Initial import of binutils 2.27 on vendor branch
[dragonfly.git] / contrib / binutils-2.27 / gold / i386.cc
blob28864cd534aa2f2ada10f83c0b77f3a6fa3d0dcc
1 // i386.cc -- i386 target support for gold.
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "i386.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
45 namespace
48 using namespace gold;
50 // A class to handle the .got.plt section.
52 class Output_data_got_plt_i386 : public Output_section_data_build
54 public:
55 Output_data_got_plt_i386(Layout* layout)
56 : Output_section_data_build(4),
57 layout_(layout)
58 { }
60 protected:
61 // Write out the PLT data.
62 void
63 do_write(Output_file*);
65 // Write to a map file.
66 void
67 do_print_to_mapfile(Mapfile* mapfile) const
68 { mapfile->print_output_data(this, "** GOT PLT"); }
70 private:
71 // A pointer to the Layout class, so that we can find the .dynamic
72 // section when we write out the GOT PLT section.
73 Layout* layout_;
76 // A class to handle the PLT data.
77 // This is an abstract base class that handles most of the linker details
78 // but does not know the actual contents of PLT entries. The derived
79 // classes below fill in those details.
81 class Output_data_plt_i386 : public Output_section_data
83 public:
84 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
86 Output_data_plt_i386(Layout*, uint64_t addralign,
87 Output_data_got_plt_i386*, Output_data_space*);
89 // Add an entry to the PLT.
90 void
91 add_entry(Symbol_table*, Layout*, Symbol* gsym);
93 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
94 unsigned int
95 add_local_ifunc_entry(Symbol_table*, Layout*,
96 Sized_relobj_file<32, false>* relobj,
97 unsigned int local_sym_index);
99 // Return the .rel.plt section data.
100 Reloc_section*
101 rel_plt() const
102 { return this->rel_; }
104 // Return where the TLS_DESC relocations should go.
105 Reloc_section*
106 rel_tls_desc(Layout*);
108 // Return where the IRELATIVE relocations should go.
109 Reloc_section*
110 rel_irelative(Symbol_table*, Layout*);
112 // Return whether we created a section for IRELATIVE relocations.
113 bool
114 has_irelative_section() const
115 { return this->irelative_rel_ != NULL; }
117 // Return the number of PLT entries.
118 unsigned int
119 entry_count() const
120 { return this->count_ + this->irelative_count_; }
122 // Return the offset of the first non-reserved PLT entry.
123 unsigned int
124 first_plt_entry_offset()
125 { return this->get_plt_entry_size(); }
127 // Return the size of a PLT entry.
128 unsigned int
129 get_plt_entry_size() const
130 { return this->do_get_plt_entry_size(); }
132 // Return the PLT address to use for a global symbol.
133 uint64_t
134 address_for_global(const Symbol*);
136 // Return the PLT address to use for a local symbol.
137 uint64_t
138 address_for_local(const Relobj*, unsigned int symndx);
140 // Add .eh_frame information for the PLT.
141 void
142 add_eh_frame(Layout* layout)
143 { this->do_add_eh_frame(layout); }
145 protected:
146 // Fill the first PLT entry, given the pointer to the PLT section data
147 // and the runtime address of the GOT.
148 void
149 fill_first_plt_entry(unsigned char* pov,
150 elfcpp::Elf_types<32>::Elf_Addr got_address)
151 { this->do_fill_first_plt_entry(pov, got_address); }
153 // Fill a normal PLT entry, given the pointer to the entry's data in the
154 // section, the runtime address of the GOT, the offset into the GOT of
155 // the corresponding slot, the offset into the relocation section of the
156 // corresponding reloc, and the offset of this entry within the whole
157 // PLT. Return the offset from this PLT entry's runtime address that
158 // should be used to compute the initial value of the GOT slot.
159 unsigned int
160 fill_plt_entry(unsigned char* pov,
161 elfcpp::Elf_types<32>::Elf_Addr got_address,
162 unsigned int got_offset,
163 unsigned int plt_offset,
164 unsigned int plt_rel_offset)
166 return this->do_fill_plt_entry(pov, got_address, got_offset,
167 plt_offset, plt_rel_offset);
170 virtual unsigned int
171 do_get_plt_entry_size() const = 0;
173 virtual void
174 do_fill_first_plt_entry(unsigned char* pov,
175 elfcpp::Elf_types<32>::Elf_Addr got_address) = 0;
177 virtual unsigned int
178 do_fill_plt_entry(unsigned char* pov,
179 elfcpp::Elf_types<32>::Elf_Addr got_address,
180 unsigned int got_offset,
181 unsigned int plt_offset,
182 unsigned int plt_rel_offset) = 0;
184 virtual void
185 do_add_eh_frame(Layout*) = 0;
187 void
188 do_adjust_output_section(Output_section* os);
190 // Write to a map file.
191 void
192 do_print_to_mapfile(Mapfile* mapfile) const
193 { mapfile->print_output_data(this, _("** PLT")); }
195 // The .eh_frame unwind information for the PLT.
196 // The CIE is common across variants of the PLT format.
197 static const int plt_eh_frame_cie_size = 16;
198 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
200 private:
201 // Set the final size.
202 void
203 set_final_data_size()
205 this->set_data_size((this->count_ + this->irelative_count_ + 1)
206 * this->get_plt_entry_size());
209 // Write out the PLT data.
210 void
211 do_write(Output_file*);
213 // We keep a list of global STT_GNU_IFUNC symbols, each with its
214 // offset in the GOT.
215 struct Global_ifunc
217 Symbol* sym;
218 unsigned int got_offset;
221 // We keep a list of local STT_GNU_IFUNC symbols, each with its
222 // offset in the GOT.
223 struct Local_ifunc
225 Sized_relobj_file<32, false>* object;
226 unsigned int local_sym_index;
227 unsigned int got_offset;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The TLS_DESC relocations, if necessary. These must follow the
233 // regular PLT relocs.
234 Reloc_section* tls_desc_rel_;
235 // The IRELATIVE relocations, if necessary. These must follow the
236 // regular relocatoins and the TLS_DESC relocations.
237 Reloc_section* irelative_rel_;
238 // The .got.plt section.
239 Output_data_got_plt_i386* got_plt_;
240 // The part of the .got.plt section used for IRELATIVE relocs.
241 Output_data_space* got_irelative_;
242 // The number of PLT entries.
243 unsigned int count_;
244 // Number of PLT entries with R_386_IRELATIVE relocs. These follow
245 // the regular PLT entries.
246 unsigned int irelative_count_;
247 // Global STT_GNU_IFUNC symbols.
248 std::vector<Global_ifunc> global_ifuncs_;
249 // Local STT_GNU_IFUNC symbols.
250 std::vector<Local_ifunc> local_ifuncs_;
253 // This is an abstract class for the standard PLT layout.
254 // The derived classes below handle the actual PLT contents
255 // for the executable (non-PIC) and shared-library (PIC) cases.
256 // The unwind information is uniform across those two, so it's here.
258 class Output_data_plt_i386_standard : public Output_data_plt_i386
260 public:
261 Output_data_plt_i386_standard(Layout* layout,
262 Output_data_got_plt_i386* got_plt,
263 Output_data_space* got_irelative)
264 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
267 protected:
268 virtual unsigned int
269 do_get_plt_entry_size() const
270 { return plt_entry_size; }
272 virtual void
273 do_add_eh_frame(Layout* layout)
275 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
276 plt_eh_frame_fde, plt_eh_frame_fde_size);
279 // The size of an entry in the PLT.
280 static const int plt_entry_size = 16;
282 // The .eh_frame unwind information for the PLT.
283 static const int plt_eh_frame_fde_size = 32;
284 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
287 // Actually fill the PLT contents for an executable (non-PIC).
289 class Output_data_plt_i386_exec : public Output_data_plt_i386_standard
291 public:
292 Output_data_plt_i386_exec(Layout* layout,
293 Output_data_got_plt_i386* got_plt,
294 Output_data_space* got_irelative)
295 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
298 protected:
299 virtual void
300 do_fill_first_plt_entry(unsigned char* pov,
301 elfcpp::Elf_types<32>::Elf_Addr got_address);
303 virtual unsigned int
304 do_fill_plt_entry(unsigned char* pov,
305 elfcpp::Elf_types<32>::Elf_Addr got_address,
306 unsigned int got_offset,
307 unsigned int plt_offset,
308 unsigned int plt_rel_offset);
310 private:
311 // The first entry in the PLT for an executable.
312 static const unsigned char first_plt_entry[plt_entry_size];
314 // Other entries in the PLT for an executable.
315 static const unsigned char plt_entry[plt_entry_size];
318 // Actually fill the PLT contents for a shared library (PIC).
320 class Output_data_plt_i386_dyn : public Output_data_plt_i386_standard
322 public:
323 Output_data_plt_i386_dyn(Layout* layout,
324 Output_data_got_plt_i386* got_plt,
325 Output_data_space* got_irelative)
326 : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
329 protected:
330 virtual void
331 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
333 virtual unsigned int
334 do_fill_plt_entry(unsigned char* pov,
335 elfcpp::Elf_types<32>::Elf_Addr,
336 unsigned int got_offset,
337 unsigned int plt_offset,
338 unsigned int plt_rel_offset);
340 private:
341 // The first entry in the PLT for a shared object.
342 static const unsigned char first_plt_entry[plt_entry_size];
344 // Other entries in the PLT for a shared object.
345 static const unsigned char plt_entry[plt_entry_size];
348 // The i386 target class.
349 // TLS info comes from
350 // http://people.redhat.com/drepper/tls.pdf
351 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
353 class Target_i386 : public Sized_target<32, false>
355 public:
356 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
358 Target_i386(const Target::Target_info* info = &i386_info)
359 : Sized_target<32, false>(info),
360 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
361 got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
362 rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY),
363 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
366 // Process the relocations to determine unreferenced sections for
367 // garbage collection.
368 void
369 gc_process_relocs(Symbol_table* symtab,
370 Layout* layout,
371 Sized_relobj_file<32, false>* object,
372 unsigned int data_shndx,
373 unsigned int sh_type,
374 const unsigned char* prelocs,
375 size_t reloc_count,
376 Output_section* output_section,
377 bool needs_special_offset_handling,
378 size_t local_symbol_count,
379 const unsigned char* plocal_symbols);
381 // Scan the relocations to look for symbol adjustments.
382 void
383 scan_relocs(Symbol_table* symtab,
384 Layout* layout,
385 Sized_relobj_file<32, false>* object,
386 unsigned int data_shndx,
387 unsigned int sh_type,
388 const unsigned char* prelocs,
389 size_t reloc_count,
390 Output_section* output_section,
391 bool needs_special_offset_handling,
392 size_t local_symbol_count,
393 const unsigned char* plocal_symbols);
395 // Finalize the sections.
396 void
397 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
399 // Return the value to use for a dynamic which requires special
400 // treatment.
401 uint64_t
402 do_dynsym_value(const Symbol*) const;
404 // Relocate a section.
405 void
406 relocate_section(const Relocate_info<32, false>*,
407 unsigned int sh_type,
408 const unsigned char* prelocs,
409 size_t reloc_count,
410 Output_section* output_section,
411 bool needs_special_offset_handling,
412 unsigned char* view,
413 elfcpp::Elf_types<32>::Elf_Addr view_address,
414 section_size_type view_size,
415 const Reloc_symbol_changes*);
417 // Scan the relocs during a relocatable link.
418 void
419 scan_relocatable_relocs(Symbol_table* symtab,
420 Layout* layout,
421 Sized_relobj_file<32, false>* object,
422 unsigned int data_shndx,
423 unsigned int sh_type,
424 const unsigned char* prelocs,
425 size_t reloc_count,
426 Output_section* output_section,
427 bool needs_special_offset_handling,
428 size_t local_symbol_count,
429 const unsigned char* plocal_symbols,
430 Relocatable_relocs*);
432 // Scan the relocs for --emit-relocs.
433 void
434 emit_relocs_scan(Symbol_table* symtab,
435 Layout* layout,
436 Sized_relobj_file<32, false>* object,
437 unsigned int data_shndx,
438 unsigned int sh_type,
439 const unsigned char* prelocs,
440 size_t reloc_count,
441 Output_section* output_section,
442 bool needs_special_offset_handling,
443 size_t local_symbol_count,
444 const unsigned char* plocal_syms,
445 Relocatable_relocs* rr);
447 // Emit relocations for a section.
448 void
449 relocate_relocs(const Relocate_info<32, false>*,
450 unsigned int sh_type,
451 const unsigned char* prelocs,
452 size_t reloc_count,
453 Output_section* output_section,
454 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
455 unsigned char* view,
456 elfcpp::Elf_types<32>::Elf_Addr view_address,
457 section_size_type view_size,
458 unsigned char* reloc_view,
459 section_size_type reloc_view_size);
461 // Return a string used to fill a code section with nops.
462 std::string
463 do_code_fill(section_size_type length) const;
465 // Return whether SYM is defined by the ABI.
466 bool
467 do_is_defined_by_abi(const Symbol* sym) const
468 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
470 // Return whether a symbol name implies a local label. The UnixWare
471 // 2.1 cc generates temporary symbols that start with .X, so we
472 // recognize them here. FIXME: do other SVR4 compilers also use .X?.
473 // If so, we should move the .X recognition into
474 // Target::do_is_local_label_name.
475 bool
476 do_is_local_label_name(const char* name) const
478 if (name[0] == '.' && name[1] == 'X')
479 return true;
480 return Target::do_is_local_label_name(name);
483 // Return the PLT address to use for a global symbol.
484 uint64_t
485 do_plt_address_for_global(const Symbol* gsym) const
486 { return this->plt_section()->address_for_global(gsym); }
488 uint64_t
489 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
490 { return this->plt_section()->address_for_local(relobj, symndx); }
492 // We can tell whether we take the address of a function.
493 inline bool
494 do_can_check_for_function_pointers() const
495 { return true; }
497 // Return the base for a DW_EH_PE_datarel encoding.
498 uint64_t
499 do_ehframe_datarel_base() const;
501 // Return whether SYM is call to a non-split function.
502 bool
503 do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
504 const unsigned char*, section_size_type) const;
506 // Adjust -fsplit-stack code which calls non-split-stack code.
507 void
508 do_calls_non_split(Relobj* object, unsigned int shndx,
509 section_offset_type fnoffset, section_size_type fnsize,
510 const unsigned char* prelocs, size_t reloc_count,
511 unsigned char* view, section_size_type view_size,
512 std::string* from, std::string* to) const;
514 // Return the size of the GOT section.
515 section_size_type
516 got_size() const
518 gold_assert(this->got_ != NULL);
519 return this->got_->data_size();
522 // Return the number of entries in the GOT.
523 unsigned int
524 got_entry_count() const
526 if (this->got_ == NULL)
527 return 0;
528 return this->got_size() / 4;
531 // Return the number of entries in the PLT.
532 unsigned int
533 plt_entry_count() const;
535 // Return the offset of the first non-reserved PLT entry.
536 unsigned int
537 first_plt_entry_offset() const;
539 // Return the size of each PLT entry.
540 unsigned int
541 plt_entry_size() const;
543 protected:
544 // Instantiate the plt_ member.
545 // This chooses the right PLT flavor for an executable or a shared object.
546 Output_data_plt_i386*
547 make_data_plt(Layout* layout,
548 Output_data_got_plt_i386* got_plt,
549 Output_data_space* got_irelative,
550 bool dyn)
551 { return this->do_make_data_plt(layout, got_plt, got_irelative, dyn); }
553 virtual Output_data_plt_i386*
554 do_make_data_plt(Layout* layout,
555 Output_data_got_plt_i386* got_plt,
556 Output_data_space* got_irelative,
557 bool dyn)
559 if (dyn)
560 return new Output_data_plt_i386_dyn(layout, got_plt, got_irelative);
561 else
562 return new Output_data_plt_i386_exec(layout, got_plt, got_irelative);
565 private:
566 // The class which scans relocations.
567 struct Scan
569 static inline int
571 get_reference_flags(unsigned int r_type);
573 inline void
574 local(Symbol_table* symtab, Layout* layout, Target_i386* target,
575 Sized_relobj_file<32, false>* object,
576 unsigned int data_shndx,
577 Output_section* output_section,
578 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
579 const elfcpp::Sym<32, false>& lsym,
580 bool is_discarded);
582 inline void
583 global(Symbol_table* symtab, Layout* layout, Target_i386* target,
584 Sized_relobj_file<32, false>* object,
585 unsigned int data_shndx,
586 Output_section* output_section,
587 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
588 Symbol* gsym);
590 inline bool
591 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
592 Target_i386* target,
593 Sized_relobj_file<32, false>* object,
594 unsigned int data_shndx,
595 Output_section* output_section,
596 const elfcpp::Rel<32, false>& reloc,
597 unsigned int r_type,
598 const elfcpp::Sym<32, false>& lsym);
600 inline bool
601 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
602 Target_i386* target,
603 Sized_relobj_file<32, false>* object,
604 unsigned int data_shndx,
605 Output_section* output_section,
606 const elfcpp::Rel<32, false>& reloc,
607 unsigned int r_type,
608 Symbol* gsym);
610 inline bool
611 possible_function_pointer_reloc(unsigned int r_type);
613 bool
614 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
615 unsigned int r_type);
617 static void
618 unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
620 static void
621 unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
622 Symbol*);
625 // The class which implements relocation.
626 class Relocate
628 public:
629 Relocate()
630 : skip_call_tls_get_addr_(false),
631 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
634 ~Relocate()
636 if (this->skip_call_tls_get_addr_)
638 // FIXME: This needs to specify the location somehow.
639 gold_error(_("missing expected TLS relocation"));
643 // Return whether the static relocation needs to be applied.
644 inline bool
645 should_apply_static_reloc(const Sized_symbol<32>* gsym,
646 unsigned int r_type,
647 bool is_32bit,
648 Output_section* output_section);
650 // Do a relocation. Return false if the caller should not issue
651 // any warnings about this relocation.
652 inline bool
653 relocate(const Relocate_info<32, false>*, unsigned int,
654 Target_i386*, Output_section*, size_t, const unsigned char*,
655 const Sized_symbol<32>*, const Symbol_value<32>*,
656 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
657 section_size_type);
659 private:
660 // Do a TLS relocation.
661 inline void
662 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
663 size_t relnum, const elfcpp::Rel<32, false>&,
664 unsigned int r_type, const Sized_symbol<32>*,
665 const Symbol_value<32>*,
666 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
667 section_size_type);
669 // Do a TLS General-Dynamic to Initial-Exec transition.
670 inline void
671 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
672 const elfcpp::Rel<32, false>&, unsigned int r_type,
673 elfcpp::Elf_types<32>::Elf_Addr value,
674 unsigned char* view,
675 section_size_type view_size);
677 // Do a TLS General-Dynamic to Local-Exec transition.
678 inline void
679 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
680 Output_segment* tls_segment,
681 const elfcpp::Rel<32, false>&, unsigned int r_type,
682 elfcpp::Elf_types<32>::Elf_Addr value,
683 unsigned char* view,
684 section_size_type view_size);
686 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
687 // transition.
688 inline void
689 tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
690 const elfcpp::Rel<32, false>&, unsigned int r_type,
691 elfcpp::Elf_types<32>::Elf_Addr value,
692 unsigned char* view,
693 section_size_type view_size);
695 // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
696 // transition.
697 inline void
698 tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
699 Output_segment* tls_segment,
700 const elfcpp::Rel<32, false>&, unsigned int r_type,
701 elfcpp::Elf_types<32>::Elf_Addr value,
702 unsigned char* view,
703 section_size_type view_size);
705 // Do a TLS Local-Dynamic to Local-Exec transition.
706 inline void
707 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
708 Output_segment* tls_segment,
709 const elfcpp::Rel<32, false>&, unsigned int r_type,
710 elfcpp::Elf_types<32>::Elf_Addr value,
711 unsigned char* view,
712 section_size_type view_size);
714 // Do a TLS Initial-Exec to Local-Exec transition.
715 static inline void
716 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
717 Output_segment* tls_segment,
718 const elfcpp::Rel<32, false>&, unsigned int r_type,
719 elfcpp::Elf_types<32>::Elf_Addr value,
720 unsigned char* view,
721 section_size_type view_size);
723 // We need to keep track of which type of local dynamic relocation
724 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
725 enum Local_dynamic_type
727 LOCAL_DYNAMIC_NONE,
728 LOCAL_DYNAMIC_SUN,
729 LOCAL_DYNAMIC_GNU
732 // This is set if we should skip the next reloc, which should be a
733 // PLT32 reloc against ___tls_get_addr.
734 bool skip_call_tls_get_addr_;
735 // The type of local dynamic relocation we have seen in the section
736 // being relocated, if any.
737 Local_dynamic_type local_dynamic_type_;
740 // A class for inquiring about properties of a relocation,
741 // used while scanning relocs during a relocatable link and
742 // garbage collection.
743 class Classify_reloc :
744 public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
746 public:
747 typedef Reloc_types<elfcpp::SHT_REL, 32, false>::Reloc Reltype;
749 // Return the explicit addend of the relocation (return 0 for SHT_REL).
750 static elfcpp::Elf_types<32>::Elf_Swxword
751 get_r_addend(const Reltype*)
752 { return 0; }
754 // Return the size of the addend of the relocation (only used for SHT_REL).
755 static unsigned int
756 get_size_for_reloc(unsigned int, Relobj*);
759 // Adjust TLS relocation type based on the options and whether this
760 // is a local symbol.
761 static tls::Tls_optimization
762 optimize_tls_reloc(bool is_final, int r_type);
764 // Check if relocation against this symbol is a candidate for
765 // conversion from
766 // mov foo@GOT(%reg), %reg
767 // to
768 // lea foo@GOTOFF(%reg), %reg.
769 static bool
770 can_convert_mov_to_lea(const Symbol* gsym)
772 gold_assert(gsym != NULL);
773 return (gsym->type() != elfcpp::STT_GNU_IFUNC
774 && !gsym->is_undefined ()
775 && !gsym->is_from_dynobj()
776 && !gsym->is_preemptible()
777 && (!parameters->options().shared()
778 || (gsym->visibility() != elfcpp::STV_DEFAULT
779 && gsym->visibility() != elfcpp::STV_PROTECTED)
780 || parameters->options().Bsymbolic())
781 && strcmp(gsym->name(), "_DYNAMIC") != 0);
784 // Get the GOT section, creating it if necessary.
785 Output_data_got<32, false>*
786 got_section(Symbol_table*, Layout*);
788 // Get the GOT PLT section.
789 Output_data_got_plt_i386*
790 got_plt_section() const
792 gold_assert(this->got_plt_ != NULL);
793 return this->got_plt_;
796 // Get the GOT section for TLSDESC entries.
797 Output_data_got<32, false>*
798 got_tlsdesc_section() const
800 gold_assert(this->got_tlsdesc_ != NULL);
801 return this->got_tlsdesc_;
804 // Create the PLT section.
805 void
806 make_plt_section(Symbol_table* symtab, Layout* layout);
808 // Create a PLT entry for a global symbol.
809 void
810 make_plt_entry(Symbol_table*, Layout*, Symbol*);
812 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
813 void
814 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
815 Sized_relobj_file<32, false>* relobj,
816 unsigned int local_sym_index);
818 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
819 void
820 define_tls_base_symbol(Symbol_table*, Layout*);
822 // Create a GOT entry for the TLS module index.
823 unsigned int
824 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
825 Sized_relobj_file<32, false>* object);
827 // Get the PLT section.
828 Output_data_plt_i386*
829 plt_section() const
831 gold_assert(this->plt_ != NULL);
832 return this->plt_;
835 // Get the dynamic reloc section, creating it if necessary.
836 Reloc_section*
837 rel_dyn_section(Layout*);
839 // Get the section to use for TLS_DESC relocations.
840 Reloc_section*
841 rel_tls_desc_section(Layout*) const;
843 // Get the section to use for IRELATIVE relocations.
844 Reloc_section*
845 rel_irelative_section(Layout*);
847 // Add a potential copy relocation.
848 void
849 copy_reloc(Symbol_table* symtab, Layout* layout,
850 Sized_relobj_file<32, false>* object,
851 unsigned int shndx, Output_section* output_section,
852 Symbol* sym, const elfcpp::Rel<32, false>& reloc)
854 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
855 this->copy_relocs_.copy_reloc(symtab, layout,
856 symtab->get_sized_symbol<32>(sym),
857 object, shndx, output_section,
858 r_type, reloc.get_r_offset(), 0,
859 this->rel_dyn_section(layout));
862 // Information about this specific target which we pass to the
863 // general Target structure.
864 static const Target::Target_info i386_info;
866 // The types of GOT entries needed for this platform.
867 // These values are exposed to the ABI in an incremental link.
868 // Do not renumber existing values without changing the version
869 // number of the .gnu_incremental_inputs section.
870 enum Got_type
872 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
873 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
874 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
875 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
876 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
879 // The GOT section.
880 Output_data_got<32, false>* got_;
881 // The PLT section.
882 Output_data_plt_i386* plt_;
883 // The GOT PLT section.
884 Output_data_got_plt_i386* got_plt_;
885 // The GOT section for IRELATIVE relocations.
886 Output_data_space* got_irelative_;
887 // The GOT section for TLSDESC relocations.
888 Output_data_got<32, false>* got_tlsdesc_;
889 // The _GLOBAL_OFFSET_TABLE_ symbol.
890 Symbol* global_offset_table_;
891 // The dynamic reloc section.
892 Reloc_section* rel_dyn_;
893 // The section to use for IRELATIVE relocs.
894 Reloc_section* rel_irelative_;
895 // Relocs saved to avoid a COPY reloc.
896 Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
897 // Offset of the GOT entry for the TLS module index.
898 unsigned int got_mod_index_offset_;
899 // True if the _TLS_MODULE_BASE_ symbol has been defined.
900 bool tls_base_symbol_defined_;
903 const Target::Target_info Target_i386::i386_info =
905 32, // size
906 false, // is_big_endian
907 elfcpp::EM_386, // machine_code
908 false, // has_make_symbol
909 false, // has_resolve
910 true, // has_code_fill
911 true, // is_default_stack_executable
912 true, // can_icf_inline_merge_sections
913 '\0', // wrap_char
914 "/usr/lib/libc.so.1", // dynamic_linker
915 0x08048000, // default_text_segment_address
916 0x1000, // abi_pagesize (overridable by -z max-page-size)
917 0x1000, // common_pagesize (overridable by -z common-page-size)
918 false, // isolate_execinstr
919 0, // rosegment_gap
920 elfcpp::SHN_UNDEF, // small_common_shndx
921 elfcpp::SHN_UNDEF, // large_common_shndx
922 0, // small_common_section_flags
923 0, // large_common_section_flags
924 NULL, // attributes_section
925 NULL, // attributes_vendor
926 "_start", // entry_symbol_name
927 32, // hash_entry_size
930 // Get the GOT section, creating it if necessary.
932 Output_data_got<32, false>*
933 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
935 if (this->got_ == NULL)
937 gold_assert(symtab != NULL && layout != NULL);
939 this->got_ = new Output_data_got<32, false>();
941 // When using -z now, we can treat .got.plt as a relro section.
942 // Without -z now, it is modified after program startup by lazy
943 // PLT relocations.
944 bool is_got_plt_relro = parameters->options().now();
945 Output_section_order got_order = (is_got_plt_relro
946 ? ORDER_RELRO
947 : ORDER_RELRO_LAST);
948 Output_section_order got_plt_order = (is_got_plt_relro
949 ? ORDER_RELRO
950 : ORDER_NON_RELRO_FIRST);
952 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
953 (elfcpp::SHF_ALLOC
954 | elfcpp::SHF_WRITE),
955 this->got_, got_order, true);
957 this->got_plt_ = new Output_data_got_plt_i386(layout);
958 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
959 (elfcpp::SHF_ALLOC
960 | elfcpp::SHF_WRITE),
961 this->got_plt_, got_plt_order,
962 is_got_plt_relro);
964 // The first three entries are reserved.
965 this->got_plt_->set_current_data_size(3 * 4);
967 if (!is_got_plt_relro)
969 // Those bytes can go into the relro segment.
970 layout->increase_relro(3 * 4);
973 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
974 this->global_offset_table_ =
975 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
976 Symbol_table::PREDEFINED,
977 this->got_plt_,
978 0, 0, elfcpp::STT_OBJECT,
979 elfcpp::STB_LOCAL,
980 elfcpp::STV_HIDDEN, 0,
981 false, false);
983 // If there are any IRELATIVE relocations, they get GOT entries
984 // in .got.plt after the jump slot relocations.
985 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
986 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
987 (elfcpp::SHF_ALLOC
988 | elfcpp::SHF_WRITE),
989 this->got_irelative_,
990 got_plt_order, is_got_plt_relro);
992 // If there are any TLSDESC relocations, they get GOT entries in
993 // .got.plt after the jump slot entries.
994 this->got_tlsdesc_ = new Output_data_got<32, false>();
995 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
996 (elfcpp::SHF_ALLOC
997 | elfcpp::SHF_WRITE),
998 this->got_tlsdesc_,
999 got_plt_order, is_got_plt_relro);
1002 return this->got_;
1005 // Get the dynamic reloc section, creating it if necessary.
1007 Target_i386::Reloc_section*
1008 Target_i386::rel_dyn_section(Layout* layout)
1010 if (this->rel_dyn_ == NULL)
1012 gold_assert(layout != NULL);
1013 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
1014 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1015 elfcpp::SHF_ALLOC, this->rel_dyn_,
1016 ORDER_DYNAMIC_RELOCS, false);
1018 return this->rel_dyn_;
1021 // Get the section to use for IRELATIVE relocs, creating it if
1022 // necessary. These go in .rel.dyn, but only after all other dynamic
1023 // relocations. They need to follow the other dynamic relocations so
1024 // that they can refer to global variables initialized by those
1025 // relocs.
1027 Target_i386::Reloc_section*
1028 Target_i386::rel_irelative_section(Layout* layout)
1030 if (this->rel_irelative_ == NULL)
1032 // Make sure we have already create the dynamic reloc section.
1033 this->rel_dyn_section(layout);
1034 this->rel_irelative_ = new Reloc_section(false);
1035 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1036 elfcpp::SHF_ALLOC, this->rel_irelative_,
1037 ORDER_DYNAMIC_RELOCS, false);
1038 gold_assert(this->rel_dyn_->output_section()
1039 == this->rel_irelative_->output_section());
1041 return this->rel_irelative_;
1044 // Write the first three reserved words of the .got.plt section.
1045 // The remainder of the section is written while writing the PLT
1046 // in Output_data_plt_i386::do_write.
1048 void
1049 Output_data_got_plt_i386::do_write(Output_file* of)
1051 // The first entry in the GOT is the address of the .dynamic section
1052 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1053 // We saved space for them when we created the section in
1054 // Target_i386::got_section.
1055 const off_t got_file_offset = this->offset();
1056 gold_assert(this->data_size() >= 12);
1057 unsigned char* const got_view = of->get_output_view(got_file_offset, 12);
1058 Output_section* dynamic = this->layout_->dynamic_section();
1059 uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1060 elfcpp::Swap<32, false>::writeval(got_view, dynamic_addr);
1061 memset(got_view + 4, 0, 8);
1062 of->write_output_view(got_file_offset, 12, got_view);
1065 // Create the PLT section. The ordinary .got section is an argument,
1066 // since we need to refer to the start. We also create our own .got
1067 // section just for PLT entries.
1069 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
1070 uint64_t addralign,
1071 Output_data_got_plt_i386* got_plt,
1072 Output_data_space* got_irelative)
1073 : Output_section_data(addralign),
1074 tls_desc_rel_(NULL), irelative_rel_(NULL), got_plt_(got_plt),
1075 got_irelative_(got_irelative), count_(0), irelative_count_(0),
1076 global_ifuncs_(), local_ifuncs_()
1078 this->rel_ = new Reloc_section(false);
1079 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1080 elfcpp::SHF_ALLOC, this->rel_,
1081 ORDER_DYNAMIC_PLT_RELOCS, false);
1084 void
1085 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
1087 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
1088 // linker, and so do we.
1089 os->set_entsize(4);
1092 // Add an entry to the PLT.
1094 void
1095 Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
1096 Symbol* gsym)
1098 gold_assert(!gsym->has_plt_offset());
1100 // Every PLT entry needs a reloc.
1101 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1102 && gsym->can_use_relative_reloc(false))
1104 gsym->set_plt_offset(this->irelative_count_ * this->get_plt_entry_size());
1105 ++this->irelative_count_;
1106 section_offset_type got_offset =
1107 this->got_irelative_->current_data_size();
1108 this->got_irelative_->set_current_data_size(got_offset + 4);
1109 Reloc_section* rel = this->rel_irelative(symtab, layout);
1110 rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
1111 this->got_irelative_, got_offset);
1112 struct Global_ifunc gi;
1113 gi.sym = gsym;
1114 gi.got_offset = got_offset;
1115 this->global_ifuncs_.push_back(gi);
1117 else
1119 // When setting the PLT offset we skip the initial reserved PLT
1120 // entry.
1121 gsym->set_plt_offset((this->count_ + 1) * this->get_plt_entry_size());
1123 ++this->count_;
1125 section_offset_type got_offset = this->got_plt_->current_data_size();
1127 // Every PLT entry needs a GOT entry which points back to the
1128 // PLT entry (this will be changed by the dynamic linker,
1129 // normally lazily when the function is called).
1130 this->got_plt_->set_current_data_size(got_offset + 4);
1132 gsym->set_needs_dynsym_entry();
1133 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
1134 got_offset);
1137 // Note that we don't need to save the symbol. The contents of the
1138 // PLT are independent of which symbols are used. The symbols only
1139 // appear in the relocations.
1142 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1143 // the PLT offset.
1145 unsigned int
1146 Output_data_plt_i386::add_local_ifunc_entry(
1147 Symbol_table* symtab,
1148 Layout* layout,
1149 Sized_relobj_file<32, false>* relobj,
1150 unsigned int local_sym_index)
1152 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1153 ++this->irelative_count_;
1155 section_offset_type got_offset = this->got_irelative_->current_data_size();
1157 // Every PLT entry needs a GOT entry which points back to the PLT
1158 // entry.
1159 this->got_irelative_->set_current_data_size(got_offset + 4);
1161 // Every PLT entry needs a reloc.
1162 Reloc_section* rel = this->rel_irelative(symtab, layout);
1163 rel->add_symbolless_local_addend(relobj, local_sym_index,
1164 elfcpp::R_386_IRELATIVE,
1165 this->got_irelative_, got_offset);
1167 struct Local_ifunc li;
1168 li.object = relobj;
1169 li.local_sym_index = local_sym_index;
1170 li.got_offset = got_offset;
1171 this->local_ifuncs_.push_back(li);
1173 return plt_offset;
1176 // Return where the TLS_DESC relocations should go, creating it if
1177 // necessary. These follow the JUMP_SLOT relocations.
1179 Output_data_plt_i386::Reloc_section*
1180 Output_data_plt_i386::rel_tls_desc(Layout* layout)
1182 if (this->tls_desc_rel_ == NULL)
1184 this->tls_desc_rel_ = new Reloc_section(false);
1185 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1186 elfcpp::SHF_ALLOC, this->tls_desc_rel_,
1187 ORDER_DYNAMIC_PLT_RELOCS, false);
1188 gold_assert(this->tls_desc_rel_->output_section()
1189 == this->rel_->output_section());
1191 return this->tls_desc_rel_;
1194 // Return where the IRELATIVE relocations should go in the PLT. These
1195 // follow the JUMP_SLOT and TLS_DESC relocations.
1197 Output_data_plt_i386::Reloc_section*
1198 Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
1200 if (this->irelative_rel_ == NULL)
1202 // Make sure we have a place for the TLS_DESC relocations, in
1203 // case we see any later on.
1204 this->rel_tls_desc(layout);
1205 this->irelative_rel_ = new Reloc_section(false);
1206 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1207 elfcpp::SHF_ALLOC, this->irelative_rel_,
1208 ORDER_DYNAMIC_PLT_RELOCS, false);
1209 gold_assert(this->irelative_rel_->output_section()
1210 == this->rel_->output_section());
1212 if (parameters->doing_static_link())
1214 // A statically linked executable will only have a .rel.plt
1215 // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
1216 // symbols. The library will use these symbols to locate
1217 // the IRELATIVE relocs at program startup time.
1218 symtab->define_in_output_data("__rel_iplt_start", NULL,
1219 Symbol_table::PREDEFINED,
1220 this->irelative_rel_, 0, 0,
1221 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1222 elfcpp::STV_HIDDEN, 0, false, true);
1223 symtab->define_in_output_data("__rel_iplt_end", NULL,
1224 Symbol_table::PREDEFINED,
1225 this->irelative_rel_, 0, 0,
1226 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1227 elfcpp::STV_HIDDEN, 0, true, true);
1230 return this->irelative_rel_;
1233 // Return the PLT address to use for a global symbol.
1235 uint64_t
1236 Output_data_plt_i386::address_for_global(const Symbol* gsym)
1238 uint64_t offset = 0;
1239 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1240 && gsym->can_use_relative_reloc(false))
1241 offset = (this->count_ + 1) * this->get_plt_entry_size();
1242 return this->address() + offset + gsym->plt_offset();
1245 // Return the PLT address to use for a local symbol. These are always
1246 // IRELATIVE relocs.
1248 uint64_t
1249 Output_data_plt_i386::address_for_local(const Relobj* object,
1250 unsigned int r_sym)
1252 return (this->address()
1253 + (this->count_ + 1) * this->get_plt_entry_size()
1254 + object->local_plt_offset(r_sym));
1257 // The first entry in the PLT for an executable.
1259 const unsigned char Output_data_plt_i386_exec::first_plt_entry[plt_entry_size] =
1261 0xff, 0x35, // pushl contents of memory address
1262 0, 0, 0, 0, // replaced with address of .got + 4
1263 0xff, 0x25, // jmp indirect
1264 0, 0, 0, 0, // replaced with address of .got + 8
1265 0, 0, 0, 0 // unused
1268 void
1269 Output_data_plt_i386_exec::do_fill_first_plt_entry(
1270 unsigned char* pov,
1271 elfcpp::Elf_types<32>::Elf_Addr got_address)
1273 memcpy(pov, first_plt_entry, plt_entry_size);
1274 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
1275 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
1278 // The first entry in the PLT for a shared object.
1280 const unsigned char Output_data_plt_i386_dyn::first_plt_entry[plt_entry_size] =
1282 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
1283 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
1284 0, 0, 0, 0 // unused
1287 void
1288 Output_data_plt_i386_dyn::do_fill_first_plt_entry(
1289 unsigned char* pov,
1290 elfcpp::Elf_types<32>::Elf_Addr)
1292 memcpy(pov, first_plt_entry, plt_entry_size);
1295 // Subsequent entries in the PLT for an executable.
1297 const unsigned char Output_data_plt_i386_exec::plt_entry[plt_entry_size] =
1299 0xff, 0x25, // jmp indirect
1300 0, 0, 0, 0, // replaced with address of symbol in .got
1301 0x68, // pushl immediate
1302 0, 0, 0, 0, // replaced with offset into relocation table
1303 0xe9, // jmp relative
1304 0, 0, 0, 0 // replaced with offset to start of .plt
1307 unsigned int
1308 Output_data_plt_i386_exec::do_fill_plt_entry(
1309 unsigned char* pov,
1310 elfcpp::Elf_types<32>::Elf_Addr got_address,
1311 unsigned int got_offset,
1312 unsigned int plt_offset,
1313 unsigned int plt_rel_offset)
1315 memcpy(pov, plt_entry, plt_entry_size);
1316 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1317 got_address + got_offset);
1318 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1319 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1320 return 6;
1323 // Subsequent entries in the PLT for a shared object.
1325 const unsigned char Output_data_plt_i386_dyn::plt_entry[plt_entry_size] =
1327 0xff, 0xa3, // jmp *offset(%ebx)
1328 0, 0, 0, 0, // replaced with offset of symbol in .got
1329 0x68, // pushl immediate
1330 0, 0, 0, 0, // replaced with offset into relocation table
1331 0xe9, // jmp relative
1332 0, 0, 0, 0 // replaced with offset to start of .plt
1335 unsigned int
1336 Output_data_plt_i386_dyn::do_fill_plt_entry(unsigned char* pov,
1337 elfcpp::Elf_types<32>::Elf_Addr,
1338 unsigned int got_offset,
1339 unsigned int plt_offset,
1340 unsigned int plt_rel_offset)
1342 memcpy(pov, plt_entry, plt_entry_size);
1343 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
1344 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
1345 elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
1346 return 6;
1349 // The .eh_frame unwind information for the PLT.
1351 const unsigned char
1352 Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1354 1, // CIE version.
1355 'z', // Augmentation: augmentation size included.
1356 'R', // Augmentation: FDE encoding included.
1357 '\0', // End of augmentation string.
1358 1, // Code alignment factor.
1359 0x7c, // Data alignment factor.
1360 8, // Return address column.
1361 1, // Augmentation size.
1362 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1363 | elfcpp::DW_EH_PE_sdata4),
1364 elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
1365 elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
1366 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1367 elfcpp::DW_CFA_nop
1370 const unsigned char
1371 Output_data_plt_i386_standard::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1373 0, 0, 0, 0, // Replaced with offset to .plt.
1374 0, 0, 0, 0, // Replaced with size of .plt.
1375 0, // Augmentation size.
1376 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
1377 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1378 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
1379 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1380 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1381 11, // Block length.
1382 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
1383 elfcpp::DW_OP_breg8, 0, // Push %eip.
1384 elfcpp::DW_OP_lit15, // Push 0xf.
1385 elfcpp::DW_OP_and, // & (%eip & 0xf).
1386 elfcpp::DW_OP_lit11, // Push 0xb.
1387 elfcpp::DW_OP_ge, // >= ((%eip & 0xf) >= 0xb)
1388 elfcpp::DW_OP_lit2, // Push 2.
1389 elfcpp::DW_OP_shl, // << (((%eip & 0xf) >= 0xb) << 2)
1390 elfcpp::DW_OP_plus, // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
1391 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1392 elfcpp::DW_CFA_nop,
1393 elfcpp::DW_CFA_nop,
1394 elfcpp::DW_CFA_nop
1397 // Write out the PLT. This uses the hand-coded instructions above,
1398 // and adjusts them as needed. This is all specified by the i386 ELF
1399 // Processor Supplement.
1401 void
1402 Output_data_plt_i386::do_write(Output_file* of)
1404 const off_t offset = this->offset();
1405 const section_size_type oview_size =
1406 convert_to_section_size_type(this->data_size());
1407 unsigned char* const oview = of->get_output_view(offset, oview_size);
1409 const off_t got_file_offset = this->got_plt_->offset();
1410 gold_assert(parameters->incremental_update()
1411 || (got_file_offset + this->got_plt_->data_size()
1412 == this->got_irelative_->offset()));
1413 const section_size_type got_size =
1414 convert_to_section_size_type(this->got_plt_->data_size()
1415 + this->got_irelative_->data_size());
1417 unsigned char* const got_view = of->get_output_view(got_file_offset,
1418 got_size);
1420 unsigned char* pov = oview;
1422 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
1423 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
1425 this->fill_first_plt_entry(pov, got_address);
1426 pov += this->get_plt_entry_size();
1428 // The first three entries in the GOT are reserved, and are written
1429 // by Output_data_got_plt_i386::do_write.
1430 unsigned char* got_pov = got_view + 12;
1432 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
1434 unsigned int plt_offset = this->get_plt_entry_size();
1435 unsigned int plt_rel_offset = 0;
1436 unsigned int got_offset = 12;
1437 const unsigned int count = this->count_ + this->irelative_count_;
1438 for (unsigned int i = 0;
1439 i < count;
1440 ++i,
1441 pov += this->get_plt_entry_size(),
1442 got_pov += 4,
1443 plt_offset += this->get_plt_entry_size(),
1444 plt_rel_offset += rel_size,
1445 got_offset += 4)
1447 // Set and adjust the PLT entry itself.
1448 unsigned int lazy_offset = this->fill_plt_entry(pov,
1449 got_address,
1450 got_offset,
1451 plt_offset,
1452 plt_rel_offset);
1454 // Set the entry in the GOT.
1455 elfcpp::Swap<32, false>::writeval(got_pov,
1456 plt_address + plt_offset + lazy_offset);
1459 // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
1460 // the GOT to point to the actual symbol value, rather than point to
1461 // the PLT entry. That will let the dynamic linker call the right
1462 // function when resolving IRELATIVE relocations.
1463 unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
1464 for (std::vector<Global_ifunc>::const_iterator p =
1465 this->global_ifuncs_.begin();
1466 p != this->global_ifuncs_.end();
1467 ++p)
1469 const Sized_symbol<32>* ssym =
1470 static_cast<const Sized_symbol<32>*>(p->sym);
1471 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1472 ssym->value());
1475 for (std::vector<Local_ifunc>::const_iterator p =
1476 this->local_ifuncs_.begin();
1477 p != this->local_ifuncs_.end();
1478 ++p)
1480 const Symbol_value<32>* psymval =
1481 p->object->local_symbol(p->local_sym_index);
1482 elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
1483 psymval->value(p->object, 0));
1486 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1487 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1489 of->write_output_view(offset, oview_size, oview);
1490 of->write_output_view(got_file_offset, got_size, got_view);
1493 // Create the PLT section.
1495 void
1496 Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
1498 if (this->plt_ == NULL)
1500 // Create the GOT sections first.
1501 this->got_section(symtab, layout);
1503 const bool dyn = parameters->options().output_is_position_independent();
1504 this->plt_ = this->make_data_plt(layout,
1505 this->got_plt_,
1506 this->got_irelative_,
1507 dyn);
1509 // Add unwind information if requested.
1510 if (parameters->options().ld_generated_unwind_info())
1511 this->plt_->add_eh_frame(layout);
1513 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1514 (elfcpp::SHF_ALLOC
1515 | elfcpp::SHF_EXECINSTR),
1516 this->plt_, ORDER_PLT, false);
1518 // Make the sh_info field of .rel.plt point to .plt.
1519 Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
1520 rel_plt_os->set_info_section(this->plt_->output_section());
1524 // Create a PLT entry for a global symbol.
1526 void
1527 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
1529 if (gsym->has_plt_offset())
1530 return;
1531 if (this->plt_ == NULL)
1532 this->make_plt_section(symtab, layout);
1533 this->plt_->add_entry(symtab, layout, gsym);
1536 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1538 void
1539 Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1540 Sized_relobj_file<32, false>* relobj,
1541 unsigned int local_sym_index)
1543 if (relobj->local_has_plt_offset(local_sym_index))
1544 return;
1545 if (this->plt_ == NULL)
1546 this->make_plt_section(symtab, layout);
1547 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1548 relobj,
1549 local_sym_index);
1550 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1553 // Return the number of entries in the PLT.
1555 unsigned int
1556 Target_i386::plt_entry_count() const
1558 if (this->plt_ == NULL)
1559 return 0;
1560 return this->plt_->entry_count();
1563 // Return the offset of the first non-reserved PLT entry.
1565 unsigned int
1566 Target_i386::first_plt_entry_offset() const
1568 if (this->plt_ == NULL)
1569 return 0;
1570 return this->plt_->first_plt_entry_offset();
1573 // Return the size of each PLT entry.
1575 unsigned int
1576 Target_i386::plt_entry_size() const
1578 if (this->plt_ == NULL)
1579 return 0;
1580 return this->plt_->get_plt_entry_size();
1583 // Get the section to use for TLS_DESC relocations.
1585 Target_i386::Reloc_section*
1586 Target_i386::rel_tls_desc_section(Layout* layout) const
1588 return this->plt_section()->rel_tls_desc(layout);
1591 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1593 void
1594 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1596 if (this->tls_base_symbol_defined_)
1597 return;
1599 Output_segment* tls_segment = layout->tls_segment();
1600 if (tls_segment != NULL)
1602 bool is_exec = parameters->options().output_is_executable();
1603 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1604 Symbol_table::PREDEFINED,
1605 tls_segment, 0, 0,
1606 elfcpp::STT_TLS,
1607 elfcpp::STB_LOCAL,
1608 elfcpp::STV_HIDDEN, 0,
1609 (is_exec
1610 ? Symbol::SEGMENT_END
1611 : Symbol::SEGMENT_START),
1612 true);
1614 this->tls_base_symbol_defined_ = true;
1617 // Create a GOT entry for the TLS module index.
1619 unsigned int
1620 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1621 Sized_relobj_file<32, false>* object)
1623 if (this->got_mod_index_offset_ == -1U)
1625 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1626 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1627 Output_data_got<32, false>* got = this->got_section(symtab, layout);
1628 unsigned int got_offset = got->add_constant(0);
1629 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
1630 got_offset);
1631 got->add_constant(0);
1632 this->got_mod_index_offset_ = got_offset;
1634 return this->got_mod_index_offset_;
1637 // Optimize the TLS relocation type based on what we know about the
1638 // symbol. IS_FINAL is true if the final address of this symbol is
1639 // known at link time.
1641 tls::Tls_optimization
1642 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
1644 // If we are generating a shared library, then we can't do anything
1645 // in the linker.
1646 if (parameters->options().shared())
1647 return tls::TLSOPT_NONE;
1649 switch (r_type)
1651 case elfcpp::R_386_TLS_GD:
1652 case elfcpp::R_386_TLS_GOTDESC:
1653 case elfcpp::R_386_TLS_DESC_CALL:
1654 // These are General-Dynamic which permits fully general TLS
1655 // access. Since we know that we are generating an executable,
1656 // we can convert this to Initial-Exec. If we also know that
1657 // this is a local symbol, we can further switch to Local-Exec.
1658 if (is_final)
1659 return tls::TLSOPT_TO_LE;
1660 return tls::TLSOPT_TO_IE;
1662 case elfcpp::R_386_TLS_LDM:
1663 // This is Local-Dynamic, which refers to a local symbol in the
1664 // dynamic TLS block. Since we know that we generating an
1665 // executable, we can switch to Local-Exec.
1666 return tls::TLSOPT_TO_LE;
1668 case elfcpp::R_386_TLS_LDO_32:
1669 // Another type of Local-Dynamic relocation.
1670 return tls::TLSOPT_TO_LE;
1672 case elfcpp::R_386_TLS_IE:
1673 case elfcpp::R_386_TLS_GOTIE:
1674 case elfcpp::R_386_TLS_IE_32:
1675 // These are Initial-Exec relocs which get the thread offset
1676 // from the GOT. If we know that we are linking against the
1677 // local symbol, we can switch to Local-Exec, which links the
1678 // thread offset into the instruction.
1679 if (is_final)
1680 return tls::TLSOPT_TO_LE;
1681 return tls::TLSOPT_NONE;
1683 case elfcpp::R_386_TLS_LE:
1684 case elfcpp::R_386_TLS_LE_32:
1685 // When we already have Local-Exec, there is nothing further we
1686 // can do.
1687 return tls::TLSOPT_NONE;
1689 default:
1690 gold_unreachable();
1694 // Get the Reference_flags for a particular relocation.
1697 Target_i386::Scan::get_reference_flags(unsigned int r_type)
1699 switch (r_type)
1701 case elfcpp::R_386_NONE:
1702 case elfcpp::R_386_GNU_VTINHERIT:
1703 case elfcpp::R_386_GNU_VTENTRY:
1704 case elfcpp::R_386_GOTPC:
1705 // No symbol reference.
1706 return 0;
1708 case elfcpp::R_386_32:
1709 case elfcpp::R_386_16:
1710 case elfcpp::R_386_8:
1711 return Symbol::ABSOLUTE_REF;
1713 case elfcpp::R_386_PC32:
1714 case elfcpp::R_386_PC16:
1715 case elfcpp::R_386_PC8:
1716 case elfcpp::R_386_GOTOFF:
1717 return Symbol::RELATIVE_REF;
1719 case elfcpp::R_386_PLT32:
1720 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1722 case elfcpp::R_386_GOT32:
1723 case elfcpp::R_386_GOT32X:
1724 // Absolute in GOT.
1725 return Symbol::ABSOLUTE_REF;
1727 case elfcpp::R_386_TLS_GD: // Global-dynamic
1728 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1729 case elfcpp::R_386_TLS_DESC_CALL:
1730 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1731 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1732 case elfcpp::R_386_TLS_IE: // Initial-exec
1733 case elfcpp::R_386_TLS_IE_32:
1734 case elfcpp::R_386_TLS_GOTIE:
1735 case elfcpp::R_386_TLS_LE: // Local-exec
1736 case elfcpp::R_386_TLS_LE_32:
1737 return Symbol::TLS_REF;
1739 case elfcpp::R_386_COPY:
1740 case elfcpp::R_386_GLOB_DAT:
1741 case elfcpp::R_386_JUMP_SLOT:
1742 case elfcpp::R_386_RELATIVE:
1743 case elfcpp::R_386_IRELATIVE:
1744 case elfcpp::R_386_TLS_TPOFF:
1745 case elfcpp::R_386_TLS_DTPMOD32:
1746 case elfcpp::R_386_TLS_DTPOFF32:
1747 case elfcpp::R_386_TLS_TPOFF32:
1748 case elfcpp::R_386_TLS_DESC:
1749 case elfcpp::R_386_32PLT:
1750 case elfcpp::R_386_TLS_GD_32:
1751 case elfcpp::R_386_TLS_GD_PUSH:
1752 case elfcpp::R_386_TLS_GD_CALL:
1753 case elfcpp::R_386_TLS_GD_POP:
1754 case elfcpp::R_386_TLS_LDM_32:
1755 case elfcpp::R_386_TLS_LDM_PUSH:
1756 case elfcpp::R_386_TLS_LDM_CALL:
1757 case elfcpp::R_386_TLS_LDM_POP:
1758 case elfcpp::R_386_USED_BY_INTEL_200:
1759 default:
1760 // Not expected. We will give an error later.
1761 return 0;
1765 // Report an unsupported relocation against a local symbol.
1767 void
1768 Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
1769 unsigned int r_type)
1771 gold_error(_("%s: unsupported reloc %u against local symbol"),
1772 object->name().c_str(), r_type);
1775 // Return whether we need to make a PLT entry for a relocation of a
1776 // given type against a STT_GNU_IFUNC symbol.
1778 bool
1779 Target_i386::Scan::reloc_needs_plt_for_ifunc(
1780 Sized_relobj_file<32, false>* object,
1781 unsigned int r_type)
1783 int flags = Scan::get_reference_flags(r_type);
1784 if (flags & Symbol::TLS_REF)
1785 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1786 object->name().c_str(), r_type);
1787 return flags != 0;
1790 // Scan a relocation for a local symbol.
1792 inline void
1793 Target_i386::Scan::local(Symbol_table* symtab,
1794 Layout* layout,
1795 Target_i386* target,
1796 Sized_relobj_file<32, false>* object,
1797 unsigned int data_shndx,
1798 Output_section* output_section,
1799 const elfcpp::Rel<32, false>& reloc,
1800 unsigned int r_type,
1801 const elfcpp::Sym<32, false>& lsym,
1802 bool is_discarded)
1804 if (is_discarded)
1805 return;
1807 // A local STT_GNU_IFUNC symbol may require a PLT entry.
1808 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1809 && this->reloc_needs_plt_for_ifunc(object, r_type))
1811 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1812 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1815 switch (r_type)
1817 case elfcpp::R_386_NONE:
1818 case elfcpp::R_386_GNU_VTINHERIT:
1819 case elfcpp::R_386_GNU_VTENTRY:
1820 break;
1822 case elfcpp::R_386_32:
1823 // If building a shared library (or a position-independent
1824 // executable), we need to create a dynamic relocation for
1825 // this location. The relocation applied at link time will
1826 // apply the link-time value, so we flag the location with
1827 // an R_386_RELATIVE relocation so the dynamic loader can
1828 // relocate it easily.
1829 if (parameters->options().output_is_position_independent())
1831 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1832 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1833 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
1834 output_section, data_shndx,
1835 reloc.get_r_offset());
1837 break;
1839 case elfcpp::R_386_16:
1840 case elfcpp::R_386_8:
1841 // If building a shared library (or a position-independent
1842 // executable), we need to create a dynamic relocation for
1843 // this location. Because the addend needs to remain in the
1844 // data section, we need to be careful not to apply this
1845 // relocation statically.
1846 if (parameters->options().output_is_position_independent())
1848 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1849 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1850 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1851 rel_dyn->add_local(object, r_sym, r_type, output_section,
1852 data_shndx, reloc.get_r_offset());
1853 else
1855 gold_assert(lsym.get_st_value() == 0);
1856 unsigned int shndx = lsym.get_st_shndx();
1857 bool is_ordinary;
1858 shndx = object->adjust_sym_shndx(r_sym, shndx,
1859 &is_ordinary);
1860 if (!is_ordinary)
1861 object->error(_("section symbol %u has bad shndx %u"),
1862 r_sym, shndx);
1863 else
1864 rel_dyn->add_local_section(object, shndx,
1865 r_type, output_section,
1866 data_shndx, reloc.get_r_offset());
1869 break;
1871 case elfcpp::R_386_PC32:
1872 case elfcpp::R_386_PC16:
1873 case elfcpp::R_386_PC8:
1874 break;
1876 case elfcpp::R_386_PLT32:
1877 // Since we know this is a local symbol, we can handle this as a
1878 // PC32 reloc.
1879 break;
1881 case elfcpp::R_386_GOTOFF:
1882 case elfcpp::R_386_GOTPC:
1883 // We need a GOT section.
1884 target->got_section(symtab, layout);
1885 break;
1887 case elfcpp::R_386_GOT32:
1888 case elfcpp::R_386_GOT32X:
1890 // We need GOT section.
1891 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1893 // If the relocation symbol isn't IFUNC,
1894 // and is local, then we will convert
1895 // mov foo@GOT(%reg), %reg
1896 // to
1897 // lea foo@GOTOFF(%reg), %reg
1898 // in Relocate::relocate.
1899 if (reloc.get_r_offset() >= 2
1900 && lsym.get_st_type() != elfcpp::STT_GNU_IFUNC)
1902 section_size_type stype;
1903 const unsigned char* view = object->section_contents(data_shndx,
1904 &stype, true);
1905 if (view[reloc.get_r_offset() - 2] == 0x8b)
1906 break;
1909 // Otherwise, the symbol requires a GOT entry.
1910 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1912 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
1913 // lets function pointers compare correctly with shared
1914 // libraries. Otherwise we would need an IRELATIVE reloc.
1915 bool is_new;
1916 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1917 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
1918 else
1919 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
1920 if (is_new)
1922 // If we are generating a shared object, we need to add a
1923 // dynamic RELATIVE relocation for this symbol's GOT entry.
1924 if (parameters->options().output_is_position_independent())
1926 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1927 unsigned int got_offset =
1928 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
1929 rel_dyn->add_local_relative(object, r_sym,
1930 elfcpp::R_386_RELATIVE,
1931 got, got_offset);
1935 break;
1937 // These are relocations which should only be seen by the
1938 // dynamic linker, and should never be seen here.
1939 case elfcpp::R_386_COPY:
1940 case elfcpp::R_386_GLOB_DAT:
1941 case elfcpp::R_386_JUMP_SLOT:
1942 case elfcpp::R_386_RELATIVE:
1943 case elfcpp::R_386_IRELATIVE:
1944 case elfcpp::R_386_TLS_TPOFF:
1945 case elfcpp::R_386_TLS_DTPMOD32:
1946 case elfcpp::R_386_TLS_DTPOFF32:
1947 case elfcpp::R_386_TLS_TPOFF32:
1948 case elfcpp::R_386_TLS_DESC:
1949 gold_error(_("%s: unexpected reloc %u in object file"),
1950 object->name().c_str(), r_type);
1951 break;
1953 // These are initial TLS relocs, which are expected when
1954 // linking.
1955 case elfcpp::R_386_TLS_GD: // Global-dynamic
1956 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1957 case elfcpp::R_386_TLS_DESC_CALL:
1958 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1959 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1960 case elfcpp::R_386_TLS_IE: // Initial-exec
1961 case elfcpp::R_386_TLS_IE_32:
1962 case elfcpp::R_386_TLS_GOTIE:
1963 case elfcpp::R_386_TLS_LE: // Local-exec
1964 case elfcpp::R_386_TLS_LE_32:
1966 bool output_is_shared = parameters->options().shared();
1967 const tls::Tls_optimization optimized_type
1968 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1969 switch (r_type)
1971 case elfcpp::R_386_TLS_GD: // Global-dynamic
1972 if (optimized_type == tls::TLSOPT_NONE)
1974 // Create a pair of GOT entries for the module index and
1975 // dtv-relative offset.
1976 Output_data_got<32, false>* got
1977 = target->got_section(symtab, layout);
1978 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1979 unsigned int shndx = lsym.get_st_shndx();
1980 bool is_ordinary;
1981 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1982 if (!is_ordinary)
1983 object->error(_("local symbol %u has bad shndx %u"),
1984 r_sym, shndx);
1985 else
1986 got->add_local_pair_with_rel(object, r_sym, shndx,
1987 GOT_TYPE_TLS_PAIR,
1988 target->rel_dyn_section(layout),
1989 elfcpp::R_386_TLS_DTPMOD32);
1991 else if (optimized_type != tls::TLSOPT_TO_LE)
1992 unsupported_reloc_local(object, r_type);
1993 break;
1995 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1996 target->define_tls_base_symbol(symtab, layout);
1997 if (optimized_type == tls::TLSOPT_NONE)
1999 // Create a double GOT entry with an R_386_TLS_DESC
2000 // reloc. The R_386_TLS_DESC reloc is resolved
2001 // lazily, so the GOT entry needs to be in an area in
2002 // .got.plt, not .got. Call got_section to make sure
2003 // the section has been created.
2004 target->got_section(symtab, layout);
2005 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2006 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2007 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2009 unsigned int got_offset = got->add_constant(0);
2010 // The local symbol value is stored in the second
2011 // GOT entry.
2012 got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
2013 // That set the GOT offset of the local symbol to
2014 // point to the second entry, but we want it to
2015 // point to the first.
2016 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2017 got_offset);
2018 Reloc_section* rt = target->rel_tls_desc_section(layout);
2019 rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
2022 else if (optimized_type != tls::TLSOPT_TO_LE)
2023 unsupported_reloc_local(object, r_type);
2024 break;
2026 case elfcpp::R_386_TLS_DESC_CALL:
2027 break;
2029 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2030 if (optimized_type == tls::TLSOPT_NONE)
2032 // Create a GOT entry for the module index.
2033 target->got_mod_index_entry(symtab, layout, object);
2035 else if (optimized_type != tls::TLSOPT_TO_LE)
2036 unsupported_reloc_local(object, r_type);
2037 break;
2039 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2040 break;
2042 case elfcpp::R_386_TLS_IE: // Initial-exec
2043 case elfcpp::R_386_TLS_IE_32:
2044 case elfcpp::R_386_TLS_GOTIE:
2045 layout->set_has_static_tls();
2046 if (optimized_type == tls::TLSOPT_NONE)
2048 // For the R_386_TLS_IE relocation, we need to create a
2049 // dynamic relocation when building a shared library.
2050 if (r_type == elfcpp::R_386_TLS_IE
2051 && parameters->options().shared())
2053 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2054 unsigned int r_sym
2055 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2056 rel_dyn->add_local_relative(object, r_sym,
2057 elfcpp::R_386_RELATIVE,
2058 output_section, data_shndx,
2059 reloc.get_r_offset());
2061 // Create a GOT entry for the tp-relative offset.
2062 Output_data_got<32, false>* got
2063 = target->got_section(symtab, layout);
2064 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2065 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2066 ? elfcpp::R_386_TLS_TPOFF32
2067 : elfcpp::R_386_TLS_TPOFF);
2068 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2069 ? GOT_TYPE_TLS_OFFSET
2070 : GOT_TYPE_TLS_NOFFSET);
2071 got->add_local_with_rel(object, r_sym, got_type,
2072 target->rel_dyn_section(layout),
2073 dyn_r_type);
2075 else if (optimized_type != tls::TLSOPT_TO_LE)
2076 unsupported_reloc_local(object, r_type);
2077 break;
2079 case elfcpp::R_386_TLS_LE: // Local-exec
2080 case elfcpp::R_386_TLS_LE_32:
2081 layout->set_has_static_tls();
2082 if (output_is_shared)
2084 // We need to create a dynamic relocation.
2085 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2086 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2087 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2088 ? elfcpp::R_386_TLS_TPOFF32
2089 : elfcpp::R_386_TLS_TPOFF);
2090 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2091 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
2092 data_shndx, reloc.get_r_offset());
2094 break;
2096 default:
2097 gold_unreachable();
2100 break;
2102 case elfcpp::R_386_32PLT:
2103 case elfcpp::R_386_TLS_GD_32:
2104 case elfcpp::R_386_TLS_GD_PUSH:
2105 case elfcpp::R_386_TLS_GD_CALL:
2106 case elfcpp::R_386_TLS_GD_POP:
2107 case elfcpp::R_386_TLS_LDM_32:
2108 case elfcpp::R_386_TLS_LDM_PUSH:
2109 case elfcpp::R_386_TLS_LDM_CALL:
2110 case elfcpp::R_386_TLS_LDM_POP:
2111 case elfcpp::R_386_USED_BY_INTEL_200:
2112 default:
2113 unsupported_reloc_local(object, r_type);
2114 break;
2118 // Report an unsupported relocation against a global symbol.
2120 void
2121 Target_i386::Scan::unsupported_reloc_global(
2122 Sized_relobj_file<32, false>* object,
2123 unsigned int r_type,
2124 Symbol* gsym)
2126 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2127 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2130 inline bool
2131 Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
2133 switch (r_type)
2135 case elfcpp::R_386_32:
2136 case elfcpp::R_386_16:
2137 case elfcpp::R_386_8:
2138 case elfcpp::R_386_GOTOFF:
2139 case elfcpp::R_386_GOT32:
2140 case elfcpp::R_386_GOT32X:
2142 return true;
2144 default:
2145 return false;
2147 return false;
2150 inline bool
2151 Target_i386::Scan::local_reloc_may_be_function_pointer(
2152 Symbol_table* ,
2153 Layout* ,
2154 Target_i386* ,
2155 Sized_relobj_file<32, false>* ,
2156 unsigned int ,
2157 Output_section* ,
2158 const elfcpp::Rel<32, false>& ,
2159 unsigned int r_type,
2160 const elfcpp::Sym<32, false>&)
2162 return possible_function_pointer_reloc(r_type);
2165 inline bool
2166 Target_i386::Scan::global_reloc_may_be_function_pointer(
2167 Symbol_table* ,
2168 Layout* ,
2169 Target_i386* ,
2170 Sized_relobj_file<32, false>* ,
2171 unsigned int ,
2172 Output_section* ,
2173 const elfcpp::Rel<32, false>& ,
2174 unsigned int r_type,
2175 Symbol*)
2177 return possible_function_pointer_reloc(r_type);
2180 // Scan a relocation for a global symbol.
2182 inline void
2183 Target_i386::Scan::global(Symbol_table* symtab,
2184 Layout* layout,
2185 Target_i386* target,
2186 Sized_relobj_file<32, false>* object,
2187 unsigned int data_shndx,
2188 Output_section* output_section,
2189 const elfcpp::Rel<32, false>& reloc,
2190 unsigned int r_type,
2191 Symbol* gsym)
2193 // A STT_GNU_IFUNC symbol may require a PLT entry.
2194 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2195 && this->reloc_needs_plt_for_ifunc(object, r_type))
2196 target->make_plt_entry(symtab, layout, gsym);
2198 switch (r_type)
2200 case elfcpp::R_386_NONE:
2201 case elfcpp::R_386_GNU_VTINHERIT:
2202 case elfcpp::R_386_GNU_VTENTRY:
2203 break;
2205 case elfcpp::R_386_32:
2206 case elfcpp::R_386_16:
2207 case elfcpp::R_386_8:
2209 // Make a PLT entry if necessary.
2210 if (gsym->needs_plt_entry())
2212 target->make_plt_entry(symtab, layout, gsym);
2213 // Since this is not a PC-relative relocation, we may be
2214 // taking the address of a function. In that case we need to
2215 // set the entry in the dynamic symbol table to the address of
2216 // the PLT entry.
2217 if (gsym->is_from_dynobj() && !parameters->options().shared())
2218 gsym->set_needs_dynsym_value();
2220 // Make a dynamic relocation if necessary.
2221 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2223 if (!parameters->options().output_is_position_independent()
2224 && gsym->may_need_copy_reloc())
2226 target->copy_reloc(symtab, layout, object,
2227 data_shndx, output_section, gsym, reloc);
2229 else if (r_type == elfcpp::R_386_32
2230 && gsym->type() == elfcpp::STT_GNU_IFUNC
2231 && gsym->can_use_relative_reloc(false)
2232 && !gsym->is_from_dynobj()
2233 && !gsym->is_undefined()
2234 && !gsym->is_preemptible())
2236 // Use an IRELATIVE reloc for a locally defined
2237 // STT_GNU_IFUNC symbol. This makes a function
2238 // address in a PIE executable match the address in a
2239 // shared library that it links against.
2240 Reloc_section* rel_dyn = target->rel_irelative_section(layout);
2241 rel_dyn->add_symbolless_global_addend(gsym,
2242 elfcpp::R_386_IRELATIVE,
2243 output_section,
2244 object, data_shndx,
2245 reloc.get_r_offset());
2247 else if (r_type == elfcpp::R_386_32
2248 && gsym->can_use_relative_reloc(false))
2250 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2251 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2252 output_section, object,
2253 data_shndx, reloc.get_r_offset());
2255 else
2257 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2258 rel_dyn->add_global(gsym, r_type, output_section, object,
2259 data_shndx, reloc.get_r_offset());
2263 break;
2265 case elfcpp::R_386_PC32:
2266 case elfcpp::R_386_PC16:
2267 case elfcpp::R_386_PC8:
2269 // Make a PLT entry if necessary.
2270 if (gsym->needs_plt_entry())
2272 // These relocations are used for function calls only in
2273 // non-PIC code. For a 32-bit relocation in a shared library,
2274 // we'll need a text relocation anyway, so we can skip the
2275 // PLT entry and let the dynamic linker bind the call directly
2276 // to the target. For smaller relocations, we should use a
2277 // PLT entry to ensure that the call can reach.
2278 if (!parameters->options().shared()
2279 || r_type != elfcpp::R_386_PC32)
2280 target->make_plt_entry(symtab, layout, gsym);
2282 // Make a dynamic relocation if necessary.
2283 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2285 if (parameters->options().output_is_executable()
2286 && gsym->may_need_copy_reloc())
2288 target->copy_reloc(symtab, layout, object,
2289 data_shndx, output_section, gsym, reloc);
2291 else
2293 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2294 rel_dyn->add_global(gsym, r_type, output_section, object,
2295 data_shndx, reloc.get_r_offset());
2299 break;
2301 case elfcpp::R_386_GOT32:
2302 case elfcpp::R_386_GOT32X:
2304 // The symbol requires a GOT section.
2305 Output_data_got<32, false>* got = target->got_section(symtab, layout);
2307 // If we convert this from
2308 // mov foo@GOT(%reg), %reg
2309 // to
2310 // lea foo@GOTOFF(%reg), %reg
2311 // in Relocate::relocate, then there is nothing to do here.
2312 if (reloc.get_r_offset() >= 2
2313 && Target_i386::can_convert_mov_to_lea(gsym))
2315 section_size_type stype;
2316 const unsigned char* view = object->section_contents(data_shndx,
2317 &stype, true);
2318 if (view[reloc.get_r_offset() - 2] == 0x8b)
2319 break;
2322 if (gsym->final_value_is_known())
2324 // For a STT_GNU_IFUNC symbol we want the PLT address.
2325 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2326 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2327 else
2328 got->add_global(gsym, GOT_TYPE_STANDARD);
2330 else
2332 // If this symbol is not fully resolved, we need to add a
2333 // GOT entry with a dynamic relocation.
2334 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2336 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2338 // 1) The symbol may be defined in some other module.
2340 // 2) We are building a shared library and this is a
2341 // protected symbol; using GLOB_DAT means that the dynamic
2342 // linker can use the address of the PLT in the main
2343 // executable when appropriate so that function address
2344 // comparisons work.
2346 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2347 // code, again so that function address comparisons work.
2348 if (gsym->is_from_dynobj()
2349 || gsym->is_undefined()
2350 || gsym->is_preemptible()
2351 || (gsym->visibility() == elfcpp::STV_PROTECTED
2352 && parameters->options().shared())
2353 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2354 && parameters->options().output_is_position_independent()))
2355 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
2356 rel_dyn, elfcpp::R_386_GLOB_DAT);
2357 else
2359 // For a STT_GNU_IFUNC symbol we want to write the PLT
2360 // offset into the GOT, so that function pointer
2361 // comparisons work correctly.
2362 bool is_new;
2363 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2364 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2365 else
2367 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2368 // Tell the dynamic linker to use the PLT address
2369 // when resolving relocations.
2370 if (gsym->is_from_dynobj()
2371 && !parameters->options().shared())
2372 gsym->set_needs_dynsym_value();
2374 if (is_new)
2376 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2377 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2378 got, got_off);
2383 break;
2385 case elfcpp::R_386_PLT32:
2386 // If the symbol is fully resolved, this is just a PC32 reloc.
2387 // Otherwise we need a PLT entry.
2388 if (gsym->final_value_is_known())
2389 break;
2390 // If building a shared library, we can also skip the PLT entry
2391 // if the symbol is defined in the output file and is protected
2392 // or hidden.
2393 if (gsym->is_defined()
2394 && !gsym->is_from_dynobj()
2395 && !gsym->is_preemptible())
2396 break;
2397 target->make_plt_entry(symtab, layout, gsym);
2398 break;
2400 case elfcpp::R_386_GOTOFF:
2401 // A GOT-relative reference must resolve locally.
2402 if (!gsym->is_defined())
2403 gold_error(_("%s: relocation R_386_GOTOFF against undefined symbol %s"
2404 " cannot be used when making a shared object"),
2405 object->name().c_str(), gsym->name());
2406 else if (gsym->is_from_dynobj())
2407 gold_error(_("%s: relocation R_386_GOTOFF against external symbol %s"
2408 " cannot be used when making a shared object"),
2409 object->name().c_str(), gsym->name());
2410 else if (gsym->is_preemptible())
2411 gold_error(_("%s: relocation R_386_GOTOFF against preemptible symbol %s"
2412 " cannot be used when making a shared object"),
2413 object->name().c_str(), gsym->name());
2414 // We need a GOT section.
2415 target->got_section(symtab, layout);
2416 break;
2418 case elfcpp::R_386_GOTPC:
2419 // We need a GOT section.
2420 target->got_section(symtab, layout);
2421 break;
2423 // These are relocations which should only be seen by the
2424 // dynamic linker, and should never be seen here.
2425 case elfcpp::R_386_COPY:
2426 case elfcpp::R_386_GLOB_DAT:
2427 case elfcpp::R_386_JUMP_SLOT:
2428 case elfcpp::R_386_RELATIVE:
2429 case elfcpp::R_386_IRELATIVE:
2430 case elfcpp::R_386_TLS_TPOFF:
2431 case elfcpp::R_386_TLS_DTPMOD32:
2432 case elfcpp::R_386_TLS_DTPOFF32:
2433 case elfcpp::R_386_TLS_TPOFF32:
2434 case elfcpp::R_386_TLS_DESC:
2435 gold_error(_("%s: unexpected reloc %u in object file"),
2436 object->name().c_str(), r_type);
2437 break;
2439 // These are initial tls relocs, which are expected when
2440 // linking.
2441 case elfcpp::R_386_TLS_GD: // Global-dynamic
2442 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2443 case elfcpp::R_386_TLS_DESC_CALL:
2444 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2445 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2446 case elfcpp::R_386_TLS_IE: // Initial-exec
2447 case elfcpp::R_386_TLS_IE_32:
2448 case elfcpp::R_386_TLS_GOTIE:
2449 case elfcpp::R_386_TLS_LE: // Local-exec
2450 case elfcpp::R_386_TLS_LE_32:
2452 const bool is_final = gsym->final_value_is_known();
2453 const tls::Tls_optimization optimized_type
2454 = Target_i386::optimize_tls_reloc(is_final, r_type);
2455 switch (r_type)
2457 case elfcpp::R_386_TLS_GD: // Global-dynamic
2458 if (optimized_type == tls::TLSOPT_NONE)
2460 // Create a pair of GOT entries for the module index and
2461 // dtv-relative offset.
2462 Output_data_got<32, false>* got
2463 = target->got_section(symtab, layout);
2464 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2465 target->rel_dyn_section(layout),
2466 elfcpp::R_386_TLS_DTPMOD32,
2467 elfcpp::R_386_TLS_DTPOFF32);
2469 else if (optimized_type == tls::TLSOPT_TO_IE)
2471 // Create a GOT entry for the tp-relative offset.
2472 Output_data_got<32, false>* got
2473 = target->got_section(symtab, layout);
2474 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2475 target->rel_dyn_section(layout),
2476 elfcpp::R_386_TLS_TPOFF);
2478 else if (optimized_type != tls::TLSOPT_TO_LE)
2479 unsupported_reloc_global(object, r_type, gsym);
2480 break;
2482 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
2483 target->define_tls_base_symbol(symtab, layout);
2484 if (optimized_type == tls::TLSOPT_NONE)
2486 // Create a double GOT entry with an R_386_TLS_DESC
2487 // reloc. The R_386_TLS_DESC reloc is resolved
2488 // lazily, so the GOT entry needs to be in an area in
2489 // .got.plt, not .got. Call got_section to make sure
2490 // the section has been created.
2491 target->got_section(symtab, layout);
2492 Output_data_got<32, false>* got = target->got_tlsdesc_section();
2493 Reloc_section* rt = target->rel_tls_desc_section(layout);
2494 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
2495 elfcpp::R_386_TLS_DESC, 0);
2497 else if (optimized_type == tls::TLSOPT_TO_IE)
2499 // Create a GOT entry for the tp-relative offset.
2500 Output_data_got<32, false>* got
2501 = target->got_section(symtab, layout);
2502 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
2503 target->rel_dyn_section(layout),
2504 elfcpp::R_386_TLS_TPOFF);
2506 else if (optimized_type != tls::TLSOPT_TO_LE)
2507 unsupported_reloc_global(object, r_type, gsym);
2508 break;
2510 case elfcpp::R_386_TLS_DESC_CALL:
2511 break;
2513 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2514 if (optimized_type == tls::TLSOPT_NONE)
2516 // Create a GOT entry for the module index.
2517 target->got_mod_index_entry(symtab, layout, object);
2519 else if (optimized_type != tls::TLSOPT_TO_LE)
2520 unsupported_reloc_global(object, r_type, gsym);
2521 break;
2523 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2524 break;
2526 case elfcpp::R_386_TLS_IE: // Initial-exec
2527 case elfcpp::R_386_TLS_IE_32:
2528 case elfcpp::R_386_TLS_GOTIE:
2529 layout->set_has_static_tls();
2530 if (optimized_type == tls::TLSOPT_NONE)
2532 // For the R_386_TLS_IE relocation, we need to create a
2533 // dynamic relocation when building a shared library.
2534 if (r_type == elfcpp::R_386_TLS_IE
2535 && parameters->options().shared())
2537 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2538 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
2539 output_section, object,
2540 data_shndx,
2541 reloc.get_r_offset());
2543 // Create a GOT entry for the tp-relative offset.
2544 Output_data_got<32, false>* got
2545 = target->got_section(symtab, layout);
2546 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
2547 ? elfcpp::R_386_TLS_TPOFF32
2548 : elfcpp::R_386_TLS_TPOFF);
2549 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2550 ? GOT_TYPE_TLS_OFFSET
2551 : GOT_TYPE_TLS_NOFFSET);
2552 got->add_global_with_rel(gsym, got_type,
2553 target->rel_dyn_section(layout),
2554 dyn_r_type);
2556 else if (optimized_type != tls::TLSOPT_TO_LE)
2557 unsupported_reloc_global(object, r_type, gsym);
2558 break;
2560 case elfcpp::R_386_TLS_LE: // Local-exec
2561 case elfcpp::R_386_TLS_LE_32:
2562 layout->set_has_static_tls();
2563 if (parameters->options().shared())
2565 // We need to create a dynamic relocation.
2566 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
2567 ? elfcpp::R_386_TLS_TPOFF32
2568 : elfcpp::R_386_TLS_TPOFF);
2569 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
2570 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
2571 data_shndx, reloc.get_r_offset());
2573 break;
2575 default:
2576 gold_unreachable();
2579 break;
2581 case elfcpp::R_386_32PLT:
2582 case elfcpp::R_386_TLS_GD_32:
2583 case elfcpp::R_386_TLS_GD_PUSH:
2584 case elfcpp::R_386_TLS_GD_CALL:
2585 case elfcpp::R_386_TLS_GD_POP:
2586 case elfcpp::R_386_TLS_LDM_32:
2587 case elfcpp::R_386_TLS_LDM_PUSH:
2588 case elfcpp::R_386_TLS_LDM_CALL:
2589 case elfcpp::R_386_TLS_LDM_POP:
2590 case elfcpp::R_386_USED_BY_INTEL_200:
2591 default:
2592 unsupported_reloc_global(object, r_type, gsym);
2593 break;
2597 // Process relocations for gc.
2599 void
2600 Target_i386::gc_process_relocs(Symbol_table* symtab,
2601 Layout* layout,
2602 Sized_relobj_file<32, false>* object,
2603 unsigned int data_shndx,
2604 unsigned int,
2605 const unsigned char* prelocs,
2606 size_t reloc_count,
2607 Output_section* output_section,
2608 bool needs_special_offset_handling,
2609 size_t local_symbol_count,
2610 const unsigned char* plocal_symbols)
2612 gold::gc_process_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2613 symtab,
2614 layout,
2615 this,
2616 object,
2617 data_shndx,
2618 prelocs,
2619 reloc_count,
2620 output_section,
2621 needs_special_offset_handling,
2622 local_symbol_count,
2623 plocal_symbols);
2626 // Scan relocations for a section.
2628 void
2629 Target_i386::scan_relocs(Symbol_table* symtab,
2630 Layout* layout,
2631 Sized_relobj_file<32, false>* object,
2632 unsigned int data_shndx,
2633 unsigned int sh_type,
2634 const unsigned char* prelocs,
2635 size_t reloc_count,
2636 Output_section* output_section,
2637 bool needs_special_offset_handling,
2638 size_t local_symbol_count,
2639 const unsigned char* plocal_symbols)
2641 if (sh_type == elfcpp::SHT_RELA)
2643 gold_error(_("%s: unsupported RELA reloc section"),
2644 object->name().c_str());
2645 return;
2648 gold::scan_relocs<32, false, Target_i386, Scan, Classify_reloc>(
2649 symtab,
2650 layout,
2651 this,
2652 object,
2653 data_shndx,
2654 prelocs,
2655 reloc_count,
2656 output_section,
2657 needs_special_offset_handling,
2658 local_symbol_count,
2659 plocal_symbols);
2662 // Finalize the sections.
2664 void
2665 Target_i386::do_finalize_sections(
2666 Layout* layout,
2667 const Input_objects*,
2668 Symbol_table* symtab)
2670 const Reloc_section* rel_plt = (this->plt_ == NULL
2671 ? NULL
2672 : this->plt_->rel_plt());
2673 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
2674 this->rel_dyn_, true, false);
2676 // Emit any relocs we saved in an attempt to avoid generating COPY
2677 // relocs.
2678 if (this->copy_relocs_.any_saved_relocs())
2679 this->copy_relocs_.emit(this->rel_dyn_section(layout));
2681 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2682 // the .got.plt section.
2683 Symbol* sym = this->global_offset_table_;
2684 if (sym != NULL)
2686 uint32_t data_size = this->got_plt_->current_data_size();
2687 symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
2690 if (parameters->doing_static_link()
2691 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2693 // If linking statically, make sure that the __rel_iplt symbols
2694 // were defined if necessary, even if we didn't create a PLT.
2695 static const Define_symbol_in_segment syms[] =
2698 "__rel_iplt_start", // name
2699 elfcpp::PT_LOAD, // segment_type
2700 elfcpp::PF_W, // segment_flags_set
2701 elfcpp::PF(0), // segment_flags_clear
2702 0, // value
2703 0, // size
2704 elfcpp::STT_NOTYPE, // type
2705 elfcpp::STB_GLOBAL, // binding
2706 elfcpp::STV_HIDDEN, // visibility
2707 0, // nonvis
2708 Symbol::SEGMENT_START, // offset_from_base
2709 true // only_if_ref
2712 "__rel_iplt_end", // name
2713 elfcpp::PT_LOAD, // segment_type
2714 elfcpp::PF_W, // segment_flags_set
2715 elfcpp::PF(0), // segment_flags_clear
2716 0, // value
2717 0, // size
2718 elfcpp::STT_NOTYPE, // type
2719 elfcpp::STB_GLOBAL, // binding
2720 elfcpp::STV_HIDDEN, // visibility
2721 0, // nonvis
2722 Symbol::SEGMENT_START, // offset_from_base
2723 true // only_if_ref
2727 symtab->define_symbols(layout, 2, syms,
2728 layout->script_options()->saw_sections_clause());
2732 // Return whether a direct absolute static relocation needs to be applied.
2733 // In cases where Scan::local() or Scan::global() has created
2734 // a dynamic relocation other than R_386_RELATIVE, the addend
2735 // of the relocation is carried in the data, and we must not
2736 // apply the static relocation.
2738 inline bool
2739 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
2740 unsigned int r_type,
2741 bool is_32bit,
2742 Output_section* output_section)
2744 // If the output section is not allocated, then we didn't call
2745 // scan_relocs, we didn't create a dynamic reloc, and we must apply
2746 // the reloc here.
2747 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
2748 return true;
2750 int ref_flags = Scan::get_reference_flags(r_type);
2752 // For local symbols, we will have created a non-RELATIVE dynamic
2753 // relocation only if (a) the output is position independent,
2754 // (b) the relocation is absolute (not pc- or segment-relative), and
2755 // (c) the relocation is not 32 bits wide.
2756 if (gsym == NULL)
2757 return !(parameters->options().output_is_position_independent()
2758 && (ref_flags & Symbol::ABSOLUTE_REF)
2759 && !is_32bit);
2761 // For global symbols, we use the same helper routines used in the
2762 // scan pass. If we did not create a dynamic relocation, or if we
2763 // created a RELATIVE dynamic relocation, we should apply the static
2764 // relocation.
2765 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
2766 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
2767 && gsym->can_use_relative_reloc(ref_flags
2768 & Symbol::FUNCTION_CALL);
2769 return !has_dyn || is_rel;
2772 // Perform a relocation.
2774 inline bool
2775 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
2776 unsigned int,
2777 Target_i386* target,
2778 Output_section* output_section,
2779 size_t relnum,
2780 const unsigned char* preloc,
2781 const Sized_symbol<32>* gsym,
2782 const Symbol_value<32>* psymval,
2783 unsigned char* view,
2784 elfcpp::Elf_types<32>::Elf_Addr address,
2785 section_size_type view_size)
2787 const elfcpp::Rel<32, false> rel(preloc);
2788 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
2790 if (this->skip_call_tls_get_addr_)
2792 if ((r_type != elfcpp::R_386_PLT32
2793 && r_type != elfcpp::R_386_GOT32X
2794 && r_type != elfcpp::R_386_PC32)
2795 || gsym == NULL
2796 || strcmp(gsym->name(), "___tls_get_addr") != 0)
2797 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2798 _("missing expected TLS relocation"));
2799 else
2801 this->skip_call_tls_get_addr_ = false;
2802 return false;
2806 if (view == NULL)
2807 return true;
2809 const Sized_relobj_file<32, false>* object = relinfo->object;
2811 // Pick the value to use for symbols defined in shared objects.
2812 Symbol_value<32> symval;
2813 if (gsym != NULL
2814 && gsym->type() == elfcpp::STT_GNU_IFUNC
2815 && r_type == elfcpp::R_386_32
2816 && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
2817 && gsym->can_use_relative_reloc(false)
2818 && !gsym->is_from_dynobj()
2819 && !gsym->is_undefined()
2820 && !gsym->is_preemptible())
2822 // In this case we are generating a R_386_IRELATIVE reloc. We
2823 // want to use the real value of the symbol, not the PLT offset.
2825 else if (gsym != NULL
2826 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2828 symval.set_output_value(target->plt_address_for_global(gsym));
2829 psymval = &symval;
2831 else if (gsym == NULL && psymval->is_ifunc_symbol())
2833 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2834 if (object->local_has_plt_offset(r_sym))
2836 symval.set_output_value(target->plt_address_for_local(object, r_sym));
2837 psymval = &symval;
2841 bool baseless;
2843 switch (r_type)
2845 case elfcpp::R_386_NONE:
2846 case elfcpp::R_386_GNU_VTINHERIT:
2847 case elfcpp::R_386_GNU_VTENTRY:
2848 break;
2850 case elfcpp::R_386_32:
2851 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2852 Relocate_functions<32, false>::rel32(view, object, psymval);
2853 break;
2855 case elfcpp::R_386_PC32:
2856 if (should_apply_static_reloc(gsym, r_type, true, output_section))
2857 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2858 break;
2860 case elfcpp::R_386_16:
2861 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2862 Relocate_functions<32, false>::rel16(view, object, psymval);
2863 break;
2865 case elfcpp::R_386_PC16:
2866 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2867 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
2868 break;
2870 case elfcpp::R_386_8:
2871 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2872 Relocate_functions<32, false>::rel8(view, object, psymval);
2873 break;
2875 case elfcpp::R_386_PC8:
2876 if (should_apply_static_reloc(gsym, r_type, false, output_section))
2877 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
2878 break;
2880 case elfcpp::R_386_PLT32:
2881 gold_assert(gsym == NULL
2882 || gsym->has_plt_offset()
2883 || gsym->final_value_is_known()
2884 || (gsym->is_defined()
2885 && !gsym->is_from_dynobj()
2886 && !gsym->is_preemptible()));
2887 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
2888 break;
2890 case elfcpp::R_386_GOT32:
2891 case elfcpp::R_386_GOT32X:
2892 baseless = (view[-1] & 0xc7) == 0x5;
2893 // R_386_GOT32 and R_386_GOT32X don't work without base register
2894 // when generating a position-independent output file.
2895 if (baseless
2896 && parameters->options().output_is_position_independent())
2898 if(gsym)
2899 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2900 _("unexpected reloc %u against global symbol %s without base register in object file when generating a position-independent output file"),
2901 r_type, gsym->demangled_name().c_str());
2902 else
2903 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2904 _("unexpected reloc %u against local symbol without base register in object file when generating a position-independent output file"),
2905 r_type);
2908 // Convert
2909 // mov foo@GOT(%reg), %reg
2910 // to
2911 // lea foo@GOTOFF(%reg), %reg
2912 // if possible.
2913 if (rel.get_r_offset() >= 2
2914 && view[-2] == 0x8b
2915 && ((gsym == NULL && !psymval->is_ifunc_symbol())
2916 || (gsym != NULL
2917 && Target_i386::can_convert_mov_to_lea(gsym))))
2919 view[-2] = 0x8d;
2920 elfcpp::Elf_types<32>::Elf_Addr value;
2921 value = psymval->value(object, 0);
2922 // Don't subtract the .got.plt section address for baseless
2923 // addressing.
2924 if (!baseless)
2925 value -= target->got_plt_section()->address();
2926 Relocate_functions<32, false>::rel32(view, value);
2928 else
2930 // The GOT pointer points to the end of the GOT section.
2931 // We need to subtract the size of the GOT section to get
2932 // the actual offset to use in the relocation.
2933 unsigned int got_offset = 0;
2934 if (gsym != NULL)
2936 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2937 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
2938 - target->got_size());
2940 else
2942 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2943 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2944 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2945 - target->got_size());
2947 // Add the .got.plt section address for baseless addressing.
2948 if (baseless)
2949 got_offset += target->got_plt_section()->address();
2950 Relocate_functions<32, false>::rel32(view, got_offset);
2952 break;
2954 case elfcpp::R_386_GOTOFF:
2956 elfcpp::Elf_types<32>::Elf_Addr value;
2957 value = (psymval->value(object, 0)
2958 - target->got_plt_section()->address());
2959 Relocate_functions<32, false>::rel32(view, value);
2961 break;
2963 case elfcpp::R_386_GOTPC:
2965 elfcpp::Elf_types<32>::Elf_Addr value;
2966 value = target->got_plt_section()->address();
2967 Relocate_functions<32, false>::pcrel32(view, value, address);
2969 break;
2971 case elfcpp::R_386_COPY:
2972 case elfcpp::R_386_GLOB_DAT:
2973 case elfcpp::R_386_JUMP_SLOT:
2974 case elfcpp::R_386_RELATIVE:
2975 case elfcpp::R_386_IRELATIVE:
2976 // These are outstanding tls relocs, which are unexpected when
2977 // linking.
2978 case elfcpp::R_386_TLS_TPOFF:
2979 case elfcpp::R_386_TLS_DTPMOD32:
2980 case elfcpp::R_386_TLS_DTPOFF32:
2981 case elfcpp::R_386_TLS_TPOFF32:
2982 case elfcpp::R_386_TLS_DESC:
2983 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2984 _("unexpected reloc %u in object file"),
2985 r_type);
2986 break;
2988 // These are initial tls relocs, which are expected when
2989 // linking.
2990 case elfcpp::R_386_TLS_GD: // Global-dynamic
2991 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2992 case elfcpp::R_386_TLS_DESC_CALL:
2993 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2994 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2995 case elfcpp::R_386_TLS_IE: // Initial-exec
2996 case elfcpp::R_386_TLS_IE_32:
2997 case elfcpp::R_386_TLS_GOTIE:
2998 case elfcpp::R_386_TLS_LE: // Local-exec
2999 case elfcpp::R_386_TLS_LE_32:
3000 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
3001 view, address, view_size);
3002 break;
3004 case elfcpp::R_386_32PLT:
3005 case elfcpp::R_386_TLS_GD_32:
3006 case elfcpp::R_386_TLS_GD_PUSH:
3007 case elfcpp::R_386_TLS_GD_CALL:
3008 case elfcpp::R_386_TLS_GD_POP:
3009 case elfcpp::R_386_TLS_LDM_32:
3010 case elfcpp::R_386_TLS_LDM_PUSH:
3011 case elfcpp::R_386_TLS_LDM_CALL:
3012 case elfcpp::R_386_TLS_LDM_POP:
3013 case elfcpp::R_386_USED_BY_INTEL_200:
3014 default:
3015 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3016 _("unsupported reloc %u"),
3017 r_type);
3018 break;
3021 return true;
3024 // Perform a TLS relocation.
3026 inline void
3027 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
3028 Target_i386* target,
3029 size_t relnum,
3030 const elfcpp::Rel<32, false>& rel,
3031 unsigned int r_type,
3032 const Sized_symbol<32>* gsym,
3033 const Symbol_value<32>* psymval,
3034 unsigned char* view,
3035 elfcpp::Elf_types<32>::Elf_Addr,
3036 section_size_type view_size)
3038 Output_segment* tls_segment = relinfo->layout->tls_segment();
3040 const Sized_relobj_file<32, false>* object = relinfo->object;
3042 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
3044 const bool is_final = (gsym == NULL
3045 ? !parameters->options().shared()
3046 : gsym->final_value_is_known());
3047 const tls::Tls_optimization optimized_type
3048 = Target_i386::optimize_tls_reloc(is_final, r_type);
3049 switch (r_type)
3051 case elfcpp::R_386_TLS_GD: // Global-dynamic
3052 if (optimized_type == tls::TLSOPT_TO_LE)
3054 if (tls_segment == NULL)
3056 gold_assert(parameters->errors()->error_count() > 0
3057 || issue_undefined_symbol_error(gsym));
3058 return;
3060 this->tls_gd_to_le(relinfo, relnum, tls_segment,
3061 rel, r_type, value, view,
3062 view_size);
3063 break;
3065 else
3067 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3068 ? GOT_TYPE_TLS_NOFFSET
3069 : GOT_TYPE_TLS_PAIR);
3070 unsigned int got_offset;
3071 if (gsym != NULL)
3073 gold_assert(gsym->has_got_offset(got_type));
3074 got_offset = gsym->got_offset(got_type) - target->got_size();
3076 else
3078 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3079 gold_assert(object->local_has_got_offset(r_sym, got_type));
3080 got_offset = (object->local_got_offset(r_sym, got_type)
3081 - target->got_size());
3083 if (optimized_type == tls::TLSOPT_TO_IE)
3085 this->tls_gd_to_ie(relinfo, relnum, rel, r_type,
3086 got_offset, view, view_size);
3087 break;
3089 else if (optimized_type == tls::TLSOPT_NONE)
3091 // Relocate the field with the offset of the pair of GOT
3092 // entries.
3093 Relocate_functions<32, false>::rel32(view, got_offset);
3094 break;
3097 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3098 _("unsupported reloc %u"),
3099 r_type);
3100 break;
3102 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3103 case elfcpp::R_386_TLS_DESC_CALL:
3104 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3105 if (optimized_type == tls::TLSOPT_TO_LE)
3107 if (tls_segment == NULL)
3109 gold_assert(parameters->errors()->error_count() > 0
3110 || issue_undefined_symbol_error(gsym));
3111 return;
3113 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3114 rel, r_type, value, view,
3115 view_size);
3116 break;
3118 else
3120 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3121 ? GOT_TYPE_TLS_NOFFSET
3122 : GOT_TYPE_TLS_DESC);
3123 unsigned int got_offset = 0;
3124 if (r_type == elfcpp::R_386_TLS_GOTDESC
3125 && optimized_type == tls::TLSOPT_NONE)
3127 // We created GOT entries in the .got.tlsdesc portion of
3128 // the .got.plt section, but the offset stored in the
3129 // symbol is the offset within .got.tlsdesc.
3130 got_offset = (target->got_size()
3131 + target->got_plt_section()->data_size());
3133 if (gsym != NULL)
3135 gold_assert(gsym->has_got_offset(got_type));
3136 got_offset += gsym->got_offset(got_type) - target->got_size();
3138 else
3140 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3141 gold_assert(object->local_has_got_offset(r_sym, got_type));
3142 got_offset += (object->local_got_offset(r_sym, got_type)
3143 - target->got_size());
3145 if (optimized_type == tls::TLSOPT_TO_IE)
3147 this->tls_desc_gd_to_ie(relinfo, relnum, rel, r_type,
3148 got_offset, view, view_size);
3149 break;
3151 else if (optimized_type == tls::TLSOPT_NONE)
3153 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3155 // Relocate the field with the offset of the pair of GOT
3156 // entries.
3157 Relocate_functions<32, false>::rel32(view, got_offset);
3159 break;
3162 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3163 _("unsupported reloc %u"),
3164 r_type);
3165 break;
3167 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3168 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
3170 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3171 _("both SUN and GNU model "
3172 "TLS relocations"));
3173 break;
3175 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
3176 if (optimized_type == tls::TLSOPT_TO_LE)
3178 if (tls_segment == NULL)
3180 gold_assert(parameters->errors()->error_count() > 0
3181 || issue_undefined_symbol_error(gsym));
3182 return;
3184 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
3185 value, view, view_size);
3186 break;
3188 else if (optimized_type == tls::TLSOPT_NONE)
3190 // Relocate the field with the offset of the GOT entry for
3191 // the module index.
3192 unsigned int got_offset;
3193 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3194 - target->got_size());
3195 Relocate_functions<32, false>::rel32(view, got_offset);
3196 break;
3198 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3199 _("unsupported reloc %u"),
3200 r_type);
3201 break;
3203 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3204 if (optimized_type == tls::TLSOPT_TO_LE)
3206 // This reloc can appear in debugging sections, in which
3207 // case we must not convert to local-exec. We decide what
3208 // to do based on whether the section is marked as
3209 // containing executable code. That is what the GNU linker
3210 // does as well.
3211 elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
3212 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
3214 if (tls_segment == NULL)
3216 gold_assert(parameters->errors()->error_count() > 0
3217 || issue_undefined_symbol_error(gsym));
3218 return;
3220 value -= tls_segment->memsz();
3223 Relocate_functions<32, false>::rel32(view, value);
3224 break;
3226 case elfcpp::R_386_TLS_IE: // Initial-exec
3227 case elfcpp::R_386_TLS_GOTIE:
3228 case elfcpp::R_386_TLS_IE_32:
3229 if (optimized_type == tls::TLSOPT_TO_LE)
3231 if (tls_segment == NULL)
3233 gold_assert(parameters->errors()->error_count() > 0
3234 || issue_undefined_symbol_error(gsym));
3235 return;
3237 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3238 rel, r_type, value, view,
3239 view_size);
3240 break;
3242 else if (optimized_type == tls::TLSOPT_NONE)
3244 // Relocate the field with the offset of the GOT entry for
3245 // the tp-relative offset of the symbol.
3246 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
3247 ? GOT_TYPE_TLS_OFFSET
3248 : GOT_TYPE_TLS_NOFFSET);
3249 unsigned int got_offset;
3250 if (gsym != NULL)
3252 gold_assert(gsym->has_got_offset(got_type));
3253 got_offset = gsym->got_offset(got_type);
3255 else
3257 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
3258 gold_assert(object->local_has_got_offset(r_sym, got_type));
3259 got_offset = object->local_got_offset(r_sym, got_type);
3261 // For the R_386_TLS_IE relocation, we need to apply the
3262 // absolute address of the GOT entry.
3263 if (r_type == elfcpp::R_386_TLS_IE)
3264 got_offset += target->got_plt_section()->address();
3265 // All GOT offsets are relative to the end of the GOT.
3266 got_offset -= target->got_size();
3267 Relocate_functions<32, false>::rel32(view, got_offset);
3268 break;
3270 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
3271 _("unsupported reloc %u"),
3272 r_type);
3273 break;
3275 case elfcpp::R_386_TLS_LE: // Local-exec
3276 // If we're creating a shared library, a dynamic relocation will
3277 // have been created for this location, so do not apply it now.
3278 if (!parameters->options().shared())
3280 if (tls_segment == NULL)
3282 gold_assert(parameters->errors()->error_count() > 0
3283 || issue_undefined_symbol_error(gsym));
3284 return;
3286 value -= tls_segment->memsz();
3287 Relocate_functions<32, false>::rel32(view, value);
3289 break;
3291 case elfcpp::R_386_TLS_LE_32:
3292 // If we're creating a shared library, a dynamic relocation will
3293 // have been created for this location, so do not apply it now.
3294 if (!parameters->options().shared())
3296 if (tls_segment == NULL)
3298 gold_assert(parameters->errors()->error_count() > 0
3299 || issue_undefined_symbol_error(gsym));
3300 return;
3302 value = tls_segment->memsz() - value;
3303 Relocate_functions<32, false>::rel32(view, value);
3305 break;
3309 // Do a relocation in which we convert a TLS General-Dynamic to a
3310 // Local-Exec.
3312 inline void
3313 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
3314 size_t relnum,
3315 Output_segment* tls_segment,
3316 const elfcpp::Rel<32, false>& rel,
3317 unsigned int,
3318 elfcpp::Elf_types<32>::Elf_Addr value,
3319 unsigned char* view,
3320 section_size_type view_size)
3322 // leal foo(,%ebx,1),%eax; call ___tls_get_addr@PLT
3323 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3324 // leal foo(%ebx),%eax; call ___tls_get_addr@PLT
3325 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3326 // leal foo(%reg),%eax; call *___tls_get_addr@GOT(%reg)
3327 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
3329 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3330 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3332 unsigned char op1 = view[-1];
3333 unsigned char op2 = view[-2];
3334 unsigned char op3 = view[4];
3336 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3337 op2 == 0x8d || op2 == 0x04);
3338 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3339 op3 == 0xe8 || op3 == 0xff);
3341 int roff = 5;
3343 if (op2 == 0x04)
3345 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3346 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3347 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3348 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3349 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3351 else
3353 unsigned char reg = op1 & 7;
3354 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3355 ((op1 & 0xf8) == 0x80
3356 && reg != 4
3357 && reg != 0
3358 && (op3 == 0xe8 || (view[5] & 0x7) == reg)));
3359 if (op3 == 0xff
3360 || (rel.get_r_offset() + 9 < view_size
3361 && view[9] == 0x90))
3363 // There is an indirect call or a trailing nop. Use the size
3364 // byte subl.
3365 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
3366 roff = 6;
3368 else
3370 // Use the five byte subl.
3371 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
3375 value = tls_segment->memsz() - value;
3376 Relocate_functions<32, false>::rel32(view + roff, value);
3378 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3379 // We can skip it.
3380 this->skip_call_tls_get_addr_ = true;
3383 // Do a relocation in which we convert a TLS General-Dynamic to an
3384 // Initial-Exec.
3386 inline void
3387 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
3388 size_t relnum,
3389 const elfcpp::Rel<32, false>& rel,
3390 unsigned int,
3391 elfcpp::Elf_types<32>::Elf_Addr value,
3392 unsigned char* view,
3393 section_size_type view_size)
3395 // leal foo(,%ebx,1),%eax; call ___tls_get_addr@PLT
3396 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3397 // leal foo(%ebx),%eax; call ___tls_get_addr@PLT; nop
3398 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
3399 // leal foo(%reg),%eax; call *___tls_get_addr@GOT(%reg)
3400 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%reg),%eax
3402 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3403 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
3405 unsigned char op1 = view[-1];
3406 unsigned char op2 = view[-2];
3407 unsigned char op3 = view[4];
3409 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3410 op2 == 0x8d || op2 == 0x04);
3411 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3412 op3 == 0xe8 || op3 == 0xff);
3414 int roff;
3416 if (op2 == 0x04)
3418 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
3419 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
3420 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3421 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
3422 roff = 5;
3424 else
3426 unsigned char reg = op1 & 7;
3427 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 10);
3428 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3429 ((op1 & 0xf8) == 0x80
3430 && reg != 4
3431 && reg != 0
3432 && ((op3 == 0xe8 && view[9] == 0x90)
3433 || (view[5] & 0x7) == reg)));
3434 roff = 6;
3437 memcpy(view + roff - 8, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
3438 Relocate_functions<32, false>::rel32(view + roff, value);
3440 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3441 // We can skip it.
3442 this->skip_call_tls_get_addr_ = true;
3445 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3446 // General-Dynamic to a Local-Exec.
3448 inline void
3449 Target_i386::Relocate::tls_desc_gd_to_le(
3450 const Relocate_info<32, false>* relinfo,
3451 size_t relnum,
3452 Output_segment* tls_segment,
3453 const elfcpp::Rel<32, false>& rel,
3454 unsigned int r_type,
3455 elfcpp::Elf_types<32>::Elf_Addr value,
3456 unsigned char* view,
3457 section_size_type view_size)
3459 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3461 // leal foo@TLSDESC(%ebx), %eax
3462 // ==> leal foo@NTPOFF, %eax
3463 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3464 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3465 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3466 view[-2] == 0x8d && view[-1] == 0x83);
3467 view[-1] = 0x05;
3468 value -= tls_segment->memsz();
3469 Relocate_functions<32, false>::rel32(view, value);
3471 else
3473 // call *foo@TLSCALL(%eax)
3474 // ==> nop; nop
3475 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3476 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3477 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3478 view[0] == 0xff && view[1] == 0x10);
3479 view[0] = 0x66;
3480 view[1] = 0x90;
3484 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
3485 // General-Dynamic to an Initial-Exec.
3487 inline void
3488 Target_i386::Relocate::tls_desc_gd_to_ie(
3489 const Relocate_info<32, false>* relinfo,
3490 size_t relnum,
3491 const elfcpp::Rel<32, false>& rel,
3492 unsigned int r_type,
3493 elfcpp::Elf_types<32>::Elf_Addr value,
3494 unsigned char* view,
3495 section_size_type view_size)
3497 if (r_type == elfcpp::R_386_TLS_GOTDESC)
3499 // leal foo@TLSDESC(%ebx), %eax
3500 // ==> movl foo@GOTNTPOFF(%ebx), %eax
3501 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3502 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3503 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3504 view[-2] == 0x8d && view[-1] == 0x83);
3505 view[-2] = 0x8b;
3506 Relocate_functions<32, false>::rel32(view, value);
3508 else
3510 // call *foo@TLSCALL(%eax)
3511 // ==> nop; nop
3512 gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
3513 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
3514 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3515 view[0] == 0xff && view[1] == 0x10);
3516 view[0] = 0x66;
3517 view[1] = 0x90;
3521 // Do a relocation in which we convert a TLS Local-Dynamic to a
3522 // Local-Exec.
3524 inline void
3525 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
3526 size_t relnum,
3527 Output_segment*,
3528 const elfcpp::Rel<32, false>& rel,
3529 unsigned int,
3530 elfcpp::Elf_types<32>::Elf_Addr,
3531 unsigned char* view,
3532 section_size_type view_size)
3534 // leal foo(%ebx), %eax; call ___tls_get_addr@PLT
3535 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
3536 // leal foo(%reg), %eax; call call *___tls_get_addr@GOT(%reg)
3537 // ==> movl %gs:0,%eax; leal (%esi),%esi
3539 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3541 unsigned char op1 = view[-1];
3542 unsigned char op2 = view[-2];
3543 unsigned char op3 = view[4];
3545 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3546 op3 == 0xe8 || op3 == 0xff);
3547 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size,
3548 op3 == 0xe8 ? 9 : 10);
3550 // FIXME: Does this test really always pass?
3551 tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x8d);
3553 unsigned char reg = op1 & 7;
3554 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3555 ((op1 & 0xf8) == 0x80
3556 && reg != 4
3557 && reg != 0
3558 && (op3 == 0xe8 || (view[5] & 0x7) == reg)));
3560 if (op3 == 0xe8)
3561 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
3562 else
3563 memcpy(view - 2, "\x65\xa1\0\0\0\0\x8d\xb6\0\0\0\0", 12);
3565 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3566 // We can skip it.
3567 this->skip_call_tls_get_addr_ = true;
3570 // Do a relocation in which we convert a TLS Initial-Exec to a
3571 // Local-Exec.
3573 inline void
3574 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
3575 size_t relnum,
3576 Output_segment* tls_segment,
3577 const elfcpp::Rel<32, false>& rel,
3578 unsigned int r_type,
3579 elfcpp::Elf_types<32>::Elf_Addr value,
3580 unsigned char* view,
3581 section_size_type view_size)
3583 // We have to actually change the instructions, which means that we
3584 // need to examine the opcodes to figure out which instruction we
3585 // are looking at.
3586 if (r_type == elfcpp::R_386_TLS_IE)
3588 // movl %gs:XX,%eax ==> movl $YY,%eax
3589 // movl %gs:XX,%reg ==> movl $YY,%reg
3590 // addl %gs:XX,%reg ==> addl $YY,%reg
3591 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
3592 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3594 unsigned char op1 = view[-1];
3595 if (op1 == 0xa1)
3597 // movl XX,%eax ==> movl $YY,%eax
3598 view[-1] = 0xb8;
3600 else
3602 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3604 unsigned char op2 = view[-2];
3605 if (op2 == 0x8b)
3607 // movl XX,%reg ==> movl $YY,%reg
3608 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3609 (op1 & 0xc7) == 0x05);
3610 view[-2] = 0xc7;
3611 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3613 else if (op2 == 0x03)
3615 // addl XX,%reg ==> addl $YY,%reg
3616 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3617 (op1 & 0xc7) == 0x05);
3618 view[-2] = 0x81;
3619 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3621 else
3622 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3625 else
3627 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3628 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3629 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3630 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
3631 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
3633 unsigned char op1 = view[-1];
3634 unsigned char op2 = view[-2];
3635 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
3636 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
3637 if (op2 == 0x8b)
3639 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
3640 view[-2] = 0xc7;
3641 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3643 else if (op2 == 0x2b)
3645 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
3646 view[-2] = 0x81;
3647 view[-1] = 0xe8 | ((op1 >> 3) & 7);
3649 else if (op2 == 0x03)
3651 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
3652 view[-2] = 0x81;
3653 view[-1] = 0xc0 | ((op1 >> 3) & 7);
3655 else
3656 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
3659 value = tls_segment->memsz() - value;
3660 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
3661 value = - value;
3663 Relocate_functions<32, false>::rel32(view, value);
3666 // Relocate section data.
3668 void
3669 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
3670 unsigned int sh_type,
3671 const unsigned char* prelocs,
3672 size_t reloc_count,
3673 Output_section* output_section,
3674 bool needs_special_offset_handling,
3675 unsigned char* view,
3676 elfcpp::Elf_types<32>::Elf_Addr address,
3677 section_size_type view_size,
3678 const Reloc_symbol_changes* reloc_symbol_changes)
3680 gold_assert(sh_type == elfcpp::SHT_REL);
3682 gold::relocate_section<32, false, Target_i386, Relocate,
3683 gold::Default_comdat_behavior, Classify_reloc>(
3684 relinfo,
3685 this,
3686 prelocs,
3687 reloc_count,
3688 output_section,
3689 needs_special_offset_handling,
3690 view,
3691 address,
3692 view_size,
3693 reloc_symbol_changes);
3696 // Return the size of a relocation while scanning during a relocatable
3697 // link.
3699 unsigned int
3700 Target_i386::Classify_reloc::get_size_for_reloc(
3701 unsigned int r_type,
3702 Relobj* object)
3704 switch (r_type)
3706 case elfcpp::R_386_NONE:
3707 case elfcpp::R_386_GNU_VTINHERIT:
3708 case elfcpp::R_386_GNU_VTENTRY:
3709 case elfcpp::R_386_TLS_GD: // Global-dynamic
3710 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
3711 case elfcpp::R_386_TLS_DESC_CALL:
3712 case elfcpp::R_386_TLS_LDM: // Local-dynamic
3713 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
3714 case elfcpp::R_386_TLS_IE: // Initial-exec
3715 case elfcpp::R_386_TLS_IE_32:
3716 case elfcpp::R_386_TLS_GOTIE:
3717 case elfcpp::R_386_TLS_LE: // Local-exec
3718 case elfcpp::R_386_TLS_LE_32:
3719 return 0;
3721 case elfcpp::R_386_32:
3722 case elfcpp::R_386_PC32:
3723 case elfcpp::R_386_GOT32:
3724 case elfcpp::R_386_GOT32X:
3725 case elfcpp::R_386_PLT32:
3726 case elfcpp::R_386_GOTOFF:
3727 case elfcpp::R_386_GOTPC:
3728 return 4;
3730 case elfcpp::R_386_16:
3731 case elfcpp::R_386_PC16:
3732 return 2;
3734 case elfcpp::R_386_8:
3735 case elfcpp::R_386_PC8:
3736 return 1;
3738 // These are relocations which should only be seen by the
3739 // dynamic linker, and should never be seen here.
3740 case elfcpp::R_386_COPY:
3741 case elfcpp::R_386_GLOB_DAT:
3742 case elfcpp::R_386_JUMP_SLOT:
3743 case elfcpp::R_386_RELATIVE:
3744 case elfcpp::R_386_IRELATIVE:
3745 case elfcpp::R_386_TLS_TPOFF:
3746 case elfcpp::R_386_TLS_DTPMOD32:
3747 case elfcpp::R_386_TLS_DTPOFF32:
3748 case elfcpp::R_386_TLS_TPOFF32:
3749 case elfcpp::R_386_TLS_DESC:
3750 object->error(_("unexpected reloc %u in object file"), r_type);
3751 return 0;
3753 case elfcpp::R_386_32PLT:
3754 case elfcpp::R_386_TLS_GD_32:
3755 case elfcpp::R_386_TLS_GD_PUSH:
3756 case elfcpp::R_386_TLS_GD_CALL:
3757 case elfcpp::R_386_TLS_GD_POP:
3758 case elfcpp::R_386_TLS_LDM_32:
3759 case elfcpp::R_386_TLS_LDM_PUSH:
3760 case elfcpp::R_386_TLS_LDM_CALL:
3761 case elfcpp::R_386_TLS_LDM_POP:
3762 case elfcpp::R_386_USED_BY_INTEL_200:
3763 default:
3764 object->error(_("unsupported reloc %u in object file"), r_type);
3765 return 0;
3769 // Scan the relocs during a relocatable link.
3771 void
3772 Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
3773 Layout* layout,
3774 Sized_relobj_file<32, false>* object,
3775 unsigned int data_shndx,
3776 unsigned int sh_type,
3777 const unsigned char* prelocs,
3778 size_t reloc_count,
3779 Output_section* output_section,
3780 bool needs_special_offset_handling,
3781 size_t local_symbol_count,
3782 const unsigned char* plocal_symbols,
3783 Relocatable_relocs* rr)
3785 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
3786 Scan_relocatable_relocs;
3788 gold_assert(sh_type == elfcpp::SHT_REL);
3790 gold::scan_relocatable_relocs<32, false, Scan_relocatable_relocs>(
3791 symtab,
3792 layout,
3793 object,
3794 data_shndx,
3795 prelocs,
3796 reloc_count,
3797 output_section,
3798 needs_special_offset_handling,
3799 local_symbol_count,
3800 plocal_symbols,
3801 rr);
3804 // Scan the relocs for --emit-relocs.
3806 void
3807 Target_i386::emit_relocs_scan(Symbol_table* symtab,
3808 Layout* layout,
3809 Sized_relobj_file<32, false>* object,
3810 unsigned int data_shndx,
3811 unsigned int sh_type,
3812 const unsigned char* prelocs,
3813 size_t reloc_count,
3814 Output_section* output_section,
3815 bool needs_special_offset_handling,
3816 size_t local_symbol_count,
3817 const unsigned char* plocal_syms,
3818 Relocatable_relocs* rr)
3820 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
3821 Classify_reloc;
3822 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
3823 Emit_relocs_strategy;
3825 gold_assert(sh_type == elfcpp::SHT_REL);
3827 gold::scan_relocatable_relocs<32, false, Emit_relocs_strategy>(
3828 symtab,
3829 layout,
3830 object,
3831 data_shndx,
3832 prelocs,
3833 reloc_count,
3834 output_section,
3835 needs_special_offset_handling,
3836 local_symbol_count,
3837 plocal_syms,
3838 rr);
3841 // Emit relocations for a section.
3843 void
3844 Target_i386::relocate_relocs(
3845 const Relocate_info<32, false>* relinfo,
3846 unsigned int sh_type,
3847 const unsigned char* prelocs,
3848 size_t reloc_count,
3849 Output_section* output_section,
3850 elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
3851 unsigned char* view,
3852 elfcpp::Elf_types<32>::Elf_Addr view_address,
3853 section_size_type view_size,
3854 unsigned char* reloc_view,
3855 section_size_type reloc_view_size)
3857 gold_assert(sh_type == elfcpp::SHT_REL);
3859 gold::relocate_relocs<32, false, Classify_reloc>(
3860 relinfo,
3861 prelocs,
3862 reloc_count,
3863 output_section,
3864 offset_in_output_section,
3865 view,
3866 view_address,
3867 view_size,
3868 reloc_view,
3869 reloc_view_size);
3872 // Return the value to use for a dynamic which requires special
3873 // treatment. This is how we support equality comparisons of function
3874 // pointers across shared library boundaries, as described in the
3875 // processor specific ABI supplement.
3877 uint64_t
3878 Target_i386::do_dynsym_value(const Symbol* gsym) const
3880 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3881 return this->plt_address_for_global(gsym);
3884 // Return a string used to fill a code section with nops to take up
3885 // the specified length.
3887 std::string
3888 Target_i386::do_code_fill(section_size_type length) const
3890 if (length >= 16)
3892 // Build a jmp instruction to skip over the bytes.
3893 unsigned char jmp[5];
3894 jmp[0] = 0xe9;
3895 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3896 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3897 + std::string(length - 5, static_cast<char>(0x90)));
3900 // Nop sequences of various lengths.
3901 const char nop1[1] = { '\x90' }; // nop
3902 const char nop2[2] = { '\x66', '\x90' }; // xchg %ax %ax
3903 const char nop3[3] = { '\x8d', '\x76', '\x00' }; // leal 0(%esi),%esi
3904 const char nop4[4] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3905 '\x00'};
3906 const char nop5[5] = { '\x90', '\x8d', '\x74', // nop
3907 '\x26', '\x00' }; // leal 0(%esi,1),%esi
3908 const char nop6[6] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3909 '\x00', '\x00', '\x00' };
3910 const char nop7[7] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3911 '\x00', '\x00', '\x00',
3912 '\x00' };
3913 const char nop8[8] = { '\x90', '\x8d', '\xb4', // nop
3914 '\x26', '\x00', '\x00', // leal 0L(%esi,1),%esi
3915 '\x00', '\x00' };
3916 const char nop9[9] = { '\x89', '\xf6', '\x8d', // movl %esi,%esi
3917 '\xbc', '\x27', '\x00', // leal 0L(%edi,1),%edi
3918 '\x00', '\x00', '\x00' };
3919 const char nop10[10] = { '\x8d', '\x76', '\x00', // leal 0(%esi),%esi
3920 '\x8d', '\xbc', '\x27', // leal 0L(%edi,1),%edi
3921 '\x00', '\x00', '\x00',
3922 '\x00' };
3923 const char nop11[11] = { '\x8d', '\x74', '\x26', // leal 0(%esi,1),%esi
3924 '\x00', '\x8d', '\xbc', // leal 0L(%edi,1),%edi
3925 '\x27', '\x00', '\x00',
3926 '\x00', '\x00' };
3927 const char nop12[12] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3928 '\x00', '\x00', '\x00', // leal 0L(%edi),%edi
3929 '\x8d', '\xbf', '\x00',
3930 '\x00', '\x00', '\x00' };
3931 const char nop13[13] = { '\x8d', '\xb6', '\x00', // leal 0L(%esi),%esi
3932 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3933 '\x8d', '\xbc', '\x27',
3934 '\x00', '\x00', '\x00',
3935 '\x00' };
3936 const char nop14[14] = { '\x8d', '\xb4', '\x26', // leal 0L(%esi,1),%esi
3937 '\x00', '\x00', '\x00', // leal 0L(%edi,1),%edi
3938 '\x00', '\x8d', '\xbc',
3939 '\x27', '\x00', '\x00',
3940 '\x00', '\x00' };
3941 const char nop15[15] = { '\xeb', '\x0d', '\x90', // jmp .+15
3942 '\x90', '\x90', '\x90', // nop,nop,nop,...
3943 '\x90', '\x90', '\x90',
3944 '\x90', '\x90', '\x90',
3945 '\x90', '\x90', '\x90' };
3947 const char* nops[16] = {
3948 NULL,
3949 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3950 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3953 return std::string(nops[length], length);
3956 // Return the value to use for the base of a DW_EH_PE_datarel offset
3957 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
3958 // assembler can not write out the difference between two labels in
3959 // different sections, so instead of using a pc-relative value they
3960 // use an offset from the GOT.
3962 uint64_t
3963 Target_i386::do_ehframe_datarel_base() const
3965 gold_assert(this->global_offset_table_ != NULL);
3966 Symbol* sym = this->global_offset_table_;
3967 Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
3968 return ssym->value();
3971 // Return whether SYM should be treated as a call to a non-split
3972 // function. We don't want that to be true of a call to a
3973 // get_pc_thunk function.
3975 bool
3976 Target_i386::do_is_call_to_non_split(const Symbol* sym,
3977 const unsigned char*,
3978 const unsigned char*,
3979 section_size_type) const
3981 return (sym->type() == elfcpp::STT_FUNC
3982 && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
3985 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3986 // compiled with -fsplit-stack. The function calls non-split-stack
3987 // code. We have to change the function so that it always ensures
3988 // that it has enough stack space to run some random function.
3990 void
3991 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
3992 section_offset_type fnoffset,
3993 section_size_type fnsize,
3994 const unsigned char*,
3995 size_t,
3996 unsigned char* view,
3997 section_size_type view_size,
3998 std::string* from,
3999 std::string* to) const
4001 // The function starts with a comparison of the stack pointer and a
4002 // field in the TCB. This is followed by a jump.
4004 // cmp %gs:NN,%esp
4005 if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
4006 && fnsize > 7)
4008 // We will call __morestack if the carry flag is set after this
4009 // comparison. We turn the comparison into an stc instruction
4010 // and some nops.
4011 view[fnoffset] = '\xf9';
4012 this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
4014 // lea NN(%esp),%ecx
4015 // lea NN(%esp),%edx
4016 else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
4017 || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
4018 && fnsize > 7)
4020 // This is loading an offset from the stack pointer for a
4021 // comparison. The offset is negative, so we decrease the
4022 // offset by the amount of space we need for the stack. This
4023 // means we will avoid calling __morestack if there happens to
4024 // be plenty of space on the stack already.
4025 unsigned char* pval = view + fnoffset + 3;
4026 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4027 val -= parameters->options().split_stack_adjust_size();
4028 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4030 else
4032 if (!object->has_no_split_stack())
4033 object->error(_("failed to match split-stack sequence at "
4034 "section %u offset %0zx"),
4035 shndx, static_cast<size_t>(fnoffset));
4036 return;
4039 // We have to change the function so that it calls
4040 // __morestack_non_split instead of __morestack. The former will
4041 // allocate additional stack space.
4042 *from = "__morestack";
4043 *to = "__morestack_non_split";
4046 // The selector for i386 object files. Note this is never instantiated
4047 // directly. It's only used in Target_selector_i386_nacl, below.
4049 class Target_selector_i386 : public Target_selector_freebsd
4051 public:
4052 Target_selector_i386()
4053 : Target_selector_freebsd(elfcpp::EM_386, 32, false,
4054 "elf32-i386", "elf32-i386-freebsd",
4055 "elf_i386")
4058 Target*
4059 do_instantiate_target()
4060 { return new Target_i386(); }
4063 // NaCl variant. It uses different PLT contents.
4065 class Output_data_plt_i386_nacl : public Output_data_plt_i386
4067 public:
4068 Output_data_plt_i386_nacl(Layout* layout,
4069 Output_data_got_plt_i386* got_plt,
4070 Output_data_space* got_irelative)
4071 : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
4074 protected:
4075 virtual unsigned int
4076 do_get_plt_entry_size() const
4077 { return plt_entry_size; }
4079 virtual void
4080 do_add_eh_frame(Layout* layout)
4082 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
4083 plt_eh_frame_fde, plt_eh_frame_fde_size);
4086 // The size of an entry in the PLT.
4087 static const int plt_entry_size = 64;
4089 // The .eh_frame unwind information for the PLT.
4090 static const int plt_eh_frame_fde_size = 32;
4091 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4094 class Output_data_plt_i386_nacl_exec : public Output_data_plt_i386_nacl
4096 public:
4097 Output_data_plt_i386_nacl_exec(Layout* layout,
4098 Output_data_got_plt_i386* got_plt,
4099 Output_data_space* got_irelative)
4100 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4103 protected:
4104 virtual void
4105 do_fill_first_plt_entry(unsigned char* pov,
4106 elfcpp::Elf_types<32>::Elf_Addr got_address);
4108 virtual unsigned int
4109 do_fill_plt_entry(unsigned char* pov,
4110 elfcpp::Elf_types<32>::Elf_Addr got_address,
4111 unsigned int got_offset,
4112 unsigned int plt_offset,
4113 unsigned int plt_rel_offset);
4115 private:
4116 // The first entry in the PLT for an executable.
4117 static const unsigned char first_plt_entry[plt_entry_size];
4119 // Other entries in the PLT for an executable.
4120 static const unsigned char plt_entry[plt_entry_size];
4123 class Output_data_plt_i386_nacl_dyn : public Output_data_plt_i386_nacl
4125 public:
4126 Output_data_plt_i386_nacl_dyn(Layout* layout,
4127 Output_data_got_plt_i386* got_plt,
4128 Output_data_space* got_irelative)
4129 : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
4132 protected:
4133 virtual void
4134 do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
4136 virtual unsigned int
4137 do_fill_plt_entry(unsigned char* pov,
4138 elfcpp::Elf_types<32>::Elf_Addr,
4139 unsigned int got_offset,
4140 unsigned int plt_offset,
4141 unsigned int plt_rel_offset);
4143 private:
4144 // The first entry in the PLT for a shared object.
4145 static const unsigned char first_plt_entry[plt_entry_size];
4147 // Other entries in the PLT for a shared object.
4148 static const unsigned char plt_entry[plt_entry_size];
4151 class Target_i386_nacl : public Target_i386
4153 public:
4154 Target_i386_nacl()
4155 : Target_i386(&i386_nacl_info)
4158 protected:
4159 virtual Output_data_plt_i386*
4160 do_make_data_plt(Layout* layout,
4161 Output_data_got_plt_i386* got_plt,
4162 Output_data_space* got_irelative,
4163 bool dyn)
4165 if (dyn)
4166 return new Output_data_plt_i386_nacl_dyn(layout, got_plt, got_irelative);
4167 else
4168 return new Output_data_plt_i386_nacl_exec(layout, got_plt, got_irelative);
4171 virtual std::string
4172 do_code_fill(section_size_type length) const;
4174 private:
4175 static const Target::Target_info i386_nacl_info;
4178 const Target::Target_info Target_i386_nacl::i386_nacl_info =
4180 32, // size
4181 false, // is_big_endian
4182 elfcpp::EM_386, // machine_code
4183 false, // has_make_symbol
4184 false, // has_resolve
4185 true, // has_code_fill
4186 true, // is_default_stack_executable
4187 true, // can_icf_inline_merge_sections
4188 '\0', // wrap_char
4189 "/lib/ld-nacl-x86-32.so.1", // dynamic_linker
4190 0x20000, // default_text_segment_address
4191 0x10000, // abi_pagesize (overridable by -z max-page-size)
4192 0x10000, // common_pagesize (overridable by -z common-page-size)
4193 true, // isolate_execinstr
4194 0x10000000, // rosegment_gap
4195 elfcpp::SHN_UNDEF, // small_common_shndx
4196 elfcpp::SHN_UNDEF, // large_common_shndx
4197 0, // small_common_section_flags
4198 0, // large_common_section_flags
4199 NULL, // attributes_section
4200 NULL, // attributes_vendor
4201 "_start", // entry_symbol_name
4202 32, // hash_entry_size
4205 #define NACLMASK 0xe0 // 32-byte alignment mask
4207 const unsigned char
4208 Output_data_plt_i386_nacl_exec::first_plt_entry[plt_entry_size] =
4210 0xff, 0x35, // pushl contents of memory address
4211 0, 0, 0, 0, // replaced with address of .got + 4
4212 0x8b, 0x0d, // movl contents of address, %ecx
4213 0, 0, 0, 0, // replaced with address of .got + 8
4214 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4215 0xff, 0xe1, // jmp *%ecx
4216 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4217 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4218 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4219 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4220 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4221 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4222 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4223 0x90, 0x90, 0x90, 0x90, 0x90
4226 void
4227 Output_data_plt_i386_nacl_exec::do_fill_first_plt_entry(
4228 unsigned char* pov,
4229 elfcpp::Elf_types<32>::Elf_Addr got_address)
4231 memcpy(pov, first_plt_entry, plt_entry_size);
4232 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
4233 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
4236 // The first entry in the PLT for a shared object.
4238 const unsigned char
4239 Output_data_plt_i386_nacl_dyn::first_plt_entry[plt_entry_size] =
4241 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
4242 0x8b, 0x4b, 0x08, // mov 0x8(%ebx), %ecx
4243 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4244 0xff, 0xe1, // jmp *%ecx
4245 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4246 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4247 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4248 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4249 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4250 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4251 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4252 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4253 0x90, 0x90, 0x90, 0x90, 0x90, // nops
4254 0x90, 0x90, 0x90, 0x90, 0x90 // nops
4257 void
4258 Output_data_plt_i386_nacl_dyn::do_fill_first_plt_entry(
4259 unsigned char* pov,
4260 elfcpp::Elf_types<32>::Elf_Addr)
4262 memcpy(pov, first_plt_entry, plt_entry_size);
4265 // Subsequent entries in the PLT for an executable.
4267 const unsigned char
4268 Output_data_plt_i386_nacl_exec::plt_entry[plt_entry_size] =
4270 0x8b, 0x0d, // movl contents of address, %ecx */
4271 0, 0, 0, 0, // replaced with address of symbol in .got
4272 0x83, 0xe1, NACLMASK, // andl $NACLMASK, %ecx
4273 0xff, 0xe1, // jmp *%ecx
4275 // Pad to the next 32-byte boundary with nop instructions.
4276 0x90,
4277 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4278 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4280 // Lazy GOT entries point here (32-byte aligned).
4281 0x68, // pushl immediate
4282 0, 0, 0, 0, // replaced with offset into relocation table
4283 0xe9, // jmp relative
4284 0, 0, 0, 0, // replaced with offset to start of .plt
4286 // Pad to the next 32-byte boundary with nop instructions.
4287 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4288 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4289 0x90, 0x90
4292 unsigned int
4293 Output_data_plt_i386_nacl_exec::do_fill_plt_entry(
4294 unsigned char* pov,
4295 elfcpp::Elf_types<32>::Elf_Addr got_address,
4296 unsigned int got_offset,
4297 unsigned int plt_offset,
4298 unsigned int plt_rel_offset)
4300 memcpy(pov, plt_entry, plt_entry_size);
4301 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4302 got_address + got_offset);
4303 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4304 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4305 return 32;
4308 // Subsequent entries in the PLT for a shared object.
4310 const unsigned char
4311 Output_data_plt_i386_nacl_dyn::plt_entry[plt_entry_size] =
4313 0x8b, 0x8b, // movl offset(%ebx), %ecx
4314 0, 0, 0, 0, // replaced with offset of symbol in .got
4315 0x83, 0xe1, 0xe0, // andl $NACLMASK, %ecx
4316 0xff, 0xe1, // jmp *%ecx
4318 // Pad to the next 32-byte boundary with nop instructions.
4319 0x90,
4320 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4321 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4323 // Lazy GOT entries point here (32-byte aligned).
4324 0x68, // pushl immediate
4325 0, 0, 0, 0, // replaced with offset into relocation table.
4326 0xe9, // jmp relative
4327 0, 0, 0, 0, // replaced with offset to start of .plt.
4329 // Pad to the next 32-byte boundary with nop instructions.
4330 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4331 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
4332 0x90, 0x90
4335 unsigned int
4336 Output_data_plt_i386_nacl_dyn::do_fill_plt_entry(
4337 unsigned char* pov,
4338 elfcpp::Elf_types<32>::Elf_Addr,
4339 unsigned int got_offset,
4340 unsigned int plt_offset,
4341 unsigned int plt_rel_offset)
4343 memcpy(pov, plt_entry, plt_entry_size);
4344 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
4345 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
4346 elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
4347 return 32;
4350 const unsigned char
4351 Output_data_plt_i386_nacl::plt_eh_frame_fde[plt_eh_frame_fde_size] =
4353 0, 0, 0, 0, // Replaced with offset to .plt.
4354 0, 0, 0, 0, // Replaced with size of .plt.
4355 0, // Augmentation size.
4356 elfcpp::DW_CFA_def_cfa_offset, 8, // DW_CFA_def_cfa_offset: 8.
4357 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
4358 elfcpp::DW_CFA_def_cfa_offset, 12, // DW_CFA_def_cfa_offset: 12.
4359 elfcpp::DW_CFA_advance_loc + 58, // Advance 58 to __PLT__ + 64.
4360 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
4361 13, // Block length.
4362 elfcpp::DW_OP_breg4, 4, // Push %esp + 4.
4363 elfcpp::DW_OP_breg8, 0, // Push %eip.
4364 elfcpp::DW_OP_const1u, 63, // Push 0x3f.
4365 elfcpp::DW_OP_and, // & (%eip & 0x3f).
4366 elfcpp::DW_OP_const1u, 37, // Push 0x25.
4367 elfcpp::DW_OP_ge, // >= ((%eip & 0x3f) >= 0x25)
4368 elfcpp::DW_OP_lit2, // Push 2.
4369 elfcpp::DW_OP_shl, // << (((%eip & 0x3f) >= 0x25) << 2)
4370 elfcpp::DW_OP_plus, // + ((((%eip&0x3f)>=0x25)<<2)+%esp+4
4371 elfcpp::DW_CFA_nop, // Align to 32 bytes.
4372 elfcpp::DW_CFA_nop
4375 // Return a string used to fill a code section with nops.
4376 // For NaCl, long NOPs are only valid if they do not cross
4377 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
4378 std::string
4379 Target_i386_nacl::do_code_fill(section_size_type length) const
4381 return std::string(length, static_cast<char>(0x90));
4384 // The selector for i386-nacl object files.
4386 class Target_selector_i386_nacl
4387 : public Target_selector_nacl<Target_selector_i386, Target_i386_nacl>
4389 public:
4390 Target_selector_i386_nacl()
4391 : Target_selector_nacl<Target_selector_i386,
4392 Target_i386_nacl>("x86-32",
4393 "elf32-i386-nacl",
4394 "elf_i386_nacl")
4398 Target_selector_i386_nacl target_selector_i386;
4400 // IAMCU variant. It uses EM_IAMCU, not EM_386.
4402 class Target_iamcu : public Target_i386
4404 public:
4405 Target_iamcu()
4406 : Target_i386(&iamcu_info)
4409 private:
4410 // Information about this specific target which we pass to the
4411 // general Target structure.
4412 static const Target::Target_info iamcu_info;
4415 const Target::Target_info Target_iamcu::iamcu_info =
4417 32, // size
4418 false, // is_big_endian
4419 elfcpp::EM_IAMCU, // machine_code
4420 false, // has_make_symbol
4421 false, // has_resolve
4422 true, // has_code_fill
4423 true, // is_default_stack_executable
4424 true, // can_icf_inline_merge_sections
4425 '\0', // wrap_char
4426 "/usr/lib/libc.so.1", // dynamic_linker
4427 0x08048000, // default_text_segment_address
4428 0x1000, // abi_pagesize (overridable by -z max-page-size)
4429 0x1000, // common_pagesize (overridable by -z common-page-size)
4430 false, // isolate_execinstr
4431 0, // rosegment_gap
4432 elfcpp::SHN_UNDEF, // small_common_shndx
4433 elfcpp::SHN_UNDEF, // large_common_shndx
4434 0, // small_common_section_flags
4435 0, // large_common_section_flags
4436 NULL, // attributes_section
4437 NULL, // attributes_vendor
4438 "_start", // entry_symbol_name
4439 32, // hash_entry_size
4442 class Target_selector_iamcu : public Target_selector
4444 public:
4445 Target_selector_iamcu()
4446 : Target_selector(elfcpp::EM_IAMCU, 32, false, "elf32-iamcu",
4447 "elf_iamcu")
4450 Target*
4451 do_instantiate_target()
4452 { return new Target_iamcu(); }
4455 Target_selector_iamcu target_selector_iamcu;
4457 } // End anonymous namespace.