kernel - kqueue - refactor kqueue_scan(), rename tick to ustick
[dragonfly.git] / sys / kern / kern_time.c
blobec55d71427c82e342bf85a5e125b1252d9e13cfc
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.40 2008/04/02 14:16:16 sephe Exp $
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/sysunion.h>
48 #include <sys/proc.h>
49 #include <sys/priv.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/sysctl.h>
53 #include <sys/kern_syscall.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
57 #include <sys/msgport2.h>
58 #include <sys/thread2.h>
59 #include <sys/mplock2.h>
61 struct timezone tz;
64 * Time of day and interval timer support.
66 * These routines provide the kernel entry points to get and set
67 * the time-of-day and per-process interval timers. Subroutines
68 * here provide support for adding and subtracting timeval structures
69 * and decrementing interval timers, optionally reloading the interval
70 * timers when they expire.
73 static int nanosleep1(struct timespec *rqt, struct timespec *rmt);
74 static int settime(struct timeval *);
75 static void timevalfix(struct timeval *);
77 static int sleep_hard_us = 100;
78 SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
80 static int
81 settime(struct timeval *tv)
83 struct timeval delta, tv1, tv2;
84 static struct timeval maxtime, laststep;
85 struct timespec ts;
86 int origcpu;
88 if ((origcpu = mycpu->gd_cpuid) != 0)
89 lwkt_setcpu_self(globaldata_find(0));
91 crit_enter();
92 microtime(&tv1);
93 delta = *tv;
94 timevalsub(&delta, &tv1);
97 * If the system is secure, we do not allow the time to be
98 * set to a value earlier than 1 second less than the highest
99 * time we have yet seen. The worst a miscreant can do in
100 * this circumstance is "freeze" time. He couldn't go
101 * back to the past.
103 * We similarly do not allow the clock to be stepped more
104 * than one second, nor more than once per second. This allows
105 * a miscreant to make the clock march double-time, but no worse.
107 if (securelevel > 1) {
108 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
110 * Update maxtime to latest time we've seen.
112 if (tv1.tv_sec > maxtime.tv_sec)
113 maxtime = tv1;
114 tv2 = *tv;
115 timevalsub(&tv2, &maxtime);
116 if (tv2.tv_sec < -1) {
117 tv->tv_sec = maxtime.tv_sec - 1;
118 kprintf("Time adjustment clamped to -1 second\n");
120 } else {
121 if (tv1.tv_sec == laststep.tv_sec) {
122 crit_exit();
123 return (EPERM);
125 if (delta.tv_sec > 1) {
126 tv->tv_sec = tv1.tv_sec + 1;
127 kprintf("Time adjustment clamped to +1 second\n");
129 laststep = *tv;
133 ts.tv_sec = tv->tv_sec;
134 ts.tv_nsec = tv->tv_usec * 1000;
135 set_timeofday(&ts);
136 crit_exit();
138 if (origcpu != 0)
139 lwkt_setcpu_self(globaldata_find(origcpu));
141 resettodr();
142 return (0);
146 * MPSAFE
149 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
151 int error = 0;
153 switch(clock_id) {
154 case CLOCK_REALTIME:
155 nanotime(ats);
156 break;
157 case CLOCK_MONOTONIC:
158 nanouptime(ats);
159 break;
160 default:
161 error = EINVAL;
162 break;
164 return (error);
168 * MPSAFE
171 sys_clock_gettime(struct clock_gettime_args *uap)
173 struct timespec ats;
174 int error;
176 error = kern_clock_gettime(uap->clock_id, &ats);
177 if (error == 0)
178 error = copyout(&ats, uap->tp, sizeof(ats));
180 return (error);
184 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
186 struct thread *td = curthread;
187 struct timeval atv;
188 int error;
190 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
191 return (error);
192 if (clock_id != CLOCK_REALTIME)
193 return (EINVAL);
194 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
195 return (EINVAL);
197 TIMESPEC_TO_TIMEVAL(&atv, ats);
198 error = settime(&atv);
199 return (error);
203 * MPALMOSTSAFE
206 sys_clock_settime(struct clock_settime_args *uap)
208 struct timespec ats;
209 int error;
211 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
212 return (error);
214 get_mplock();
215 error = kern_clock_settime(uap->clock_id, &ats);
216 rel_mplock();
217 return (error);
221 * MPSAFE
224 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
226 int error;
228 switch(clock_id) {
229 case CLOCK_REALTIME:
230 case CLOCK_MONOTONIC:
232 * Round up the result of the division cheaply
233 * by adding 1. Rounding up is especially important
234 * if rounding down would give 0. Perfect rounding
235 * is unimportant.
237 ts->tv_sec = 0;
238 ts->tv_nsec = 1000000000 / sys_cputimer->freq + 1;
239 error = 0;
240 break;
241 default:
242 error = EINVAL;
243 break;
246 return(error);
250 * MPSAFE
253 sys_clock_getres(struct clock_getres_args *uap)
255 int error;
256 struct timespec ts;
258 error = kern_clock_getres(uap->clock_id, &ts);
259 if (error == 0)
260 error = copyout(&ts, uap->tp, sizeof(ts));
262 return (error);
266 * nanosleep1()
268 * This is a general helper function for nanosleep() (aka sleep() aka
269 * usleep()).
271 * If there is less then one tick's worth of time left and
272 * we haven't done a yield, or the remaining microseconds is
273 * ridiculously low, do a yield. This avoids having
274 * to deal with systimer overheads when the system is under
275 * heavy loads. If we have done a yield already then use
276 * a systimer and an uninterruptable thread wait.
278 * If there is more then a tick's worth of time left,
279 * calculate the baseline ticks and use an interruptable
280 * tsleep, then handle the fine-grained delay on the next
281 * loop. This usually results in two sleeps occuring, a long one
282 * and a short one.
284 * MPSAFE
286 static void
287 ns1_systimer(systimer_t info)
289 lwkt_schedule(info->data);
292 static int
293 nanosleep1(struct timespec *rqt, struct timespec *rmt)
295 static int nanowait;
296 struct timespec ts, ts2, ts3;
297 struct timeval tv;
298 int error;
299 int tried_yield;
301 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
302 return (EINVAL);
303 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
304 return (0);
305 nanouptime(&ts);
306 timespecadd(&ts, rqt); /* ts = target timestamp compare */
307 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
308 tried_yield = 0;
310 for (;;) {
311 int ticks;
312 struct systimer info;
314 ticks = tv.tv_usec / ustick; /* approximate */
316 if (tv.tv_sec == 0 && ticks == 0) {
317 thread_t td = curthread;
318 if (tried_yield || tv.tv_usec < sleep_hard_us) {
319 tried_yield = 0;
320 uio_yield();
321 } else {
322 crit_enter_quick(td);
323 systimer_init_oneshot(&info, ns1_systimer,
324 td, tv.tv_usec);
325 lwkt_deschedule_self(td);
326 crit_exit_quick(td);
327 lwkt_switch();
328 systimer_del(&info); /* make sure it's gone */
330 error = iscaught(td->td_lwp);
331 } else if (tv.tv_sec == 0) {
332 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
333 } else {
334 ticks = tvtohz_low(&tv); /* also handles overflow */
335 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
337 nanouptime(&ts2);
338 if (error && error != EWOULDBLOCK) {
339 if (error == ERESTART)
340 error = EINTR;
341 if (rmt != NULL) {
342 timespecsub(&ts, &ts2);
343 if (ts.tv_sec < 0)
344 timespecclear(&ts);
345 *rmt = ts;
347 return (error);
349 if (timespeccmp(&ts2, &ts, >=))
350 return (0);
351 ts3 = ts;
352 timespecsub(&ts3, &ts2);
353 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
358 * MPSAFE
361 sys_nanosleep(struct nanosleep_args *uap)
363 int error;
364 struct timespec rqt;
365 struct timespec rmt;
367 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
368 if (error)
369 return (error);
371 error = nanosleep1(&rqt, &rmt);
374 * copyout the residual if nanosleep was interrupted.
376 if (error && uap->rmtp) {
377 int error2;
379 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
380 if (error2)
381 error = error2;
383 return (error);
387 * MPSAFE
390 sys_gettimeofday(struct gettimeofday_args *uap)
392 struct timeval atv;
393 int error = 0;
395 if (uap->tp) {
396 microtime(&atv);
397 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
398 sizeof (atv))))
399 return (error);
401 if (uap->tzp)
402 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
403 sizeof (tz));
404 return (error);
408 * MPALMOSTSAFE
411 sys_settimeofday(struct settimeofday_args *uap)
413 struct thread *td = curthread;
414 struct timeval atv;
415 struct timezone atz;
416 int error;
418 if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
419 return (error);
420 /* Verify all parameters before changing time. */
421 if (uap->tv) {
422 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
423 sizeof(atv))))
424 return (error);
425 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
426 return (EINVAL);
428 if (uap->tzp &&
429 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
430 return (error);
432 get_mplock();
433 if (uap->tv && (error = settime(&atv))) {
434 rel_mplock();
435 return (error);
437 rel_mplock();
438 if (uap->tzp)
439 tz = atz;
440 return (0);
443 static void
444 kern_adjtime_common(void)
446 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
447 (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
448 ntp_tick_delta = ntp_delta;
449 else if (ntp_delta > ntp_big_delta)
450 ntp_tick_delta = 10 * ntp_default_tick_delta;
451 else if (ntp_delta < -ntp_big_delta)
452 ntp_tick_delta = -10 * ntp_default_tick_delta;
453 else if (ntp_delta > 0)
454 ntp_tick_delta = ntp_default_tick_delta;
455 else
456 ntp_tick_delta = -ntp_default_tick_delta;
459 void
460 kern_adjtime(int64_t delta, int64_t *odelta)
462 int origcpu;
464 if ((origcpu = mycpu->gd_cpuid) != 0)
465 lwkt_setcpu_self(globaldata_find(0));
467 crit_enter();
468 *odelta = ntp_delta;
469 ntp_delta = delta;
470 kern_adjtime_common();
471 crit_exit();
473 if (origcpu != 0)
474 lwkt_setcpu_self(globaldata_find(origcpu));
477 static void
478 kern_get_ntp_delta(int64_t *delta)
480 int origcpu;
482 if ((origcpu = mycpu->gd_cpuid) != 0)
483 lwkt_setcpu_self(globaldata_find(0));
485 crit_enter();
486 *delta = ntp_delta;
487 crit_exit();
489 if (origcpu != 0)
490 lwkt_setcpu_self(globaldata_find(origcpu));
493 void
494 kern_reladjtime(int64_t delta)
496 int origcpu;
498 if ((origcpu = mycpu->gd_cpuid) != 0)
499 lwkt_setcpu_self(globaldata_find(0));
501 crit_enter();
502 ntp_delta += delta;
503 kern_adjtime_common();
504 crit_exit();
506 if (origcpu != 0)
507 lwkt_setcpu_self(globaldata_find(origcpu));
510 static void
511 kern_adjfreq(int64_t rate)
513 int origcpu;
515 if ((origcpu = mycpu->gd_cpuid) != 0)
516 lwkt_setcpu_self(globaldata_find(0));
518 crit_enter();
519 ntp_tick_permanent = rate;
520 crit_exit();
522 if (origcpu != 0)
523 lwkt_setcpu_self(globaldata_find(origcpu));
527 * MPALMOSTSAFE
530 sys_adjtime(struct adjtime_args *uap)
532 struct thread *td = curthread;
533 struct timeval atv;
534 int64_t ndelta, odelta;
535 int error;
537 if ((error = priv_check(td, PRIV_ADJTIME)))
538 return (error);
539 error = copyin(uap->delta, &atv, sizeof(struct timeval));
540 if (error)
541 return (error);
544 * Compute the total correction and the rate at which to apply it.
545 * Round the adjustment down to a whole multiple of the per-tick
546 * delta, so that after some number of incremental changes in
547 * hardclock(), tickdelta will become zero, lest the correction
548 * overshoot and start taking us away from the desired final time.
550 ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
551 get_mplock();
552 kern_adjtime(ndelta, &odelta);
553 rel_mplock();
555 if (uap->olddelta) {
556 atv.tv_sec = odelta / 1000000000;
557 atv.tv_usec = odelta % 1000000000 / 1000;
558 copyout(&atv, uap->olddelta, sizeof(struct timeval));
560 return (0);
563 static int
564 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
566 int64_t delta;
567 int error;
569 if (req->newptr != NULL) {
570 if (priv_check(curthread, PRIV_ROOT))
571 return (EPERM);
572 error = SYSCTL_IN(req, &delta, sizeof(delta));
573 if (error)
574 return (error);
575 kern_reladjtime(delta);
578 if (req->oldptr)
579 kern_get_ntp_delta(&delta);
580 error = SYSCTL_OUT(req, &delta, sizeof(delta));
581 return (error);
585 * delta is in nanoseconds.
587 static int
588 sysctl_delta(SYSCTL_HANDLER_ARGS)
590 int64_t delta, old_delta;
591 int error;
593 if (req->newptr != NULL) {
594 if (priv_check(curthread, PRIV_ROOT))
595 return (EPERM);
596 error = SYSCTL_IN(req, &delta, sizeof(delta));
597 if (error)
598 return (error);
599 kern_adjtime(delta, &old_delta);
602 if (req->oldptr != NULL)
603 kern_get_ntp_delta(&old_delta);
604 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
605 return (error);
609 * frequency is in nanoseconds per second shifted left 32.
610 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
612 static int
613 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
615 int64_t freqdelta;
616 int error;
618 if (req->newptr != NULL) {
619 if (priv_check(curthread, PRIV_ROOT))
620 return (EPERM);
621 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
622 if (error)
623 return (error);
625 freqdelta /= hz;
626 kern_adjfreq(freqdelta);
629 if (req->oldptr != NULL)
630 freqdelta = ntp_tick_permanent * hz;
631 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
632 if (error)
633 return (error);
635 return (0);
638 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
639 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
640 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
641 sysctl_adjfreq, "Q", "permanent correction per second");
642 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
643 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
644 sysctl_delta, "Q", "one-time delta");
645 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
646 &ntp_big_delta, sizeof(ntp_big_delta), "Q",
647 "threshold for fast adjustment");
648 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
649 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
650 "per-tick adjustment");
651 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
652 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
653 "default per-tick adjustment");
654 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
655 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
656 "next leap second");
657 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
658 &ntp_leap_insert, 0, "insert or remove leap second");
659 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
660 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
661 sysctl_adjtime, "Q", "relative adjust for delta");
664 * Get value of an interval timer. The process virtual and
665 * profiling virtual time timers are kept in the p_stats area, since
666 * they can be swapped out. These are kept internally in the
667 * way they are specified externally: in time until they expire.
669 * The real time interval timer is kept in the process table slot
670 * for the process, and its value (it_value) is kept as an
671 * absolute time rather than as a delta, so that it is easy to keep
672 * periodic real-time signals from drifting.
674 * Virtual time timers are processed in the hardclock() routine of
675 * kern_clock.c. The real time timer is processed by a timeout
676 * routine, called from the softclock() routine. Since a callout
677 * may be delayed in real time due to interrupt processing in the system,
678 * it is possible for the real time timeout routine (realitexpire, given below),
679 * to be delayed in real time past when it is supposed to occur. It
680 * does not suffice, therefore, to reload the real timer .it_value from the
681 * real time timers .it_interval. Rather, we compute the next time in
682 * absolute time the timer should go off.
684 * MPALMOSTSAFE
687 sys_getitimer(struct getitimer_args *uap)
689 struct proc *p = curproc;
690 struct timeval ctv;
691 struct itimerval aitv;
693 if (uap->which > ITIMER_PROF)
694 return (EINVAL);
695 get_mplock();
696 crit_enter();
697 if (uap->which == ITIMER_REAL) {
699 * Convert from absolute to relative time in .it_value
700 * part of real time timer. If time for real time timer
701 * has passed return 0, else return difference between
702 * current time and time for the timer to go off.
704 aitv = p->p_realtimer;
705 if (timevalisset(&aitv.it_value)) {
706 getmicrouptime(&ctv);
707 if (timevalcmp(&aitv.it_value, &ctv, <))
708 timevalclear(&aitv.it_value);
709 else
710 timevalsub(&aitv.it_value, &ctv);
712 } else {
713 aitv = p->p_timer[uap->which];
715 crit_exit();
716 rel_mplock();
717 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
721 * MPALMOSTSAFE
724 sys_setitimer(struct setitimer_args *uap)
726 struct itimerval aitv;
727 struct timeval ctv;
728 struct itimerval *itvp;
729 struct proc *p = curproc;
730 int error;
732 if (uap->which > ITIMER_PROF)
733 return (EINVAL);
734 itvp = uap->itv;
735 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
736 sizeof(struct itimerval))))
737 return (error);
738 if ((uap->itv = uap->oitv) &&
739 (error = sys_getitimer((struct getitimer_args *)uap)))
740 return (error);
741 if (itvp == 0)
742 return (0);
743 if (itimerfix(&aitv.it_value))
744 return (EINVAL);
745 if (!timevalisset(&aitv.it_value))
746 timevalclear(&aitv.it_interval);
747 else if (itimerfix(&aitv.it_interval))
748 return (EINVAL);
749 get_mplock();
750 crit_enter();
751 if (uap->which == ITIMER_REAL) {
752 if (timevalisset(&p->p_realtimer.it_value))
753 callout_stop(&p->p_ithandle);
754 if (timevalisset(&aitv.it_value))
755 callout_reset(&p->p_ithandle,
756 tvtohz_high(&aitv.it_value), realitexpire, p);
757 getmicrouptime(&ctv);
758 timevaladd(&aitv.it_value, &ctv);
759 p->p_realtimer = aitv;
760 } else {
761 p->p_timer[uap->which] = aitv;
763 crit_exit();
764 rel_mplock();
765 return (0);
769 * Real interval timer expired:
770 * send process whose timer expired an alarm signal.
771 * If time is not set up to reload, then just return.
772 * Else compute next time timer should go off which is > current time.
773 * This is where delay in processing this timeout causes multiple
774 * SIGALRM calls to be compressed into one.
775 * tvtohz_high() always adds 1 to allow for the time until the next clock
776 * interrupt being strictly less than 1 clock tick, but we don't want
777 * that here since we want to appear to be in sync with the clock
778 * interrupt even when we're delayed.
780 void
781 realitexpire(void *arg)
783 struct proc *p;
784 struct timeval ctv, ntv;
786 p = (struct proc *)arg;
787 ksignal(p, SIGALRM);
788 if (!timevalisset(&p->p_realtimer.it_interval)) {
789 timevalclear(&p->p_realtimer.it_value);
790 return;
792 for (;;) {
793 crit_enter();
794 timevaladd(&p->p_realtimer.it_value,
795 &p->p_realtimer.it_interval);
796 getmicrouptime(&ctv);
797 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
798 ntv = p->p_realtimer.it_value;
799 timevalsub(&ntv, &ctv);
800 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
801 realitexpire, p);
802 crit_exit();
803 return;
805 crit_exit();
810 * Check that a proposed value to load into the .it_value or
811 * .it_interval part of an interval timer is acceptable, and
812 * fix it to have at least minimal value (i.e. if it is less
813 * than the resolution of the clock, round it up.)
815 * MPSAFE
818 itimerfix(struct timeval *tv)
821 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
822 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
823 return (EINVAL);
824 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
825 tv->tv_usec = ustick;
826 return (0);
830 * Decrement an interval timer by a specified number
831 * of microseconds, which must be less than a second,
832 * i.e. < 1000000. If the timer expires, then reload
833 * it. In this case, carry over (usec - old value) to
834 * reduce the value reloaded into the timer so that
835 * the timer does not drift. This routine assumes
836 * that it is called in a context where the timers
837 * on which it is operating cannot change in value.
840 itimerdecr(struct itimerval *itp, int usec)
843 if (itp->it_value.tv_usec < usec) {
844 if (itp->it_value.tv_sec == 0) {
845 /* expired, and already in next interval */
846 usec -= itp->it_value.tv_usec;
847 goto expire;
849 itp->it_value.tv_usec += 1000000;
850 itp->it_value.tv_sec--;
852 itp->it_value.tv_usec -= usec;
853 usec = 0;
854 if (timevalisset(&itp->it_value))
855 return (1);
856 /* expired, exactly at end of interval */
857 expire:
858 if (timevalisset(&itp->it_interval)) {
859 itp->it_value = itp->it_interval;
860 itp->it_value.tv_usec -= usec;
861 if (itp->it_value.tv_usec < 0) {
862 itp->it_value.tv_usec += 1000000;
863 itp->it_value.tv_sec--;
865 } else
866 itp->it_value.tv_usec = 0; /* sec is already 0 */
867 return (0);
871 * Add and subtract routines for timevals.
872 * N.B.: subtract routine doesn't deal with
873 * results which are before the beginning,
874 * it just gets very confused in this case.
875 * Caveat emptor.
877 void
878 timevaladd(struct timeval *t1, const struct timeval *t2)
881 t1->tv_sec += t2->tv_sec;
882 t1->tv_usec += t2->tv_usec;
883 timevalfix(t1);
886 void
887 timevalsub(struct timeval *t1, const struct timeval *t2)
890 t1->tv_sec -= t2->tv_sec;
891 t1->tv_usec -= t2->tv_usec;
892 timevalfix(t1);
895 static void
896 timevalfix(struct timeval *t1)
899 if (t1->tv_usec < 0) {
900 t1->tv_sec--;
901 t1->tv_usec += 1000000;
903 if (t1->tv_usec >= 1000000) {
904 t1->tv_sec++;
905 t1->tv_usec -= 1000000;
910 * ratecheck(): simple time-based rate-limit checking.
913 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
915 struct timeval tv, delta;
916 int rv = 0;
918 getmicrouptime(&tv); /* NB: 10ms precision */
919 delta = tv;
920 timevalsub(&delta, lasttime);
923 * check for 0,0 is so that the message will be seen at least once,
924 * even if interval is huge.
926 if (timevalcmp(&delta, mininterval, >=) ||
927 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
928 *lasttime = tv;
929 rv = 1;
932 return (rv);
936 * ppsratecheck(): packets (or events) per second limitation.
938 * Return 0 if the limit is to be enforced (e.g. the caller
939 * should drop a packet because of the rate limitation).
941 * maxpps of 0 always causes zero to be returned. maxpps of -1
942 * always causes 1 to be returned; this effectively defeats rate
943 * limiting.
945 * Note that we maintain the struct timeval for compatibility
946 * with other bsd systems. We reuse the storage and just monitor
947 * clock ticks for minimal overhead.
950 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
952 int now;
955 * Reset the last time and counter if this is the first call
956 * or more than a second has passed since the last update of
957 * lasttime.
959 now = ticks;
960 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
961 lasttime->tv_sec = now;
962 *curpps = 1;
963 return (maxpps != 0);
964 } else {
965 (*curpps)++; /* NB: ignore potential overflow */
966 return (maxpps < 0 || *curpps < maxpps);