linprocfs - Introduce /proc/mounts
[dragonfly.git] / sys / netinet / tcp_syncache.c
blob3b1673fad3738b26262112db42b12d64e4967029
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
57 * permission.
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72 * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h> /* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
94 #include <net/if.h>
95 #include <net/route.h>
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define IPSEC
133 #endif /*FAST_IPSEC*/
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137 &tcp_syncookies, 0,
138 "Use TCP SYN cookies if the syncache overflows");
140 static void syncache_drop(struct syncache *, struct syncache_head *);
141 static void syncache_free(struct syncache *);
142 static void syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int syncache_respond(struct syncache *, struct mbuf *);
145 static struct socket *syncache_socket(struct syncache *, struct socket *,
146 struct mbuf *);
147 static void syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 struct tcphdr *, struct socket *);
153 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
155 * the odds are that the user has given up attempting to connect by then.
157 #define SYNCACHE_MAXREXMTS 3
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE 512
161 #define TCP_SYNCACHE_BUCKETLIMIT 30
163 struct netmsg_sc_timer {
164 struct netmsg nm_netmsg;
165 struct msgrec *nm_mrec; /* back pointer to containing msgrec */
168 struct msgrec {
169 struct netmsg_sc_timer msg;
170 lwkt_port_t port; /* constant after init */
171 int slot; /* constant after init */
174 static void syncache_timer_handler(netmsg_t);
176 struct tcp_syncache {
177 u_int hashsize;
178 u_int hashmask;
179 u_int bucket_limit;
180 u_int cache_limit;
181 u_int rexmt_limit;
182 u_int hash_secret;
184 static struct tcp_syncache tcp_syncache;
186 struct tcp_syncache_percpu {
187 struct syncache_head *hashbase;
188 u_int cache_count;
189 TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
190 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
191 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1];
193 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
195 static struct lwkt_port syncache_null_rport;
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
199 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
200 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
203 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
205 /* XXX JH */
206 #if 0
207 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
208 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
209 #endif
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
212 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
215 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
217 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
219 #define SYNCACHE_HASH(inc, mask) \
220 ((tcp_syncache.hash_secret ^ \
221 (inc)->inc_faddr.s_addr ^ \
222 ((inc)->inc_faddr.s_addr >> 16) ^ \
223 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
225 #define SYNCACHE_HASH6(inc, mask) \
226 ((tcp_syncache.hash_secret ^ \
227 (inc)->inc6_faddr.s6_addr32[0] ^ \
228 (inc)->inc6_faddr.s6_addr32[3] ^ \
229 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
231 #define ENDPTS_EQ(a, b) ( \
232 (a)->ie_fport == (b)->ie_fport && \
233 (a)->ie_lport == (b)->ie_lport && \
234 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
235 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
238 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
240 static __inline void
241 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
242 struct syncache *sc, int slot)
244 sc->sc_rxtslot = slot;
245 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
246 crit_enter();
247 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
248 if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
249 callout_reset(&syncache_percpu->tt_timerq[slot],
250 TCPTV_RTOBASE * tcp_backoff[slot],
251 syncache_timer,
252 &syncache_percpu->mrec[slot]);
254 crit_exit();
257 static void
258 syncache_free(struct syncache *sc)
260 struct rtentry *rt;
261 #ifdef INET6
262 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
263 #else
264 const boolean_t isipv6 = FALSE;
265 #endif
267 if (sc->sc_ipopts)
268 m_free(sc->sc_ipopts);
270 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
271 if (rt != NULL) {
273 * If this is the only reference to a protocol-cloned
274 * route, remove it immediately.
276 if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
277 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
278 rt_mask(rt), rt->rt_flags, NULL);
279 RTFREE(rt);
281 kfree(sc, M_SYNCACHE);
284 void
285 syncache_init(void)
287 int i, cpu;
289 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
290 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
291 tcp_syncache.cache_limit =
292 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
293 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
294 tcp_syncache.hash_secret = karc4random();
296 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
297 &tcp_syncache.hashsize);
298 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
299 &tcp_syncache.cache_limit);
300 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
301 &tcp_syncache.bucket_limit);
302 if (!powerof2(tcp_syncache.hashsize)) {
303 kprintf("WARNING: syncache hash size is not a power of 2.\n");
304 tcp_syncache.hashsize = 512; /* safe default */
306 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
308 lwkt_initport_replyonly_null(&syncache_null_rport);
310 for (cpu = 0; cpu < ncpus2; cpu++) {
311 struct tcp_syncache_percpu *syncache_percpu;
313 syncache_percpu = &tcp_syncache_percpu[cpu];
314 /* Allocate the hash table. */
315 MALLOC(syncache_percpu->hashbase, struct syncache_head *,
316 tcp_syncache.hashsize * sizeof(struct syncache_head),
317 M_SYNCACHE, M_WAITOK);
319 /* Initialize the hash buckets. */
320 for (i = 0; i < tcp_syncache.hashsize; i++) {
321 struct syncache_head *bucket;
323 bucket = &syncache_percpu->hashbase[i];
324 TAILQ_INIT(&bucket->sch_bucket);
325 bucket->sch_length = 0;
328 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
329 /* Initialize the timer queues. */
330 TAILQ_INIT(&syncache_percpu->timerq[i]);
331 callout_init(&syncache_percpu->tt_timerq[i]);
333 syncache_percpu->mrec[i].slot = i;
334 syncache_percpu->mrec[i].port = tcp_cport(cpu);
335 syncache_percpu->mrec[i].msg.nm_mrec =
336 &syncache_percpu->mrec[i];
337 netmsg_init(&syncache_percpu->mrec[i].msg.nm_netmsg,
338 NULL, &syncache_null_rport,
339 0, syncache_timer_handler);
344 static void
345 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 struct tcp_syncache_percpu *syncache_percpu;
348 struct syncache *sc2;
349 int i;
351 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
354 * Make sure that we don't overflow the per-bucket
355 * limit or the total cache size limit.
357 if (sch->sch_length >= tcp_syncache.bucket_limit) {
359 * The bucket is full, toss the oldest element.
361 sc2 = TAILQ_FIRST(&sch->sch_bucket);
362 sc2->sc_tp->ts_recent = ticks;
363 syncache_drop(sc2, sch);
364 tcpstat.tcps_sc_bucketoverflow++;
365 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
367 * The cache is full. Toss the oldest entry in the
368 * entire cache. This is the front entry in the
369 * first non-empty timer queue with the largest
370 * timeout value.
372 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
373 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
374 if (sc2 != NULL)
375 break;
377 sc2->sc_tp->ts_recent = ticks;
378 syncache_drop(sc2, NULL);
379 tcpstat.tcps_sc_cacheoverflow++;
382 /* Initialize the entry's timer. */
383 syncache_timeout(syncache_percpu, sc, 0);
385 /* Put it into the bucket. */
386 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
387 sch->sch_length++;
388 syncache_percpu->cache_count++;
389 tcpstat.tcps_sc_added++;
392 void
393 syncache_destroy(struct tcpcb *tp)
395 struct tcp_syncache_percpu *syncache_percpu;
396 struct syncache_head *bucket;
397 struct syncache *sc;
398 int i;
400 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
401 sc = NULL;
402 for (i = 0; i < tcp_syncache.hashsize; i++) {
403 bucket = &syncache_percpu->hashbase[i];
404 TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
405 if (sc->sc_tp == tp) {
406 sc->sc_tp = NULL;
407 tp->t_flags &= ~TF_SYNCACHE;
408 break;
412 kprintf("Warning: delete stale syncache for tp=%p, sc=%p\n", tp, sc);
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
418 struct tcp_syncache_percpu *syncache_percpu;
419 #ifdef INET6
420 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
421 #else
422 const boolean_t isipv6 = FALSE;
423 #endif
425 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
427 if (sch == NULL) {
428 if (isipv6) {
429 sch = &syncache_percpu->hashbase[
430 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
431 } else {
432 sch = &syncache_percpu->hashbase[
433 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
437 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
438 sch->sch_length--;
439 syncache_percpu->cache_count--;
442 * Cleanup
444 if (sc->sc_tp) {
445 sc->sc_tp->t_flags &= ~TF_SYNCACHE;
446 sc->sc_tp = NULL;
450 * Remove the entry from the syncache timer/timeout queue. Note
451 * that we do not try to stop any running timer since we do not know
452 * whether the timer's message is in-transit or not. Since timeouts
453 * are fairly long, taking an unneeded callout does not detrimentally
454 * effect performance.
456 crit_enter();
457 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
458 crit_exit();
460 syncache_free(sc);
464 * Place a timeout message on the TCP thread's message queue.
465 * This routine runs in soft interrupt context.
467 * An invariant is for this routine to be called, the callout must
468 * have been active. Note that the callout is not deactivated until
469 * after the message has been processed in syncache_timer_handler() below.
471 static void
472 syncache_timer(void *p)
474 struct netmsg_sc_timer *msg = p;
476 lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_netmsg.nm_lmsg);
480 * Service a timer message queued by timer expiration.
481 * This routine runs in the TCP protocol thread.
483 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
484 * If we have retransmitted an entry the maximum number of times, expire it.
486 * When we finish processing timed-out entries, we restart the timer if there
487 * are any entries still on the queue and deactivate it otherwise. Only after
488 * a timer has been deactivated here can it be restarted by syncache_timeout().
490 static void
491 syncache_timer_handler(netmsg_t netmsg)
493 struct tcp_syncache_percpu *syncache_percpu;
494 struct syncache *sc, *nsc;
495 struct inpcb *inp;
496 int slot;
498 slot = ((struct netmsg_sc_timer *)netmsg)->nm_mrec->slot;
499 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
501 crit_enter();
502 nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
503 while (nsc != NULL) {
504 if (ticks < nsc->sc_rxttime)
505 break; /* finished because timerq sorted by time */
506 sc = nsc;
507 if (sc->sc_tp == NULL) {
508 nsc = TAILQ_NEXT(sc, sc_timerq);
509 syncache_drop(sc, NULL);
510 tcpstat.tcps_sc_stale++;
511 continue;
513 inp = sc->sc_tp->t_inpcb;
514 if (slot == SYNCACHE_MAXREXMTS ||
515 slot >= tcp_syncache.rexmt_limit ||
516 inp->inp_gencnt != sc->sc_inp_gencnt) {
517 nsc = TAILQ_NEXT(sc, sc_timerq);
518 syncache_drop(sc, NULL);
519 tcpstat.tcps_sc_stale++;
520 continue;
523 * syncache_respond() may call back into the syncache to
524 * to modify another entry, so do not obtain the next
525 * entry on the timer chain until it has completed.
527 syncache_respond(sc, NULL);
528 nsc = TAILQ_NEXT(sc, sc_timerq);
529 tcpstat.tcps_sc_retransmitted++;
530 TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
531 syncache_timeout(syncache_percpu, sc, slot + 1);
533 if (nsc != NULL)
534 callout_reset(&syncache_percpu->tt_timerq[slot],
535 nsc->sc_rxttime - ticks, syncache_timer,
536 &syncache_percpu->mrec[slot]);
537 else
538 callout_deactivate(&syncache_percpu->tt_timerq[slot]);
539 crit_exit();
541 lwkt_replymsg(&netmsg->nm_lmsg, 0);
545 * Find an entry in the syncache.
547 struct syncache *
548 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
550 struct tcp_syncache_percpu *syncache_percpu;
551 struct syncache *sc;
552 struct syncache_head *sch;
554 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
555 #ifdef INET6
556 if (inc->inc_isipv6) {
557 sch = &syncache_percpu->hashbase[
558 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
559 *schp = sch;
560 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
561 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
562 return (sc);
563 } else
564 #endif
566 sch = &syncache_percpu->hashbase[
567 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
568 *schp = sch;
569 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
570 #ifdef INET6
571 if (sc->sc_inc.inc_isipv6)
572 continue;
573 #endif
574 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
575 return (sc);
578 return (NULL);
582 * This function is called when we get a RST for a
583 * non-existent connection, so that we can see if the
584 * connection is in the syn cache. If it is, zap it.
586 void
587 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
589 struct syncache *sc;
590 struct syncache_head *sch;
592 sc = syncache_lookup(inc, &sch);
593 if (sc == NULL)
594 return;
596 * If the RST bit is set, check the sequence number to see
597 * if this is a valid reset segment.
598 * RFC 793 page 37:
599 * In all states except SYN-SENT, all reset (RST) segments
600 * are validated by checking their SEQ-fields. A reset is
601 * valid if its sequence number is in the window.
603 * The sequence number in the reset segment is normally an
604 * echo of our outgoing acknowlegement numbers, but some hosts
605 * send a reset with the sequence number at the rightmost edge
606 * of our receive window, and we have to handle this case.
608 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
609 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
610 syncache_drop(sc, sch);
611 tcpstat.tcps_sc_reset++;
615 void
616 syncache_badack(struct in_conninfo *inc)
618 struct syncache *sc;
619 struct syncache_head *sch;
621 sc = syncache_lookup(inc, &sch);
622 if (sc != NULL) {
623 syncache_drop(sc, sch);
624 tcpstat.tcps_sc_badack++;
628 void
629 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
631 struct syncache *sc;
632 struct syncache_head *sch;
634 /* we are called at splnet() here */
635 sc = syncache_lookup(inc, &sch);
636 if (sc == NULL)
637 return;
639 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
640 if (ntohl(th->th_seq) != sc->sc_iss)
641 return;
644 * If we've rertransmitted 3 times and this is our second error,
645 * we remove the entry. Otherwise, we allow it to continue on.
646 * This prevents us from incorrectly nuking an entry during a
647 * spurious network outage.
649 * See tcp_notify().
651 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
652 sc->sc_flags |= SCF_UNREACH;
653 return;
655 syncache_drop(sc, sch);
656 tcpstat.tcps_sc_unreach++;
660 * Build a new TCP socket structure from a syncache entry.
662 * This is called from the context of the SYN+ACK
664 static struct socket *
665 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
667 struct inpcb *inp = NULL, *linp;
668 struct socket *so;
669 struct tcpcb *tp;
670 lwkt_port_t port;
671 #ifdef INET6
672 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
673 #else
674 const boolean_t isipv6 = FALSE;
675 #endif
678 * Ok, create the full blown connection, and set things up
679 * as they would have been set up if we had created the
680 * connection when the SYN arrived. If we can't create
681 * the connection, abort it.
683 so = sonewconn(lso, SS_ISCONNECTED);
684 if (so == NULL) {
686 * Drop the connection; we will send a RST if the peer
687 * retransmits the ACK,
689 tcpstat.tcps_listendrop++;
690 goto abort;
694 * Set the protocol processing port for the socket to the current
695 * port (that the connection came in on).
697 sosetport(so, &curthread->td_msgport);
700 * Insert new socket into hash list.
702 inp = so->so_pcb;
703 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
704 if (isipv6) {
705 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
706 } else {
707 #ifdef INET6
708 inp->inp_vflag &= ~INP_IPV6;
709 inp->inp_vflag |= INP_IPV4;
710 inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
711 #endif
712 inp->inp_laddr = sc->sc_inc.inc_laddr;
714 inp->inp_lport = sc->sc_inc.inc_lport;
715 if (in_pcbinsporthash(inp) != 0) {
717 * Undo the assignments above if we failed to
718 * put the PCB on the hash lists.
720 if (isipv6)
721 inp->in6p_laddr = kin6addr_any;
722 else
723 inp->inp_laddr.s_addr = INADDR_ANY;
724 inp->inp_lport = 0;
725 goto abort;
727 linp = so->so_pcb;
728 #ifdef IPSEC
729 /* copy old policy into new socket's */
730 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
731 kprintf("syncache_expand: could not copy policy\n");
732 #endif
733 if (isipv6) {
734 struct in6_addr laddr6;
735 struct sockaddr_in6 sin6;
737 * Inherit socket options from the listening socket.
738 * Note that in6p_inputopts are not (and should not be)
739 * copied, since it stores previously received options and is
740 * used to detect if each new option is different than the
741 * previous one and hence should be passed to a user.
742 * If we copied in6p_inputopts, a user would not be able to
743 * receive options just after calling the accept system call.
745 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
746 if (linp->in6p_outputopts)
747 inp->in6p_outputopts =
748 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
749 inp->in6p_route = sc->sc_route6;
750 sc->sc_route6.ro_rt = NULL;
752 sin6.sin6_family = AF_INET6;
753 sin6.sin6_len = sizeof sin6;
754 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
755 sin6.sin6_port = sc->sc_inc.inc_fport;
756 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
757 laddr6 = inp->in6p_laddr;
758 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
759 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
760 if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
761 inp->in6p_laddr = laddr6;
762 goto abort;
764 } else {
765 struct in_addr laddr;
766 struct sockaddr_in sin;
768 inp->inp_options = ip_srcroute(m);
769 if (inp->inp_options == NULL) {
770 inp->inp_options = sc->sc_ipopts;
771 sc->sc_ipopts = NULL;
773 inp->inp_route = sc->sc_route;
774 sc->sc_route.ro_rt = NULL;
776 sin.sin_family = AF_INET;
777 sin.sin_len = sizeof sin;
778 sin.sin_addr = sc->sc_inc.inc_faddr;
779 sin.sin_port = sc->sc_inc.inc_fport;
780 bzero(sin.sin_zero, sizeof sin.sin_zero);
781 laddr = inp->inp_laddr;
782 if (inp->inp_laddr.s_addr == INADDR_ANY)
783 inp->inp_laddr = sc->sc_inc.inc_laddr;
784 if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
785 inp->inp_laddr = laddr;
786 goto abort;
791 * The current port should be in the context of the SYN+ACK and
792 * so should match the tcp address port.
794 * XXX we may be running on the netisr thread instead of a tcp
795 * thread, in which case port will not match
796 * curthread->td_msgport.
798 if (isipv6) {
799 port = tcp6_addrport();
800 } else {
801 port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
802 inp->inp_laddr.s_addr, inp->inp_lport);
804 /*KKASSERT(port == &curthread->td_msgport);*/
806 tp = intotcpcb(inp);
807 tp->t_state = TCPS_SYN_RECEIVED;
808 tp->iss = sc->sc_iss;
809 tp->irs = sc->sc_irs;
810 tcp_rcvseqinit(tp);
811 tcp_sendseqinit(tp);
812 tp->snd_wl1 = sc->sc_irs;
813 tp->rcv_up = sc->sc_irs + 1;
814 tp->rcv_wnd = sc->sc_wnd;
815 tp->rcv_adv += tp->rcv_wnd;
817 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
818 if (sc->sc_flags & SCF_NOOPT)
819 tp->t_flags |= TF_NOOPT;
820 if (sc->sc_flags & SCF_WINSCALE) {
821 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
822 tp->requested_s_scale = sc->sc_requested_s_scale;
823 tp->request_r_scale = sc->sc_request_r_scale;
825 if (sc->sc_flags & SCF_TIMESTAMP) {
826 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
827 tp->ts_recent = sc->sc_tsrecent;
828 tp->ts_recent_age = ticks;
830 if (sc->sc_flags & SCF_SACK_PERMITTED)
831 tp->t_flags |= TF_SACK_PERMITTED;
833 tcp_mss(tp, sc->sc_peer_mss);
836 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
838 if (sc->sc_rxtslot != 0)
839 tp->snd_cwnd = tp->t_maxseg;
840 tcp_create_timermsg(tp, port);
841 tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep);
843 tcpstat.tcps_accepts++;
844 return (so);
846 abort:
847 if (so != NULL)
848 soabort_oncpu(so);
849 return (NULL);
853 * This function gets called when we receive an ACK for a
854 * socket in the LISTEN state. We look up the connection
855 * in the syncache, and if its there, we pull it out of
856 * the cache and turn it into a full-blown connection in
857 * the SYN-RECEIVED state.
860 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
861 struct mbuf *m)
863 struct syncache *sc;
864 struct syncache_head *sch;
865 struct socket *so;
867 sc = syncache_lookup(inc, &sch);
868 if (sc == NULL) {
870 * There is no syncache entry, so see if this ACK is
871 * a returning syncookie. To do this, first:
872 * A. See if this socket has had a syncache entry dropped in
873 * the past. We don't want to accept a bogus syncookie
874 * if we've never received a SYN.
875 * B. check that the syncookie is valid. If it is, then
876 * cobble up a fake syncache entry, and return.
878 if (!tcp_syncookies)
879 return (0);
880 sc = syncookie_lookup(inc, th, *sop);
881 if (sc == NULL)
882 return (0);
883 sch = NULL;
884 tcpstat.tcps_sc_recvcookie++;
888 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
890 if (th->th_ack != sc->sc_iss + 1)
891 return (0);
893 so = syncache_socket(sc, *sop, m);
894 if (so == NULL) {
895 #if 0
896 resetandabort:
897 /* XXXjlemon check this - is this correct? */
898 tcp_respond(NULL, m, m, th,
899 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
900 #endif
901 m_freem(m); /* XXX only needed for above */
902 tcpstat.tcps_sc_aborted++;
903 } else {
904 tcpstat.tcps_sc_completed++;
906 if (sch == NULL)
907 syncache_free(sc);
908 else
909 syncache_drop(sc, sch);
910 *sop = so;
911 return (1);
915 * Given a LISTEN socket and an inbound SYN request, add
916 * this to the syn cache, and send back a segment:
917 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
918 * to the source.
920 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
921 * Doing so would require that we hold onto the data and deliver it
922 * to the application. However, if we are the target of a SYN-flood
923 * DoS attack, an attacker could send data which would eventually
924 * consume all available buffer space if it were ACKed. By not ACKing
925 * the data, we avoid this DoS scenario.
928 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
929 struct socket **sop, struct mbuf *m)
931 struct tcp_syncache_percpu *syncache_percpu;
932 struct tcpcb *tp;
933 struct socket *so;
934 struct syncache *sc = NULL;
935 struct syncache_head *sch;
936 struct mbuf *ipopts = NULL;
937 int win;
939 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
940 so = *sop;
941 tp = sototcpcb(so);
944 * Remember the IP options, if any.
946 #ifdef INET6
947 if (!inc->inc_isipv6)
948 #endif
949 ipopts = ip_srcroute(m);
952 * See if we already have an entry for this connection.
953 * If we do, resend the SYN,ACK, and reset the retransmit timer.
955 * XXX
956 * The syncache should be re-initialized with the contents
957 * of the new SYN which may have different options.
959 sc = syncache_lookup(inc, &sch);
960 if (sc != NULL) {
961 tcpstat.tcps_sc_dupsyn++;
962 if (ipopts) {
964 * If we were remembering a previous source route,
965 * forget it and use the new one we've been given.
967 if (sc->sc_ipopts)
968 m_free(sc->sc_ipopts);
969 sc->sc_ipopts = ipopts;
972 * Update timestamp if present.
974 if (sc->sc_flags & SCF_TIMESTAMP)
975 sc->sc_tsrecent = to->to_tsval;
977 /* Just update the TOF_SACK_PERMITTED for now. */
978 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
979 sc->sc_flags |= SCF_SACK_PERMITTED;
980 else
981 sc->sc_flags &= ~SCF_SACK_PERMITTED;
984 * PCB may have changed, pick up new values.
986 if (sc->sc_tp) {
987 sc->sc_tp->t_flags &= ~TF_SYNCACHE;
988 tp->t_flags |= TF_SYNCACHE;
990 sc->sc_tp = tp;
991 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
992 if (syncache_respond(sc, m) == 0) {
993 crit_enter();
994 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
995 sc, sc_timerq);
996 crit_exit();
997 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
998 tcpstat.tcps_sndacks++;
999 tcpstat.tcps_sndtotal++;
1001 *sop = NULL;
1002 return (1);
1006 * Fill in the syncache values.
1008 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1009 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1010 sc->sc_ipopts = ipopts;
1011 sc->sc_inc.inc_fport = inc->inc_fport;
1012 sc->sc_inc.inc_lport = inc->inc_lport;
1013 sc->sc_tp = tp;
1014 tp->t_flags |= TF_SYNCACHE;
1015 #ifdef INET6
1016 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1017 if (inc->inc_isipv6) {
1018 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1019 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1020 sc->sc_route6.ro_rt = NULL;
1021 } else
1022 #endif
1024 sc->sc_inc.inc_faddr = inc->inc_faddr;
1025 sc->sc_inc.inc_laddr = inc->inc_laddr;
1026 sc->sc_route.ro_rt = NULL;
1028 sc->sc_irs = th->th_seq;
1029 sc->sc_flags = 0;
1030 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1031 if (tcp_syncookies)
1032 sc->sc_iss = syncookie_generate(sc);
1033 else
1034 sc->sc_iss = karc4random();
1036 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1037 win = ssb_space(&so->so_rcv);
1038 win = imax(win, 0);
1039 win = imin(win, TCP_MAXWIN);
1040 sc->sc_wnd = win;
1042 if (tcp_do_rfc1323) {
1044 * A timestamp received in a SYN makes
1045 * it ok to send timestamp requests and replies.
1047 if (to->to_flags & TOF_TS) {
1048 sc->sc_tsrecent = to->to_tsval;
1049 sc->sc_flags |= SCF_TIMESTAMP;
1051 if (to->to_flags & TOF_SCALE) {
1052 int wscale = TCP_MIN_WINSHIFT;
1054 /* Compute proper scaling value from buffer space */
1055 while (wscale < TCP_MAX_WINSHIFT &&
1056 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1057 wscale++;
1059 sc->sc_request_r_scale = wscale;
1060 sc->sc_requested_s_scale = to->to_requested_s_scale;
1061 sc->sc_flags |= SCF_WINSCALE;
1064 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1065 sc->sc_flags |= SCF_SACK_PERMITTED;
1066 if (tp->t_flags & TF_NOOPT)
1067 sc->sc_flags = SCF_NOOPT;
1069 if (syncache_respond(sc, m) == 0) {
1070 syncache_insert(sc, sch);
1071 tcpstat.tcps_sndacks++;
1072 tcpstat.tcps_sndtotal++;
1073 } else {
1074 syncache_free(sc);
1075 tcpstat.tcps_sc_dropped++;
1077 *sop = NULL;
1078 return (1);
1081 static int
1082 syncache_respond(struct syncache *sc, struct mbuf *m)
1084 u_int8_t *optp;
1085 int optlen, error;
1086 u_int16_t tlen, hlen, mssopt;
1087 struct ip *ip = NULL;
1088 struct rtentry *rt;
1089 struct tcphdr *th;
1090 struct ip6_hdr *ip6 = NULL;
1091 #ifdef INET6
1092 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1093 #else
1094 const boolean_t isipv6 = FALSE;
1095 #endif
1097 if (isipv6) {
1098 rt = tcp_rtlookup6(&sc->sc_inc);
1099 if (rt != NULL)
1100 mssopt = rt->rt_ifp->if_mtu -
1101 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1102 else
1103 mssopt = tcp_v6mssdflt;
1104 hlen = sizeof(struct ip6_hdr);
1105 } else {
1106 rt = tcp_rtlookup(&sc->sc_inc);
1107 if (rt != NULL)
1108 mssopt = rt->rt_ifp->if_mtu -
1109 (sizeof(struct ip) + sizeof(struct tcphdr));
1110 else
1111 mssopt = tcp_mssdflt;
1112 hlen = sizeof(struct ip);
1115 /* Compute the size of the TCP options. */
1116 if (sc->sc_flags & SCF_NOOPT) {
1117 optlen = 0;
1118 } else {
1119 optlen = TCPOLEN_MAXSEG +
1120 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1121 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1122 ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1123 TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1125 tlen = hlen + sizeof(struct tcphdr) + optlen;
1128 * XXX
1129 * assume that the entire packet will fit in a header mbuf
1131 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1134 * XXX shouldn't this reuse the mbuf if possible ?
1135 * Create the IP+TCP header from scratch.
1137 if (m)
1138 m_freem(m);
1140 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1141 if (m == NULL)
1142 return (ENOBUFS);
1143 m->m_data += max_linkhdr;
1144 m->m_len = tlen;
1145 m->m_pkthdr.len = tlen;
1146 m->m_pkthdr.rcvif = NULL;
1148 if (isipv6) {
1149 ip6 = mtod(m, struct ip6_hdr *);
1150 ip6->ip6_vfc = IPV6_VERSION;
1151 ip6->ip6_nxt = IPPROTO_TCP;
1152 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1153 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1154 ip6->ip6_plen = htons(tlen - hlen);
1155 /* ip6_hlim is set after checksum */
1156 /* ip6_flow = ??? */
1158 th = (struct tcphdr *)(ip6 + 1);
1159 } else {
1160 ip = mtod(m, struct ip *);
1161 ip->ip_v = IPVERSION;
1162 ip->ip_hl = sizeof(struct ip) >> 2;
1163 ip->ip_len = tlen;
1164 ip->ip_id = 0;
1165 ip->ip_off = 0;
1166 ip->ip_sum = 0;
1167 ip->ip_p = IPPROTO_TCP;
1168 ip->ip_src = sc->sc_inc.inc_laddr;
1169 ip->ip_dst = sc->sc_inc.inc_faddr;
1170 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1171 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1174 * See if we should do MTU discovery. Route lookups are
1175 * expensive, so we will only unset the DF bit if:
1177 * 1) path_mtu_discovery is disabled
1178 * 2) the SCF_UNREACH flag has been set
1180 if (path_mtu_discovery
1181 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1182 ip->ip_off |= IP_DF;
1185 th = (struct tcphdr *)(ip + 1);
1187 th->th_sport = sc->sc_inc.inc_lport;
1188 th->th_dport = sc->sc_inc.inc_fport;
1190 th->th_seq = htonl(sc->sc_iss);
1191 th->th_ack = htonl(sc->sc_irs + 1);
1192 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1193 th->th_x2 = 0;
1194 th->th_flags = TH_SYN | TH_ACK;
1195 th->th_win = htons(sc->sc_wnd);
1196 th->th_urp = 0;
1198 /* Tack on the TCP options. */
1199 if (optlen == 0)
1200 goto no_options;
1201 optp = (u_int8_t *)(th + 1);
1202 *optp++ = TCPOPT_MAXSEG;
1203 *optp++ = TCPOLEN_MAXSEG;
1204 *optp++ = (mssopt >> 8) & 0xff;
1205 *optp++ = mssopt & 0xff;
1207 if (sc->sc_flags & SCF_WINSCALE) {
1208 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1209 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1210 sc->sc_request_r_scale);
1211 optp += 4;
1214 if (sc->sc_flags & SCF_TIMESTAMP) {
1215 u_int32_t *lp = (u_int32_t *)(optp);
1217 /* Form timestamp option as shown in appendix A of RFC 1323. */
1218 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1219 *lp++ = htonl(ticks);
1220 *lp = htonl(sc->sc_tsrecent);
1221 optp += TCPOLEN_TSTAMP_APPA;
1224 if (sc->sc_flags & SCF_SACK_PERMITTED) {
1225 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1226 optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1229 no_options:
1230 if (isipv6) {
1231 struct route_in6 *ro6 = &sc->sc_route6;
1233 th->th_sum = 0;
1234 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1235 ip6->ip6_hlim = in6_selecthlim(NULL,
1236 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1237 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1238 sc->sc_tp->t_inpcb);
1239 } else {
1240 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1241 htons(tlen - hlen + IPPROTO_TCP));
1242 m->m_pkthdr.csum_flags = CSUM_TCP;
1243 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1244 error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1245 IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1247 return (error);
1251 * cookie layers:
1253 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1254 * | peer iss |
1255 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1256 * | 0 |(A)| |
1257 * (A): peer mss index
1261 * The values below are chosen to minimize the size of the tcp_secret
1262 * table, as well as providing roughly a 16 second lifetime for the cookie.
1265 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1266 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1268 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1269 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1270 #define SYNCOOKIE_TIMEOUT \
1271 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1272 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1274 static struct {
1275 u_int32_t ts_secbits[4];
1276 u_int ts_expire;
1277 } tcp_secret[SYNCOOKIE_NSECRETS];
1279 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1281 static MD5_CTX syn_ctx;
1283 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1285 struct md5_add {
1286 u_int32_t laddr, faddr;
1287 u_int32_t secbits[4];
1288 u_int16_t lport, fport;
1291 #ifdef CTASSERT
1292 CTASSERT(sizeof(struct md5_add) == 28);
1293 #endif
1296 * Consider the problem of a recreated (and retransmitted) cookie. If the
1297 * original SYN was accepted, the connection is established. The second
1298 * SYN is inflight, and if it arrives with an ISN that falls within the
1299 * receive window, the connection is killed.
1301 * However, since cookies have other problems, this may not be worth
1302 * worrying about.
1305 static u_int32_t
1306 syncookie_generate(struct syncache *sc)
1308 u_int32_t md5_buffer[4];
1309 u_int32_t data;
1310 int idx, i;
1311 struct md5_add add;
1312 #ifdef INET6
1313 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1314 #else
1315 const boolean_t isipv6 = FALSE;
1316 #endif
1318 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1319 if (tcp_secret[idx].ts_expire < ticks) {
1320 for (i = 0; i < 4; i++)
1321 tcp_secret[idx].ts_secbits[i] = karc4random();
1322 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1324 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1325 if (tcp_msstab[data] <= sc->sc_peer_mss)
1326 break;
1327 data = (data << SYNCOOKIE_WNDBITS) | idx;
1328 data ^= sc->sc_irs; /* peer's iss */
1329 MD5Init(&syn_ctx);
1330 if (isipv6) {
1331 MD5Add(sc->sc_inc.inc6_laddr);
1332 MD5Add(sc->sc_inc.inc6_faddr);
1333 add.laddr = 0;
1334 add.faddr = 0;
1335 } else {
1336 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1337 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1339 add.lport = sc->sc_inc.inc_lport;
1340 add.fport = sc->sc_inc.inc_fport;
1341 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1342 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1343 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1344 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1345 MD5Add(add);
1346 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1348 return (data);
1351 static struct syncache *
1352 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1354 u_int32_t md5_buffer[4];
1355 struct syncache *sc;
1356 u_int32_t data;
1357 int wnd, idx;
1358 struct md5_add add;
1360 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1361 idx = data & SYNCOOKIE_WNDMASK;
1362 if (tcp_secret[idx].ts_expire < ticks ||
1363 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1364 return (NULL);
1365 MD5Init(&syn_ctx);
1366 #ifdef INET6
1367 if (inc->inc_isipv6) {
1368 MD5Add(inc->inc6_laddr);
1369 MD5Add(inc->inc6_faddr);
1370 add.laddr = 0;
1371 add.faddr = 0;
1372 } else
1373 #endif
1375 add.laddr = inc->inc_laddr.s_addr;
1376 add.faddr = inc->inc_faddr.s_addr;
1378 add.lport = inc->inc_lport;
1379 add.fport = inc->inc_fport;
1380 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1381 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1382 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1383 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1384 MD5Add(add);
1385 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1386 data ^= md5_buffer[0];
1387 if (data & ~SYNCOOKIE_DATAMASK)
1388 return (NULL);
1389 data = data >> SYNCOOKIE_WNDBITS;
1392 * Fill in the syncache values.
1393 * XXX duplicate code from syncache_add
1395 sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1396 sc->sc_ipopts = NULL;
1397 sc->sc_inc.inc_fport = inc->inc_fport;
1398 sc->sc_inc.inc_lport = inc->inc_lport;
1399 #ifdef INET6
1400 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1401 if (inc->inc_isipv6) {
1402 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1403 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1404 sc->sc_route6.ro_rt = NULL;
1405 } else
1406 #endif
1408 sc->sc_inc.inc_faddr = inc->inc_faddr;
1409 sc->sc_inc.inc_laddr = inc->inc_laddr;
1410 sc->sc_route.ro_rt = NULL;
1412 sc->sc_irs = th->th_seq - 1;
1413 sc->sc_iss = th->th_ack - 1;
1414 wnd = ssb_space(&so->so_rcv);
1415 wnd = imax(wnd, 0);
1416 wnd = imin(wnd, TCP_MAXWIN);
1417 sc->sc_wnd = wnd;
1418 sc->sc_flags = 0;
1419 sc->sc_rxtslot = 0;
1420 sc->sc_peer_mss = tcp_msstab[data];
1421 return (sc);