vkernel - Sync to recent API changes
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap.c
blobb1b22110c631491923ca90b073b29bbad7681736
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * All rights reserved.
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
43 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
44 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
48 * Manages physical address maps.
51 #include "opt_msgbuf.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/vmspace.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/spinlock2.h>
78 #include <vm/vm_page2.h>
80 #include <machine/cputypes.h>
81 #include <machine/md_var.h>
82 #include <machine/specialreg.h>
83 #include <machine/smp.h>
84 #include <machine/globaldata.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
88 #include <ddb/ddb.h>
90 #include <stdio.h>
91 #include <assert.h>
92 #include <stdlib.h>
93 #include <pthread.h>
95 #define PMAP_KEEP_PDIRS
96 #ifndef PMAP_SHPGPERPROC
97 #define PMAP_SHPGPERPROC 1000
98 #endif
100 #if defined(DIAGNOSTIC)
101 #define PMAP_DIAGNOSTIC
102 #endif
104 #define MINPV 2048
106 #if !defined(PMAP_DIAGNOSTIC)
107 #define PMAP_INLINE __inline
108 #else
109 #define PMAP_INLINE
110 #endif
113 * Get PDEs and PTEs for user/kernel address space
115 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
116 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
118 #define pmap_pde_v(pte) ((*(pd_entry_t *)pte & VPTE_V) != 0)
119 #define pmap_pte_w(pte) ((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
120 #define pmap_pte_m(pte) ((*(pt_entry_t *)pte & VPTE_M) != 0)
121 #define pmap_pte_u(pte) ((*(pt_entry_t *)pte & VPTE_A) != 0)
122 #define pmap_pte_v(pte) ((*(pt_entry_t *)pte & VPTE_V) != 0)
125 * Given a map and a machine independent protection code,
126 * convert to a vax protection code.
128 #define pte_prot(m, p) \
129 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
130 static uint64_t protection_codes[8];
132 struct pmap kernel_pmap;
134 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
136 static struct vm_object kptobj;
137 static int nkpt;
139 static uint64_t KPDphys; /* phys addr of kernel level 2 */
140 uint64_t KPDPphys; /* phys addr of kernel level 3 */
141 uint64_t KPML4phys; /* phys addr of kernel level 4 */
143 extern int vmm_enabled;
144 extern void *vkernel_stack;
147 * Data for the pv entry allocation mechanism
149 static vm_zone_t pvzone;
150 static struct vm_zone pvzone_store;
151 static int pv_entry_count = 0;
152 static int pv_entry_max = 0;
153 static int pv_entry_high_water = 0;
154 static int pmap_pagedaemon_waken = 0;
155 static struct pv_entry *pvinit;
158 * All those kernel PT submaps that BSD is so fond of
160 pt_entry_t *CMAP1 = NULL, *ptmmap;
161 caddr_t CADDR1 = NULL;
162 static pt_entry_t *msgbufmap;
164 uint64_t KPTphys;
166 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
167 static pv_entry_t get_pv_entry (void);
168 static void i386_protection_init (void);
169 static __inline void pmap_clearbit (vm_page_t m, int bit);
171 static void pmap_remove_all (vm_page_t m);
172 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
173 pt_entry_t oldpte, vm_offset_t sva);
174 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
175 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
176 vm_offset_t va);
177 static boolean_t pmap_testbit (vm_page_t m, int bit);
178 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
179 vm_page_t mpte, vm_page_t m, pv_entry_t);
181 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
183 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
184 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
185 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
186 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
188 static int
189 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
191 if (pv1->pv_va < pv2->pv_va)
192 return(-1);
193 if (pv1->pv_va > pv2->pv_va)
194 return(1);
195 return(0);
198 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
199 pv_entry_compare, vm_offset_t, pv_va);
201 static __inline vm_pindex_t
202 pmap_pt_pindex(vm_offset_t va)
204 return va >> PDRSHIFT;
207 static __inline vm_pindex_t
208 pmap_pte_index(vm_offset_t va)
210 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
213 static __inline vm_pindex_t
214 pmap_pde_index(vm_offset_t va)
216 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
219 static __inline vm_pindex_t
220 pmap_pdpe_index(vm_offset_t va)
222 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
225 static __inline vm_pindex_t
226 pmap_pml4e_index(vm_offset_t va)
228 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
231 /* Return a pointer to the PML4 slot that corresponds to a VA */
232 static __inline pml4_entry_t *
233 pmap_pml4e(pmap_t pmap, vm_offset_t va)
235 return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
238 /* Return a pointer to the PDP slot that corresponds to a VA */
239 static __inline pdp_entry_t *
240 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
242 pdp_entry_t *pdpe;
244 pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
245 return (&pdpe[pmap_pdpe_index(va)]);
248 /* Return a pointer to the PDP slot that corresponds to a VA */
249 static __inline pdp_entry_t *
250 pmap_pdpe(pmap_t pmap, vm_offset_t va)
252 pml4_entry_t *pml4e;
254 pml4e = pmap_pml4e(pmap, va);
255 if ((*pml4e & VPTE_V) == 0)
256 return NULL;
257 return (pmap_pml4e_to_pdpe(pml4e, va));
260 /* Return a pointer to the PD slot that corresponds to a VA */
261 static __inline pd_entry_t *
262 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
264 pd_entry_t *pde;
266 pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
267 return (&pde[pmap_pde_index(va)]);
270 /* Return a pointer to the PD slot that corresponds to a VA */
271 static __inline pd_entry_t *
272 pmap_pde(pmap_t pmap, vm_offset_t va)
274 pdp_entry_t *pdpe;
276 pdpe = pmap_pdpe(pmap, va);
277 if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
278 return NULL;
279 return (pmap_pdpe_to_pde(pdpe, va));
282 /* Return a pointer to the PT slot that corresponds to a VA */
283 static __inline pt_entry_t *
284 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
286 pt_entry_t *pte;
288 pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
289 return (&pte[pmap_pte_index(va)]);
293 * Hold pt_m for page table scans to prevent it from getting reused out
294 * from under us across blocking conditions in the body of the loop.
296 static __inline
297 vm_page_t
298 pmap_hold_pt_page(pd_entry_t *pde, vm_offset_t va)
300 pt_entry_t pte;
301 vm_page_t pt_m;
303 pte = (pt_entry_t)*pde;
304 KKASSERT(pte != 0);
305 pt_m = PHYS_TO_VM_PAGE(pte & VPTE_FRAME);
306 vm_page_hold(pt_m);
308 return pt_m;
311 /* Return a pointer to the PT slot that corresponds to a VA */
312 static __inline pt_entry_t *
313 pmap_pte(pmap_t pmap, vm_offset_t va)
315 pd_entry_t *pde;
317 pde = pmap_pde(pmap, va);
318 if (pde == NULL || (*pde & VPTE_V) == 0)
319 return NULL;
320 if ((*pde & VPTE_PS) != 0) /* compat with i386 pmap_pte() */
321 return ((pt_entry_t *)pde);
322 return (pmap_pde_to_pte(pde, va));
325 static PMAP_INLINE pt_entry_t *
326 vtopte(vm_offset_t va)
328 pt_entry_t *x;
329 x = pmap_pte(&kernel_pmap, va);
330 assert(x != NULL);
331 return x;
334 static __inline pd_entry_t *
335 vtopde(vm_offset_t va)
337 pd_entry_t *x;
338 x = pmap_pde(&kernel_pmap, va);
339 assert(x != NULL);
340 return x;
344 * Returns the physical address translation from va for a user address.
345 * (vm_paddr_t)-1 is returned on failure.
347 vm_paddr_t
348 uservtophys(vm_offset_t va)
350 vm_paddr_t pa;
351 pt_entry_t pte;
352 pt_entry_t *ptep;
353 pmap_t pmap;
355 pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
356 pa = (vm_paddr_t)-1;
357 if (va < VM_MAX_USER_ADDRESS) {
358 vm_object_hold_shared(pmap->pm_pteobj);
359 ptep = pmap_pte(pmap, va);
360 if (ptep) {
361 pte = *ptep;
362 if (pte & VPTE_V)
363 pa = (pte & PG_FRAME) | (va & PAGE_MASK);
365 vm_object_drop(pmap->pm_pteobj);
367 return pa;
370 static uint64_t
371 allocpages(vm_paddr_t *firstaddr, int n)
373 uint64_t ret;
375 ret = *firstaddr;
376 /*bzero((void *)ret, n * PAGE_SIZE); not mapped yet */
377 *firstaddr += n * PAGE_SIZE;
378 return (ret);
381 static void
382 create_dmap_vmm(vm_paddr_t *firstaddr)
384 void *stack_addr;
385 int pml4_stack_index;
386 int pdp_stack_index;
387 int pd_stack_index;
388 long i,j;
389 int regs[4];
390 int amd_feature;
392 uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
393 uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
394 uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
396 pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
397 pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
398 pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
399 pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
401 bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
402 bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
403 bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
405 do_cpuid(0x80000001, regs);
406 amd_feature = regs[3];
408 /* Build the mappings for the first 512GB */
409 if (amd_feature & AMDID_PAGE1GB) {
410 /* In pages of 1 GB, if supported */
411 for (i = 0; i < NPDPEPG; i++) {
412 KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
413 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
415 } else {
416 /* In page of 2MB, otherwise */
417 for (i = 0; i < NPDPEPG; i++) {
418 uint64_t KPD_DMAP_phys;
419 pd_entry_t *KPD_DMAP_virt;
421 KPD_DMAP_phys = allocpages(firstaddr, 1);
422 KPD_DMAP_virt =
423 (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
425 bzero(KPD_DMAP_virt, PAGE_SIZE);
427 KPDP_DMAP_virt[i] = KPD_DMAP_phys;
428 KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
430 /* For each PD, we have to allocate NPTEPG PT */
431 for (j = 0; j < NPTEPG; j++) {
432 KPD_DMAP_virt[j] = (i << PDPSHIFT) |
433 (j << PDRSHIFT);
434 KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V |
435 VPTE_PS | VPTE_U;
440 /* DMAP for the first 512G */
441 KPML4virt[0] = KPDP_DMAP_phys;
442 KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
444 /* create a 2 MB map of the new stack */
445 pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
446 KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
447 KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
449 pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
450 KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
451 KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
453 pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
454 KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
455 KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
458 static void
459 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
461 int i;
462 pml4_entry_t *KPML4virt;
463 pdp_entry_t *KPDPvirt;
464 pd_entry_t *KPDvirt;
465 pt_entry_t *KPTvirt;
466 int kpml4i = pmap_pml4e_index(ptov_offset);
467 int kpdpi = pmap_pdpe_index(ptov_offset);
468 int kpdi = pmap_pde_index(ptov_offset);
471 * Calculate NKPT - number of kernel page tables. We have to
472 * accomodoate prealloction of the vm_page_array, dump bitmap,
473 * MSGBUF_SIZE, and other stuff. Be generous.
475 * Maxmem is in pages.
477 nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
479 * Allocate pages
481 KPML4phys = allocpages(firstaddr, 1);
482 KPDPphys = allocpages(firstaddr, NKPML4E);
483 KPDphys = allocpages(firstaddr, NKPDPE);
484 KPTphys = allocpages(firstaddr, nkpt);
486 KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
487 KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
488 KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
489 KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
491 bzero(KPML4virt, 1 * PAGE_SIZE);
492 bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
493 bzero(KPDvirt, NKPDPE * PAGE_SIZE);
494 bzero(KPTvirt, nkpt * PAGE_SIZE);
496 /* Now map the page tables at their location within PTmap */
497 for (i = 0; i < nkpt; i++) {
498 KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
499 KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
502 /* And connect up the PD to the PDP */
503 for (i = 0; i < NKPDPE; i++) {
504 KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
505 KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
508 /* And recursively map PML4 to itself in order to get PTmap */
509 KPML4virt[PML4PML4I] = KPML4phys;
510 KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
512 /* Connect the KVA slot up to the PML4 */
513 KPML4virt[kpml4i] = KPDPphys;
514 KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
518 * Typically used to initialize a fictitious page by vm/device_pager.c
520 void
521 pmap_page_init(struct vm_page *m)
523 vm_page_init(m);
524 TAILQ_INIT(&m->md.pv_list);
528 * Bootstrap the system enough to run with virtual memory.
530 * On the i386 this is called after mapping has already been enabled
531 * and just syncs the pmap module with what has already been done.
532 * [We can't call it easily with mapping off since the kernel is not
533 * mapped with PA == VA, hence we would have to relocate every address
534 * from the linked base (virtual) address "KERNBASE" to the actual
535 * (physical) address starting relative to 0]
537 void
538 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
540 vm_offset_t va;
541 pt_entry_t *pte;
544 * Create an initial set of page tables to run the kernel in.
546 create_pagetables(firstaddr, ptov_offset);
548 /* Create the DMAP for the VMM */
549 if (vmm_enabled) {
550 create_dmap_vmm(firstaddr);
553 virtual_start = KvaStart;
554 virtual_end = KvaEnd;
557 * Initialize protection array.
559 i386_protection_init();
562 * The kernel's pmap is statically allocated so we don't have to use
563 * pmap_create, which is unlikely to work correctly at this part of
564 * the boot sequence (XXX and which no longer exists).
566 * The kernel_pmap's pm_pteobj is used only for locking and not
567 * for mmu pages.
569 kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
570 kernel_pmap.pm_count = 1;
571 /* don't allow deactivation */
572 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
573 kernel_pmap.pm_pteobj = NULL; /* see pmap_init */
574 RB_INIT(&kernel_pmap.pm_pvroot);
575 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
578 * Reserve some special page table entries/VA space for temporary
579 * mapping of pages.
581 #define SYSMAP(c, p, v, n) \
582 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
584 va = virtual_start;
585 pte = pmap_pte(&kernel_pmap, va);
587 * CMAP1/CMAP2 are used for zeroing and copying pages.
589 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
591 #if JGV
593 * Crashdump maps.
595 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
596 #endif
599 * ptvmmap is used for reading arbitrary physical pages via
600 * /dev/mem.
602 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
605 * msgbufp is used to map the system message buffer.
606 * XXX msgbufmap is not used.
608 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
609 atop(round_page(MSGBUF_SIZE)))
611 virtual_start = va;
613 *CMAP1 = 0;
614 /* Not ready to do an invltlb yet for VMM*/
615 if (!vmm_enabled)
616 cpu_invltlb();
621 * Initialize the pmap module.
622 * Called by vm_init, to initialize any structures that the pmap
623 * system needs to map virtual memory.
624 * pmap_init has been enhanced to support in a fairly consistant
625 * way, discontiguous physical memory.
627 void
628 pmap_init(void)
630 int i;
631 int initial_pvs;
634 * object for kernel page table pages
636 /* JG I think the number can be arbitrary */
637 vm_object_init(&kptobj, 5);
638 kernel_pmap.pm_pteobj = &kptobj;
641 * Allocate memory for random pmap data structures. Includes the
642 * pv_head_table.
644 for(i = 0; i < vm_page_array_size; i++) {
645 vm_page_t m;
647 m = &vm_page_array[i];
648 TAILQ_INIT(&m->md.pv_list);
649 m->md.pv_list_count = 0;
653 * init the pv free list
655 initial_pvs = vm_page_array_size;
656 if (initial_pvs < MINPV)
657 initial_pvs = MINPV;
658 pvzone = &pvzone_store;
659 pvinit = (struct pv_entry *)
660 kmem_alloc(&kernel_map,
661 initial_pvs * sizeof (struct pv_entry),
662 VM_SUBSYS_PVENTRY);
663 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
664 initial_pvs);
667 * Now it is safe to enable pv_table recording.
669 pmap_initialized = TRUE;
673 * Initialize the address space (zone) for the pv_entries. Set a
674 * high water mark so that the system can recover from excessive
675 * numbers of pv entries.
677 void
678 pmap_init2(void)
680 int shpgperproc = PMAP_SHPGPERPROC;
682 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
683 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
684 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
685 pv_entry_high_water = 9 * (pv_entry_max / 10);
686 zinitna(pvzone, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
690 /***************************************************
691 * Low level helper routines.....
692 ***************************************************/
695 * The modification bit is not tracked for any pages in this range. XXX
696 * such pages in this maps should always use pmap_k*() functions and not
697 * be managed anyhow.
699 * XXX User and kernel address spaces are independant for virtual kernels,
700 * this function only applies to the kernel pmap.
703 pmap_track_modified(pmap_t pmap, vm_offset_t va)
705 if (pmap != &kernel_pmap)
706 return 1;
707 if ((va < clean_sva) || (va >= clean_eva))
708 return 1;
709 else
710 return 0;
714 * Extract the physical page address associated with the map/VA pair.
716 * No requirements.
718 vm_paddr_t
719 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
721 vm_paddr_t rtval;
722 pt_entry_t *pte;
723 pd_entry_t pde, *pdep;
725 vm_object_hold(pmap->pm_pteobj);
726 rtval = 0;
727 pdep = pmap_pde(pmap, va);
728 if (pdep != NULL) {
729 pde = *pdep;
730 if (pde) {
731 if ((pde & VPTE_PS) != 0) {
732 /* JGV */
733 rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
734 } else {
735 pte = pmap_pde_to_pte(pdep, va);
736 rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
740 if (handlep)
741 *handlep = NULL; /* XXX */
742 vm_object_drop(pmap->pm_pteobj);
744 return rtval;
747 void
748 pmap_extract_done(void *handle)
750 pmap_t pmap;
752 if (handle) {
753 pmap = handle;
754 vm_object_drop(pmap->pm_pteobj);
759 * Similar to extract but checks protections, SMP-friendly short-cut for
760 * vm_fault_page[_quick]().
762 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NEITHER IT NOR ITS TARGET
763 * DATA IS SUITABLE FOR WRITING. Writing can interfere with
764 * pageouts flushes, msync, etc. The hold_count is not enough
765 * to avoid races against pageouts and other flush code doesn't
766 * care about hold_count.
768 vm_page_t
769 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
770 vm_prot_t prot __unused, int *busyp __unused)
772 return(NULL);
776 * Routine: pmap_kextract
777 * Function:
778 * Extract the physical page address associated
779 * kernel virtual address.
781 vm_paddr_t
782 pmap_kextract(vm_offset_t va)
784 pd_entry_t pde;
785 vm_paddr_t pa;
787 KKASSERT(va >= KvaStart && va < KvaEnd);
790 * The DMAP region is not included in [KvaStart, KvaEnd)
792 #if 0
793 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
794 pa = DMAP_TO_PHYS(va);
795 } else {
796 #endif
797 pde = *vtopde(va);
798 if (pde & VPTE_PS) {
799 /* JGV */
800 pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
801 } else {
803 * Beware of a concurrent promotion that changes the
804 * PDE at this point! For example, vtopte() must not
805 * be used to access the PTE because it would use the
806 * new PDE. It is, however, safe to use the old PDE
807 * because the page table page is preserved by the
808 * promotion.
810 pa = *pmap_pde_to_pte(&pde, va);
811 pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
813 #if 0
815 #endif
816 return pa;
819 /***************************************************
820 * Low level mapping routines.....
821 ***************************************************/
824 * Enter a mapping into kernel_pmap. Mappings created in this fashion
825 * are not managed. Mappings must be immediately accessible on all cpus.
827 * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
828 * real pmap and handle related races before storing the new vpte. The
829 * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
830 * because the entry may have previously been cleared without an invalidation.
832 void
833 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
835 pt_entry_t *ptep;
836 pt_entry_t npte;
838 KKASSERT(va >= KvaStart && va < KvaEnd);
839 npte = pa | VPTE_RW | VPTE_V | VPTE_U;
840 ptep = vtopte(va);
842 #if 1
843 pmap_inval_pte(ptep, &kernel_pmap, va);
844 #else
845 if (*pte & VPTE_V)
846 pmap_inval_pte(ptep, &kernel_pmap, va);
847 #endif
848 atomic_swap_long(ptep, npte);
852 * Enter an unmanaged KVA mapping for the private use of the current
853 * cpu only.
855 * It is illegal for the mapping to be accessed by other cpus without
856 * proper invalidation.
859 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
861 pt_entry_t *ptep;
862 pt_entry_t npte;
863 int res;
865 KKASSERT(va >= KvaStart && va < KvaEnd);
867 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
868 ptep = vtopte(va);
870 #if 1
871 pmap_inval_pte_quick(ptep, &kernel_pmap, va);
872 res = 1;
873 #else
874 /* FUTURE */
875 res = (*ptep != 0);
876 if (*pte & VPTE_V)
877 pmap_inval_pte(pte, &kernel_pmap, va);
878 #endif
879 atomic_swap_long(ptep, npte);
881 return res;
885 * Invalidation will occur later, ok to be lazy here.
888 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
890 pt_entry_t *ptep;
891 pt_entry_t npte;
892 int res;
894 KKASSERT(va >= KvaStart && va < KvaEnd);
896 npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
897 ptep = vtopte(va);
898 #if 1
899 res = 1;
900 #else
901 /* FUTURE */
902 res = (*ptep != 0);
903 #endif
904 atomic_swap_long(ptep, npte);
906 return res;
910 * Remove an unmanaged mapping created with pmap_kenter*().
912 void
913 pmap_kremove(vm_offset_t va)
915 pt_entry_t *ptep;
917 KKASSERT(va >= KvaStart && va < KvaEnd);
919 ptep = vtopte(va);
920 atomic_swap_long(ptep, 0);
921 pmap_inval_pte(ptep, &kernel_pmap, va);
925 * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
926 * only with this cpu.
928 * Unfortunately because we optimize new entries by testing VPTE_V later
929 * on, we actually still have to synchronize with all the cpus. XXX maybe
930 * store a junk value and test against 0 in the other places instead?
932 void
933 pmap_kremove_quick(vm_offset_t va)
935 pt_entry_t *ptep;
937 KKASSERT(va >= KvaStart && va < KvaEnd);
939 ptep = vtopte(va);
940 atomic_swap_long(ptep, 0);
941 pmap_inval_pte(ptep, &kernel_pmap, va); /* NOT _quick */
945 * Invalidation will occur later, ok to be lazy here.
947 void
948 pmap_kremove_noinval(vm_offset_t va)
950 pt_entry_t *ptep;
952 KKASSERT(va >= KvaStart && va < KvaEnd);
954 ptep = vtopte(va);
955 atomic_swap_long(ptep, 0);
959 * Used to map a range of physical addresses into kernel
960 * virtual address space.
962 * For now, VM is already on, we only need to map the
963 * specified memory.
965 vm_offset_t
966 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
968 return PHYS_TO_DMAP(start);
972 * Map a set of unmanaged VM pages into KVM.
974 static __inline void
975 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
977 vm_offset_t end_va;
978 vm_offset_t va;
980 end_va = beg_va + count * PAGE_SIZE;
981 KKASSERT(beg_va >= KvaStart && end_va <= KvaEnd);
983 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
984 pt_entry_t *ptep;
986 ptep = vtopte(va);
987 atomic_swap_long(ptep, VM_PAGE_TO_PHYS(*m) |
988 VPTE_RW | VPTE_V | VPTE_U);
989 ++m;
991 if (doinval)
992 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
993 /* pmap_inval_pte(pte, &kernel_pmap, va); */
996 void
997 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
999 _pmap_qenter(beg_va, m, count, 1);
1002 void
1003 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1005 _pmap_qenter(beg_va, m, count, 0);
1009 * Undo the effects of pmap_qenter*().
1011 void
1012 pmap_qremove(vm_offset_t beg_va, int count)
1014 vm_offset_t end_va;
1015 vm_offset_t va;
1017 end_va = beg_va + count * PAGE_SIZE;
1018 KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
1020 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1021 pt_entry_t *ptep;
1023 ptep = vtopte(va);
1024 atomic_swap_long(ptep, 0);
1026 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1030 * Unlike the real pmap code, we can't avoid calling the real-kernel.
1032 void
1033 pmap_qremove_quick(vm_offset_t va, int count)
1035 pmap_qremove(va, count);
1038 void
1039 pmap_qremove_noinval(vm_offset_t va, int count)
1041 pmap_qremove(va, count);
1045 * This routine works like vm_page_lookup() but also blocks as long as the
1046 * page is busy. This routine does not busy the page it returns.
1048 * Unless the caller is managing objects whos pages are in a known state,
1049 * the call should be made with a critical section held so the page's object
1050 * association remains valid on return.
1052 static vm_page_t
1053 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1055 vm_page_t m;
1057 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1058 m = vm_page_lookup_busy_wait(object, pindex, TRUE, "pplookp");
1060 return(m);
1064 * Create a new thread and optionally associate it with a (new) process.
1065 * NOTE! the new thread's cpu may not equal the current cpu.
1067 void
1068 pmap_init_thread(thread_t td)
1070 /* enforce pcb placement */
1071 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1072 td->td_savefpu = &td->td_pcb->pcb_save;
1073 td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1077 * This routine directly affects the fork perf for a process.
1079 void
1080 pmap_init_proc(struct proc *p)
1085 * Unwire a page table which has been removed from the pmap. We own the
1086 * wire_count, so the page cannot go away. The page representing the page
1087 * table is passed in unbusied and must be busied if we cannot trivially
1088 * unwire it.
1090 * XXX NOTE! This code is not usually run because we do not currently
1091 * implement dynamic page table page removal. The page in
1092 * its parent assumes at least 1 wire count, so no call to this
1093 * function ever sees a wire count less than 2.
1095 static int
1096 pmap_unwire_pgtable(pmap_t pmap, vm_offset_t va, vm_page_t m)
1099 * Try to unwire optimally. If non-zero is returned the wire_count
1100 * is 1 and we must busy the page to unwire it.
1102 if (vm_page_unwire_quick(m) == 0)
1103 return 0;
1105 vm_page_busy_wait(m, TRUE, "pmuwpt");
1106 KASSERT(m->queue == PQ_NONE,
1107 ("_pmap_unwire_pgtable: %p->queue != PQ_NONE", m));
1109 if (m->wire_count == 1) {
1111 * Unmap the page table page.
1113 /* pmap_inval_add(info, pmap, -1); */
1115 if (m->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1116 /* PDP page */
1117 pml4_entry_t *pml4;
1118 pml4 = pmap_pml4e(pmap, va);
1119 *pml4 = 0;
1120 } else if (m->pindex >= NUPT_TOTAL) {
1121 /* PD page */
1122 pdp_entry_t *pdp;
1123 pdp = pmap_pdpe(pmap, va);
1124 *pdp = 0;
1125 } else {
1126 /* PT page */
1127 pd_entry_t *pd;
1128 pd = pmap_pde(pmap, va);
1129 *pd = 0;
1132 KKASSERT(pmap->pm_stats.resident_count > 0);
1133 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1135 if (pmap->pm_ptphint == m)
1136 pmap->pm_ptphint = NULL;
1138 if (m->pindex < NUPT_TOTAL) {
1139 /* We just released a PT, unhold the matching PD */
1140 vm_page_t pdpg;
1142 pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) &
1143 VPTE_FRAME);
1144 pmap_unwire_pgtable(pmap, va, pdpg);
1146 if (m->pindex >= NUPT_TOTAL &&
1147 m->pindex < (NUPT_TOTAL + NUPD_TOTAL)) {
1148 /* We just released a PD, unhold the matching PDP */
1149 vm_page_t pdppg;
1151 pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) &
1152 VPTE_FRAME);
1153 pmap_unwire_pgtable(pmap, va, pdppg);
1157 * This was our last wire, the page had better be unwired
1158 * after we decrement wire_count.
1160 * FUTURE NOTE: shared page directory page could result in
1161 * multiple wire counts.
1163 vm_page_unwire(m, 0);
1164 KKASSERT(m->wire_count == 0);
1165 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1166 vm_page_flash(m);
1167 vm_page_free(m);
1168 return 1;
1169 } else {
1170 /* XXX SMP race to 1 if not holding vmobj */
1171 vm_page_unwire(m, 0);
1172 vm_page_wakeup(m);
1173 return 0;
1178 * After removing a page table entry, this routine is used to
1179 * conditionally free the page, and manage the hold/wire counts.
1181 * If not NULL the caller owns a wire_count on mpte, so it can't disappear.
1182 * If NULL the caller owns a wire_count on what would be the mpte, we must
1183 * look it up.
1185 static int
1186 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1188 vm_pindex_t ptepindex;
1190 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1192 if (mpte == NULL) {
1194 * page table pages in the kernel_pmap are not managed.
1196 if (pmap == &kernel_pmap)
1197 return(0);
1198 ptepindex = pmap_pt_pindex(va);
1199 if (pmap->pm_ptphint &&
1200 (pmap->pm_ptphint->pindex == ptepindex)) {
1201 mpte = pmap->pm_ptphint;
1202 } else {
1203 mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1204 pmap->pm_ptphint = mpte;
1205 vm_page_wakeup(mpte);
1208 return pmap_unwire_pgtable(pmap, va, mpte);
1212 * Initialize pmap0/vmspace0 . Since process 0 never enters user mode we
1213 * just dummy it up so it works well enough for fork().
1215 * In DragonFly, process pmaps may only be used to manipulate user address
1216 * space, never kernel address space.
1218 void
1219 pmap_pinit0(struct pmap *pmap)
1221 pmap_pinit(pmap);
1225 * Initialize a preallocated and zeroed pmap structure,
1226 * such as one in a vmspace structure.
1228 void
1229 pmap_pinit(struct pmap *pmap)
1231 vm_page_t ptdpg;
1234 * No need to allocate page table space yet but we do need a valid
1235 * page directory table.
1237 if (pmap->pm_pml4 == NULL) {
1238 pmap->pm_pml4 = (pml4_entry_t *)
1239 kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1240 VM_SUBSYS_PML4);
1244 * Allocate an object for the ptes
1246 if (pmap->pm_pteobj == NULL)
1247 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL + 1);
1250 * Allocate the page directory page, unless we already have
1251 * one cached. If we used the cached page the wire_count will
1252 * already be set appropriately.
1254 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1255 ptdpg = vm_page_grab(pmap->pm_pteobj,
1256 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL,
1257 VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1258 VM_ALLOC_ZERO);
1259 pmap->pm_pdirm = ptdpg;
1260 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_WRITEABLE);
1261 vm_page_wire(ptdpg);
1262 vm_page_wakeup(ptdpg);
1263 pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1265 pmap->pm_count = 1;
1266 CPUMASK_ASSZERO(pmap->pm_active);
1267 pmap->pm_ptphint = NULL;
1268 RB_INIT(&pmap->pm_pvroot);
1269 spin_init(&pmap->pm_spin, "pmapinit");
1270 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1271 pmap->pm_stats.resident_count = 1;
1272 pmap->pm_stats.wired_count = 1;
1276 * Clean up a pmap structure so it can be physically freed. This routine
1277 * is called by the vmspace dtor function. A great deal of pmap data is
1278 * left passively mapped to improve vmspace management so we have a bit
1279 * of cleanup work to do here.
1281 * No requirements.
1283 void
1284 pmap_puninit(pmap_t pmap)
1286 vm_page_t p;
1288 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1289 if ((p = pmap->pm_pdirm) != NULL) {
1290 KKASSERT(pmap->pm_pml4 != NULL);
1291 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1292 vm_page_busy_wait(p, TRUE, "pgpun");
1293 vm_page_unwire(p, 0);
1294 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1295 vm_page_free(p);
1296 pmap->pm_pdirm = NULL;
1297 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1298 KKASSERT(pmap->pm_stats.wired_count == 0);
1300 if (pmap->pm_pml4) {
1301 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1302 pmap->pm_pml4 = NULL;
1304 if (pmap->pm_pteobj) {
1305 vm_object_deallocate(pmap->pm_pteobj);
1306 pmap->pm_pteobj = NULL;
1311 * This function is now unused (used to add the pmap to the pmap_list)
1313 void
1314 pmap_pinit2(struct pmap *pmap)
1319 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1320 * 0 on failure (if the procedure had to sleep).
1322 * When asked to remove the page directory page itself, we actually just
1323 * leave it cached so we do not have to incur the SMP inval overhead of
1324 * removing the kernel mapping. pmap_puninit() will take care of it.
1326 static int
1327 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1330 * This code optimizes the case of freeing non-busy
1331 * page-table pages. Those pages are zero now, and
1332 * might as well be placed directly into the zero queue.
1334 if (vm_page_busy_try(p, TRUE)) {
1335 vm_page_sleep_busy(p, TRUE, "pmaprl");
1336 return 1;
1340 * Remove the page table page from the processes address space.
1342 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1344 * We are the pml4 table itself.
1346 /* XXX anything to do here? */
1347 } else if (p->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1349 * We are a PDP page.
1350 * We look for the PML4 entry that points to us.
1352 vm_page_t m4;
1353 pml4_entry_t *pml4;
1354 int idx;
1356 m4 = vm_page_lookup(pmap->pm_pteobj,
1357 NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
1358 KKASSERT(m4 != NULL);
1359 pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1360 idx = (p->pindex - (NUPT_TOTAL + NUPD_TOTAL)) % NPML4EPG;
1361 KKASSERT(pml4[idx] != 0);
1362 if (pml4[idx] == 0)
1363 kprintf("pmap_release: Unmapped PML4\n");
1364 pml4[idx] = 0;
1365 vm_page_unwire_quick(m4);
1366 } else if (p->pindex >= NUPT_TOTAL) {
1368 * We are a PD page.
1369 * We look for the PDP entry that points to us.
1371 vm_page_t m3;
1372 pdp_entry_t *pdp;
1373 int idx;
1375 m3 = vm_page_lookup(pmap->pm_pteobj,
1376 NUPT_TOTAL + NUPD_TOTAL +
1377 (p->pindex - NUPT_TOTAL) / NPDPEPG);
1378 KKASSERT(m3 != NULL);
1379 pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1380 idx = (p->pindex - NUPT_TOTAL) % NPDPEPG;
1381 KKASSERT(pdp[idx] != 0);
1382 if (pdp[idx] == 0)
1383 kprintf("pmap_release: Unmapped PDP %d\n", idx);
1384 pdp[idx] = 0;
1385 vm_page_unwire_quick(m3);
1386 } else {
1387 /* We are a PT page.
1388 * We look for the PD entry that points to us.
1390 vm_page_t m2;
1391 pd_entry_t *pd;
1392 int idx;
1394 m2 = vm_page_lookup(pmap->pm_pteobj,
1395 NUPT_TOTAL + p->pindex / NPDEPG);
1396 KKASSERT(m2 != NULL);
1397 pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1398 idx = p->pindex % NPDEPG;
1399 if (pd[idx] == 0)
1400 kprintf("pmap_release: Unmapped PD %d\n", idx);
1401 pd[idx] = 0;
1402 vm_page_unwire_quick(m2);
1404 KKASSERT(pmap->pm_stats.resident_count > 0);
1405 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1407 if (p->wire_count > 1) {
1408 panic("pmap_release: freeing held pt page "
1409 "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1410 pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1411 p->pindex, NUPT_TOTAL, NUPD_TOTAL, NUPDP_TOTAL);
1414 if (pmap->pm_ptphint == p)
1415 pmap->pm_ptphint = NULL;
1418 * We leave the top-level page table page cached, wired, and mapped in
1419 * the pmap until the dtor function (pmap_puninit()) gets called.
1420 * However, still clean it up.
1422 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1423 bzero(pmap->pm_pml4, PAGE_SIZE);
1424 vm_page_wakeup(p);
1425 } else {
1426 vm_page_unwire(p, 0);
1427 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1428 vm_page_free(p);
1429 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1431 return 0;
1435 * Locate the requested PT, PD, or PDP page table page.
1437 * Returns a busied page, caller must vm_page_wakeup() when done.
1439 static vm_page_t
1440 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1442 vm_page_t m;
1443 vm_page_t pm;
1444 vm_pindex_t pindex;
1445 pt_entry_t *ptep;
1446 pt_entry_t data;
1449 * Find or fabricate a new pagetable page. A non-zero wire_count
1450 * indicates that the page has already been mapped into its parent.
1452 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1453 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1454 if (m->wire_count != 0)
1455 return m;
1458 * Map the page table page into its parent, giving it 1 wire count.
1460 vm_page_wire(m);
1461 vm_page_unmanage(m);
1462 atomic_add_long(&pmap->pm_stats.resident_count, 1);
1463 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1465 data = VM_PAGE_TO_PHYS(m) |
1466 VPTE_RW | VPTE_V | VPTE_U | VPTE_A | VPTE_M | VPTE_WIRED;
1467 atomic_add_long(&pmap->pm_stats.wired_count, 1);
1469 if (ptepindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1471 * Map PDP into the PML4
1473 pindex = ptepindex - (NUPT_TOTAL + NUPD_TOTAL);
1474 pindex &= (NUPDP_TOTAL - 1);
1475 ptep = (pt_entry_t *)pmap->pm_pml4;
1476 pm = NULL;
1477 } else if (ptepindex >= NUPT_TOTAL) {
1479 * Map PD into its PDP
1481 pindex = (ptepindex - NUPT_TOTAL) >> NPDPEPGSHIFT;
1482 pindex += NUPT_TOTAL + NUPD_TOTAL;
1483 pm = _pmap_allocpte(pmap, pindex);
1484 pindex = (ptepindex - NUPT_TOTAL) & (NPDPEPG - 1);
1485 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1486 } else {
1488 * Map PT into its PD
1490 pindex = ptepindex >> NPDPEPGSHIFT;
1491 pindex += NUPT_TOTAL;
1492 pm = _pmap_allocpte(pmap, pindex);
1493 pindex = ptepindex & (NPTEPG - 1);
1494 ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1498 * Install the pte in (pm). (m) prevents races.
1500 ptep += pindex;
1501 data = atomic_swap_long(ptep, data);
1502 if (pm) {
1503 vm_page_wire_quick(pm);
1504 vm_page_wakeup(pm);
1506 pmap->pm_ptphint = pm;
1508 return m;
1512 * Determine the page table page required to access the VA in the pmap
1513 * and allocate it if necessary. Return a held vm_page_t for the page.
1515 * Only used with user pmaps.
1517 static vm_page_t
1518 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1520 vm_pindex_t ptepindex;
1521 vm_page_t m;
1523 ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1526 * Calculate pagetable page index, and return the PT page to
1527 * the caller.
1529 ptepindex = pmap_pt_pindex(va);
1530 m = _pmap_allocpte(pmap, ptepindex);
1532 return m;
1535 /***************************************************
1536 * Pmap allocation/deallocation routines.
1537 ***************************************************/
1540 * Release any resources held by the given physical map.
1541 * Called when a pmap initialized by pmap_pinit is being released.
1542 * Should only be called if the map contains no valid mappings.
1544 static int pmap_release_callback(struct vm_page *p, void *data);
1546 void
1547 pmap_release(struct pmap *pmap)
1549 vm_object_t object = pmap->pm_pteobj;
1550 struct rb_vm_page_scan_info info;
1552 KKASSERT(pmap != &kernel_pmap);
1554 #if defined(DIAGNOSTIC)
1555 if (object->ref_count != 1)
1556 panic("pmap_release: pteobj reference count != 1");
1557 #endif
1559 info.pmap = pmap;
1560 info.object = object;
1562 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1563 ("pmap %p still active! %016jx",
1564 pmap,
1565 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1567 vm_object_hold(object);
1568 do {
1569 info.error = 0;
1570 info.mpte = NULL;
1571 info.limit = object->generation;
1573 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1574 pmap_release_callback, &info);
1575 if (info.error == 0 && info.mpte) {
1576 if (pmap_release_free_page(pmap, info.mpte))
1577 info.error = 1;
1579 } while (info.error);
1581 pmap->pm_ptphint = NULL;
1583 KASSERT((pmap->pm_stats.wired_count == (pmap->pm_pdirm != NULL)),
1584 ("pmap_release: dangling count %p %ld",
1585 pmap, pmap->pm_stats.wired_count));
1587 vm_object_drop(object);
1590 static int
1591 pmap_release_callback(struct vm_page *p, void *data)
1593 struct rb_vm_page_scan_info *info = data;
1595 if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1596 info->mpte = p;
1597 return(0);
1599 if (pmap_release_free_page(info->pmap, p)) {
1600 info->error = 1;
1601 return(-1);
1603 if (info->object->generation != info->limit) {
1604 info->error = 1;
1605 return(-1);
1607 return(0);
1611 * Grow the number of kernel page table entries, if needed.
1613 * kernel_map must be locked exclusively by the caller.
1615 void
1616 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1618 vm_offset_t addr;
1619 vm_paddr_t paddr;
1620 vm_offset_t ptppaddr;
1621 vm_page_t nkpg;
1622 pd_entry_t *pde, newpdir;
1623 pdp_entry_t newpdp;
1625 addr = kend;
1627 vm_object_hold(&kptobj);
1628 if (kernel_vm_end == 0) {
1629 kernel_vm_end = KvaStart;
1630 nkpt = 0;
1631 while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1632 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1633 nkpt++;
1634 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1635 kernel_vm_end = kernel_map.max_offset;
1636 break;
1640 addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1641 if (addr - 1 >= kernel_map.max_offset)
1642 addr = kernel_map.max_offset;
1643 while (kernel_vm_end < addr) {
1644 pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1645 if (pde == NULL) {
1646 /* We need a new PDP entry */
1647 nkpg = vm_page_alloc(&kptobj, nkpt,
1648 VM_ALLOC_NORMAL |
1649 VM_ALLOC_SYSTEM |
1650 VM_ALLOC_INTERRUPT);
1651 if (nkpg == NULL) {
1652 panic("pmap_growkernel: no memory to "
1653 "grow kernel");
1655 paddr = VM_PAGE_TO_PHYS(nkpg);
1656 pmap_zero_page(paddr);
1657 newpdp = (pdp_entry_t)(paddr |
1658 VPTE_V | VPTE_RW | VPTE_U |
1659 VPTE_A | VPTE_M | VPTE_WIRED);
1660 *pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1661 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1662 nkpt++;
1663 continue; /* try again */
1665 if ((*pde & VPTE_V) != 0) {
1666 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1667 ~(PAGE_SIZE * NPTEPG - 1);
1668 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1669 kernel_vm_end = kernel_map.max_offset;
1670 break;
1672 continue;
1676 * This index is bogus, but out of the way
1678 nkpg = vm_page_alloc(&kptobj, nkpt,
1679 VM_ALLOC_NORMAL |
1680 VM_ALLOC_SYSTEM |
1681 VM_ALLOC_INTERRUPT);
1682 if (nkpg == NULL)
1683 panic("pmap_growkernel: no memory to grow kernel");
1685 vm_page_wire(nkpg);
1686 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1687 pmap_zero_page(ptppaddr);
1688 newpdir = (pd_entry_t)(ptppaddr |
1689 VPTE_V | VPTE_RW | VPTE_U |
1690 VPTE_A | VPTE_M | VPTE_WIRED);
1691 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1692 atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1693 nkpt++;
1695 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1696 ~(PAGE_SIZE * NPTEPG - 1);
1697 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1698 kernel_vm_end = kernel_map.max_offset;
1699 break;
1702 vm_object_drop(&kptobj);
1706 * Add a reference to the specified pmap.
1708 * No requirements.
1710 void
1711 pmap_reference(pmap_t pmap)
1713 if (pmap)
1714 atomic_add_int(&pmap->pm_count, 1);
1717 /************************************************************************
1718 * VMSPACE MANAGEMENT *
1719 ************************************************************************
1721 * The VMSPACE management we do in our virtual kernel must be reflected
1722 * in the real kernel. This is accomplished by making vmspace system
1723 * calls to the real kernel.
1725 void
1726 cpu_vmspace_alloc(struct vmspace *vm)
1728 int r;
1729 void *rp;
1730 vpte_t vpte;
1733 * If VMM enable, don't do nothing, we
1734 * are able to use real page tables
1736 if (vmm_enabled)
1737 return;
1739 #define USER_SIZE (VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1741 if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1742 panic("vmspace_create() failed");
1744 rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1745 PROT_READ|PROT_WRITE|PROT_EXEC,
1746 MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1747 MemImageFd, 0);
1748 if (rp == MAP_FAILED)
1749 panic("vmspace_mmap: failed");
1750 vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1751 MADV_NOSYNC, 0);
1752 vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) |
1753 VPTE_RW | VPTE_V | VPTE_U;
1754 r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1755 MADV_SETMAP, vpte);
1756 if (r < 0)
1757 panic("vmspace_mcontrol: failed");
1760 void
1761 cpu_vmspace_free(struct vmspace *vm)
1764 * If VMM enable, don't do nothing, we
1765 * are able to use real page tables
1767 if (vmm_enabled)
1768 return;
1770 if (vmspace_destroy(&vm->vm_pmap) < 0)
1771 panic("vmspace_destroy() failed");
1774 /***************************************************
1775 * page management routines.
1776 ***************************************************/
1779 * free the pv_entry back to the free list. This function may be
1780 * called from an interrupt.
1782 static __inline void
1783 free_pv_entry(pv_entry_t pv)
1785 atomic_add_int(&pv_entry_count, -1);
1786 KKASSERT(pv_entry_count >= 0);
1787 zfree(pvzone, pv);
1791 * get a new pv_entry, allocating a block from the system
1792 * when needed. This function may be called from an interrupt.
1794 static pv_entry_t
1795 get_pv_entry(void)
1797 atomic_add_int(&pv_entry_count, 1);
1798 if (pv_entry_high_water &&
1799 (pv_entry_count > pv_entry_high_water) &&
1800 atomic_swap_int(&pmap_pagedaemon_waken, 1) == 0) {
1801 wakeup(&vm_pages_needed);
1803 return zalloc(pvzone);
1807 * This routine is very drastic, but can save the system
1808 * in a pinch.
1810 * No requirements.
1812 void
1813 pmap_collect(void)
1815 int i;
1816 vm_page_t m;
1817 static int warningdone=0;
1819 if (pmap_pagedaemon_waken == 0)
1820 return;
1821 pmap_pagedaemon_waken = 0;
1823 if (warningdone < 5) {
1824 kprintf("pmap_collect: collecting pv entries -- "
1825 "suggest increasing PMAP_SHPGPERPROC\n");
1826 warningdone++;
1829 for (i = 0; i < vm_page_array_size; i++) {
1830 m = &vm_page_array[i];
1831 if (m->wire_count || m->hold_count)
1832 continue;
1833 if (vm_page_busy_try(m, TRUE) == 0) {
1834 if (m->wire_count == 0 && m->hold_count == 0) {
1835 pmap_remove_all(m);
1837 vm_page_wakeup(m);
1844 * If it is the first entry on the list, it is actually
1845 * in the header and we must copy the following entry up
1846 * to the header. Otherwise we must search the list for
1847 * the entry. In either case we free the now unused entry.
1849 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1851 static int
1852 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1854 pv_entry_t pv;
1855 int rtval;
1857 vm_page_spin_lock(m);
1858 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, va);
1861 * Note that pv_ptem is NULL if the page table page itself is not
1862 * managed, even if the page being removed IS managed.
1864 rtval = 0;
1865 if (pv) {
1866 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1867 if (TAILQ_EMPTY(&m->md.pv_list))
1868 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1869 m->md.pv_list_count--;
1870 KKASSERT(m->md.pv_list_count >= 0);
1871 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
1872 atomic_add_int(&pmap->pm_generation, 1);
1873 vm_page_spin_unlock(m);
1874 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1875 free_pv_entry(pv);
1876 } else {
1877 vm_page_spin_unlock(m);
1878 kprintf("pmap_remove_entry: could not find "
1879 "pmap=%p m=%p va=%016jx\n",
1880 pmap, m, va);
1882 return rtval;
1886 * Create a pv entry for page at pa for (pmap, va). If the page table page
1887 * holding the VA is managed, mpte will be non-NULL.
1889 * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1891 static void
1892 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1893 pv_entry_t pv)
1895 pv->pv_va = va;
1896 pv->pv_pmap = pmap;
1897 pv->pv_ptem = mpte;
1899 m->md.pv_list_count++;
1900 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1901 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pv);
1902 vm_page_flag_set(m, PG_MAPPED);
1903 KKASSERT(pv == NULL);
1907 * pmap_remove_pte: do the things to unmap a page in a process
1909 * Caller holds pmap->pm_pteobj and holds the associated page table
1910 * page busy to prevent races.
1912 static int
1913 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, pt_entry_t oldpte,
1914 vm_offset_t va)
1916 vm_page_t m;
1917 int error;
1919 if (ptq)
1920 oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1922 if (oldpte & VPTE_WIRED)
1923 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1924 KKASSERT(pmap->pm_stats.wired_count >= 0);
1926 #if 0
1928 * Machines that don't support invlpg, also don't support
1929 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1930 * the SMP case.
1932 if (oldpte & PG_G)
1933 cpu_invlpg((void *)va);
1934 #endif
1935 KKASSERT(pmap->pm_stats.resident_count > 0);
1936 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1937 if (oldpte & VPTE_MANAGED) {
1938 m = PHYS_TO_VM_PAGE(oldpte);
1941 * NOTE: pmap_remove_entry() will spin-lock the page
1943 if (oldpte & VPTE_M) {
1944 #if defined(PMAP_DIAGNOSTIC)
1945 if (pmap_nw_modified(oldpte)) {
1946 kprintf("pmap_remove: modified page not "
1947 "writable: va: 0x%lx, pte: 0x%lx\n",
1948 va, oldpte);
1950 #endif
1951 if (pmap_track_modified(pmap, va))
1952 vm_page_dirty(m);
1954 if (oldpte & VPTE_A)
1955 vm_page_flag_set(m, PG_REFERENCED);
1956 error = pmap_remove_entry(pmap, m, va);
1957 } else {
1958 error = pmap_unuse_pt(pmap, va, NULL);
1960 return error;
1964 * pmap_remove_page:
1966 * Remove a single page from a process address space.
1968 * This function may not be called from an interrupt if the pmap is
1969 * not kernel_pmap.
1971 * Caller holds pmap->pm_pteobj
1973 static void
1974 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1976 pt_entry_t *pte;
1978 pte = pmap_pte(pmap, va);
1979 if (pte == NULL)
1980 return;
1981 if ((*pte & VPTE_V) == 0)
1982 return;
1983 pmap_remove_pte(pmap, pte, 0, va);
1987 * Remove the given range of addresses from the specified map.
1989 * It is assumed that the start and end are properly rounded to
1990 * the page size.
1992 * This function may not be called from an interrupt if the pmap is
1993 * not kernel_pmap.
1995 * No requirements.
1997 void
1998 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2000 vm_offset_t va_next;
2001 pml4_entry_t *pml4e;
2002 pdp_entry_t *pdpe;
2003 pd_entry_t ptpaddr, *pde;
2004 pt_entry_t *pte;
2005 vm_page_t pt_m;
2007 if (pmap == NULL)
2008 return;
2010 vm_object_hold(pmap->pm_pteobj);
2011 KKASSERT(pmap->pm_stats.resident_count >= 0);
2012 if (pmap->pm_stats.resident_count == 0) {
2013 vm_object_drop(pmap->pm_pteobj);
2014 return;
2018 * special handling of removing one page. a very
2019 * common operation and easy to short circuit some
2020 * code.
2022 if (sva + PAGE_SIZE == eva) {
2023 pde = pmap_pde(pmap, sva);
2024 if (pde && (*pde & VPTE_PS) == 0) {
2025 pmap_remove_page(pmap, sva);
2026 vm_object_drop(pmap->pm_pteobj);
2027 return;
2031 for (; sva < eva; sva = va_next) {
2032 pml4e = pmap_pml4e(pmap, sva);
2033 if ((*pml4e & VPTE_V) == 0) {
2034 va_next = (sva + NBPML4) & ~PML4MASK;
2035 if (va_next < sva)
2036 va_next = eva;
2037 continue;
2040 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2041 if ((*pdpe & VPTE_V) == 0) {
2042 va_next = (sva + NBPDP) & ~PDPMASK;
2043 if (va_next < sva)
2044 va_next = eva;
2045 continue;
2049 * Calculate index for next page table.
2051 va_next = (sva + NBPDR) & ~PDRMASK;
2052 if (va_next < sva)
2053 va_next = eva;
2055 pde = pmap_pdpe_to_pde(pdpe, sva);
2056 ptpaddr = *pde;
2059 * Weed out invalid mappings.
2061 if (ptpaddr == 0)
2062 continue;
2065 * Check for large page.
2067 if ((ptpaddr & VPTE_PS) != 0) {
2068 /* JG FreeBSD has more complex treatment here */
2069 KKASSERT(*pde != 0);
2070 pmap_inval_pde(pde, pmap, sva);
2071 atomic_add_long(&pmap->pm_stats.resident_count,
2072 -NBPDR / PAGE_SIZE);
2073 continue;
2077 * Limit our scan to either the end of the va represented
2078 * by the current page table page, or to the end of the
2079 * range being removed.
2081 if (va_next > eva)
2082 va_next = eva;
2085 * NOTE: pmap_remove_pte() can block.
2087 pt_m = pmap_hold_pt_page(pde, sva);
2088 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2089 sva += PAGE_SIZE) {
2090 if (*pte) {
2091 if (pmap_remove_pte(pmap, pte, 0, sva))
2092 break;
2095 vm_page_unhold(pt_m);
2097 vm_object_drop(pmap->pm_pteobj);
2101 * Removes this physical page from all physical maps in which it resides.
2102 * Reflects back modify bits to the pager.
2104 * This routine may not be called from an interrupt.
2106 * No requirements.
2108 static void
2109 pmap_remove_all(vm_page_t m)
2111 pt_entry_t *pte, tpte;
2112 pv_entry_t pv;
2113 vm_object_t pmobj;
2114 pmap_t pmap;
2116 #if defined(PMAP_DIAGNOSTIC)
2118 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2119 * pages!
2121 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2122 panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2124 #endif
2126 restart:
2127 vm_page_spin_lock(m);
2128 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2129 pmap = pv->pv_pmap;
2130 pmobj = pmap->pm_pteobj;
2133 * Handle reversed lock ordering
2135 if (vm_object_hold_try(pmobj) == 0) {
2136 refcount_acquire(&pmobj->hold_count);
2137 vm_page_spin_unlock(m);
2138 vm_object_lock(pmobj);
2139 vm_page_spin_lock(m);
2140 if (pv != TAILQ_FIRST(&m->md.pv_list) ||
2141 pmap != pv->pv_pmap ||
2142 pmobj != pmap->pm_pteobj) {
2143 vm_page_spin_unlock(m);
2144 vm_object_drop(pmobj);
2145 goto restart;
2149 KKASSERT(pmap->pm_stats.resident_count > 0);
2150 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2152 pte = pmap_pte(pmap, pv->pv_va);
2153 KKASSERT(pte != NULL);
2155 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2156 if (tpte & VPTE_WIRED)
2157 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2158 KKASSERT(pmap->pm_stats.wired_count >= 0);
2160 if (tpte & VPTE_A)
2161 vm_page_flag_set(m, PG_REFERENCED);
2164 * Update the vm_page_t clean and reference bits.
2166 if (tpte & VPTE_M) {
2167 #if defined(PMAP_DIAGNOSTIC)
2168 if (pmap_nw_modified(tpte)) {
2169 kprintf(
2170 "pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2171 pv->pv_va, tpte);
2173 #endif
2174 if (pmap_track_modified(pmap, pv->pv_va))
2175 vm_page_dirty(m);
2177 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2178 if (TAILQ_EMPTY(&m->md.pv_list))
2179 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2180 m->md.pv_list_count--;
2181 KKASSERT(m->md.pv_list_count >= 0);
2182 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2183 atomic_add_int(&pmap->pm_generation, 1);
2184 vm_page_spin_unlock(m);
2185 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2186 free_pv_entry(pv);
2188 vm_object_drop(pmobj);
2189 vm_page_spin_lock(m);
2191 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2192 vm_page_spin_unlock(m);
2196 * Removes the page from a particular pmap
2198 void
2199 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2201 pt_entry_t *pte, tpte;
2202 pv_entry_t pv;
2204 vm_object_hold(pmap->pm_pteobj);
2205 again:
2206 vm_page_spin_lock(m);
2207 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2208 if (pv->pv_pmap != pmap)
2209 continue;
2211 KKASSERT(pmap->pm_stats.resident_count > 0);
2212 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2214 pte = pmap_pte(pmap, pv->pv_va);
2215 KKASSERT(pte != NULL);
2217 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2218 if (tpte & VPTE_WIRED)
2219 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2220 KKASSERT(pmap->pm_stats.wired_count >= 0);
2222 if (tpte & VPTE_A)
2223 vm_page_flag_set(m, PG_REFERENCED);
2226 * Update the vm_page_t clean and reference bits.
2228 if (tpte & VPTE_M) {
2229 if (pmap_track_modified(pmap, pv->pv_va))
2230 vm_page_dirty(m);
2232 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2233 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2234 atomic_add_int(&pmap->pm_generation, 1);
2235 m->md.pv_list_count--;
2236 KKASSERT(m->md.pv_list_count >= 0);
2237 if (TAILQ_EMPTY(&m->md.pv_list))
2238 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2239 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2240 vm_page_spin_unlock(m);
2241 free_pv_entry(pv);
2242 goto again;
2244 vm_page_spin_unlock(m);
2245 vm_object_drop(pmap->pm_pteobj);
2249 * Set the physical protection on the specified range of this map
2250 * as requested.
2252 * This function may not be called from an interrupt if the map is
2253 * not the kernel_pmap.
2255 * No requirements.
2257 void
2258 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2260 vm_offset_t va_next;
2261 pml4_entry_t *pml4e;
2262 pdp_entry_t *pdpe;
2263 pd_entry_t ptpaddr, *pde;
2264 pt_entry_t *pte;
2265 vm_page_t pt_m;
2267 if (pmap == NULL)
2268 return;
2270 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
2271 pmap_remove(pmap, sva, eva);
2272 return;
2275 if (prot & VM_PROT_WRITE)
2276 return;
2278 vm_object_hold(pmap->pm_pteobj);
2280 for (; sva < eva; sva = va_next) {
2281 pml4e = pmap_pml4e(pmap, sva);
2282 if ((*pml4e & VPTE_V) == 0) {
2283 va_next = (sva + NBPML4) & ~PML4MASK;
2284 if (va_next < sva)
2285 va_next = eva;
2286 continue;
2289 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2290 if ((*pdpe & VPTE_V) == 0) {
2291 va_next = (sva + NBPDP) & ~PDPMASK;
2292 if (va_next < sva)
2293 va_next = eva;
2294 continue;
2297 va_next = (sva + NBPDR) & ~PDRMASK;
2298 if (va_next < sva)
2299 va_next = eva;
2301 pde = pmap_pdpe_to_pde(pdpe, sva);
2302 ptpaddr = *pde;
2304 #if 0
2306 * Check for large page.
2308 if ((ptpaddr & VPTE_PS) != 0) {
2309 /* JG correct? */
2310 pmap_clean_pde(pde, pmap, sva);
2311 atomic_add_long(&pmap->pm_stats.resident_count,
2312 -NBPDR / PAGE_SIZE);
2313 continue;
2315 #endif
2318 * Weed out invalid mappings. Note: we assume that the page
2319 * directory table is always allocated, and in kernel virtual.
2321 if (ptpaddr == 0)
2322 continue;
2324 if (va_next > eva)
2325 va_next = eva;
2327 pt_m = pmap_hold_pt_page(pde, sva);
2328 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2329 sva += PAGE_SIZE) {
2331 * Clean managed pages and also check the accessed
2332 * bit. Just remove write perms for unmanaged
2333 * pages. Be careful of races, turning off write
2334 * access will force a fault rather then setting
2335 * the modified bit at an unexpected time.
2337 pmap_clean_pte(pte, pmap, sva, NULL);
2339 vm_page_unhold(pt_m);
2341 vm_object_drop(pmap->pm_pteobj);
2345 * Enter a managed page into a pmap. If the page is not wired related pmap
2346 * data can be destroyed at any time for later demand-operation.
2348 * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2349 * specified protection, and wire the mapping if requested.
2351 * NOTE: This routine may not lazy-evaluate or lose information. The
2352 * page must actually be inserted into the given map NOW.
2354 * NOTE: When entering a page at a KVA address, the pmap must be the
2355 * kernel_pmap.
2357 * No requirements.
2359 void
2360 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2361 boolean_t wired, vm_map_entry_t entry __unused)
2363 vm_paddr_t pa;
2364 pv_entry_t pv;
2365 pt_entry_t *pte;
2366 pt_entry_t origpte, newpte;
2367 vm_paddr_t opa;
2368 vm_page_t mpte;
2370 if (pmap == NULL)
2371 return;
2373 va = trunc_page(va);
2375 vm_object_hold(pmap->pm_pteobj);
2378 * Get the page table page. The kernel_pmap's page table pages
2379 * are preallocated and have no associated vm_page_t.
2381 * If not NULL, mpte will be busied and we must vm_page_wakeup()
2382 * to cleanup. There will already be at least one wire count from
2383 * it being mapped into its parent.
2385 if (pmap == &kernel_pmap) {
2386 mpte = NULL;
2387 pte = vtopte(va);
2388 } else {
2389 mpte = pmap_allocpte(pmap, va);
2390 pte = (void *)PHYS_TO_DMAP(mpte->phys_addr);
2391 pte += pmap_pte_index(va);
2395 * Deal with races against the kernel's real MMU by cleaning the
2396 * page, even if we are re-entering the same page.
2398 pa = VM_PAGE_TO_PHYS(m);
2399 origpte = pmap_inval_loadandclear(pte, pmap, va);
2400 /*origpte = pmap_clean_pte(pte, pmap, va, NULL);*/
2401 opa = origpte & VPTE_FRAME;
2403 if (origpte & VPTE_PS)
2404 panic("pmap_enter: attempted pmap_enter on 2MB page");
2406 if ((origpte & (VPTE_MANAGED|VPTE_M)) == (VPTE_MANAGED|VPTE_M)) {
2407 if (pmap_track_modified(pmap, va)) {
2408 vm_page_t om = PHYS_TO_VM_PAGE(opa);
2409 vm_page_dirty(om);
2414 * Mapping has not changed, must be protection or wiring change.
2416 if (origpte && (opa == pa)) {
2418 * Wiring change, just update stats. We don't worry about
2419 * wiring PT pages as they remain resident as long as there
2420 * are valid mappings in them. Hence, if a user page is wired,
2421 * the PT page will be also.
2423 if (wired && ((origpte & VPTE_WIRED) == 0))
2424 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2425 else if (!wired && (origpte & VPTE_WIRED))
2426 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2428 if (origpte & VPTE_MANAGED) {
2429 pa |= VPTE_MANAGED;
2430 KKASSERT(m->flags & PG_MAPPED);
2431 KKASSERT(!(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2432 } else {
2433 KKASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2435 vm_page_spin_lock(m);
2436 goto validate;
2440 * Bump the wire_count for the page table page.
2442 if (mpte)
2443 vm_page_wire_quick(mpte);
2446 * Mapping has changed, invalidate old range and fall through to
2447 * handle validating new mapping. Don't inherit anything from
2448 * oldpte.
2450 if (opa) {
2451 int err;
2452 err = pmap_remove_pte(pmap, NULL, origpte, va);
2453 origpte = 0;
2454 if (err)
2455 panic("pmap_enter: pte vanished, va: 0x%lx", va);
2459 * Enter on the PV list if part of our managed memory. Note that we
2460 * raise IPL while manipulating pv_table since pmap_enter can be
2461 * called at interrupt time.
2463 if (pmap_initialized) {
2464 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2466 * WARNING! We are using m's spin-lock as a
2467 * man's pte lock to interlock against
2468 * pmap_page_protect() operations.
2470 * This is a bad hack (obviously).
2472 pv = get_pv_entry();
2473 vm_page_spin_lock(m);
2474 pmap_insert_entry(pmap, va, mpte, m, pv);
2475 pa |= VPTE_MANAGED;
2476 /* vm_page_spin_unlock(m); */
2477 } else {
2478 vm_page_spin_lock(m);
2480 } else {
2481 vm_page_spin_lock(m);
2485 * Increment counters
2487 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2488 if (wired)
2489 atomic_add_long(&pmap->pm_stats.wired_count, 1);
2491 validate:
2493 * Now validate mapping with desired protection/wiring.
2495 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2496 newpte |= VPTE_A;
2498 if (wired)
2499 newpte |= VPTE_WIRED;
2500 // if (pmap != &kernel_pmap)
2501 newpte |= VPTE_U;
2502 if (newpte & VPTE_RW)
2503 vm_page_flag_set(m, PG_WRITEABLE);
2504 KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2506 origpte = atomic_swap_long(pte, newpte);
2507 if (origpte & VPTE_M) {
2508 kprintf("pmap [M] race @ %016jx\n", va);
2509 atomic_set_long(pte, VPTE_M);
2511 vm_page_spin_unlock(m);
2513 if (mpte)
2514 vm_page_wakeup(mpte);
2515 vm_object_drop(pmap->pm_pteobj);
2519 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2521 * Currently this routine may only be used on user pmaps, not kernel_pmap.
2523 * No requirements.
2525 void
2526 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2528 pmap_enter(pmap, va, m, VM_PROT_READ, 0, NULL);
2532 * Make a temporary mapping for a physical address. This is only intended
2533 * to be used for panic dumps.
2535 * The caller is responsible for calling smp_invltlb().
2537 void *
2538 pmap_kenter_temporary(vm_paddr_t pa, long i)
2540 pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2541 return ((void *)crashdumpmap);
2544 #define MAX_INIT_PT (96)
2547 * This routine preloads the ptes for a given object into the specified pmap.
2548 * This eliminates the blast of soft faults on process startup and
2549 * immediately after an mmap.
2551 * No requirements.
2553 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2555 void
2556 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2557 vm_object_t object, vm_pindex_t pindex,
2558 vm_size_t size, int limit)
2560 struct rb_vm_page_scan_info info;
2561 struct lwp *lp;
2562 vm_size_t psize;
2565 * We can't preinit if read access isn't set or there is no pmap
2566 * or object.
2568 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2569 return;
2572 * We can't preinit if the pmap is not the current pmap
2574 lp = curthread->td_lwp;
2575 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2576 return;
2579 * Misc additional checks
2581 psize = x86_64_btop(size);
2583 if ((object->type != OBJT_VNODE) ||
2584 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2585 (object->resident_page_count > MAX_INIT_PT))) {
2586 return;
2589 if (psize + pindex > object->size) {
2590 if (object->size < pindex)
2591 return;
2592 psize = object->size - pindex;
2595 if (psize == 0)
2596 return;
2599 * Use a red-black scan to traverse the requested range and load
2600 * any valid pages found into the pmap.
2602 * We cannot safely scan the object's memq unless we are in a
2603 * critical section since interrupts can remove pages from objects.
2605 info.start_pindex = pindex;
2606 info.end_pindex = pindex + psize - 1;
2607 info.limit = limit;
2608 info.mpte = NULL;
2609 info.addr = addr;
2610 info.pmap = pmap;
2612 vm_object_hold_shared(object);
2613 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2614 pmap_object_init_pt_callback, &info);
2615 vm_object_drop(object);
2618 static
2620 pmap_object_init_pt_callback(vm_page_t p, void *data)
2622 struct rb_vm_page_scan_info *info = data;
2623 vm_pindex_t rel_index;
2625 * don't allow an madvise to blow away our really
2626 * free pages allocating pv entries.
2628 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2629 vmstats.v_free_count < vmstats.v_free_reserved) {
2630 return(-1);
2634 * Ignore list markers and ignore pages we cannot instantly
2635 * busy (while holding the object token).
2637 if (p->flags & PG_MARKER)
2638 return 0;
2639 if (vm_page_busy_try(p, TRUE))
2640 return 0;
2641 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2642 (p->flags & PG_FICTITIOUS) == 0) {
2643 if ((p->queue - p->pc) == PQ_CACHE)
2644 vm_page_deactivate(p);
2645 rel_index = p->pindex - info->start_pindex;
2646 pmap_enter_quick(info->pmap,
2647 info->addr + x86_64_ptob(rel_index), p);
2649 vm_page_wakeup(p);
2650 return(0);
2654 * Return TRUE if the pmap is in shape to trivially
2655 * pre-fault the specified address.
2657 * Returns FALSE if it would be non-trivial or if a
2658 * pte is already loaded into the slot.
2660 * No requirements.
2663 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2665 pt_entry_t *pte;
2666 pd_entry_t *pde;
2667 int ret;
2669 vm_object_hold(pmap->pm_pteobj);
2670 pde = pmap_pde(pmap, addr);
2671 if (pde == NULL || *pde == 0) {
2672 ret = 0;
2673 } else {
2674 pte = pmap_pde_to_pte(pde, addr);
2675 ret = (*pte) ? 0 : 1;
2677 vm_object_drop(pmap->pm_pteobj);
2679 return (ret);
2683 * Change the wiring attribute for a map/virtual-address pair.
2685 * The mapping must already exist in the pmap.
2686 * No other requirements.
2688 vm_page_t
2689 pmap_unwire(pmap_t pmap, vm_offset_t va)
2691 pt_entry_t *pte;
2692 vm_paddr_t pa;
2693 vm_page_t m;
2695 if (pmap == NULL)
2696 return NULL;
2698 vm_object_hold(pmap->pm_pteobj);
2699 pte = pmap_pte(pmap, va);
2701 if (pte == NULL || (*pte & VPTE_V) == 0) {
2702 vm_object_drop(pmap->pm_pteobj);
2703 return NULL;
2707 * Wiring is not a hardware characteristic so there is no need to
2708 * invalidate TLB. However, in an SMP environment we must use
2709 * a locked bus cycle to update the pte (if we are not using
2710 * the pmap_inval_*() API that is)... it's ok to do this for simple
2711 * wiring changes.
2713 if (pmap_pte_w(pte))
2714 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2715 /* XXX else return NULL so caller doesn't unwire m ? */
2716 atomic_clear_long(pte, VPTE_WIRED);
2718 pa = *pte & VPTE_FRAME;
2719 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
2721 vm_object_drop(pmap->pm_pteobj);
2723 return m;
2727 * Copy the range specified by src_addr/len
2728 * from the source map to the range dst_addr/len
2729 * in the destination map.
2731 * This routine is only advisory and need not do anything.
2733 void
2734 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2735 vm_size_t len, vm_offset_t src_addr)
2738 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2739 * valid through blocking calls, and that's just not going to
2740 * be the case.
2742 * FIXME!
2744 return;
2748 * pmap_zero_page:
2750 * Zero the specified physical page.
2752 * This function may be called from an interrupt and no locking is
2753 * required.
2755 void
2756 pmap_zero_page(vm_paddr_t phys)
2758 vm_offset_t va = PHYS_TO_DMAP(phys);
2760 bzero((void *)va, PAGE_SIZE);
2764 * pmap_zero_page:
2766 * Zero part of a physical page by mapping it into memory and clearing
2767 * its contents with bzero.
2769 * off and size may not cover an area beyond a single hardware page.
2771 void
2772 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2774 vm_offset_t virt = PHYS_TO_DMAP(phys);
2776 bzero((char *)virt + off, size);
2780 * pmap_copy_page:
2782 * Copy the physical page from the source PA to the target PA.
2783 * This function may be called from an interrupt. No locking
2784 * is required.
2786 void
2787 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2789 vm_offset_t src_virt, dst_virt;
2791 src_virt = PHYS_TO_DMAP(src);
2792 dst_virt = PHYS_TO_DMAP(dst);
2793 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2797 * pmap_copy_page_frag:
2799 * Copy the physical page from the source PA to the target PA.
2800 * This function may be called from an interrupt. No locking
2801 * is required.
2803 void
2804 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2806 vm_offset_t src_virt, dst_virt;
2808 src_virt = PHYS_TO_DMAP(src);
2809 dst_virt = PHYS_TO_DMAP(dst);
2810 bcopy((char *)src_virt + (src & PAGE_MASK),
2811 (char *)dst_virt + (dst & PAGE_MASK),
2812 bytes);
2816 * Returns true if the pmap's pv is one of the first 16 pvs linked to
2817 * from this page. This count may be changed upwards or downwards
2818 * in the future; it is only necessary that true be returned for a small
2819 * subset of pmaps for proper page aging.
2821 * No other requirements.
2823 boolean_t
2824 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2826 pv_entry_t pv;
2827 int loops = 0;
2829 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2830 return FALSE;
2832 vm_page_spin_lock(m);
2833 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2834 if (pv->pv_pmap == pmap) {
2835 vm_page_spin_unlock(m);
2836 return TRUE;
2838 loops++;
2839 if (loops >= 16)
2840 break;
2842 vm_page_spin_unlock(m);
2844 return (FALSE);
2848 * Remove all pages from specified address space this aids process
2849 * exit speeds. Also, this code is special cased for current
2850 * process only, but can have the more generic (and slightly slower)
2851 * mode enabled. This is much faster than pmap_remove in the case
2852 * of running down an entire address space.
2854 * No other requirements.
2856 void
2857 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2859 pmap_remove(pmap, sva, eva);
2860 #if 0
2861 pt_entry_t *pte, tpte;
2862 pv_entry_t pv, npv;
2863 vm_page_t m;
2864 int save_generation;
2866 if (pmap->pm_pteobj)
2867 vm_object_hold(pmap->pm_pteobj);
2869 pmap_invalidate_range(pmap, sva, eva);
2871 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2872 if (pv->pv_va >= eva || pv->pv_va < sva) {
2873 npv = TAILQ_NEXT(pv, pv_plist);
2874 continue;
2877 KKASSERT(pmap == pv->pv_pmap);
2879 pte = pmap_pte(pmap, pv->pv_va);
2882 * We cannot remove wired pages from a process' mapping
2883 * at this time
2885 if (*pte & VPTE_WIRED) {
2886 npv = TAILQ_NEXT(pv, pv_plist);
2887 continue;
2889 tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2891 m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2892 vm_page_spin_lock(m);
2894 KASSERT(m < &vm_page_array[vm_page_array_size],
2895 ("pmap_remove_pages: bad tpte %lx", tpte));
2897 KKASSERT(pmap->pm_stats.resident_count > 0);
2898 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2901 * Update the vm_page_t clean and reference bits.
2903 if (tpte & VPTE_M) {
2904 vm_page_dirty(m);
2907 npv = TAILQ_NEXT(pv, pv_plist);
2908 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2909 atomic_add_int(&pmap->pm_generation, 1);
2910 save_generation = pmap->pm_generation;
2911 m->md.pv_list_count--;
2912 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2913 if (TAILQ_EMPTY(&m->md.pv_list))
2914 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2915 vm_page_spin_unlock(m);
2917 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2918 free_pv_entry(pv);
2921 * Restart the scan if we blocked during the unuse or free
2922 * calls and other removals were made.
2924 if (save_generation != pmap->pm_generation) {
2925 kprintf("Warning: pmap_remove_pages race-A avoided\n");
2926 npv = TAILQ_FIRST(&pmap->pm_pvlist);
2929 if (pmap->pm_pteobj)
2930 vm_object_drop(pmap->pm_pteobj);
2931 pmap_remove(pmap, sva, eva);
2932 #endif
2936 * pmap_testbit tests bits in active mappings of a VM page.
2938 static boolean_t
2939 pmap_testbit(vm_page_t m, int bit)
2941 pv_entry_t pv;
2942 pt_entry_t *pte;
2944 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2945 return FALSE;
2947 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2948 return FALSE;
2950 vm_page_spin_lock(m);
2951 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2953 * if the bit being tested is the modified bit, then
2954 * mark clean_map and ptes as never
2955 * modified.
2957 if (bit & (VPTE_A|VPTE_M)) {
2958 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2959 continue;
2962 #if defined(PMAP_DIAGNOSTIC)
2963 if (pv->pv_pmap == NULL) {
2964 kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2965 continue;
2967 #endif
2968 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2969 if (*pte & bit) {
2970 vm_page_spin_unlock(m);
2971 return TRUE;
2974 vm_page_spin_unlock(m);
2975 return (FALSE);
2979 * This routine is used to clear bits in ptes. Certain bits require special
2980 * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2982 * This routine is only called with certain VPTE_* bit combinations.
2984 static __inline void
2985 pmap_clearbit(vm_page_t m, int bit)
2987 pv_entry_t pv;
2988 pt_entry_t *pte;
2989 pt_entry_t pbits;
2990 vm_object_t pmobj;
2991 pmap_t pmap;
2993 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2994 if (bit == VPTE_RW)
2995 vm_page_flag_clear(m, PG_WRITEABLE);
2996 return;
3000 * Loop over all current mappings setting/clearing as appropos If
3001 * setting RO do we need to clear the VAC?
3003 restart:
3004 vm_page_spin_lock(m);
3005 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3007 * Need the pmap object lock(?)
3009 pmap = pv->pv_pmap;
3010 pmobj = pmap->pm_pteobj;
3012 if (vm_object_hold_try(pmobj) == 0) {
3013 refcount_acquire(&pmobj->hold_count);
3014 vm_page_spin_unlock(m);
3015 vm_object_lock(pmobj);
3016 vm_object_drop(pmobj);
3017 goto restart;
3021 * don't write protect pager mappings
3023 if (bit == VPTE_RW) {
3024 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va)) {
3025 vm_object_drop(pmobj);
3026 continue;
3030 #if defined(PMAP_DIAGNOSTIC)
3031 if (pv->pv_pmap == NULL) {
3032 kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3033 vm_object_drop(pmobj);
3034 continue;
3036 #endif
3039 * Careful here. We can use a locked bus instruction to
3040 * clear VPTE_A or VPTE_M safely but we need to synchronize
3041 * with the target cpus when we mess with VPTE_RW.
3043 * On virtual kernels we must force a new fault-on-write
3044 * in the real kernel if we clear the Modify bit ourselves,
3045 * otherwise the real kernel will not get a new fault and
3046 * will never set our Modify bit again.
3048 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3049 if (*pte & bit) {
3050 if (bit == VPTE_RW) {
3052 * We must also clear VPTE_M when clearing
3053 * VPTE_RW and synchronize its state to
3054 * the page.
3056 pbits = pmap_clean_pte(pte, pv->pv_pmap,
3057 pv->pv_va, m);
3058 } else if (bit == VPTE_M) {
3060 * We must invalidate the real-kernel pte
3061 * when clearing VPTE_M bit to force the
3062 * real-kernel to take a new fault to re-set
3063 * VPTE_M.
3065 atomic_clear_long(pte, VPTE_M);
3066 if (*pte & VPTE_RW) {
3067 pmap_invalidate_range(pv->pv_pmap,
3068 pv->pv_va,
3069 pv->pv_va + PAGE_SIZE);
3071 } else if ((bit & (VPTE_RW|VPTE_M)) ==
3072 (VPTE_RW|VPTE_M)) {
3074 * We've been asked to clear W & M, I guess
3075 * the caller doesn't want us to update
3076 * the dirty status of the VM page.
3078 pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va, m);
3079 panic("shouldn't be called");
3080 } else {
3082 * We've been asked to clear bits that do
3083 * not interact with hardware.
3085 atomic_clear_long(pte, bit);
3088 vm_object_drop(pmobj);
3090 if (bit == VPTE_RW)
3091 vm_page_flag_clear(m, PG_WRITEABLE);
3092 vm_page_spin_unlock(m);
3096 * Lower the permission for all mappings to a given page.
3098 * No other requirements.
3100 void
3101 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3103 if ((prot & VM_PROT_WRITE) == 0) {
3104 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3105 pmap_clearbit(m, VPTE_RW);
3106 } else {
3107 pmap_remove_all(m);
3112 vm_paddr_t
3113 pmap_phys_address(vm_pindex_t ppn)
3115 return (x86_64_ptob(ppn));
3119 * Return a count of reference bits for a page, clearing those bits.
3120 * It is not necessary for every reference bit to be cleared, but it
3121 * is necessary that 0 only be returned when there are truly no
3122 * reference bits set.
3124 * XXX: The exact number of bits to check and clear is a matter that
3125 * should be tested and standardized at some point in the future for
3126 * optimal aging of shared pages.
3128 * No other requirements.
3131 pmap_ts_referenced(vm_page_t m)
3133 pv_entry_t pv, pvf, pvn;
3134 pt_entry_t *pte;
3135 int rtval = 0;
3137 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3138 return (rtval);
3140 vm_page_spin_lock(m);
3141 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3142 pvf = pv;
3143 do {
3144 pvn = TAILQ_NEXT(pv, pv_list);
3145 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3146 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3148 if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3149 continue;
3151 pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3153 if (pte && (*pte & VPTE_A)) {
3154 atomic_clear_long(pte, VPTE_A);
3155 rtval++;
3156 if (rtval > 4) {
3157 break;
3160 } while ((pv = pvn) != NULL && pv != pvf);
3162 vm_page_spin_unlock(m);
3164 return (rtval);
3168 * Return whether or not the specified physical page was modified
3169 * in any physical maps.
3171 * No other requirements.
3173 boolean_t
3174 pmap_is_modified(vm_page_t m)
3176 boolean_t res;
3178 res = pmap_testbit(m, VPTE_M);
3180 return (res);
3184 * Clear the modify bits on the specified physical page. For the vkernel
3185 * we really need to clean the page, which clears VPTE_RW and VPTE_M, in
3186 * order to ensure that we take a fault on the next write to the page.
3187 * Otherwise the page may become dirty without us knowing it.
3189 * No other requirements.
3191 void
3192 pmap_clear_modify(vm_page_t m)
3194 pmap_clearbit(m, VPTE_RW);
3198 * Clear the reference bit on the specified physical page.
3200 * No other requirements.
3202 void
3203 pmap_clear_reference(vm_page_t m)
3205 pmap_clearbit(m, VPTE_A);
3209 * Miscellaneous support routines follow
3211 static void
3212 i386_protection_init(void)
3214 uint64_t *kp;
3215 int prot;
3217 kp = protection_codes;
3218 for (prot = 0; prot < 8; prot++) {
3219 if (prot & VM_PROT_READ)
3220 *kp |= 0; /* R */
3221 if (prot & VM_PROT_WRITE)
3222 *kp |= VPTE_RW; /* R+W */
3223 if (prot && (prot & VM_PROT_EXECUTE) == 0)
3224 *kp |= VPTE_NX; /* NX - !executable */
3225 ++kp;
3230 * Sets the memory attribute for the specified page.
3232 void
3233 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3235 /* This is a vkernel, do nothing */
3239 * Change the PAT attribute on an existing kernel memory map. Caller
3240 * must ensure that the virtual memory in question is not accessed
3241 * during the adjustment.
3243 void
3244 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3246 /* This is a vkernel, do nothing */
3250 * Perform the pmap work for mincore
3252 * No other requirements.
3255 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3257 pt_entry_t *ptep, pte;
3258 vm_page_t m;
3259 int val = 0;
3261 vm_object_hold(pmap->pm_pteobj);
3262 ptep = pmap_pte(pmap, addr);
3264 if (ptep && (pte = *ptep) != 0) {
3265 vm_paddr_t pa;
3267 val = MINCORE_INCORE;
3268 if ((pte & VPTE_MANAGED) == 0)
3269 goto done;
3271 pa = pte & VPTE_FRAME;
3273 m = PHYS_TO_VM_PAGE(pa);
3276 * Modified by us
3278 if (pte & VPTE_M)
3279 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3281 * Modified by someone
3283 else if (m->dirty || pmap_is_modified(m))
3284 val |= MINCORE_MODIFIED_OTHER;
3286 * Referenced by us
3288 if (pte & VPTE_A)
3289 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3292 * Referenced by someone
3294 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3295 val |= MINCORE_REFERENCED_OTHER;
3296 vm_page_flag_set(m, PG_REFERENCED);
3299 done:
3300 vm_object_drop(pmap->pm_pteobj);
3302 return val;
3306 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3307 * vmspace will be ref'd and the old one will be deref'd.
3309 * Caller must hold vmspace->vm_map.token for oldvm and newvm
3311 void
3312 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3314 struct vmspace *oldvm;
3315 struct lwp *lp;
3317 oldvm = p->p_vmspace;
3318 if (oldvm != newvm) {
3319 if (adjrefs)
3320 vmspace_ref(newvm);
3321 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3322 p->p_vmspace = newvm;
3323 KKASSERT(p->p_nthreads == 1);
3324 lp = RB_ROOT(&p->p_lwp_tree);
3325 pmap_setlwpvm(lp, newvm);
3326 if (adjrefs)
3327 vmspace_rel(oldvm);
3332 * Set the vmspace for a LWP. The vmspace is almost universally set the
3333 * same as the process vmspace, but virtual kernels need to swap out contexts
3334 * on a per-lwp basis.
3336 void
3337 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3339 struct vmspace *oldvm;
3340 struct pmap *pmap;
3342 oldvm = lp->lwp_vmspace;
3343 if (oldvm != newvm) {
3344 crit_enter();
3345 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3346 lp->lwp_vmspace = newvm;
3347 if (curthread->td_lwp == lp) {
3348 pmap = vmspace_pmap(newvm);
3349 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3350 if (pmap->pm_active_lock & CPULOCK_EXCL)
3351 pmap_interlock_wait(newvm);
3352 #if defined(SWTCH_OPTIM_STATS)
3353 tlb_flush_count++;
3354 #endif
3355 pmap = vmspace_pmap(oldvm);
3356 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3357 mycpu->gd_cpuid);
3359 crit_exit();
3364 * The swtch code tried to switch in a heavy weight process whos pmap
3365 * is locked by another cpu. We have to wait for the lock to clear before
3366 * the pmap can be used.
3368 void
3369 pmap_interlock_wait (struct vmspace *vm)
3371 pmap_t pmap = vmspace_pmap(vm);
3373 if (pmap->pm_active_lock & CPULOCK_EXCL) {
3374 crit_enter();
3375 while (pmap->pm_active_lock & CPULOCK_EXCL) {
3376 cpu_ccfence();
3377 pthread_yield();
3379 crit_exit();
3383 vm_offset_t
3384 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3387 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3388 return addr;
3391 addr = roundup2(addr, NBPDR);
3392 return addr;
3396 * Used by kmalloc/kfree, page already exists at va
3398 vm_page_t
3399 pmap_kvtom(vm_offset_t va)
3401 vpte_t *ptep;
3403 KKASSERT(va >= KvaStart && va < KvaEnd);
3404 ptep = vtopte(va);
3405 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3408 void
3409 pmap_object_init(vm_object_t object)
3411 /* empty */
3414 void
3415 pmap_object_free(vm_object_t object)
3417 /* empty */
3420 void
3421 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3423 pmap_t pmap = pginfo->pmap;
3424 vm_offset_t sva = pginfo->beg_addr;
3425 vm_offset_t eva = pginfo->end_addr;
3426 vm_offset_t va_next;
3427 pml4_entry_t *pml4e;
3428 pdp_entry_t *pdpe;
3429 pd_entry_t ptpaddr, *pde;
3430 pt_entry_t *pte;
3431 vm_page_t pt_m;
3432 int stop = 0;
3434 vm_object_hold(pmap->pm_pteobj);
3436 for (; sva < eva; sva = va_next) {
3437 if (stop)
3438 break;
3440 pml4e = pmap_pml4e(pmap, sva);
3441 if ((*pml4e & VPTE_V) == 0) {
3442 va_next = (sva + NBPML4) & ~PML4MASK;
3443 if (va_next < sva)
3444 va_next = eva;
3445 continue;
3448 pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3449 if ((*pdpe & VPTE_V) == 0) {
3450 va_next = (sva + NBPDP) & ~PDPMASK;
3451 if (va_next < sva)
3452 va_next = eva;
3453 continue;
3456 va_next = (sva + NBPDR) & ~PDRMASK;
3457 if (va_next < sva)
3458 va_next = eva;
3460 pde = pmap_pdpe_to_pde(pdpe, sva);
3461 ptpaddr = *pde;
3463 #if 0
3465 * Check for large page (ignore).
3467 if ((ptpaddr & VPTE_PS) != 0) {
3468 #if 0
3469 pmap_clean_pde(pde, pmap, sva);
3470 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3471 #endif
3472 continue;
3474 #endif
3477 * Weed out invalid mappings. Note: we assume that the page
3478 * directory table is always allocated, and in kernel virtual.
3480 if (ptpaddr == 0)
3481 continue;
3483 if (va_next > eva)
3484 va_next = eva;
3486 pt_m = pmap_hold_pt_page(pde, sva);
3487 for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3488 sva += PAGE_SIZE) {
3489 vm_page_t m;
3491 if (stop)
3492 break;
3493 if ((*pte & VPTE_MANAGED) == 0)
3494 continue;
3496 m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3497 if (vm_page_busy_try(m, TRUE) == 0) {
3498 if (pginfo->callback(pginfo, sva, m) < 0)
3499 stop = 1;
3502 vm_page_unhold(pt_m);
3504 vm_object_drop(pmap->pm_pteobj);