid making major
1381 * modifications until we know the whole operation will work.
1383 if (ondisk->parent == 0) {
1384 parent = hammer_alloc_btree(cursor->trans, &error);
1385 if (parent == NULL)
1386 goto done;
1387 hammer_lock_ex(&parent->lock);
1388 hammer_modify_node_noundo(cursor->trans, parent);
1389 ondisk = parent->ondisk;
1390 ondisk->count = 1;
1391 ondisk->parent = 0;
1392 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1393 ondisk->elms[0].base = hmp->root_btree_beg;
1394 ondisk->elms[0].base.btype = node->ondisk->type;
1395 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1396 ondisk->elms[1].base = hmp->root_btree_end;
1397 hammer_modify_node_done(parent);
1398 /* ondisk->elms[1].base.btype - not used */
1399 made_root = 1;
1400 parent_index = 0; /* index of current node in parent */
1401 } else {
1402 made_root = 0;
1403 parent = cursor->parent;
1404 parent_index = cursor->parent_index;
1408 * Split node into new_node at the split point.
1410 * B O O O P N N B <-- P = node->elms[split]
1411 * 0 1 2 3 4 5 6 <-- subtree indices
1413 * x x P x x
1414 * s S S s
1415 * / \
1416 * B O O O B B N N B <--- inner boundary points are 'P'
1417 * 0 1 2 3 4 5 6
1420 new_node = hammer_alloc_btree(cursor->trans, &error);
1421 if (new_node == NULL) {
1422 if (made_root) {
1423 hammer_unlock(&parent->lock);
1424 hammer_delete_node(cursor->trans, parent);
1425 hammer_rel_node(parent);
1427 goto done;
1429 hammer_lock_ex(&new_node->lock);
1432 * Create the new node. P becomes the left-hand boundary in the
1433 * new node. Copy the right-hand boundary as well.
1435 * elm is the new separator.
1437 hammer_modify_node_noundo(cursor->trans, new_node);
1438 hammer_modify_node_all(cursor->trans, node);
1439 ondisk = node->ondisk;
1440 elm = &ondisk->elms[split];
1441 bcopy(elm, &new_node->ondisk->elms[0],
1442 (ondisk->count - split + 1) * esize);
1443 new_node->ondisk->count = ondisk->count - split;
1444 new_node->ondisk->parent = parent->node_offset;
1445 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1446 KKASSERT(ondisk->type == new_node->ondisk->type);
1447 hammer_cursor_split_node(node, new_node, split);
1450 * Cleanup the original node. Elm (P) becomes the new boundary,
1451 * its subtree_offset was moved to the new node. If we had created
1452 * a new root its parent pointer may have changed.
1454 elm->internal.subtree_offset = 0;
1455 ondisk->count = split;
1458 * Insert the separator into the parent, fixup the parent's
1459 * reference to the original node, and reference the new node.
1460 * The separator is P.
1462 * Remember that base.count does not include the right-hand boundary.
1464 hammer_modify_node_all(cursor->trans, parent);
1465 ondisk = parent->ondisk;
1466 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1467 parent_elm = &ondisk->elms[parent_index+1];
1468 bcopy(parent_elm, parent_elm + 1,
1469 (ondisk->count - parent_index) * esize);
1470 parent_elm->internal.base = elm->base; /* separator P */
1471 parent_elm->internal.base.btype = new_node->ondisk->type;
1472 parent_elm->internal.subtree_offset = new_node->node_offset;
1473 ++ondisk->count;
1474 hammer_modify_node_done(parent);
1475 hammer_cursor_inserted_element(parent, parent_index + 1);
1478 * The children of new_node need their parent pointer set to new_node.
1479 * The children have already been locked by
1480 * hammer_btree_lock_children().
1482 for (i = 0; i < new_node->ondisk->count; ++i) {
1483 elm = &new_node->ondisk->elms[i];
1484 error = btree_set_parent(cursor->trans, new_node, elm);
1485 if (error) {
1486 panic("btree_split_internal: btree-fixup problem");
1489 hammer_modify_node_done(new_node);
1492 * The filesystem's root B-Tree pointer may have to be updated.
1494 if (made_root) {
1495 hammer_volume_t volume;
1497 volume = hammer_get_root_volume(hmp, &error);
1498 KKASSERT(error == 0);
1500 hammer_modify_volume_field(cursor->trans, volume,
1501 vol0_btree_root);
1502 volume->ondisk->vol0_btree_root = parent->node_offset;
1503 hammer_modify_volume_done(volume);
1504 node->ondisk->parent = parent->node_offset;
1505 if (cursor->parent) {
1506 hammer_unlock(&cursor->parent->lock);
1507 hammer_rel_node(cursor->parent);
1509 cursor->parent = parent; /* lock'd and ref'd */
1510 hammer_rel_volume(volume, 0);
1512 hammer_modify_node_done(node);
1515 * Ok, now adjust the cursor depending on which element the original
1516 * index was pointing at. If we are >= the split point the push node
1517 * is now in the new node.
1519 * NOTE: If we are at the split point itself we cannot stay with the
1520 * original node because the push index will point at the right-hand
1521 * boundary, which is illegal.
1523 * NOTE: The cursor's parent or parent_index must be adjusted for
1524 * the case where a new parent (new root) was created, and the case
1525 * where the cursor is now pointing at the split node.
1527 if (cursor->index >= split) {
1528 cursor->parent_index = parent_index + 1;
1529 cursor->index -= split;
1530 hammer_unlock(&cursor->node->lock);
1531 hammer_rel_node(cursor->node);
1532 cursor->node = new_node; /* locked and ref'd */
1533 } else {
1534 cursor->parent_index = parent_index;
1535 hammer_unlock(&new_node->lock);
1536 hammer_rel_node(new_node);
1540 * Fixup left and right bounds
1542 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1543 cursor->left_bound = &parent_elm[0].internal.base;
1544 cursor->right_bound = &parent_elm[1].internal.base;
1545 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1546 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1547 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1548 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1550 done:
1551 hammer_btree_unlock_children(&locklist);
1552 hammer_cursor_downgrade(cursor);
1553 return (error);
1557 * Same as the above, but splits a full leaf node.
1559 * This function
1561 static
1563 btree_split_leaf(hammer_cursor_t cursor)
1565 hammer_node_ondisk_t ondisk;
1566 hammer_node_t parent;
1567 hammer_node_t leaf;
1568 hammer_mount_t hmp;
1569 hammer_node_t new_leaf;
1570 hammer_btree_elm_t elm;
1571 hammer_btree_elm_t parent_elm;
1572 hammer_base_elm_t mid_boundary;
1573 int parent_index;
1574 int made_root;
1575 int split;
1576 int error;
1577 const size_t esize = sizeof(*elm);
1579 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1580 return(error);
1581 ++hammer_stats_btree_splits;
1583 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1584 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1585 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1586 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1589 * Calculate the split point. If the insertion point will be on
1590 * the left-hand side adjust the split point to give the right
1591 * hand side one additional node.
1593 * Spikes are made up of two leaf elements which cannot be
1594 * safely split.
1596 leaf = cursor->node;
1597 ondisk = leaf->ondisk;
1598 split = (ondisk->count + 1) / 2;
1599 if (cursor->index <= split)
1600 --split;
1601 error = 0;
1602 hmp = leaf->hmp;
1604 elm = &ondisk->elms[split];
1606 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1607 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1608 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1609 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1612 * If we are at the root of the tree, create a new root node with
1613 * 1 element and split normally. Avoid making major modifications
1614 * until we know the whole operation will work.
1616 if (ondisk->parent == 0) {
1617 parent = hammer_alloc_btree(cursor->trans, &error);
1618 if (parent == NULL)
1619 goto done;
1620 hammer_lock_ex(&parent->lock);
1621 hammer_modify_node_noundo(cursor->trans, parent);
1622 ondisk = parent->ondisk;
1623 ondisk->count = 1;
1624 ondisk->parent = 0;
1625 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1626 ondisk->elms[0].base = hmp->root_btree_beg;
1627 ondisk->elms[0].base.btype = leaf->ondisk->type;
1628 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1629 ondisk->elms[1].base = hmp->root_btree_end;
1630 /* ondisk->elms[1].base.btype = not used */
1631 hammer_modify_node_done(parent);
1632 made_root = 1;
1633 parent_index = 0; /* insertion point in parent */
1634 } else {
1635 made_root = 0;
1636 parent = cursor->parent;
1637 parent_index = cursor->parent_index;
1641 * Split leaf into new_leaf at the split point. Select a separator
1642 * value in-between the two leafs but with a bent towards the right
1643 * leaf since comparisons use an 'elm >= separator' inequality.
1645 * L L L L L L L L
1647 * x x P x x
1648 * s S S s
1649 * / \
1650 * L L L L L L L L
1652 new_leaf = hammer_alloc_btree(cursor->trans, &error);
1653 if (new_leaf == NULL) {
1654 if (made_root) {
1655 hammer_unlock(&parent->lock);
1656 hammer_delete_node(cursor->trans, parent);
1657 hammer_rel_node(parent);
1659 goto done;
1661 hammer_lock_ex(&new_leaf->lock);
1664 * Create the new node and copy the leaf elements from the split
1665 * point on to the new node.
1667 hammer_modify_node_all(cursor->trans, leaf);
1668 hammer_modify_node_noundo(cursor->trans, new_leaf);
1669 ondisk = leaf->ondisk;
1670 elm = &ondisk->elms[split];
1671 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1672 new_leaf->ondisk->count = ondisk->count - split;
1673 new_leaf->ondisk->parent = parent->node_offset;
1674 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1675 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1676 hammer_modify_node_done(new_leaf);
1677 hammer_cursor_split_node(leaf, new_leaf, split);
1680 * Cleanup the original node. Because this is a leaf node and
1681 * leaf nodes do not have a right-hand boundary, there
1682 * aren't any special edge cases to clean up. We just fixup the
1683 * count.
1685 ondisk->count = split;
1688 * Insert the separator into the parent, fixup the parent's
1689 * reference to the original node, and reference the new node.
1690 * The separator is P.
1692 * Remember that base.count does not include the right-hand boundary.
1693 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1695 hammer_modify_node_all(cursor->trans, parent);
1696 ondisk = parent->ondisk;
1697 KKASSERT(split != 0);
1698 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1699 parent_elm = &ondisk->elms[parent_index+1];
1700 bcopy(parent_elm, parent_elm + 1,
1701 (ondisk->count - parent_index) * esize);
1703 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1704 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1705 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1706 mid_boundary = &parent_elm->base;
1707 ++ondisk->count;
1708 hammer_modify_node_done(parent);
1709 hammer_cursor_inserted_element(parent, parent_index + 1);
1712 * The filesystem's root B-Tree pointer may have to be updated.
1714 if (made_root) {
1715 hammer_volume_t volume;
1717 volume = hammer_get_root_volume(hmp, &error);
1718 KKASSERT(error == 0);
1720 hammer_modify_volume_field(cursor->trans, volume,
1721 vol0_btree_root);
1722 volume->ondisk->vol0_btree_root = parent->node_offset;
1723 hammer_modify_volume_done(volume);
1724 leaf->ondisk->parent = parent->node_offset;
1725 if (cursor->parent) {
1726 hammer_unlock(&cursor->parent->lock);
1727 hammer_rel_node(cursor->parent);
1729 cursor->parent = parent; /* lock'd and ref'd */
1730 hammer_rel_volume(volume, 0);
1732 hammer_modify_node_done(leaf);
1735 * Ok, now adjust the cursor depending on which element the original
1736 * index was pointing at. If we are >= the split point the push node
1737 * is now in the new node.
1739 * NOTE: If we are at the split point itself we need to select the
1740 * old or new node based on where key_beg's insertion point will be.
1741 * If we pick the wrong side the inserted element will wind up in
1742 * the wrong leaf node and outside that node's bounds.
1744 if (cursor->index > split ||
1745 (cursor->index == split &&
1746 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1747 cursor->parent_index = parent_index + 1;
1748 cursor->index -= split;
1749 hammer_unlock(&cursor->node->lock);
1750 hammer_rel_node(cursor->node);
1751 cursor->node = new_leaf;
1752 } else {
1753 cursor->parent_index = parent_index;
1754 hammer_unlock(&new_leaf->lock);
1755 hammer_rel_node(new_leaf);
1759 * Fixup left and right bounds
1761 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1762 cursor->left_bound = &parent_elm[0].internal.base;
1763 cursor->right_bound = &parent_elm[1].internal.base;
1766 * Assert that the bounds are correct.
1768 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1769 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1770 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1771 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1772 KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1773 KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1775 done:
1776 hammer_cursor_downgrade(cursor);
1777 return (error);
1780 #if 0
1783 * Recursively correct the right-hand boundary's create_tid to (tid) as
1784 * long as the rest of the key matches. We have to recurse upward in
1785 * the tree as well as down the left side of each parent's right node.
1787 * Return EDEADLK if we were only partially successful, forcing the caller
1788 * to try again. The original cursor is not modified. This routine can
1789 * also fail with EDEADLK if it is forced to throw away a portion of its
1790 * record history.
1792 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1794 struct hammer_rhb {
1795 TAILQ_ENTRY(hammer_rhb) entry;
1796 hammer_node_t node;
1797 int index;
1800 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1803 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1805 struct hammer_rhb_list rhb_list;
1806 hammer_base_elm_t elm;
1807 hammer_node_t orig_node;
1808 struct hammer_rhb *rhb;
1809 int orig_index;
1810 int error;
1812 TAILQ_INIT(&rhb_list);
1815 * Save our position so we can restore it on return. This also
1816 * gives us a stable 'elm'.
1818 orig_node = cursor->node;
1819 hammer_ref_node(orig_node);
1820 hammer_lock_sh(&orig_node->lock);
1821 orig_index = cursor->index;
1822 elm = &orig_node->ondisk->elms[orig_index].base;
1825 * Now build a list of parents going up, allocating a rhb
1826 * structure for each one.
1828 while (cursor->parent) {
1830 * Stop if we no longer have any right-bounds to fix up
1832 if (elm->obj_id != cursor->right_bound->obj_id ||
1833 elm->rec_type != cursor->right_bound->rec_type ||
1834 elm->key != cursor->right_bound->key) {
1835 break;
1839 * Stop if the right-hand bound's create_tid does not
1840 * need to be corrected.
1842 if (cursor->right_bound->create_tid >= tid)
1843 break;
1845 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1846 rhb->node = cursor->parent;
1847 rhb->index = cursor->parent_index;
1848 hammer_ref_node(rhb->node);
1849 hammer_lock_sh(&rhb->node->lock);
1850 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1852 hammer_cursor_up(cursor);
1856 * now safely adjust the right hand bound for each rhb. This may
1857 * also require taking the right side of the tree and iterating down
1858 * ITS left side.
1860 error = 0;
1861 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1862 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1863 if (error)
1864 break;
1865 TAILQ_REMOVE(&rhb_list, rhb, entry);
1866 hammer_unlock(&rhb->node->lock);
1867 hammer_rel_node(rhb->node);
1868 kfree(rhb, M_HAMMER);
1870 switch (cursor->node->ondisk->type) {
1871 case HAMMER_BTREE_TYPE_INTERNAL:
1873 * Right-boundary for parent at internal node
1874 * is one element to the right of the element whos
1875 * right boundary needs adjusting. We must then
1876 * traverse down the left side correcting any left
1877 * bounds (which may now be too far to the left).
1879 ++cursor->index;
1880 error = hammer_btree_correct_lhb(cursor, tid);
1881 break;
1882 default:
1883 panic("hammer_btree_correct_rhb(): Bad node type");
1884 error = EINVAL;
1885 break;
1890 * Cleanup
1892 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1893 TAILQ_REMOVE(&rhb_list, rhb, entry);
1894 hammer_unlock(&rhb->node->lock);
1895 hammer_rel_node(rhb->node);
1896 kfree(rhb, M_HAMMER);
1898 error = hammer_cursor_seek(cursor, orig_node, orig_index);
1899 hammer_unlock(&orig_node->lock);
1900 hammer_rel_node(orig_node);
1901 return (error);
1905 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1906 * bound going downward starting at the current cursor position.
1908 * This function does not restore the cursor after use.
1911 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1913 struct hammer_rhb_list rhb_list;
1914 hammer_base_elm_t elm;
1915 hammer_base_elm_t cmp;
1916 struct hammer_rhb *rhb;
1917 int error;
1919 TAILQ_INIT(&rhb_list);
1921 cmp = &cursor->node->ondisk->elms[cursor->index].base;
1924 * Record the node and traverse down the left-hand side for all
1925 * matching records needing a boundary correction.
1927 error = 0;
1928 for (;;) {
1929 rhb = kmalloc(sizeof(*rhb), M_HAMMER, M_WAITOK|M_ZERO);
1930 rhb->node = cursor->node;
1931 rhb->index = cursor->index;
1932 hammer_ref_node(rhb->node);
1933 hammer_lock_sh(&rhb->node->lock);
1934 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1936 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1938 * Nothing to traverse down if we are at the right
1939 * boundary of an internal node.
1941 if (cursor->index == cursor->node->ondisk->count)
1942 break;
1943 } else {
1944 elm = &cursor->node->ondisk->elms[cursor->index].base;
1945 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
1946 break;
1947 panic("Illegal leaf record type %02x", elm->btype);
1949 error = hammer_cursor_down(cursor);
1950 if (error)
1951 break;
1953 elm = &cursor->node->ondisk->elms[cursor->index].base;
1954 if (elm->obj_id != cmp->obj_id ||
1955 elm->rec_type != cmp->rec_type ||
1956 elm->key != cmp->key) {
1957 break;
1959 if (elm->create_tid >= tid)
1960 break;
1965 * Now we can safely adjust the left-hand boundary from the bottom-up.
1966 * The last element we remove from the list is the caller's right hand
1967 * boundary, which must also be adjusted.
1969 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1970 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1971 if (error)
1972 break;
1973 TAILQ_REMOVE(&rhb_list, rhb, entry);
1974 hammer_unlock(&rhb->node->lock);
1975 hammer_rel_node(rhb->node);
1976 kfree(rhb, M_HAMMER);
1978 elm = &cursor->node->ondisk->elms[cursor->index].base;
1979 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1980 hammer_modify_node(cursor->trans, cursor->node,
1981 &elm->create_tid,
1982 sizeof(elm->create_tid));
1983 elm->create_tid = tid;
1984 hammer_modify_node_done(cursor->node);
1985 } else {
1986 panic("hammer_btree_correct_lhb(): Bad element type");
1991 * Cleanup
1993 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1994 TAILQ_REMOVE(&rhb_list, rhb, entry);
1995 hammer_unlock(&rhb->node->lock);
1996 hammer_rel_node(rhb->node);
1997 kfree(rhb, M_HAMMER);
1999 return (error);
2002 #endif
2005 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2006 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2007 * the operation due to a deadlock, or some other error.
2009 * This routine is always called with an empty, locked leaf but may recurse
2010 * into want-to-be-empty parents as part of its operation.
2012 * It should also be noted that when removing empty leaves we must be sure
2013 * to test and update mirror_tid because another thread may have deadlocked
2014 * against us (or someone) trying to propagate it up and cannot retry once
2015 * the node has been deleted.
2017 * On return the cursor may end up pointing to an internal node, suitable
2018 * for further iteration but not for an immediate insertion or deletion.
2020 static int
2021 btree_remove(hammer_cursor_t cursor)
2023 hammer_node_ondisk_t ondisk;
2024 hammer_btree_elm_t elm;
2025 hammer_node_t node;
2026 hammer_node_t parent;
2027 const int esize = sizeof(*elm);
2028 int error;
2030 node = cursor->node;
2033 * When deleting the root of the filesystem convert it to
2034 * an empty leaf node. Internal nodes cannot be empty.
2036 ondisk = node->ondisk;
2037 if (ondisk->parent == 0) {
2038 KKASSERT(cursor->parent == NULL);
2039 hammer_modify_node_all(cursor->trans, node);
2040 KKASSERT(ondisk == node->ondisk);
2041 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2042 ondisk->count = 0;
2043 hammer_modify_node_done(node);
2044 cursor->index = 0;
2045 return(0);
2048 parent = cursor->parent;
2049 hammer_cursor_removed_node(node, parent, cursor->parent_index);
2052 * Attempt to remove the parent's reference to the child. If the
2053 * parent would become empty we have to recurse. If we fail we
2054 * leave the parent pointing to an empty leaf node.
2056 if (parent->ondisk->count == 1) {
2058 * This special cursor_up_locked() call leaves the original
2059 * node exclusively locked and referenced, leaves the
2060 * original parent locked (as the new node), and locks the
2061 * new parent. It can return EDEADLK.
2063 error = hammer_cursor_up_locked(cursor);
2064 if (error == 0) {
2065 error = btree_remove(cursor);
2066 if (error == 0) {
2067 hammer_modify_node_all(cursor->trans, node);
2068 ondisk = node->ondisk;
2069 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2070 ondisk->count = 0;
2071 hammer_modify_node_done(node);
2072 hammer_flush_node(node);
2073 hammer_delete_node(cursor->trans, node);
2074 } else {
2075 kprintf("Warning: BTREE_REMOVE: Defering "
2076 "parent removal1 @ %016llx, skipping\n",
2077 node->node_offset);
2079 hammer_unlock(&node->lock);
2080 hammer_rel_node(node);
2081 } else {
2082 kprintf("Warning: BTREE_REMOVE: Defering parent "
2083 "removal2 @ %016llx, skipping\n",
2084 node->node_offset);
2086 } else {
2087 KKASSERT(parent->ondisk->count > 1);
2090 * Delete the subtree reference in the parent
2092 hammer_modify_node_all(cursor->trans, parent);
2093 ondisk = parent->ondisk;
2094 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2096 elm = &ondisk->elms[cursor->parent_index];
2097 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2098 KKASSERT(ondisk->count > 0);
2099 bcopy(&elm[1], &elm[0],
2100 (ondisk->count - cursor->parent_index) * esize);
2101 --ondisk->count;
2102 hammer_modify_node_done(parent);
2103 hammer_flush_node(node);
2104 hammer_delete_node(cursor->trans, node);
2107 * cursor->node is invalid, cursor up to make the cursor
2108 * valid again.
2110 error = hammer_cursor_up(cursor);
2112 return (error);
2116 * Propagate cursor->trans->tid up the B-Tree starting at the current
2117 * cursor position using pseudofs info gleaned from the passed inode.
2119 * The passed inode has no relationship to the cursor position other
2120 * then being in the same pseudofs as the insertion or deletion we
2121 * are propagating the mirror_tid for.
2123 void
2124 hammer_btree_do_propagation(hammer_cursor_t cursor, hammer_inode_t ip,
2125 hammer_btree_leaf_elm_t leaf)
2127 hammer_pseudofs_inmem_t pfsm;
2128 hammer_cursor_t ncursor;
2129 hammer_tid_t mirror_tid;
2130 int error;
2133 * We only propagate the mirror_tid up if we are in master or slave
2134 * mode. We do not bother if we are in no-mirror mode.
2136 pfsm = ip->pfsm;
2137 KKASSERT(pfsm != NULL);
2138 if (pfsm->pfsd.master_id < 0 &&
2139 (pfsm->pfsd.mirror_flags & HAMMER_PFSD_SLAVE) == 0) {
2140 return;
2144 * This is a bit of a hack because we cannot deadlock or return
2145 * EDEADLK here. The related operation has already completed and
2146 * we must propagate the mirror_tid now regardless.
2148 * Generate a new cursor which inherits the original's locks and
2149 * unlock the original. Use the new cursor to propagate the
2150 * mirror_tid. Then clean up the new cursor and reacquire locks
2151 * on the original.
2153 * hammer_dup_cursor() cannot dup locks. The dup inherits the
2154 * original's locks and the original is tracked and must be
2155 * re-locked.
2157 mirror_tid = cursor->node->ondisk->mirror_tid;
2158 ncursor = kmalloc(sizeof(*ncursor), M_HAMMER, M_WAITOK | M_ZERO);
2159 hammer_dup_cursor(cursor, ncursor);
2160 error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2161 KKASSERT(error == 0);
2162 hammer_done_cursor(ncursor);
2163 kfree(ncursor, M_HAMMER);
2164 hammer_lock_cursor(cursor); /* shared-lock */
2169 * Propagate a mirror TID update upwards through the B-Tree to the root.
2171 * A locked internal node must be passed in. The node will remain locked
2172 * on return.
2174 * This function syncs mirror_tid at the specified internal node's element,
2175 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2177 static int
2178 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2180 hammer_btree_internal_elm_t elm;
2181 hammer_node_t node;
2182 int error;
2184 for (;;) {
2185 error = hammer_cursor_up(cursor);
2186 if (error == 0)
2187 error = hammer_cursor_upgrade(cursor);
2188 while (error == EDEADLK) {
2189 hammer_recover_cursor(cursor);
2190 error = hammer_cursor_upgrade(cursor);
2192 if (error)
2193 break;
2194 node = cursor->node;
2195 KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2198 * Adjust the node's element
2200 elm = &node->ondisk->elms[cursor->index].internal;
2201 if (elm->mirror_tid >= mirror_tid)
2202 break;
2203 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2204 sizeof(elm->mirror_tid));
2205 elm->mirror_tid = mirror_tid;
2206 hammer_modify_node_done(node);
2209 * Adjust the node's mirror_tid aggregator
2211 if (node->ondisk->mirror_tid >= mirror_tid)
2212 return(0);
2213 hammer_modify_node_field(cursor->trans, node, mirror_tid);
2214 node->ondisk->mirror_tid = mirror_tid;
2215 hammer_modify_node_done(node);
2217 if (error == ENOENT)
2218 error = 0;
2219 return(error);
2222 hammer_node_t
2223 hammer_btree_get_parent(hammer_node_t node, int *parent_indexp, int *errorp,
2224 int try_exclusive)
2226 hammer_node_t parent;
2227 hammer_btree_elm_t elm;
2228 int i;
2231 * Get the node
2233 parent = hammer_get_node(node->hmp, node->ondisk->parent, 0, errorp);
2234 if (*errorp) {
2235 KKASSERT(parent == NULL);
2236 return(NULL);
2238 KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2241 * Lock the node
2243 if (try_exclusive) {
2244 if (hammer_lock_ex_try(&parent->lock)) {
2245 hammer_rel_node(parent);
2246 *errorp = EDEADLK;
2247 return(NULL);
2249 } else {
2250 hammer_lock_sh(&parent->lock);
2254 * Figure out which element in the parent is pointing to the
2255 * child.
2257 if (node->ondisk->count) {
2258 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2259 parent->ondisk);
2260 } else {
2261 i = 0;
2263 while (i < parent->ondisk->count) {
2264 elm = &parent->ondisk->elms[i];
2265 if (elm->internal.subtree_offset == node->node_offset)
2266 break;
2267 ++i;
2269 if (i == parent->ondisk->count) {
2270 hammer_unlock(&parent->lock);
2271 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2273 *parent_indexp = i;
2274 KKASSERT(*errorp == 0);
2275 return(parent);
2279 * The element (elm) has been moved to a new internal node (node).
2281 * If the element represents a pointer to an internal node that node's
2282 * parent must be adjusted to the element's new location.
2284 * XXX deadlock potential here with our exclusive locks
2287 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2288 hammer_btree_elm_t elm)
2290 hammer_node_t child;
2291 int error;
2293 error = 0;
2295 switch(elm->base.btype) {
2296 case HAMMER_BTREE_TYPE_INTERNAL:
2297 case HAMMER_BTREE_TYPE_LEAF:
2298 child = hammer_get_node(node->hmp, elm->internal.subtree_offset,
2299 0, &error);
2300 if (error == 0) {
2301 hammer_modify_node_field(trans, child, parent);
2302 child->ondisk->parent = node->node_offset;
2303 hammer_modify_node_done(child);
2304 hammer_rel_node(child);
2306 break;
2307 default:
2308 break;
2310 return(error);
2314 * Exclusively lock all the children of node. This is used by the split
2315 * code to prevent anyone from accessing the children of a cursor node
2316 * while we fix-up its parent offset.
2318 * If we don't lock the children we can really mess up cursors which block
2319 * trying to cursor-up into our node.
2321 * On failure EDEADLK (or some other error) is returned. If a deadlock
2322 * error is returned the cursor is adjusted to block on termination.
2325 hammer_btree_lock_children(hammer_cursor_t cursor,
2326 struct hammer_node_locklist **locklistp)
2328 hammer_node_t node;
2329 hammer_node_locklist_t item;
2330 hammer_node_ondisk_t ondisk;
2331 hammer_btree_elm_t elm;
2332 hammer_node_t child;
2333 int error;
2334 int i;
2336 node = cursor->node;
2337 ondisk = node->ondisk;
2338 error = 0;
2341 * We really do not want to block on I/O with exclusive locks held,
2342 * pre-get the children before trying to lock the mess.
2344 for (i = 0; i < ondisk->count; ++i) {
2345 ++hammer_stats_btree_elements;
2346 elm = &ondisk->elms[i];
2347 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2348 elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2349 continue;
2351 child = hammer_get_node(node->hmp,
2352 elm->internal.subtree_offset,
2353 0, &error);
2354 if (child)
2355 hammer_rel_node(child);
2359 * Do it for real
2361 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2362 ++hammer_stats_btree_elements;
2363 elm = &ondisk->elms[i];
2365 switch(elm->base.btype) {
2366 case HAMMER_BTREE_TYPE_INTERNAL:
2367 case HAMMER_BTREE_TYPE_LEAF:
2368 KKASSERT(elm->internal.subtree_offset != 0);
2369 child = hammer_get_node(node->hmp,
2370 elm->internal.subtree_offset,
2371 0, &error);
2372 break;
2373 default:
2374 child = NULL;
2375 break;
2377 if (child) {
2378 if (hammer_lock_ex_try(&child->lock) != 0) {
2379 if (cursor->deadlk_node == NULL) {
2380 cursor->deadlk_node = child;
2381 hammer_ref_node(cursor->deadlk_node);
2383 error = EDEADLK;
2384 hammer_rel_node(child);
2385 } else {
2386 item = kmalloc(sizeof(*item),
2387 M_HAMMER, M_WAITOK);
2388 item->next = *locklistp;
2389 item->node = child;
2390 *locklistp = item;
2394 if (error)
2395 hammer_btree_unlock_children(locklistp);
2396 return(error);
2401 * Release previously obtained node locks.
2403 void
2404 hammer_btree_unlock_children(struct hammer_node_locklist **locklistp)
2406 hammer_node_locklist_t item;
2408 while ((item = *locklistp) != NULL) {
2409 *locklistp = item->next;
2410 hammer_unlock(&item->node->lock);
2411 hammer_rel_node(item->node);
2412 kfree(item, M_HAMMER);
2416 /************************************************************************
2417 * MISCELLANIOUS SUPPORT *
2418 ************************************************************************/
2421 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2423 * Note that for this particular function a return value of -1, 0, or +1
2424 * can denote a match if create_tid is otherwise discounted. A create_tid
2425 * of zero is considered to be 'infinity' in comparisons.
2427 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2430 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2432 if (key1->localization < key2->localization)
2433 return(-5);
2434 if (key1->localization > key2->localization)
2435 return(5);
2437 if (key1->obj_id < key2->obj_id)
2438 return(-4);
2439 if (key1->obj_id > key2->obj_id)
2440 return(4);
2442 if (key1->rec_type < key2->rec_type)
2443 return(-3);
2444 if (key1->rec_type > key2->rec_type)
2445 return(3);
2447 if (key1->key < key2->key)
2448 return(-2);
2449 if (key1->key > key2->key)
2450 return(2);
2453 * A create_tid of zero indicates a record which is undeletable
2454 * and must be considered to have a value of positive infinity.
2456 if (key1->create_tid == 0) {
2457 if (key2->create_tid == 0)
2458 return(0);
2459 return(1);
2461 if (key2->create_tid == 0)
2462 return(-1);
2463 if (key1->create_tid < key2->create_tid)
2464 return(-1);
2465 if (key1->create_tid > key2->create_tid)
2466 return(1);
2467 return(0);
2471 * Test a timestamp against an element to determine whether the
2472 * element is visible. A timestamp of 0 means 'infinity'.
2475 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2477 if (asof == 0) {
2478 if (base->delete_tid)
2479 return(1);
2480 return(0);
2482 if (asof < base->create_tid)
2483 return(-1);
2484 if (base->delete_tid && asof >= base->delete_tid)
2485 return(1);
2486 return(0);
2490 * Create a separator half way inbetween key1 and key2. For fields just
2491 * one unit apart, the separator will match key2. key1 is on the left-hand
2492 * side and key2 is on the right-hand side.
2494 * key2 must be >= the separator. It is ok for the separator to match key2.
2496 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2497 * key2.
2499 * NOTE: It might be beneficial to just scrap this whole mess and just
2500 * set the separator to key2.
2502 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2503 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2505 static void
2506 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2507 hammer_base_elm_t dest)
2509 bzero(dest, sizeof(*dest));
2511 dest->rec_type = key2->rec_type;
2512 dest->key = key2->key;
2513 dest->obj_id = key2->obj_id;
2514 dest->create_tid = key2->create_tid;
2516 MAKE_SEPARATOR(key1, key2, dest, localization);
2517 if (key1->localization == key2->localization) {
2518 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2519 if (key1->obj_id == key2->obj_id) {
2520 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2521 if (key1->rec_type == key2->rec_type) {
2522 MAKE_SEPARATOR(key1, key2, dest, key);
2524 * Don't bother creating a separator for
2525 * create_tid, which also conveniently avoids
2526 * having to handle the create_tid == 0
2527 * (infinity) case. Just leave create_tid
2528 * set to key2.
2530 * Worst case, dest matches key2 exactly,
2531 * which is acceptable.
2538 #undef MAKE_SEPARATOR
2541 * Return whether a generic internal or leaf node is full
2543 static int
2544 btree_node_is_full(hammer_node_ondisk_t node)
2546 switch(node->type) {
2547 case HAMMER_BTREE_TYPE_INTERNAL:
2548 if (node->count == HAMMER_BTREE_INT_ELMS)
2549 return(1);
2550 break;
2551 case HAMMER_BTREE_TYPE_LEAF:
2552 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2553 return(1);
2554 break;
2555 default:
2556 panic("illegal btree subtype");
2558 return(0);
2561 #if 0
2562 static int
2563 btree_max_elements(u_int8_t type)
2565 if (type == HAMMER_BTREE_TYPE_LEAF)
2566 return(HAMMER_BTREE_LEAF_ELMS);
2567 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2568 return(HAMMER_BTREE_INT_ELMS);
2569 panic("btree_max_elements: bad type %d\n", type);
2571 #endif
2573 void
2574 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2576 hammer_btree_elm_t elm;
2577 int i;
2579 kprintf("node %p count=%d parent=%016llx type=%c\n",
2580 ondisk, ondisk->count, ondisk->parent, ondisk->type);
2583 * Dump both boundary elements if an internal node
2585 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2586 for (i = 0; i <= ondisk->count; ++i) {
2587 elm = &ondisk->elms[i];
2588 hammer_print_btree_elm(elm, ondisk->type, i);
2590 } else {
2591 for (i = 0; i < ondisk->count; ++i) {
2592 elm = &ondisk->elms[i];
2593 hammer_print_btree_elm(elm, ondisk->type, i);
2598 void
2599 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2601 kprintf(" %2d", i);
2602 kprintf("\tobj_id = %016llx\n", elm->base.obj_id);
2603 kprintf("\tkey = %016llx\n", elm->base.key);
2604 kprintf("\tcreate_tid = %016llx\n", elm->base.create_tid);
2605 kprintf("\tdelete_tid = %016llx\n", elm->base.delete_tid);
2606 kprintf("\trec_type = %04x\n", elm->base.rec_type);
2607 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
2608 kprintf("\tbtype = %02x (%c)\n",
2609 elm->base.btype,
2610 (elm->base.btype ? elm->base.btype : '?'));
2611 kprintf("\tlocalization = %02x\n", elm->base.localization);
2613 switch(type) {
2614 case HAMMER_BTREE_TYPE_INTERNAL:
2615 kprintf("\tsubtree_off = %016llx\n",
2616 elm->internal.subtree_offset);
2617 break;
2618 case HAMMER_BTREE_TYPE_RECORD:
2619 kprintf("\tdata_offset = %016llx\n", elm->leaf.data_offset);
2620 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
2621 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
2622 break;