linprocfs - Introduce /proc/mounts
[dragonfly.git] / sys / kern / vfs_bio.c
blobd8c9a95421b7c087324bd6357f7b8ccd3391a326
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pager.h>
57 #include <vm/swap_pager.h>
59 #include <sys/buf2.h>
60 #include <sys/thread2.h>
61 #include <sys/spinlock2.h>
62 #include <sys/mplock2.h>
63 #include <vm/vm_page2.h>
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
71 * Buffer queues.
73 enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
80 BQUEUE_EMPTY, /* empty buffer headers */
82 BUFFER_QUEUES /* number of buffer queues */
85 typedef enum bufq_type bufq_type_t;
87 #define BD_WAKE_SIZE 16384
88 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91 struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin);
93 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95 struct buf *buf; /* buffer header pool */
97 static void vfs_clean_pages(struct buf *bp);
98 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
99 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
100 static void vfs_vmio_release(struct buf *bp);
101 static int flushbufqueues(bufq_type_t q);
102 static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104 static void bd_signal(int totalspace);
105 static void buf_daemon(void);
106 static void buf_daemon_hw(void);
109 * bogus page -- for I/O to/from partially complete buffers
110 * this is a temporary solution to the problem, but it is not
111 * really that bad. it would be better to split the buffer
112 * for input in the case of buffers partially already in memory,
113 * but the code is intricate enough already.
115 vm_page_t bogus_page;
118 * These are all static, but make the ones we export globals so we do
119 * not need to use compiler magic.
121 int bufspace, maxbufspace,
122 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
123 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
124 static int lorunningspace, hirunningspace, runningbufreq;
125 int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
126 int dirtybufcount, dirtybufcounthw;
127 int runningbufspace, runningbufcount;
128 static int getnewbufcalls;
129 static int getnewbufrestarts;
130 static int recoverbufcalls;
131 static int needsbuffer; /* locked by needsbuffer_spin */
132 static int bd_request; /* locked by needsbuffer_spin */
133 static int bd_request_hw; /* locked by needsbuffer_spin */
134 static u_int bd_wake_ary[BD_WAKE_SIZE];
135 static u_int bd_wake_index;
136 static u_int vm_cycle_point = ACT_INIT + ACT_ADVANCE * 6;
137 static struct spinlock needsbuffer_spin;
138 static int debug_commit;
140 static struct thread *bufdaemon_td;
141 static struct thread *bufdaemonhw_td;
145 * Sysctls for operational control of the buffer cache.
147 SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
148 "Number of dirty buffers to flush before bufdaemon becomes inactive");
149 SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
150 "High watermark used to trigger explicit flushing of dirty buffers");
151 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
152 "Minimum amount of buffer space required for active I/O");
153 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
154 "Maximum amount of buffer space to usable for active I/O");
155 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
156 "Recycle pages to active or inactive queue transition pt 0-64");
158 * Sysctls determining current state of the buffer cache.
160 SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
161 "Total number of buffers in buffer cache");
162 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
163 "Pending bytes of dirty buffers (all)");
164 SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
165 "Pending bytes of dirty buffers (heavy weight)");
166 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
167 "Pending number of dirty buffers");
168 SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
169 "Pending number of dirty buffers (heavy weight)");
170 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
171 "I/O bytes currently in progress due to asynchronous writes");
172 SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
173 "I/O buffers currently in progress due to asynchronous writes");
174 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
175 "Hard limit on maximum amount of memory usable for buffer space");
176 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
177 "Soft limit on maximum amount of memory usable for buffer space");
178 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
179 "Minimum amount of memory to reserve for system buffer space");
180 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
181 "Amount of memory available for buffers");
182 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
183 0, "Maximum amount of memory reserved for buffers using malloc");
184 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
185 "Amount of memory left for buffers using malloc-scheme");
186 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
187 "New buffer header acquisition requests");
188 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
189 0, "New buffer header acquisition restarts");
190 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
191 "Recover VM space in an emergency");
192 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
193 "Buffer acquisition restarts due to fragmented buffer map");
194 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
195 "Amount of time KVA space was deallocated in an arbitrary buffer");
196 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
197 "Amount of time buffer re-use operations were successful");
198 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
199 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
200 "sizeof(struct buf)");
202 char *buf_wmesg = BUF_WMESG;
204 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
205 #define VFS_BIO_NEED_UNUSED02 0x02
206 #define VFS_BIO_NEED_UNUSED04 0x04
207 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
210 * bufspacewakeup:
212 * Called when buffer space is potentially available for recovery.
213 * getnewbuf() will block on this flag when it is unable to free
214 * sufficient buffer space. Buffer space becomes recoverable when
215 * bp's get placed back in the queues.
218 static __inline void
219 bufspacewakeup(void)
222 * If someone is waiting for BUF space, wake them up. Even
223 * though we haven't freed the kva space yet, the waiting
224 * process will be able to now.
226 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
227 spin_lock_wr(&needsbuffer_spin);
228 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
229 spin_unlock_wr(&needsbuffer_spin);
230 wakeup(&needsbuffer);
235 * runningbufwakeup:
237 * Accounting for I/O in progress.
240 static __inline void
241 runningbufwakeup(struct buf *bp)
243 int totalspace;
244 int limit;
246 if ((totalspace = bp->b_runningbufspace) != 0) {
247 atomic_subtract_int(&runningbufspace, totalspace);
248 atomic_subtract_int(&runningbufcount, 1);
249 bp->b_runningbufspace = 0;
252 * see waitrunningbufspace() for limit test.
254 limit = hirunningspace * 2 / 3;
255 if (runningbufreq && runningbufspace <= limit) {
256 runningbufreq = 0;
257 wakeup(&runningbufreq);
259 bd_signal(totalspace);
264 * bufcountwakeup:
266 * Called when a buffer has been added to one of the free queues to
267 * account for the buffer and to wakeup anyone waiting for free buffers.
268 * This typically occurs when large amounts of metadata are being handled
269 * by the buffer cache ( else buffer space runs out first, usually ).
271 * MPSAFE
273 static __inline void
274 bufcountwakeup(void)
276 if (needsbuffer) {
277 spin_lock_wr(&needsbuffer_spin);
278 needsbuffer &= ~VFS_BIO_NEED_ANY;
279 spin_unlock_wr(&needsbuffer_spin);
280 wakeup(&needsbuffer);
285 * waitrunningbufspace()
287 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
288 * This is the point where write bursting stops so we don't want to wait
289 * for the running amount to drop below it (at least if we still want bioq
290 * to burst writes).
292 * The caller may be using this function to block in a tight loop, we
293 * must block while runningbufspace is greater then or equal to
294 * hirunningspace * 2 / 3.
296 * And even with that it may not be enough, due to the presence of
297 * B_LOCKED dirty buffers, so also wait for at least one running buffer
298 * to complete.
300 static __inline void
301 waitrunningbufspace(void)
303 int limit = hirunningspace * 2 / 3;
305 crit_enter();
306 if (runningbufspace > limit) {
307 while (runningbufspace > limit) {
308 ++runningbufreq;
309 tsleep(&runningbufreq, 0, "wdrn1", 0);
311 } else if (runningbufspace) {
312 ++runningbufreq;
313 tsleep(&runningbufreq, 0, "wdrn2", 1);
315 crit_exit();
319 * buf_dirty_count_severe:
321 * Return true if we have too many dirty buffers.
324 buf_dirty_count_severe(void)
326 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
327 dirtybufcount >= nbuf / 2);
331 * Return true if the amount of running I/O is severe and BIOQ should
332 * start bursting.
335 buf_runningbufspace_severe(void)
337 return (runningbufspace >= hirunningspace * 2 / 3);
341 * vfs_buf_test_cache:
343 * Called when a buffer is extended. This function clears the B_CACHE
344 * bit if the newly extended portion of the buffer does not contain
345 * valid data.
347 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
348 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
349 * them while a clean buffer was present.
351 static __inline__
352 void
353 vfs_buf_test_cache(struct buf *bp,
354 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
355 vm_page_t m)
357 if (bp->b_flags & B_CACHE) {
358 int base = (foff + off) & PAGE_MASK;
359 if (vm_page_is_valid(m, base, size) == 0)
360 bp->b_flags &= ~B_CACHE;
365 * bd_speedup()
367 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
368 * low water mark.
370 * MPSAFE
372 static __inline__
373 void
374 bd_speedup(void)
376 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
377 return;
379 if (bd_request == 0 &&
380 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
381 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
382 spin_lock_wr(&needsbuffer_spin);
383 bd_request = 1;
384 spin_unlock_wr(&needsbuffer_spin);
385 wakeup(&bd_request);
387 if (bd_request_hw == 0 &&
388 (dirtybufspacehw > lodirtybufspace / 2 ||
389 dirtybufcounthw >= nbuf / 2)) {
390 spin_lock_wr(&needsbuffer_spin);
391 bd_request_hw = 1;
392 spin_unlock_wr(&needsbuffer_spin);
393 wakeup(&bd_request_hw);
398 * bd_heatup()
400 * Get the buf_daemon heated up when the number of running and dirty
401 * buffers exceeds the mid-point.
403 * Return the total number of dirty bytes past the second mid point
404 * as a measure of how much excess dirty data there is in the system.
406 * MPSAFE
409 bd_heatup(void)
411 int mid1;
412 int mid2;
413 int totalspace;
415 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
417 totalspace = runningbufspace + dirtybufspace;
418 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
419 bd_speedup();
420 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
421 if (totalspace >= mid2)
422 return(totalspace - mid2);
424 return(0);
428 * bd_wait()
430 * Wait for the buffer cache to flush (totalspace) bytes worth of
431 * buffers, then return.
433 * Regardless this function blocks while the number of dirty buffers
434 * exceeds hidirtybufspace.
436 * MPSAFE
438 void
439 bd_wait(int totalspace)
441 u_int i;
442 int count;
444 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
445 return;
447 while (totalspace > 0) {
448 bd_heatup();
449 if (totalspace > runningbufspace + dirtybufspace)
450 totalspace = runningbufspace + dirtybufspace;
451 count = totalspace / BKVASIZE;
452 if (count >= BD_WAKE_SIZE)
453 count = BD_WAKE_SIZE - 1;
455 spin_lock_wr(&needsbuffer_spin);
456 i = (bd_wake_index + count) & BD_WAKE_MASK;
457 ++bd_wake_ary[i];
458 tsleep_interlock(&bd_wake_ary[i], 0);
459 spin_unlock_wr(&needsbuffer_spin);
460 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
462 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
467 * bd_signal()
469 * This function is called whenever runningbufspace or dirtybufspace
470 * is reduced. Track threads waiting for run+dirty buffer I/O
471 * complete.
473 * MPSAFE
475 static void
476 bd_signal(int totalspace)
478 u_int i;
480 if (totalspace > 0) {
481 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
482 totalspace = BKVASIZE * BD_WAKE_SIZE;
483 spin_lock_wr(&needsbuffer_spin);
484 while (totalspace > 0) {
485 i = bd_wake_index++;
486 i &= BD_WAKE_MASK;
487 if (bd_wake_ary[i]) {
488 bd_wake_ary[i] = 0;
489 spin_unlock_wr(&needsbuffer_spin);
490 wakeup(&bd_wake_ary[i]);
491 spin_lock_wr(&needsbuffer_spin);
493 totalspace -= BKVASIZE;
495 spin_unlock_wr(&needsbuffer_spin);
500 * BIO tracking support routines.
502 * Release a ref on a bio_track. Wakeup requests are atomically released
503 * along with the last reference so bk_active will never wind up set to
504 * only 0x80000000.
506 * MPSAFE
508 static
509 void
510 bio_track_rel(struct bio_track *track)
512 int active;
513 int desired;
516 * Shortcut
518 active = track->bk_active;
519 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
520 return;
523 * Full-on. Note that the wait flag is only atomically released on
524 * the 1->0 count transition.
526 * We check for a negative count transition using bit 30 since bit 31
527 * has a different meaning.
529 for (;;) {
530 desired = (active & 0x7FFFFFFF) - 1;
531 if (desired)
532 desired |= active & 0x80000000;
533 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
534 if (desired & 0x40000000)
535 panic("bio_track_rel: bad count: %p\n", track);
536 if (active & 0x80000000)
537 wakeup(track);
538 break;
540 active = track->bk_active;
545 * Wait for the tracking count to reach 0.
547 * Use atomic ops such that the wait flag is only set atomically when
548 * bk_active is non-zero.
550 * MPSAFE
553 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
555 int active;
556 int desired;
557 int error;
560 * Shortcut
562 if (track->bk_active == 0)
563 return(0);
566 * Full-on. Note that the wait flag may only be atomically set if
567 * the active count is non-zero.
569 error = 0;
570 while ((active = track->bk_active) != 0) {
571 desired = active | 0x80000000;
572 tsleep_interlock(track, slp_flags);
573 if (active == desired ||
574 atomic_cmpset_int(&track->bk_active, active, desired)) {
575 error = tsleep(track, slp_flags | PINTERLOCKED,
576 "iowait", slp_timo);
577 if (error)
578 break;
581 return (error);
585 * bufinit:
587 * Load time initialisation of the buffer cache, called from machine
588 * dependant initialization code.
590 void
591 bufinit(void)
593 struct buf *bp;
594 vm_offset_t bogus_offset;
595 int i;
597 spin_init(&needsbuffer_spin);
599 /* next, make a null set of free lists */
600 for (i = 0; i < BUFFER_QUEUES; i++)
601 TAILQ_INIT(&bufqueues[i]);
603 /* finally, initialize each buffer header and stick on empty q */
604 for (i = 0; i < nbuf; i++) {
605 bp = &buf[i];
606 bzero(bp, sizeof *bp);
607 bp->b_flags = B_INVAL; /* we're just an empty header */
608 bp->b_cmd = BUF_CMD_DONE;
609 bp->b_qindex = BQUEUE_EMPTY;
610 initbufbio(bp);
611 xio_init(&bp->b_xio);
612 buf_dep_init(bp);
613 BUF_LOCKINIT(bp);
614 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
618 * maxbufspace is the absolute maximum amount of buffer space we are
619 * allowed to reserve in KVM and in real terms. The absolute maximum
620 * is nominally used by buf_daemon. hibufspace is the nominal maximum
621 * used by most other processes. The differential is required to
622 * ensure that buf_daemon is able to run when other processes might
623 * be blocked waiting for buffer space.
625 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
626 * this may result in KVM fragmentation which is not handled optimally
627 * by the system.
629 maxbufspace = nbuf * BKVASIZE;
630 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
631 lobufspace = hibufspace - MAXBSIZE;
633 lorunningspace = 512 * 1024;
634 /* hirunningspace -- see below */
637 * Limit the amount of malloc memory since it is wired permanently
638 * into the kernel space. Even though this is accounted for in
639 * the buffer allocation, we don't want the malloced region to grow
640 * uncontrolled. The malloc scheme improves memory utilization
641 * significantly on average (small) directories.
643 maxbufmallocspace = hibufspace / 20;
646 * Reduce the chance of a deadlock occuring by limiting the number
647 * of delayed-write dirty buffers we allow to stack up.
649 * We don't want too much actually queued to the device at once
650 * (XXX this needs to be per-mount!), because the buffers will
651 * wind up locked for a very long period of time while the I/O
652 * drains.
654 hidirtybufspace = hibufspace / 2; /* dirty + running */
655 hirunningspace = hibufspace / 16; /* locked & queued to device */
656 if (hirunningspace < 1024 * 1024)
657 hirunningspace = 1024 * 1024;
659 dirtybufspace = 0;
660 dirtybufspacehw = 0;
662 lodirtybufspace = hidirtybufspace / 2;
665 * Maximum number of async ops initiated per buf_daemon loop. This is
666 * somewhat of a hack at the moment, we really need to limit ourselves
667 * based on the number of bytes of I/O in-transit that were initiated
668 * from buf_daemon.
671 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
672 bogus_page = vm_page_alloc(&kernel_object,
673 (bogus_offset >> PAGE_SHIFT),
674 VM_ALLOC_NORMAL);
675 vmstats.v_wire_count++;
680 * Initialize the embedded bio structures
682 void
683 initbufbio(struct buf *bp)
685 bp->b_bio1.bio_buf = bp;
686 bp->b_bio1.bio_prev = NULL;
687 bp->b_bio1.bio_offset = NOOFFSET;
688 bp->b_bio1.bio_next = &bp->b_bio2;
689 bp->b_bio1.bio_done = NULL;
690 bp->b_bio1.bio_flags = 0;
692 bp->b_bio2.bio_buf = bp;
693 bp->b_bio2.bio_prev = &bp->b_bio1;
694 bp->b_bio2.bio_offset = NOOFFSET;
695 bp->b_bio2.bio_next = NULL;
696 bp->b_bio2.bio_done = NULL;
697 bp->b_bio2.bio_flags = 0;
701 * Reinitialize the embedded bio structures as well as any additional
702 * translation cache layers.
704 void
705 reinitbufbio(struct buf *bp)
707 struct bio *bio;
709 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
710 bio->bio_done = NULL;
711 bio->bio_offset = NOOFFSET;
716 * Push another BIO layer onto an existing BIO and return it. The new
717 * BIO layer may already exist, holding cached translation data.
719 struct bio *
720 push_bio(struct bio *bio)
722 struct bio *nbio;
724 if ((nbio = bio->bio_next) == NULL) {
725 int index = bio - &bio->bio_buf->b_bio_array[0];
726 if (index >= NBUF_BIO - 1) {
727 panic("push_bio: too many layers bp %p\n",
728 bio->bio_buf);
730 nbio = &bio->bio_buf->b_bio_array[index + 1];
731 bio->bio_next = nbio;
732 nbio->bio_prev = bio;
733 nbio->bio_buf = bio->bio_buf;
734 nbio->bio_offset = NOOFFSET;
735 nbio->bio_done = NULL;
736 nbio->bio_next = NULL;
738 KKASSERT(nbio->bio_done == NULL);
739 return(nbio);
743 * Pop a BIO translation layer, returning the previous layer. The
744 * must have been previously pushed.
746 struct bio *
747 pop_bio(struct bio *bio)
749 return(bio->bio_prev);
752 void
753 clearbiocache(struct bio *bio)
755 while (bio) {
756 bio->bio_offset = NOOFFSET;
757 bio = bio->bio_next;
762 * bfreekva:
764 * Free the KVA allocation for buffer 'bp'.
766 * Must be called from a critical section as this is the only locking for
767 * buffer_map.
769 * Since this call frees up buffer space, we call bufspacewakeup().
771 * MPALMOSTSAFE
773 static void
774 bfreekva(struct buf *bp)
776 int count;
778 if (bp->b_kvasize) {
779 get_mplock();
780 ++buffreekvacnt;
781 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
782 vm_map_lock(&buffer_map);
783 bufspace -= bp->b_kvasize;
784 vm_map_delete(&buffer_map,
785 (vm_offset_t) bp->b_kvabase,
786 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
787 &count
789 vm_map_unlock(&buffer_map);
790 vm_map_entry_release(count);
791 bp->b_kvasize = 0;
792 bufspacewakeup();
793 rel_mplock();
798 * bremfree:
800 * Remove the buffer from the appropriate free list.
802 static __inline void
803 _bremfree(struct buf *bp)
805 if (bp->b_qindex != BQUEUE_NONE) {
806 KASSERT(BUF_REFCNTNB(bp) == 1,
807 ("bremfree: bp %p not locked",bp));
808 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
809 bp->b_qindex = BQUEUE_NONE;
810 } else {
811 if (BUF_REFCNTNB(bp) <= 1)
812 panic("bremfree: removing a buffer not on a queue");
816 void
817 bremfree(struct buf *bp)
819 spin_lock_wr(&bufspin);
820 _bremfree(bp);
821 spin_unlock_wr(&bufspin);
824 static void
825 bremfree_locked(struct buf *bp)
827 _bremfree(bp);
831 * bread:
833 * Get a buffer with the specified data. Look in the cache first. We
834 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
835 * is set, the buffer is valid and we do not have to do anything ( see
836 * getblk() ).
838 * MPALMOSTSAFE
841 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
843 struct buf *bp;
845 bp = getblk(vp, loffset, size, 0, 0);
846 *bpp = bp;
848 /* if not found in cache, do some I/O */
849 if ((bp->b_flags & B_CACHE) == 0) {
850 get_mplock();
851 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
852 bp->b_cmd = BUF_CMD_READ;
853 bp->b_bio1.bio_done = biodone_sync;
854 bp->b_bio1.bio_flags |= BIO_SYNC;
855 vfs_busy_pages(vp, bp);
856 vn_strategy(vp, &bp->b_bio1);
857 rel_mplock();
858 return (biowait(&bp->b_bio1, "biord"));
860 return (0);
864 * breadn:
866 * Operates like bread, but also starts asynchronous I/O on
867 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
868 * to initiating I/O . If B_CACHE is set, the buffer is valid
869 * and we do not have to do anything.
871 * MPALMOSTSAFE
874 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
875 int *rabsize, int cnt, struct buf **bpp)
877 struct buf *bp, *rabp;
878 int i;
879 int rv = 0, readwait = 0;
881 *bpp = bp = getblk(vp, loffset, size, 0, 0);
883 /* if not found in cache, do some I/O */
884 if ((bp->b_flags & B_CACHE) == 0) {
885 get_mplock();
886 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
887 bp->b_cmd = BUF_CMD_READ;
888 bp->b_bio1.bio_done = biodone_sync;
889 bp->b_bio1.bio_flags |= BIO_SYNC;
890 vfs_busy_pages(vp, bp);
891 vn_strategy(vp, &bp->b_bio1);
892 ++readwait;
893 rel_mplock();
896 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
897 if (inmem(vp, *raoffset))
898 continue;
899 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
901 if ((rabp->b_flags & B_CACHE) == 0) {
902 get_mplock();
903 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
904 rabp->b_cmd = BUF_CMD_READ;
905 vfs_busy_pages(vp, rabp);
906 BUF_KERNPROC(rabp);
907 vn_strategy(vp, &rabp->b_bio1);
908 rel_mplock();
909 } else {
910 brelse(rabp);
913 if (readwait)
914 rv = biowait(&bp->b_bio1, "biord");
915 return (rv);
919 * bwrite:
921 * Synchronous write, waits for completion.
923 * Write, release buffer on completion. (Done by iodone
924 * if async). Do not bother writing anything if the buffer
925 * is invalid.
927 * Note that we set B_CACHE here, indicating that buffer is
928 * fully valid and thus cacheable. This is true even of NFS
929 * now so we set it generally. This could be set either here
930 * or in biodone() since the I/O is synchronous. We put it
931 * here.
934 bwrite(struct buf *bp)
936 int error;
938 if (bp->b_flags & B_INVAL) {
939 brelse(bp);
940 return (0);
942 if (BUF_REFCNTNB(bp) == 0)
943 panic("bwrite: buffer is not busy???");
945 /* Mark the buffer clean */
946 bundirty(bp);
948 bp->b_flags &= ~(B_ERROR | B_EINTR);
949 bp->b_flags |= B_CACHE;
950 bp->b_cmd = BUF_CMD_WRITE;
951 bp->b_bio1.bio_done = biodone_sync;
952 bp->b_bio1.bio_flags |= BIO_SYNC;
953 vfs_busy_pages(bp->b_vp, bp);
956 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
957 * valid for vnode-backed buffers.
959 bp->b_runningbufspace = bp->b_bufsize;
960 if (bp->b_runningbufspace) {
961 runningbufspace += bp->b_runningbufspace;
962 ++runningbufcount;
965 vn_strategy(bp->b_vp, &bp->b_bio1);
966 error = biowait(&bp->b_bio1, "biows");
967 brelse(bp);
968 return (error);
972 * bawrite:
974 * Asynchronous write. Start output on a buffer, but do not wait for
975 * it to complete. The buffer is released when the output completes.
977 * bwrite() ( or the VOP routine anyway ) is responsible for handling
978 * B_INVAL buffers. Not us.
980 void
981 bawrite(struct buf *bp)
983 if (bp->b_flags & B_INVAL) {
984 brelse(bp);
985 return;
987 if (BUF_REFCNTNB(bp) == 0)
988 panic("bwrite: buffer is not busy???");
990 /* Mark the buffer clean */
991 bundirty(bp);
993 bp->b_flags &= ~(B_ERROR | B_EINTR);
994 bp->b_flags |= B_CACHE;
995 bp->b_cmd = BUF_CMD_WRITE;
996 KKASSERT(bp->b_bio1.bio_done == NULL);
997 vfs_busy_pages(bp->b_vp, bp);
1000 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1001 * valid for vnode-backed buffers.
1003 bp->b_runningbufspace = bp->b_bufsize;
1004 if (bp->b_runningbufspace) {
1005 runningbufspace += bp->b_runningbufspace;
1006 ++runningbufcount;
1009 BUF_KERNPROC(bp);
1010 vn_strategy(bp->b_vp, &bp->b_bio1);
1014 * bowrite:
1016 * Ordered write. Start output on a buffer, and flag it so that the
1017 * device will write it in the order it was queued. The buffer is
1018 * released when the output completes. bwrite() ( or the VOP routine
1019 * anyway ) is responsible for handling B_INVAL buffers.
1022 bowrite(struct buf *bp)
1024 bp->b_flags |= B_ORDERED;
1025 bawrite(bp);
1026 return (0);
1030 * bdwrite:
1032 * Delayed write. (Buffer is marked dirty). Do not bother writing
1033 * anything if the buffer is marked invalid.
1035 * Note that since the buffer must be completely valid, we can safely
1036 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1037 * biodone() in order to prevent getblk from writing the buffer
1038 * out synchronously.
1040 void
1041 bdwrite(struct buf *bp)
1043 if (BUF_REFCNTNB(bp) == 0)
1044 panic("bdwrite: buffer is not busy");
1046 if (bp->b_flags & B_INVAL) {
1047 brelse(bp);
1048 return;
1050 bdirty(bp);
1053 * Set B_CACHE, indicating that the buffer is fully valid. This is
1054 * true even of NFS now.
1056 bp->b_flags |= B_CACHE;
1059 * This bmap keeps the system from needing to do the bmap later,
1060 * perhaps when the system is attempting to do a sync. Since it
1061 * is likely that the indirect block -- or whatever other datastructure
1062 * that the filesystem needs is still in memory now, it is a good
1063 * thing to do this. Note also, that if the pageout daemon is
1064 * requesting a sync -- there might not be enough memory to do
1065 * the bmap then... So, this is important to do.
1067 if (bp->b_bio2.bio_offset == NOOFFSET) {
1068 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1069 NULL, NULL, BUF_CMD_WRITE);
1073 * Because the underlying pages may still be mapped and
1074 * writable trying to set the dirty buffer (b_dirtyoff/end)
1075 * range here will be inaccurate.
1077 * However, we must still clean the pages to satisfy the
1078 * vnode_pager and pageout daemon, so theythink the pages
1079 * have been "cleaned". What has really occured is that
1080 * they've been earmarked for later writing by the buffer
1081 * cache.
1083 * So we get the b_dirtyoff/end update but will not actually
1084 * depend on it (NFS that is) until the pages are busied for
1085 * writing later on.
1087 vfs_clean_pages(bp);
1088 bqrelse(bp);
1091 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1092 * due to the softdep code.
1097 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1098 * This is used by tmpfs.
1100 * It is important for any VFS using this routine to NOT use it for
1101 * IO_SYNC or IO_ASYNC operations which occur when the system really
1102 * wants to flush VM pages to backing store.
1104 void
1105 buwrite(struct buf *bp)
1107 vm_page_t m;
1108 int i;
1111 * Only works for VMIO buffers. If the buffer is already
1112 * marked for delayed-write we can't avoid the bdwrite().
1114 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1115 bdwrite(bp);
1116 return;
1120 * Set valid & dirty.
1122 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1123 m = bp->b_xio.xio_pages[i];
1124 vfs_dirty_one_page(bp, i, m);
1126 bqrelse(bp);
1130 * bdirty:
1132 * Turn buffer into delayed write request by marking it B_DELWRI.
1133 * B_RELBUF and B_NOCACHE must be cleared.
1135 * We reassign the buffer to itself to properly update it in the
1136 * dirty/clean lists.
1138 * Must be called from a critical section.
1139 * The buffer must be on BQUEUE_NONE.
1141 void
1142 bdirty(struct buf *bp)
1144 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1145 if (bp->b_flags & B_NOCACHE) {
1146 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1147 bp->b_flags &= ~B_NOCACHE;
1149 if (bp->b_flags & B_INVAL) {
1150 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1152 bp->b_flags &= ~B_RELBUF;
1154 if ((bp->b_flags & B_DELWRI) == 0) {
1155 bp->b_flags |= B_DELWRI;
1156 reassignbuf(bp);
1157 atomic_add_int(&dirtybufcount, 1);
1158 dirtybufspace += bp->b_bufsize;
1159 if (bp->b_flags & B_HEAVY) {
1160 atomic_add_int(&dirtybufcounthw, 1);
1161 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1163 bd_heatup();
1168 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1169 * needs to be flushed with a different buf_daemon thread to avoid
1170 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1172 void
1173 bheavy(struct buf *bp)
1175 if ((bp->b_flags & B_HEAVY) == 0) {
1176 bp->b_flags |= B_HEAVY;
1177 if (bp->b_flags & B_DELWRI) {
1178 atomic_add_int(&dirtybufcounthw, 1);
1179 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1185 * bundirty:
1187 * Clear B_DELWRI for buffer.
1189 * Must be called from a critical section.
1191 * The buffer is typically on BQUEUE_NONE but there is one case in
1192 * brelse() that calls this function after placing the buffer on
1193 * a different queue.
1195 * MPSAFE
1197 void
1198 bundirty(struct buf *bp)
1200 if (bp->b_flags & B_DELWRI) {
1201 bp->b_flags &= ~B_DELWRI;
1202 reassignbuf(bp);
1203 atomic_subtract_int(&dirtybufcount, 1);
1204 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1205 if (bp->b_flags & B_HEAVY) {
1206 atomic_subtract_int(&dirtybufcounthw, 1);
1207 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1209 bd_signal(bp->b_bufsize);
1212 * Since it is now being written, we can clear its deferred write flag.
1214 bp->b_flags &= ~B_DEFERRED;
1218 * brelse:
1220 * Release a busy buffer and, if requested, free its resources. The
1221 * buffer will be stashed in the appropriate bufqueue[] allowing it
1222 * to be accessed later as a cache entity or reused for other purposes.
1224 * MPALMOSTSAFE
1226 void
1227 brelse(struct buf *bp)
1229 #ifdef INVARIANTS
1230 int saved_flags = bp->b_flags;
1231 #endif
1233 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1236 * If B_NOCACHE is set we are being asked to destroy the buffer and
1237 * its backing store. Clear B_DELWRI.
1239 * B_NOCACHE is set in two cases: (1) when the caller really wants
1240 * to destroy the buffer and backing store and (2) when the caller
1241 * wants to destroy the buffer and backing store after a write
1242 * completes.
1244 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1245 bundirty(bp);
1248 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1250 * A re-dirtied buffer is only subject to destruction
1251 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1253 /* leave buffer intact */
1254 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1255 (bp->b_bufsize <= 0)) {
1257 * Either a failed read or we were asked to free or not
1258 * cache the buffer. This path is reached with B_DELWRI
1259 * set only if B_INVAL is already set. B_NOCACHE governs
1260 * backing store destruction.
1262 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1263 * buffer cannot be immediately freed.
1265 bp->b_flags |= B_INVAL;
1266 if (LIST_FIRST(&bp->b_dep) != NULL) {
1267 get_mplock();
1268 buf_deallocate(bp);
1269 rel_mplock();
1271 if (bp->b_flags & B_DELWRI) {
1272 atomic_subtract_int(&dirtybufcount, 1);
1273 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1274 if (bp->b_flags & B_HEAVY) {
1275 atomic_subtract_int(&dirtybufcounthw, 1);
1276 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1278 bd_signal(bp->b_bufsize);
1280 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1284 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1285 * If vfs_vmio_release() is called with either bit set, the
1286 * underlying pages may wind up getting freed causing a previous
1287 * write (bdwrite()) to get 'lost' because pages associated with
1288 * a B_DELWRI bp are marked clean. Pages associated with a
1289 * B_LOCKED buffer may be mapped by the filesystem.
1291 * If we want to release the buffer ourselves (rather then the
1292 * originator asking us to release it), give the originator a
1293 * chance to countermand the release by setting B_LOCKED.
1295 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1296 * if B_DELWRI is set.
1298 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1299 * on pages to return pages to the VM page queues.
1301 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1302 bp->b_flags &= ~B_RELBUF;
1303 } else if (vm_page_count_severe()) {
1304 if (LIST_FIRST(&bp->b_dep) != NULL) {
1305 get_mplock();
1306 buf_deallocate(bp); /* can set B_LOCKED */
1307 rel_mplock();
1309 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1310 bp->b_flags &= ~B_RELBUF;
1311 else
1312 bp->b_flags |= B_RELBUF;
1316 * Make sure b_cmd is clear. It may have already been cleared by
1317 * biodone().
1319 * At this point destroying the buffer is governed by the B_INVAL
1320 * or B_RELBUF flags.
1322 bp->b_cmd = BUF_CMD_DONE;
1325 * VMIO buffer rundown. Make sure the VM page array is restored
1326 * after an I/O may have replaces some of the pages with bogus pages
1327 * in order to not destroy dirty pages in a fill-in read.
1329 * Note that due to the code above, if a buffer is marked B_DELWRI
1330 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1331 * B_INVAL may still be set, however.
1333 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1334 * but not the backing store. B_NOCACHE will destroy the backing
1335 * store.
1337 * Note that dirty NFS buffers contain byte-granular write ranges
1338 * and should not be destroyed w/ B_INVAL even if the backing store
1339 * is left intact.
1341 if (bp->b_flags & B_VMIO) {
1343 * Rundown for VMIO buffers which are not dirty NFS buffers.
1345 int i, j, resid;
1346 vm_page_t m;
1347 off_t foff;
1348 vm_pindex_t poff;
1349 vm_object_t obj;
1350 struct vnode *vp;
1352 vp = bp->b_vp;
1355 * Get the base offset and length of the buffer. Note that
1356 * in the VMIO case if the buffer block size is not
1357 * page-aligned then b_data pointer may not be page-aligned.
1358 * But our b_xio.xio_pages array *IS* page aligned.
1360 * block sizes less then DEV_BSIZE (usually 512) are not
1361 * supported due to the page granularity bits (m->valid,
1362 * m->dirty, etc...).
1364 * See man buf(9) for more information
1367 resid = bp->b_bufsize;
1368 foff = bp->b_loffset;
1370 get_mplock();
1371 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1372 m = bp->b_xio.xio_pages[i];
1373 vm_page_flag_clear(m, PG_ZERO);
1375 * If we hit a bogus page, fixup *all* of them
1376 * now. Note that we left these pages wired
1377 * when we removed them so they had better exist,
1378 * and they cannot be ripped out from under us so
1379 * no critical section protection is necessary.
1381 if (m == bogus_page) {
1382 obj = vp->v_object;
1383 poff = OFF_TO_IDX(bp->b_loffset);
1385 for (j = i; j < bp->b_xio.xio_npages; j++) {
1386 vm_page_t mtmp;
1388 mtmp = bp->b_xio.xio_pages[j];
1389 if (mtmp == bogus_page) {
1390 mtmp = vm_page_lookup(obj, poff + j);
1391 if (!mtmp) {
1392 panic("brelse: page missing");
1394 bp->b_xio.xio_pages[j] = mtmp;
1398 if ((bp->b_flags & B_INVAL) == 0) {
1399 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1400 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1402 m = bp->b_xio.xio_pages[i];
1406 * Invalidate the backing store if B_NOCACHE is set
1407 * (e.g. used with vinvalbuf()). If this is NFS
1408 * we impose a requirement that the block size be
1409 * a multiple of PAGE_SIZE and create a temporary
1410 * hack to basically invalidate the whole page. The
1411 * problem is that NFS uses really odd buffer sizes
1412 * especially when tracking piecemeal writes and
1413 * it also vinvalbuf()'s a lot, which would result
1414 * in only partial page validation and invalidation
1415 * here. If the file page is mmap()'d, however,
1416 * all the valid bits get set so after we invalidate
1417 * here we would end up with weird m->valid values
1418 * like 0xfc. nfs_getpages() can't handle this so
1419 * we clear all the valid bits for the NFS case
1420 * instead of just some of them.
1422 * The real bug is the VM system having to set m->valid
1423 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1424 * itself is an artifact of the whole 512-byte
1425 * granular mess that exists to support odd block
1426 * sizes and UFS meta-data block sizes (e.g. 6144).
1427 * A complete rewrite is required.
1429 * XXX
1431 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1432 int poffset = foff & PAGE_MASK;
1433 int presid;
1435 presid = PAGE_SIZE - poffset;
1436 if (bp->b_vp->v_tag == VT_NFS &&
1437 bp->b_vp->v_type == VREG) {
1438 ; /* entire page */
1439 } else if (presid > resid) {
1440 presid = resid;
1442 KASSERT(presid >= 0, ("brelse: extra page"));
1443 vm_page_set_invalid(m, poffset, presid);
1446 * Also make sure any swap cache is removed
1447 * as it is now stale (HAMMER in particular
1448 * uses B_NOCACHE to deal with buffer
1449 * aliasing).
1451 swap_pager_unswapped(m);
1453 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1454 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1456 if (bp->b_flags & (B_INVAL | B_RELBUF))
1457 vfs_vmio_release(bp);
1458 rel_mplock();
1459 } else {
1461 * Rundown for non-VMIO buffers.
1463 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1464 get_mplock();
1465 if (bp->b_bufsize)
1466 allocbuf(bp, 0);
1467 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1468 if (bp->b_vp)
1469 brelvp(bp);
1470 rel_mplock();
1474 if (bp->b_qindex != BQUEUE_NONE)
1475 panic("brelse: free buffer onto another queue???");
1476 if (BUF_REFCNTNB(bp) > 1) {
1477 /* Temporary panic to verify exclusive locking */
1478 /* This panic goes away when we allow shared refs */
1479 panic("brelse: multiple refs");
1480 /* NOT REACHED */
1481 return;
1485 * Figure out the correct queue to place the cleaned up buffer on.
1486 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1487 * disassociated from their vnode.
1489 spin_lock_wr(&bufspin);
1490 if (bp->b_flags & B_LOCKED) {
1492 * Buffers that are locked are placed in the locked queue
1493 * immediately, regardless of their state.
1495 bp->b_qindex = BQUEUE_LOCKED;
1496 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1497 } else if (bp->b_bufsize == 0) {
1499 * Buffers with no memory. Due to conditionals near the top
1500 * of brelse() such buffers should probably already be
1501 * marked B_INVAL and disassociated from their vnode.
1503 bp->b_flags |= B_INVAL;
1504 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1505 KKASSERT((bp->b_flags & B_HASHED) == 0);
1506 if (bp->b_kvasize) {
1507 bp->b_qindex = BQUEUE_EMPTYKVA;
1508 } else {
1509 bp->b_qindex = BQUEUE_EMPTY;
1511 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1512 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1514 * Buffers with junk contents. Again these buffers had better
1515 * already be disassociated from their vnode.
1517 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1518 KKASSERT((bp->b_flags & B_HASHED) == 0);
1519 bp->b_flags |= B_INVAL;
1520 bp->b_qindex = BQUEUE_CLEAN;
1521 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1522 } else {
1524 * Remaining buffers. These buffers are still associated with
1525 * their vnode.
1527 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1528 case B_DELWRI:
1529 bp->b_qindex = BQUEUE_DIRTY;
1530 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1531 break;
1532 case B_DELWRI | B_HEAVY:
1533 bp->b_qindex = BQUEUE_DIRTY_HW;
1534 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1535 b_freelist);
1536 break;
1537 default:
1539 * NOTE: Buffers are always placed at the end of the
1540 * queue. If B_AGE is not set the buffer will cycle
1541 * through the queue twice.
1543 bp->b_qindex = BQUEUE_CLEAN;
1544 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1545 break;
1548 spin_unlock_wr(&bufspin);
1551 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1552 * on the correct queue.
1554 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1555 bundirty(bp);
1558 * The bp is on an appropriate queue unless locked. If it is not
1559 * locked or dirty we can wakeup threads waiting for buffer space.
1561 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1562 * if B_INVAL is set ).
1564 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1565 bufcountwakeup();
1568 * Something we can maybe free or reuse
1570 if (bp->b_bufsize || bp->b_kvasize)
1571 bufspacewakeup();
1574 * Clean up temporary flags and unlock the buffer.
1576 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1577 BUF_UNLOCK(bp);
1581 * bqrelse:
1583 * Release a buffer back to the appropriate queue but do not try to free
1584 * it. The buffer is expected to be used again soon.
1586 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1587 * biodone() to requeue an async I/O on completion. It is also used when
1588 * known good buffers need to be requeued but we think we may need the data
1589 * again soon.
1591 * XXX we should be able to leave the B_RELBUF hint set on completion.
1593 * MPSAFE
1595 void
1596 bqrelse(struct buf *bp)
1598 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1600 if (bp->b_qindex != BQUEUE_NONE)
1601 panic("bqrelse: free buffer onto another queue???");
1602 if (BUF_REFCNTNB(bp) > 1) {
1603 /* do not release to free list */
1604 panic("bqrelse: multiple refs");
1605 return;
1608 buf_act_advance(bp);
1610 spin_lock_wr(&bufspin);
1611 if (bp->b_flags & B_LOCKED) {
1613 * Locked buffers are released to the locked queue. However,
1614 * if the buffer is dirty it will first go into the dirty
1615 * queue and later on after the I/O completes successfully it
1616 * will be released to the locked queue.
1618 bp->b_qindex = BQUEUE_LOCKED;
1619 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1620 } else if (bp->b_flags & B_DELWRI) {
1621 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1622 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1623 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1624 } else if (vm_page_count_severe()) {
1626 * We are too low on memory, we have to try to free the
1627 * buffer (most importantly: the wired pages making up its
1628 * backing store) *now*.
1630 spin_unlock_wr(&bufspin);
1631 brelse(bp);
1632 return;
1633 } else {
1634 bp->b_qindex = BQUEUE_CLEAN;
1635 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1637 spin_unlock_wr(&bufspin);
1639 if ((bp->b_flags & B_LOCKED) == 0 &&
1640 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1641 bufcountwakeup();
1645 * Something we can maybe free or reuse.
1647 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1648 bufspacewakeup();
1651 * Final cleanup and unlock. Clear bits that are only used while a
1652 * buffer is actively locked.
1654 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1655 BUF_UNLOCK(bp);
1659 * vfs_vmio_release:
1661 * Return backing pages held by the buffer 'bp' back to the VM system
1662 * if possible. The pages are freed if they are no longer valid or
1663 * attempt to free if it was used for direct I/O otherwise they are
1664 * sent to the page cache.
1666 * Pages that were marked busy are left alone and skipped.
1668 * The KVA mapping (b_data) for the underlying pages is removed by
1669 * this function.
1671 static void
1672 vfs_vmio_release(struct buf *bp)
1674 int i;
1675 vm_page_t m;
1677 crit_enter();
1678 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1679 m = bp->b_xio.xio_pages[i];
1680 bp->b_xio.xio_pages[i] = NULL;
1683 * The VFS is telling us this is not a meta-data buffer
1684 * even if it is backed by a block device.
1686 if (bp->b_flags & B_NOTMETA)
1687 vm_page_flag_set(m, PG_NOTMETA);
1690 * This is a very important bit of code. We try to track
1691 * VM page use whether the pages are wired into the buffer
1692 * cache or not. While wired into the buffer cache the
1693 * bp tracks the act_count.
1695 * We can choose to place unwired pages on the inactive
1696 * queue (0) or active queue (1). If we place too many
1697 * on the active queue the queue will cycle the act_count
1698 * on pages we'd like to keep, just from single-use pages
1699 * (such as when doing a tar-up or file scan).
1701 if (bp->b_act_count < vm_cycle_point)
1702 vm_page_unwire(m, 0);
1703 else
1704 vm_page_unwire(m, 1);
1707 * We don't mess with busy pages, it is
1708 * the responsibility of the process that
1709 * busied the pages to deal with them.
1711 if ((m->flags & PG_BUSY) || (m->busy != 0))
1712 continue;
1714 if (m->wire_count == 0) {
1715 vm_page_flag_clear(m, PG_ZERO);
1717 * Might as well free the page if we can and it has
1718 * no valid data. We also free the page if the
1719 * buffer was used for direct I/O.
1721 #if 0
1722 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1723 m->hold_count == 0) {
1724 vm_page_busy(m);
1725 vm_page_protect(m, VM_PROT_NONE);
1726 vm_page_free(m);
1727 } else
1728 #endif
1729 if (bp->b_flags & B_DIRECT) {
1730 vm_page_try_to_free(m);
1731 } else if (vm_page_count_severe()) {
1732 m->act_count = bp->b_act_count;
1733 vm_page_try_to_cache(m);
1734 } else {
1735 m->act_count = bp->b_act_count;
1739 crit_exit();
1740 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1741 if (bp->b_bufsize) {
1742 bufspacewakeup();
1743 bp->b_bufsize = 0;
1745 bp->b_xio.xio_npages = 0;
1746 bp->b_flags &= ~B_VMIO;
1747 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1748 if (bp->b_vp) {
1749 get_mplock();
1750 brelvp(bp);
1751 rel_mplock();
1756 * vfs_bio_awrite:
1758 * Implement clustered async writes for clearing out B_DELWRI buffers.
1759 * This is much better then the old way of writing only one buffer at
1760 * a time. Note that we may not be presented with the buffers in the
1761 * correct order, so we search for the cluster in both directions.
1763 * The buffer is locked on call.
1766 vfs_bio_awrite(struct buf *bp)
1768 int i;
1769 int j;
1770 off_t loffset = bp->b_loffset;
1771 struct vnode *vp = bp->b_vp;
1772 int nbytes;
1773 struct buf *bpa;
1774 int nwritten;
1775 int size;
1778 * right now we support clustered writing only to regular files. If
1779 * we find a clusterable block we could be in the middle of a cluster
1780 * rather then at the beginning.
1782 * NOTE: b_bio1 contains the logical loffset and is aliased
1783 * to b_loffset. b_bio2 contains the translated block number.
1785 if ((vp->v_type == VREG) &&
1786 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1787 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1789 size = vp->v_mount->mnt_stat.f_iosize;
1791 for (i = size; i < MAXPHYS; i += size) {
1792 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1793 BUF_REFCNT(bpa) == 0 &&
1794 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1795 (B_DELWRI | B_CLUSTEROK)) &&
1796 (bpa->b_bufsize == size)) {
1797 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1798 (bpa->b_bio2.bio_offset !=
1799 bp->b_bio2.bio_offset + i))
1800 break;
1801 } else {
1802 break;
1805 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1806 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1807 BUF_REFCNT(bpa) == 0 &&
1808 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1809 (B_DELWRI | B_CLUSTEROK)) &&
1810 (bpa->b_bufsize == size)) {
1811 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1812 (bpa->b_bio2.bio_offset !=
1813 bp->b_bio2.bio_offset - j))
1814 break;
1815 } else {
1816 break;
1819 j -= size;
1820 nbytes = (i + j);
1823 * this is a possible cluster write
1825 if (nbytes != size) {
1826 BUF_UNLOCK(bp);
1827 nwritten = cluster_wbuild(vp, size,
1828 loffset - j, nbytes);
1829 return nwritten;
1834 * default (old) behavior, writing out only one block
1836 * XXX returns b_bufsize instead of b_bcount for nwritten?
1838 nwritten = bp->b_bufsize;
1839 bremfree(bp);
1840 bawrite(bp);
1842 return nwritten;
1846 * getnewbuf:
1848 * Find and initialize a new buffer header, freeing up existing buffers
1849 * in the bufqueues as necessary. The new buffer is returned locked.
1851 * Important: B_INVAL is not set. If the caller wishes to throw the
1852 * buffer away, the caller must set B_INVAL prior to calling brelse().
1854 * We block if:
1855 * We have insufficient buffer headers
1856 * We have insufficient buffer space
1857 * buffer_map is too fragmented ( space reservation fails )
1858 * If we have to flush dirty buffers ( but we try to avoid this )
1860 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1861 * Instead we ask the buf daemon to do it for us. We attempt to
1862 * avoid piecemeal wakeups of the pageout daemon.
1864 * MPALMOSTSAFE
1866 static struct buf *
1867 getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1869 struct buf *bp;
1870 struct buf *nbp;
1871 int defrag = 0;
1872 int nqindex;
1873 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1874 static int flushingbufs;
1877 * We can't afford to block since we might be holding a vnode lock,
1878 * which may prevent system daemons from running. We deal with
1879 * low-memory situations by proactively returning memory and running
1880 * async I/O rather then sync I/O.
1883 ++getnewbufcalls;
1884 --getnewbufrestarts;
1885 restart:
1886 ++getnewbufrestarts;
1889 * Setup for scan. If we do not have enough free buffers,
1890 * we setup a degenerate case that immediately fails. Note
1891 * that if we are specially marked process, we are allowed to
1892 * dip into our reserves.
1894 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1896 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1897 * However, there are a number of cases (defragging, reusing, ...)
1898 * where we cannot backup.
1900 nqindex = BQUEUE_EMPTYKVA;
1901 spin_lock_wr(&bufspin);
1902 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1904 if (nbp == NULL) {
1906 * If no EMPTYKVA buffers and we are either
1907 * defragging or reusing, locate a CLEAN buffer
1908 * to free or reuse. If bufspace useage is low
1909 * skip this step so we can allocate a new buffer.
1911 if (defrag || bufspace >= lobufspace) {
1912 nqindex = BQUEUE_CLEAN;
1913 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1917 * If we could not find or were not allowed to reuse a
1918 * CLEAN buffer, check to see if it is ok to use an EMPTY
1919 * buffer. We can only use an EMPTY buffer if allocating
1920 * its KVA would not otherwise run us out of buffer space.
1922 if (nbp == NULL && defrag == 0 &&
1923 bufspace + maxsize < hibufspace) {
1924 nqindex = BQUEUE_EMPTY;
1925 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1930 * Run scan, possibly freeing data and/or kva mappings on the fly
1931 * depending.
1933 * WARNING! bufspin is held!
1935 while ((bp = nbp) != NULL) {
1936 int qindex = nqindex;
1938 nbp = TAILQ_NEXT(bp, b_freelist);
1941 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1942 * cycles through the queue twice before being selected.
1944 if (qindex == BQUEUE_CLEAN &&
1945 (bp->b_flags & B_AGE) == 0 && nbp) {
1946 bp->b_flags |= B_AGE;
1947 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1948 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1949 continue;
1953 * Calculate next bp ( we can only use it if we do not block
1954 * or do other fancy things ).
1956 if (nbp == NULL) {
1957 switch(qindex) {
1958 case BQUEUE_EMPTY:
1959 nqindex = BQUEUE_EMPTYKVA;
1960 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1961 break;
1962 /* fall through */
1963 case BQUEUE_EMPTYKVA:
1964 nqindex = BQUEUE_CLEAN;
1965 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1966 break;
1967 /* fall through */
1968 case BQUEUE_CLEAN:
1970 * nbp is NULL.
1972 break;
1977 * Sanity Checks
1979 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1982 * Note: we no longer distinguish between VMIO and non-VMIO
1983 * buffers.
1986 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1989 * If we are defragging then we need a buffer with
1990 * b_kvasize != 0. XXX this situation should no longer
1991 * occur, if defrag is non-zero the buffer's b_kvasize
1992 * should also be non-zero at this point. XXX
1994 if (defrag && bp->b_kvasize == 0) {
1995 kprintf("Warning: defrag empty buffer %p\n", bp);
1996 continue;
2000 * Start freeing the bp. This is somewhat involved. nbp
2001 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2002 * on the clean list must be disassociated from their
2003 * current vnode. Buffers on the empty[kva] lists have
2004 * already been disassociated.
2007 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2008 spin_unlock_wr(&bufspin);
2009 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2010 goto restart;
2012 if (bp->b_qindex != qindex) {
2013 spin_unlock_wr(&bufspin);
2014 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
2015 BUF_UNLOCK(bp);
2016 goto restart;
2018 bremfree_locked(bp);
2019 spin_unlock_wr(&bufspin);
2022 * Dependancies must be handled before we disassociate the
2023 * vnode.
2025 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2026 * be immediately disassociated. HAMMER then becomes
2027 * responsible for releasing the buffer.
2029 * NOTE: bufspin is UNLOCKED now.
2031 if (LIST_FIRST(&bp->b_dep) != NULL) {
2032 get_mplock();
2033 buf_deallocate(bp);
2034 rel_mplock();
2035 if (bp->b_flags & B_LOCKED) {
2036 bqrelse(bp);
2037 goto restart;
2039 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2042 if (qindex == BQUEUE_CLEAN) {
2043 get_mplock();
2044 if (bp->b_flags & B_VMIO) {
2045 get_mplock();
2046 vfs_vmio_release(bp);
2047 rel_mplock();
2049 if (bp->b_vp)
2050 brelvp(bp);
2051 rel_mplock();
2055 * NOTE: nbp is now entirely invalid. We can only restart
2056 * the scan from this point on.
2058 * Get the rest of the buffer freed up. b_kva* is still
2059 * valid after this operation.
2062 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2063 KKASSERT((bp->b_flags & B_HASHED) == 0);
2066 * critical section protection is not required when
2067 * scrapping a buffer's contents because it is already
2068 * wired.
2070 if (bp->b_bufsize) {
2071 get_mplock();
2072 allocbuf(bp, 0);
2073 rel_mplock();
2076 bp->b_flags = B_BNOCLIP;
2077 bp->b_cmd = BUF_CMD_DONE;
2078 bp->b_vp = NULL;
2079 bp->b_error = 0;
2080 bp->b_resid = 0;
2081 bp->b_bcount = 0;
2082 bp->b_xio.xio_npages = 0;
2083 bp->b_dirtyoff = bp->b_dirtyend = 0;
2084 bp->b_act_count = ACT_INIT;
2085 reinitbufbio(bp);
2086 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2087 buf_dep_init(bp);
2088 if (blkflags & GETBLK_BHEAVY)
2089 bp->b_flags |= B_HEAVY;
2092 * If we are defragging then free the buffer.
2094 if (defrag) {
2095 bp->b_flags |= B_INVAL;
2096 bfreekva(bp);
2097 brelse(bp);
2098 defrag = 0;
2099 goto restart;
2103 * If we are overcomitted then recover the buffer and its
2104 * KVM space. This occurs in rare situations when multiple
2105 * processes are blocked in getnewbuf() or allocbuf().
2107 if (bufspace >= hibufspace)
2108 flushingbufs = 1;
2109 if (flushingbufs && bp->b_kvasize != 0) {
2110 bp->b_flags |= B_INVAL;
2111 bfreekva(bp);
2112 brelse(bp);
2113 goto restart;
2115 if (bufspace < lobufspace)
2116 flushingbufs = 0;
2117 break;
2118 /* NOT REACHED, bufspin not held */
2122 * If we exhausted our list, sleep as appropriate. We may have to
2123 * wakeup various daemons and write out some dirty buffers.
2125 * Generally we are sleeping due to insufficient buffer space.
2127 * NOTE: bufspin is held if bp is NULL, else it is not held.
2129 if (bp == NULL) {
2130 int flags;
2131 char *waitmsg;
2133 spin_unlock_wr(&bufspin);
2134 if (defrag) {
2135 flags = VFS_BIO_NEED_BUFSPACE;
2136 waitmsg = "nbufkv";
2137 } else if (bufspace >= hibufspace) {
2138 waitmsg = "nbufbs";
2139 flags = VFS_BIO_NEED_BUFSPACE;
2140 } else {
2141 waitmsg = "newbuf";
2142 flags = VFS_BIO_NEED_ANY;
2145 needsbuffer |= flags;
2146 bd_speedup(); /* heeeelp */
2147 while (needsbuffer & flags) {
2148 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2149 return (NULL);
2151 } else {
2153 * We finally have a valid bp. We aren't quite out of the
2154 * woods, we still have to reserve kva space. In order
2155 * to keep fragmentation sane we only allocate kva in
2156 * BKVASIZE chunks.
2158 * (bufspin is not held)
2160 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2162 if (maxsize != bp->b_kvasize) {
2163 vm_offset_t addr = 0;
2164 int count;
2166 bfreekva(bp);
2168 get_mplock();
2169 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2170 vm_map_lock(&buffer_map);
2172 if (vm_map_findspace(&buffer_map,
2173 vm_map_min(&buffer_map), maxsize,
2174 maxsize, 0, &addr)) {
2176 * Uh oh. Buffer map is too fragmented. We
2177 * must defragment the map.
2179 vm_map_unlock(&buffer_map);
2180 vm_map_entry_release(count);
2181 ++bufdefragcnt;
2182 defrag = 1;
2183 bp->b_flags |= B_INVAL;
2184 rel_mplock();
2185 brelse(bp);
2186 goto restart;
2188 if (addr) {
2189 vm_map_insert(&buffer_map, &count,
2190 NULL, 0,
2191 addr, addr + maxsize,
2192 VM_MAPTYPE_NORMAL,
2193 VM_PROT_ALL, VM_PROT_ALL,
2194 MAP_NOFAULT);
2196 bp->b_kvabase = (caddr_t) addr;
2197 bp->b_kvasize = maxsize;
2198 bufspace += bp->b_kvasize;
2199 ++bufreusecnt;
2201 vm_map_unlock(&buffer_map);
2202 vm_map_entry_release(count);
2203 rel_mplock();
2205 bp->b_data = bp->b_kvabase;
2207 return(bp);
2211 * This routine is called in an emergency to recover VM pages from the
2212 * buffer cache by cashing in clean buffers. The idea is to recover
2213 * enough pages to be able to satisfy a stuck bio_page_alloc().
2215 static int
2216 recoverbufpages(void)
2218 struct buf *bp;
2219 int bytes = 0;
2221 ++recoverbufcalls;
2223 spin_lock_wr(&bufspin);
2224 while (bytes < MAXBSIZE) {
2225 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2226 if (bp == NULL)
2227 break;
2230 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2231 * cycles through the queue twice before being selected.
2233 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2234 bp->b_flags |= B_AGE;
2235 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2236 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2237 bp, b_freelist);
2238 continue;
2242 * Sanity Checks
2244 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2245 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2248 * Start freeing the bp. This is somewhat involved.
2250 * Buffers on the clean list must be disassociated from
2251 * their current vnode
2254 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2255 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2256 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2257 continue;
2259 if (bp->b_qindex != BQUEUE_CLEAN) {
2260 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2261 BUF_UNLOCK(bp);
2262 continue;
2264 bremfree_locked(bp);
2265 spin_unlock_wr(&bufspin);
2268 * Dependancies must be handled before we disassociate the
2269 * vnode.
2271 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2272 * be immediately disassociated. HAMMER then becomes
2273 * responsible for releasing the buffer.
2275 if (LIST_FIRST(&bp->b_dep) != NULL) {
2276 buf_deallocate(bp);
2277 if (bp->b_flags & B_LOCKED) {
2278 bqrelse(bp);
2279 spin_lock_wr(&bufspin);
2280 continue;
2282 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2285 bytes += bp->b_bufsize;
2287 get_mplock();
2288 if (bp->b_flags & B_VMIO) {
2289 bp->b_flags |= B_DIRECT; /* try to free pages */
2290 vfs_vmio_release(bp);
2292 if (bp->b_vp)
2293 brelvp(bp);
2295 KKASSERT(bp->b_vp == NULL);
2296 KKASSERT((bp->b_flags & B_HASHED) == 0);
2299 * critical section protection is not required when
2300 * scrapping a buffer's contents because it is already
2301 * wired.
2303 if (bp->b_bufsize)
2304 allocbuf(bp, 0);
2305 rel_mplock();
2307 bp->b_flags = B_BNOCLIP;
2308 bp->b_cmd = BUF_CMD_DONE;
2309 bp->b_vp = NULL;
2310 bp->b_error = 0;
2311 bp->b_resid = 0;
2312 bp->b_bcount = 0;
2313 bp->b_xio.xio_npages = 0;
2314 bp->b_dirtyoff = bp->b_dirtyend = 0;
2315 reinitbufbio(bp);
2316 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2317 buf_dep_init(bp);
2318 bp->b_flags |= B_INVAL;
2319 /* bfreekva(bp); */
2320 brelse(bp);
2321 spin_lock_wr(&bufspin);
2323 spin_unlock_wr(&bufspin);
2324 return(bytes);
2328 * buf_daemon:
2330 * Buffer flushing daemon. Buffers are normally flushed by the
2331 * update daemon but if it cannot keep up this process starts to
2332 * take the load in an attempt to prevent getnewbuf() from blocking.
2334 * Once a flush is initiated it does not stop until the number
2335 * of buffers falls below lodirtybuffers, but we will wake up anyone
2336 * waiting at the mid-point.
2339 static struct kproc_desc buf_kp = {
2340 "bufdaemon",
2341 buf_daemon,
2342 &bufdaemon_td
2344 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2345 kproc_start, &buf_kp)
2347 static struct kproc_desc bufhw_kp = {
2348 "bufdaemon_hw",
2349 buf_daemon_hw,
2350 &bufdaemonhw_td
2352 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2353 kproc_start, &bufhw_kp)
2355 static void
2356 buf_daemon(void)
2358 int limit;
2361 * This process needs to be suspended prior to shutdown sync.
2363 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2364 bufdaemon_td, SHUTDOWN_PRI_LAST);
2365 curthread->td_flags |= TDF_SYSTHREAD;
2368 * This process is allowed to take the buffer cache to the limit
2370 crit_enter();
2372 for (;;) {
2373 kproc_suspend_loop();
2376 * Do the flush as long as the number of dirty buffers
2377 * (including those running) exceeds lodirtybufspace.
2379 * When flushing limit running I/O to hirunningspace
2380 * Do the flush. Limit the amount of in-transit I/O we
2381 * allow to build up, otherwise we would completely saturate
2382 * the I/O system. Wakeup any waiting processes before we
2383 * normally would so they can run in parallel with our drain.
2385 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2386 * but because we split the operation into two threads we
2387 * have to cut it in half for each thread.
2389 waitrunningbufspace();
2390 limit = lodirtybufspace / 2;
2391 while (runningbufspace + dirtybufspace > limit ||
2392 dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2393 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2394 break;
2395 if (runningbufspace < hirunningspace)
2396 continue;
2397 waitrunningbufspace();
2401 * We reached our low water mark, reset the
2402 * request and sleep until we are needed again.
2403 * The sleep is just so the suspend code works.
2405 spin_lock_wr(&needsbuffer_spin);
2406 if (bd_request == 0) {
2407 ssleep(&bd_request, &needsbuffer_spin, 0,
2408 "psleep", hz);
2410 bd_request = 0;
2411 spin_unlock_wr(&needsbuffer_spin);
2415 static void
2416 buf_daemon_hw(void)
2418 int limit;
2421 * This process needs to be suspended prior to shutdown sync.
2423 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2424 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2425 curthread->td_flags |= TDF_SYSTHREAD;
2428 * This process is allowed to take the buffer cache to the limit
2430 crit_enter();
2432 for (;;) {
2433 kproc_suspend_loop();
2436 * Do the flush. Limit the amount of in-transit I/O we
2437 * allow to build up, otherwise we would completely saturate
2438 * the I/O system. Wakeup any waiting processes before we
2439 * normally would so they can run in parallel with our drain.
2441 * Once we decide to flush push the queued I/O up to
2442 * hirunningspace in order to trigger bursting by the bioq
2443 * subsystem.
2445 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2446 * but because we split the operation into two threads we
2447 * have to cut it in half for each thread.
2449 waitrunningbufspace();
2450 limit = lodirtybufspace / 2;
2451 while (runningbufspace + dirtybufspacehw > limit ||
2452 dirtybufcounthw >= nbuf / 2) {
2453 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2454 break;
2455 if (runningbufspace < hirunningspace)
2456 continue;
2457 waitrunningbufspace();
2461 * We reached our low water mark, reset the
2462 * request and sleep until we are needed again.
2463 * The sleep is just so the suspend code works.
2465 spin_lock_wr(&needsbuffer_spin);
2466 if (bd_request_hw == 0) {
2467 ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2468 "psleep", hz);
2470 bd_request_hw = 0;
2471 spin_unlock_wr(&needsbuffer_spin);
2476 * flushbufqueues:
2478 * Try to flush a buffer in the dirty queue. We must be careful to
2479 * free up B_INVAL buffers instead of write them, which NFS is
2480 * particularly sensitive to.
2482 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2483 * that we really want to try to get the buffer out and reuse it
2484 * due to the write load on the machine.
2486 static int
2487 flushbufqueues(bufq_type_t q)
2489 struct buf *bp;
2490 int r = 0;
2491 int spun;
2493 spin_lock_wr(&bufspin);
2494 spun = 1;
2496 bp = TAILQ_FIRST(&bufqueues[q]);
2497 while (bp) {
2498 KASSERT((bp->b_flags & B_DELWRI),
2499 ("unexpected clean buffer %p", bp));
2501 if (bp->b_flags & B_DELWRI) {
2502 if (bp->b_flags & B_INVAL) {
2503 spin_unlock_wr(&bufspin);
2504 spun = 0;
2505 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2506 panic("flushbufqueues: locked buf");
2507 bremfree(bp);
2508 brelse(bp);
2509 ++r;
2510 break;
2512 if (LIST_FIRST(&bp->b_dep) != NULL &&
2513 (bp->b_flags & B_DEFERRED) == 0 &&
2514 buf_countdeps(bp, 0)) {
2515 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2516 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2517 b_freelist);
2518 bp->b_flags |= B_DEFERRED;
2519 bp = TAILQ_FIRST(&bufqueues[q]);
2520 continue;
2524 * Only write it out if we can successfully lock
2525 * it. If the buffer has a dependancy,
2526 * buf_checkwrite must also return 0 for us to
2527 * be able to initate the write.
2529 * If the buffer is flagged B_ERROR it may be
2530 * requeued over and over again, we try to
2531 * avoid a live lock.
2533 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2534 spin_unlock_wr(&bufspin);
2535 spun = 0;
2536 if (LIST_FIRST(&bp->b_dep) != NULL &&
2537 buf_checkwrite(bp)) {
2538 bremfree(bp);
2539 brelse(bp);
2540 } else if (bp->b_flags & B_ERROR) {
2541 tsleep(bp, 0, "bioer", 1);
2542 bp->b_flags &= ~B_AGE;
2543 vfs_bio_awrite(bp);
2544 } else {
2545 bp->b_flags |= B_AGE;
2546 vfs_bio_awrite(bp);
2548 ++r;
2549 break;
2552 bp = TAILQ_NEXT(bp, b_freelist);
2554 if (spun)
2555 spin_unlock_wr(&bufspin);
2556 return (r);
2560 * inmem:
2562 * Returns true if no I/O is needed to access the associated VM object.
2563 * This is like findblk except it also hunts around in the VM system for
2564 * the data.
2566 * Note that we ignore vm_page_free() races from interrupts against our
2567 * lookup, since if the caller is not protected our return value will not
2568 * be any more valid then otherwise once we exit the critical section.
2571 inmem(struct vnode *vp, off_t loffset)
2573 vm_object_t obj;
2574 vm_offset_t toff, tinc, size;
2575 vm_page_t m;
2577 if (findblk(vp, loffset, FINDBLK_TEST))
2578 return 1;
2579 if (vp->v_mount == NULL)
2580 return 0;
2581 if ((obj = vp->v_object) == NULL)
2582 return 0;
2584 size = PAGE_SIZE;
2585 if (size > vp->v_mount->mnt_stat.f_iosize)
2586 size = vp->v_mount->mnt_stat.f_iosize;
2588 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2589 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2590 if (m == NULL)
2591 return 0;
2592 tinc = size;
2593 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2594 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2595 if (vm_page_is_valid(m,
2596 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2597 return 0;
2599 return 1;
2603 * findblk:
2605 * Locate and return the specified buffer. Unless flagged otherwise,
2606 * a locked buffer will be returned if it exists or NULL if it does not.
2608 * findblk()'d buffers are still on the bufqueues and if you intend
2609 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2610 * and possibly do other stuff to it.
2612 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2613 * for locking the buffer and ensuring that it remains
2614 * the desired buffer after locking.
2616 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2617 * to acquire the lock we return NULL, even if the
2618 * buffer exists.
2620 * (0) - Lock the buffer blocking.
2622 * MPSAFE
2624 struct buf *
2625 findblk(struct vnode *vp, off_t loffset, int flags)
2627 lwkt_tokref vlock;
2628 struct buf *bp;
2629 int lkflags;
2631 lkflags = LK_EXCLUSIVE;
2632 if (flags & FINDBLK_NBLOCK)
2633 lkflags |= LK_NOWAIT;
2635 for (;;) {
2636 lwkt_gettoken(&vlock, &vp->v_token);
2637 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2638 lwkt_reltoken(&vlock);
2639 if (bp == NULL || (flags & FINDBLK_TEST))
2640 break;
2641 if (BUF_LOCK(bp, lkflags)) {
2642 bp = NULL;
2643 break;
2645 if (bp->b_vp == vp && bp->b_loffset == loffset)
2646 break;
2647 BUF_UNLOCK(bp);
2649 return(bp);
2653 * getcacheblk:
2655 * Similar to getblk() except only returns the buffer if it is
2656 * B_CACHE and requires no other manipulation. Otherwise NULL
2657 * is returned.
2659 * If B_RAM is set the buffer might be just fine, but we return
2660 * NULL anyway because we want the code to fall through to the
2661 * cluster read. Otherwise read-ahead breaks.
2663 struct buf *
2664 getcacheblk(struct vnode *vp, off_t loffset)
2666 struct buf *bp;
2668 bp = findblk(vp, loffset, 0);
2669 if (bp) {
2670 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2671 bp->b_flags &= ~B_AGE;
2672 bremfree(bp);
2673 } else {
2674 BUF_UNLOCK(bp);
2675 bp = NULL;
2678 return (bp);
2682 * getblk:
2684 * Get a block given a specified block and offset into a file/device.
2685 * B_INVAL may or may not be set on return. The caller should clear
2686 * B_INVAL prior to initiating a READ.
2688 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2689 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2690 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2691 * without doing any of those things the system will likely believe
2692 * the buffer to be valid (especially if it is not B_VMIO), and the
2693 * next getblk() will return the buffer with B_CACHE set.
2695 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2696 * an existing buffer.
2698 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2699 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2700 * and then cleared based on the backing VM. If the previous buffer is
2701 * non-0-sized but invalid, B_CACHE will be cleared.
2703 * If getblk() must create a new buffer, the new buffer is returned with
2704 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2705 * case it is returned with B_INVAL clear and B_CACHE set based on the
2706 * backing VM.
2708 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2709 * B_CACHE bit is clear.
2711 * What this means, basically, is that the caller should use B_CACHE to
2712 * determine whether the buffer is fully valid or not and should clear
2713 * B_INVAL prior to issuing a read. If the caller intends to validate
2714 * the buffer by loading its data area with something, the caller needs
2715 * to clear B_INVAL. If the caller does this without issuing an I/O,
2716 * the caller should set B_CACHE ( as an optimization ), else the caller
2717 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2718 * a write attempt or if it was a successfull read. If the caller
2719 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2720 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2722 * getblk flags:
2724 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2725 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2727 * MPALMOSTSAFE
2729 struct buf *
2730 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2732 struct buf *bp;
2733 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2734 int error;
2735 int lkflags;
2737 if (size > MAXBSIZE)
2738 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2739 if (vp->v_object == NULL)
2740 panic("getblk: vnode %p has no object!", vp);
2742 loop:
2743 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2745 * The buffer was found in the cache, but we need to lock it.
2746 * Even with LK_NOWAIT the lockmgr may break our critical
2747 * section, so double-check the validity of the buffer
2748 * once the lock has been obtained.
2750 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2751 if (blkflags & GETBLK_NOWAIT)
2752 return(NULL);
2753 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2754 if (blkflags & GETBLK_PCATCH)
2755 lkflags |= LK_PCATCH;
2756 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2757 if (error) {
2758 if (error == ENOLCK)
2759 goto loop;
2760 return (NULL);
2762 /* buffer may have changed on us */
2766 * Once the buffer has been locked, make sure we didn't race
2767 * a buffer recyclement. Buffers that are no longer hashed
2768 * will have b_vp == NULL, so this takes care of that check
2769 * as well.
2771 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2772 kprintf("Warning buffer %p (vp %p loffset %lld) "
2773 "was recycled\n",
2774 bp, vp, (long long)loffset);
2775 BUF_UNLOCK(bp);
2776 goto loop;
2780 * If SZMATCH any pre-existing buffer must be of the requested
2781 * size or NULL is returned. The caller absolutely does not
2782 * want getblk() to bwrite() the buffer on a size mismatch.
2784 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2785 BUF_UNLOCK(bp);
2786 return(NULL);
2790 * All vnode-based buffers must be backed by a VM object.
2792 KKASSERT(bp->b_flags & B_VMIO);
2793 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2794 bp->b_flags &= ~B_AGE;
2797 * Make sure that B_INVAL buffers do not have a cached
2798 * block number translation.
2800 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2801 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2802 " did not have cleared bio_offset cache\n",
2803 bp, vp, (long long)loffset);
2804 clearbiocache(&bp->b_bio2);
2808 * The buffer is locked. B_CACHE is cleared if the buffer is
2809 * invalid.
2811 if (bp->b_flags & B_INVAL)
2812 bp->b_flags &= ~B_CACHE;
2813 bremfree(bp);
2816 * Any size inconsistancy with a dirty buffer or a buffer
2817 * with a softupdates dependancy must be resolved. Resizing
2818 * the buffer in such circumstances can lead to problems.
2820 * Dirty or dependant buffers are written synchronously.
2821 * Other types of buffers are simply released and
2822 * reconstituted as they may be backed by valid, dirty VM
2823 * pages (but not marked B_DELWRI).
2825 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2826 * and may be left over from a prior truncation (and thus
2827 * no longer represent the actual EOF point), so we
2828 * definitely do not want to B_NOCACHE the backing store.
2830 if (size != bp->b_bcount) {
2831 get_mplock();
2832 if (bp->b_flags & B_DELWRI) {
2833 bp->b_flags |= B_RELBUF;
2834 bwrite(bp);
2835 } else if (LIST_FIRST(&bp->b_dep)) {
2836 bp->b_flags |= B_RELBUF;
2837 bwrite(bp);
2838 } else {
2839 bp->b_flags |= B_RELBUF;
2840 brelse(bp);
2842 rel_mplock();
2843 goto loop;
2845 KKASSERT(size <= bp->b_kvasize);
2846 KASSERT(bp->b_loffset != NOOFFSET,
2847 ("getblk: no buffer offset"));
2850 * A buffer with B_DELWRI set and B_CACHE clear must
2851 * be committed before we can return the buffer in
2852 * order to prevent the caller from issuing a read
2853 * ( due to B_CACHE not being set ) and overwriting
2854 * it.
2856 * Most callers, including NFS and FFS, need this to
2857 * operate properly either because they assume they
2858 * can issue a read if B_CACHE is not set, or because
2859 * ( for example ) an uncached B_DELWRI might loop due
2860 * to softupdates re-dirtying the buffer. In the latter
2861 * case, B_CACHE is set after the first write completes,
2862 * preventing further loops.
2864 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2865 * above while extending the buffer, we cannot allow the
2866 * buffer to remain with B_CACHE set after the write
2867 * completes or it will represent a corrupt state. To
2868 * deal with this we set B_NOCACHE to scrap the buffer
2869 * after the write.
2871 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2872 * I'm not even sure this state is still possible
2873 * now that getblk() writes out any dirty buffers
2874 * on size changes.
2876 * We might be able to do something fancy, like setting
2877 * B_CACHE in bwrite() except if B_DELWRI is already set,
2878 * so the below call doesn't set B_CACHE, but that gets real
2879 * confusing. This is much easier.
2882 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2883 get_mplock();
2884 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2885 "and CACHE clear, b_flags %08x\n",
2886 bp, (intmax_t)bp->b_loffset, bp->b_flags);
2887 bp->b_flags |= B_NOCACHE;
2888 bwrite(bp);
2889 rel_mplock();
2890 goto loop;
2892 } else {
2894 * Buffer is not in-core, create new buffer. The buffer
2895 * returned by getnewbuf() is locked. Note that the returned
2896 * buffer is also considered valid (not marked B_INVAL).
2898 * Calculating the offset for the I/O requires figuring out
2899 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2900 * the mount's f_iosize otherwise. If the vnode does not
2901 * have an associated mount we assume that the passed size is
2902 * the block size.
2904 * Note that vn_isdisk() cannot be used here since it may
2905 * return a failure for numerous reasons. Note that the
2906 * buffer size may be larger then the block size (the caller
2907 * will use block numbers with the proper multiple). Beware
2908 * of using any v_* fields which are part of unions. In
2909 * particular, in DragonFly the mount point overloading
2910 * mechanism uses the namecache only and the underlying
2911 * directory vnode is not a special case.
2913 int bsize, maxsize;
2915 if (vp->v_type == VBLK || vp->v_type == VCHR)
2916 bsize = DEV_BSIZE;
2917 else if (vp->v_mount)
2918 bsize = vp->v_mount->mnt_stat.f_iosize;
2919 else
2920 bsize = size;
2922 maxsize = size + (loffset & PAGE_MASK);
2923 maxsize = imax(maxsize, bsize);
2925 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2926 if (bp == NULL) {
2927 if (slpflags || slptimeo)
2928 return NULL;
2929 goto loop;
2933 * Atomically insert the buffer into the hash, so that it can
2934 * be found by findblk().
2936 * If bgetvp() returns non-zero a collision occured, and the
2937 * bp will not be associated with the vnode.
2939 * Make sure the translation layer has been cleared.
2941 bp->b_loffset = loffset;
2942 bp->b_bio2.bio_offset = NOOFFSET;
2943 /* bp->b_bio2.bio_next = NULL; */
2945 if (bgetvp(vp, bp)) {
2946 bp->b_flags |= B_INVAL;
2947 brelse(bp);
2948 goto loop;
2952 * All vnode-based buffers must be backed by a VM object.
2954 KKASSERT(vp->v_object != NULL);
2955 bp->b_flags |= B_VMIO;
2956 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2958 get_mplock();
2959 allocbuf(bp, size);
2960 rel_mplock();
2962 return (bp);
2966 * regetblk(bp)
2968 * Reacquire a buffer that was previously released to the locked queue,
2969 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2970 * set B_LOCKED (which handles the acquisition race).
2972 * To this end, either B_LOCKED must be set or the dependancy list must be
2973 * non-empty.
2975 * MPSAFE
2977 void
2978 regetblk(struct buf *bp)
2980 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2981 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2982 bremfree(bp);
2986 * geteblk:
2988 * Get an empty, disassociated buffer of given size. The buffer is
2989 * initially set to B_INVAL.
2991 * critical section protection is not required for the allocbuf()
2992 * call because races are impossible here.
2994 * MPALMOSTSAFE
2996 struct buf *
2997 geteblk(int size)
2999 struct buf *bp;
3000 int maxsize;
3002 maxsize = (size + BKVAMASK) & ~BKVAMASK;
3004 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3006 get_mplock();
3007 allocbuf(bp, size);
3008 rel_mplock();
3009 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3010 return (bp);
3015 * allocbuf:
3017 * This code constitutes the buffer memory from either anonymous system
3018 * memory (in the case of non-VMIO operations) or from an associated
3019 * VM object (in the case of VMIO operations). This code is able to
3020 * resize a buffer up or down.
3022 * Note that this code is tricky, and has many complications to resolve
3023 * deadlock or inconsistant data situations. Tread lightly!!!
3024 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3025 * the caller. Calling this code willy nilly can result in the loss of data.
3027 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3028 * B_CACHE for the non-VMIO case.
3030 * This routine does not need to be called from a critical section but you
3031 * must own the buffer.
3033 * NOTMPSAFE
3036 allocbuf(struct buf *bp, int size)
3038 int newbsize, mbsize;
3039 int i;
3041 if (BUF_REFCNT(bp) == 0)
3042 panic("allocbuf: buffer not busy");
3044 if (bp->b_kvasize < size)
3045 panic("allocbuf: buffer too small");
3047 if ((bp->b_flags & B_VMIO) == 0) {
3048 caddr_t origbuf;
3049 int origbufsize;
3051 * Just get anonymous memory from the kernel. Don't
3052 * mess with B_CACHE.
3054 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3055 if (bp->b_flags & B_MALLOC)
3056 newbsize = mbsize;
3057 else
3058 newbsize = round_page(size);
3060 if (newbsize < bp->b_bufsize) {
3062 * Malloced buffers are not shrunk
3064 if (bp->b_flags & B_MALLOC) {
3065 if (newbsize) {
3066 bp->b_bcount = size;
3067 } else {
3068 kfree(bp->b_data, M_BIOBUF);
3069 if (bp->b_bufsize) {
3070 bufmallocspace -= bp->b_bufsize;
3071 bufspacewakeup();
3072 bp->b_bufsize = 0;
3074 bp->b_data = bp->b_kvabase;
3075 bp->b_bcount = 0;
3076 bp->b_flags &= ~B_MALLOC;
3078 return 1;
3080 vm_hold_free_pages(
3082 (vm_offset_t) bp->b_data + newbsize,
3083 (vm_offset_t) bp->b_data + bp->b_bufsize);
3084 } else if (newbsize > bp->b_bufsize) {
3086 * We only use malloced memory on the first allocation.
3087 * and revert to page-allocated memory when the buffer
3088 * grows.
3090 if ((bufmallocspace < maxbufmallocspace) &&
3091 (bp->b_bufsize == 0) &&
3092 (mbsize <= PAGE_SIZE/2)) {
3094 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3095 bp->b_bufsize = mbsize;
3096 bp->b_bcount = size;
3097 bp->b_flags |= B_MALLOC;
3098 bufmallocspace += mbsize;
3099 return 1;
3101 origbuf = NULL;
3102 origbufsize = 0;
3104 * If the buffer is growing on its other-than-first
3105 * allocation, then we revert to the page-allocation
3106 * scheme.
3108 if (bp->b_flags & B_MALLOC) {
3109 origbuf = bp->b_data;
3110 origbufsize = bp->b_bufsize;
3111 bp->b_data = bp->b_kvabase;
3112 if (bp->b_bufsize) {
3113 bufmallocspace -= bp->b_bufsize;
3114 bufspacewakeup();
3115 bp->b_bufsize = 0;
3117 bp->b_flags &= ~B_MALLOC;
3118 newbsize = round_page(newbsize);
3120 vm_hold_load_pages(
3122 (vm_offset_t) bp->b_data + bp->b_bufsize,
3123 (vm_offset_t) bp->b_data + newbsize);
3124 if (origbuf) {
3125 bcopy(origbuf, bp->b_data, origbufsize);
3126 kfree(origbuf, M_BIOBUF);
3129 } else {
3130 vm_page_t m;
3131 int desiredpages;
3133 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3134 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3135 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3136 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3138 if (bp->b_flags & B_MALLOC)
3139 panic("allocbuf: VMIO buffer can't be malloced");
3141 * Set B_CACHE initially if buffer is 0 length or will become
3142 * 0-length.
3144 if (size == 0 || bp->b_bufsize == 0)
3145 bp->b_flags |= B_CACHE;
3147 if (newbsize < bp->b_bufsize) {
3149 * DEV_BSIZE aligned new buffer size is less then the
3150 * DEV_BSIZE aligned existing buffer size. Figure out
3151 * if we have to remove any pages.
3153 if (desiredpages < bp->b_xio.xio_npages) {
3154 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3156 * the page is not freed here -- it
3157 * is the responsibility of
3158 * vnode_pager_setsize
3160 m = bp->b_xio.xio_pages[i];
3161 KASSERT(m != bogus_page,
3162 ("allocbuf: bogus page found"));
3163 while (vm_page_sleep_busy(m, TRUE, "biodep"))
3166 bp->b_xio.xio_pages[i] = NULL;
3167 vm_page_unwire(m, 0);
3169 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3170 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3171 bp->b_xio.xio_npages = desiredpages;
3173 } else if (size > bp->b_bcount) {
3175 * We are growing the buffer, possibly in a
3176 * byte-granular fashion.
3178 struct vnode *vp;
3179 vm_object_t obj;
3180 vm_offset_t toff;
3181 vm_offset_t tinc;
3184 * Step 1, bring in the VM pages from the object,
3185 * allocating them if necessary. We must clear
3186 * B_CACHE if these pages are not valid for the
3187 * range covered by the buffer.
3189 * critical section protection is required to protect
3190 * against interrupts unbusying and freeing pages
3191 * between our vm_page_lookup() and our
3192 * busycheck/wiring call.
3194 vp = bp->b_vp;
3195 obj = vp->v_object;
3197 crit_enter();
3198 while (bp->b_xio.xio_npages < desiredpages) {
3199 vm_page_t m;
3200 vm_pindex_t pi;
3202 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3203 if ((m = vm_page_lookup(obj, pi)) == NULL) {
3205 * note: must allocate system pages
3206 * since blocking here could intefere
3207 * with paging I/O, no matter which
3208 * process we are.
3210 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3211 if (m) {
3212 vm_page_wire(m);
3213 vm_page_wakeup(m);
3214 vm_page_flag_clear(m, PG_ZERO);
3215 bp->b_flags &= ~B_CACHE;
3216 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3217 ++bp->b_xio.xio_npages;
3219 continue;
3223 * We found a page. If we have to sleep on it,
3224 * retry because it might have gotten freed out
3225 * from under us.
3227 * We can only test PG_BUSY here. Blocking on
3228 * m->busy might lead to a deadlock:
3230 * vm_fault->getpages->cluster_read->allocbuf
3234 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3235 continue;
3236 vm_page_flag_clear(m, PG_ZERO);
3237 vm_page_wire(m);
3238 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3239 ++bp->b_xio.xio_npages;
3240 if (bp->b_act_count < m->act_count)
3241 bp->b_act_count = m->act_count;
3243 crit_exit();
3246 * Step 2. We've loaded the pages into the buffer,
3247 * we have to figure out if we can still have B_CACHE
3248 * set. Note that B_CACHE is set according to the
3249 * byte-granular range ( bcount and size ), not the
3250 * aligned range ( newbsize ).
3252 * The VM test is against m->valid, which is DEV_BSIZE
3253 * aligned. Needless to say, the validity of the data
3254 * needs to also be DEV_BSIZE aligned. Note that this
3255 * fails with NFS if the server or some other client
3256 * extends the file's EOF. If our buffer is resized,
3257 * B_CACHE may remain set! XXX
3260 toff = bp->b_bcount;
3261 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3263 while ((bp->b_flags & B_CACHE) && toff < size) {
3264 vm_pindex_t pi;
3266 if (tinc > (size - toff))
3267 tinc = size - toff;
3269 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3270 PAGE_SHIFT;
3272 vfs_buf_test_cache(
3273 bp,
3274 bp->b_loffset,
3275 toff,
3276 tinc,
3277 bp->b_xio.xio_pages[pi]
3279 toff += tinc;
3280 tinc = PAGE_SIZE;
3284 * Step 3, fixup the KVM pmap. Remember that
3285 * bp->b_data is relative to bp->b_loffset, but
3286 * bp->b_loffset may be offset into the first page.
3289 bp->b_data = (caddr_t)
3290 trunc_page((vm_offset_t)bp->b_data);
3291 pmap_qenter(
3292 (vm_offset_t)bp->b_data,
3293 bp->b_xio.xio_pages,
3294 bp->b_xio.xio_npages
3296 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3297 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3301 /* adjust space use on already-dirty buffer */
3302 if (bp->b_flags & B_DELWRI) {
3303 dirtybufspace += newbsize - bp->b_bufsize;
3304 if (bp->b_flags & B_HEAVY)
3305 dirtybufspacehw += newbsize - bp->b_bufsize;
3307 if (newbsize < bp->b_bufsize)
3308 bufspacewakeup();
3309 bp->b_bufsize = newbsize; /* actual buffer allocation */
3310 bp->b_bcount = size; /* requested buffer size */
3311 return 1;
3315 * biowait:
3317 * Wait for buffer I/O completion, returning error status. B_EINTR
3318 * is converted into an EINTR error but not cleared (since a chain
3319 * of biowait() calls may occur).
3321 * On return bpdone() will have been called but the buffer will remain
3322 * locked and will not have been brelse()'d.
3324 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3325 * likely still in progress on return.
3327 * NOTE! This operation is on a BIO, not a BUF.
3329 * NOTE! BIO_DONE is cleared by vn_strategy()
3331 * MPSAFE
3333 static __inline int
3334 _biowait(struct bio *bio, const char *wmesg, int to)
3336 struct buf *bp = bio->bio_buf;
3337 u_int32_t flags;
3338 u_int32_t nflags;
3339 int error;
3341 KKASSERT(bio == &bp->b_bio1);
3342 for (;;) {
3343 flags = bio->bio_flags;
3344 if (flags & BIO_DONE)
3345 break;
3346 tsleep_interlock(bio, 0);
3347 nflags = flags | BIO_WANT;
3348 tsleep_interlock(bio, 0);
3349 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3350 if (wmesg)
3351 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3352 else if (bp->b_cmd == BUF_CMD_READ)
3353 error = tsleep(bio, PINTERLOCKED, "biord", to);
3354 else
3355 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3356 if (error) {
3357 kprintf("tsleep error biowait %d\n", error);
3358 return (error);
3360 break;
3365 * Finish up.
3367 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3368 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3369 if (bp->b_flags & B_EINTR)
3370 return (EINTR);
3371 if (bp->b_flags & B_ERROR)
3372 return (bp->b_error ? bp->b_error : EIO);
3373 return (0);
3377 biowait(struct bio *bio, const char *wmesg)
3379 return(_biowait(bio, wmesg, 0));
3383 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3385 return(_biowait(bio, wmesg, to));
3389 * This associates a tracking count with an I/O. vn_strategy() and
3390 * dev_dstrategy() do this automatically but there are a few cases
3391 * where a vnode or device layer is bypassed when a block translation
3392 * is cached. In such cases bio_start_transaction() may be called on
3393 * the bypassed layers so the system gets an I/O in progress indication
3394 * for those higher layers.
3396 void
3397 bio_start_transaction(struct bio *bio, struct bio_track *track)
3399 bio->bio_track = track;
3400 bio_track_ref(track);
3404 * Initiate I/O on a vnode.
3406 * SWAPCACHE OPERATION:
3408 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3409 * devfs also uses b_vp for fake buffers so we also have to check
3410 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3411 * underlying block device. The swap assignments are related to the
3412 * buffer cache buffer's b_vp, not the passed vp.
3414 * The passed vp == bp->b_vp only in the case where the strategy call
3415 * is made on the vp itself for its own buffers (a regular file or
3416 * block device vp). The filesystem usually then re-calls vn_strategy()
3417 * after translating the request to an underlying device.
3419 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3420 * underlying buffer cache buffers.
3422 * We can only deal with page-aligned buffers at the moment, because
3423 * we can't tell what the real dirty state for pages straddling a buffer
3424 * are.
3426 * In order to call swap_pager_strategy() we must provide the VM object
3427 * and base offset for the underlying buffer cache pages so it can find
3428 * the swap blocks.
3430 void
3431 vn_strategy(struct vnode *vp, struct bio *bio)
3433 struct bio_track *track;
3434 struct buf *bp = bio->bio_buf;
3436 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3439 * Handle the swap cache intercept.
3441 if (vn_cache_strategy(vp, bio))
3442 return;
3445 * Otherwise do the operation through the filesystem
3447 if (bp->b_cmd == BUF_CMD_READ)
3448 track = &vp->v_track_read;
3449 else
3450 track = &vp->v_track_write;
3451 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3452 bio->bio_track = track;
3453 bio_track_ref(track);
3454 vop_strategy(*vp->v_ops, vp, bio);
3458 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3460 struct buf *bp = bio->bio_buf;
3461 struct bio *nbio;
3462 vm_object_t object;
3463 vm_page_t m;
3464 int i;
3467 * Is this buffer cache buffer suitable for reading from
3468 * the swap cache?
3470 if (vm_swapcache_read_enable == 0 ||
3471 bp->b_cmd != BUF_CMD_READ ||
3472 ((bp->b_flags & B_CLUSTER) == 0 &&
3473 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3474 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3475 (bp->b_bcount & PAGE_MASK) != 0) {
3476 return(0);
3480 * Figure out the original VM object (it will match the underlying
3481 * VM pages). Note that swap cached data uses page indices relative
3482 * to that object, not relative to bio->bio_offset.
3484 if (bp->b_flags & B_CLUSTER)
3485 object = vp->v_object;
3486 else
3487 object = bp->b_vp->v_object;
3490 * In order to be able to use the swap cache all underlying VM
3491 * pages must be marked as such, and we can't have any bogus pages.
3493 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3494 m = bp->b_xio.xio_pages[i];
3495 if ((m->flags & PG_SWAPPED) == 0)
3496 break;
3497 if (m == bogus_page)
3498 break;
3502 * If we are good then issue the I/O using swap_pager_strategy()
3504 if (i == bp->b_xio.xio_npages) {
3505 m = bp->b_xio.xio_pages[0];
3506 nbio = push_bio(bio);
3507 nbio->bio_offset = ptoa(m->pindex);
3508 KKASSERT(m->object == object);
3509 swap_pager_strategy(object, nbio);
3510 return(1);
3512 return(0);
3516 * bpdone:
3518 * Finish I/O on a buffer after all BIOs have been processed.
3519 * Called when the bio chain is exhausted or by biowait. If called
3520 * by biowait, elseit is typically 0.
3522 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3523 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3524 * assuming B_INVAL is clear.
3526 * For the VMIO case, we set B_CACHE if the op was a read and no
3527 * read error occured, or if the op was a write. B_CACHE is never
3528 * set if the buffer is invalid or otherwise uncacheable.
3530 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3531 * initiator to leave B_INVAL set to brelse the buffer out of existance
3532 * in the biodone routine.
3534 void
3535 bpdone(struct buf *bp, int elseit)
3537 buf_cmd_t cmd;
3539 KASSERT(BUF_REFCNTNB(bp) > 0,
3540 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3541 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3542 ("biodone: bp %p already done!", bp));
3545 * No more BIOs are left. All completion functions have been dealt
3546 * with, now we clean up the buffer.
3548 cmd = bp->b_cmd;
3549 bp->b_cmd = BUF_CMD_DONE;
3552 * Only reads and writes are processed past this point.
3554 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3555 if (cmd == BUF_CMD_FREEBLKS)
3556 bp->b_flags |= B_NOCACHE;
3557 if (elseit)
3558 brelse(bp);
3559 return;
3563 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3564 * a lot worse. XXX - move this above the clearing of b_cmd
3566 if (LIST_FIRST(&bp->b_dep) != NULL)
3567 buf_complete(bp);
3570 * A failed write must re-dirty the buffer unless B_INVAL
3571 * was set. Only applicable to normal buffers (with VPs).
3572 * vinum buffers may not have a vp.
3574 if (cmd == BUF_CMD_WRITE &&
3575 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3576 bp->b_flags &= ~B_NOCACHE;
3577 if (bp->b_vp)
3578 bdirty(bp);
3581 if (bp->b_flags & B_VMIO) {
3582 int i;
3583 vm_ooffset_t foff;
3584 vm_page_t m;
3585 vm_object_t obj;
3586 int iosize;
3587 struct vnode *vp = bp->b_vp;
3589 obj = vp->v_object;
3591 #if defined(VFS_BIO_DEBUG)
3592 if (vp->v_auxrefs == 0)
3593 panic("biodone: zero vnode hold count");
3594 if ((vp->v_flag & VOBJBUF) == 0)
3595 panic("biodone: vnode is not setup for merged cache");
3596 #endif
3598 foff = bp->b_loffset;
3599 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3600 KASSERT(obj != NULL, ("biodone: missing VM object"));
3602 #if defined(VFS_BIO_DEBUG)
3603 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3604 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3605 obj->paging_in_progress, bp->b_xio.xio_npages);
3607 #endif
3610 * Set B_CACHE if the op was a normal read and no error
3611 * occured. B_CACHE is set for writes in the b*write()
3612 * routines.
3614 iosize = bp->b_bcount - bp->b_resid;
3615 if (cmd == BUF_CMD_READ &&
3616 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3617 bp->b_flags |= B_CACHE;
3620 crit_enter();
3621 get_mplock();
3622 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3623 int bogusflag = 0;
3624 int resid;
3626 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3627 if (resid > iosize)
3628 resid = iosize;
3631 * cleanup bogus pages, restoring the originals. Since
3632 * the originals should still be wired, we don't have
3633 * to worry about interrupt/freeing races destroying
3634 * the VM object association.
3636 m = bp->b_xio.xio_pages[i];
3637 if (m == bogus_page) {
3638 bogusflag = 1;
3639 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3640 if (m == NULL)
3641 panic("biodone: page disappeared");
3642 bp->b_xio.xio_pages[i] = m;
3643 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3644 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3646 #if defined(VFS_BIO_DEBUG)
3647 if (OFF_TO_IDX(foff) != m->pindex) {
3648 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3649 "mismatch\n",
3650 (unsigned long)foff, (long)m->pindex);
3652 #endif
3655 * In the write case, the valid and clean bits are
3656 * already changed correctly (see bdwrite()), so we
3657 * only need to do this here in the read case.
3659 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3660 vfs_clean_one_page(bp, i, m);
3662 vm_page_flag_clear(m, PG_ZERO);
3665 * when debugging new filesystems or buffer I/O
3666 * methods, this is the most common error that pops
3667 * up. if you see this, you have not set the page
3668 * busy flag correctly!!!
3670 if (m->busy == 0) {
3671 kprintf("biodone: page busy < 0, "
3672 "pindex: %d, foff: 0x(%x,%x), "
3673 "resid: %d, index: %d\n",
3674 (int) m->pindex, (int)(foff >> 32),
3675 (int) foff & 0xffffffff, resid, i);
3676 if (!vn_isdisk(vp, NULL))
3677 kprintf(" iosize: %ld, loffset: %lld, "
3678 "flags: 0x%08x, npages: %d\n",
3679 bp->b_vp->v_mount->mnt_stat.f_iosize,
3680 (long long)bp->b_loffset,
3681 bp->b_flags, bp->b_xio.xio_npages);
3682 else
3683 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3684 (long long)bp->b_loffset,
3685 bp->b_flags, bp->b_xio.xio_npages);
3686 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3687 m->valid, m->dirty, m->wire_count);
3688 panic("biodone: page busy < 0");
3690 vm_page_io_finish(m);
3691 vm_object_pip_subtract(obj, 1);
3692 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3693 iosize -= resid;
3695 if (obj)
3696 vm_object_pip_wakeupn(obj, 0);
3697 rel_mplock();
3698 crit_exit();
3702 * Finish up by releasing the buffer. There are no more synchronous
3703 * or asynchronous completions, those were handled by bio_done
3704 * callbacks.
3706 if (elseit) {
3707 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3708 brelse(bp);
3709 else
3710 bqrelse(bp);
3715 * Normal biodone.
3717 void
3718 biodone(struct bio *bio)
3720 struct buf *bp = bio->bio_buf;
3722 runningbufwakeup(bp);
3725 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3727 while (bio) {
3728 biodone_t *done_func;
3729 struct bio_track *track;
3732 * BIO tracking. Most but not all BIOs are tracked.
3734 if ((track = bio->bio_track) != NULL) {
3735 bio_track_rel(track);
3736 bio->bio_track = NULL;
3740 * A bio_done function terminates the loop. The function
3741 * will be responsible for any further chaining and/or
3742 * buffer management.
3744 * WARNING! The done function can deallocate the buffer!
3746 if ((done_func = bio->bio_done) != NULL) {
3747 bio->bio_done = NULL;
3748 done_func(bio);
3749 return;
3751 bio = bio->bio_prev;
3755 * If we've run out of bio's do normal [a]synchronous completion.
3757 bpdone(bp, 1);
3761 * Synchronous biodone - this terminates a synchronous BIO.
3763 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3764 * but still locked. The caller must brelse() the buffer after waiting
3765 * for completion.
3767 void
3768 biodone_sync(struct bio *bio)
3770 struct buf *bp = bio->bio_buf;
3771 int flags;
3772 int nflags;
3774 KKASSERT(bio == &bp->b_bio1);
3775 bpdone(bp, 0);
3777 for (;;) {
3778 flags = bio->bio_flags;
3779 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3781 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3782 if (flags & BIO_WANT)
3783 wakeup(bio);
3784 break;
3790 * vfs_unbusy_pages:
3792 * This routine is called in lieu of iodone in the case of
3793 * incomplete I/O. This keeps the busy status for pages
3794 * consistant.
3796 void
3797 vfs_unbusy_pages(struct buf *bp)
3799 int i;
3801 runningbufwakeup(bp);
3802 if (bp->b_flags & B_VMIO) {
3803 struct vnode *vp = bp->b_vp;
3804 vm_object_t obj;
3806 obj = vp->v_object;
3808 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3809 vm_page_t m = bp->b_xio.xio_pages[i];
3812 * When restoring bogus changes the original pages
3813 * should still be wired, so we are in no danger of
3814 * losing the object association and do not need
3815 * critical section protection particularly.
3817 if (m == bogus_page) {
3818 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3819 if (!m) {
3820 panic("vfs_unbusy_pages: page missing");
3822 bp->b_xio.xio_pages[i] = m;
3823 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3824 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3826 vm_object_pip_subtract(obj, 1);
3827 vm_page_flag_clear(m, PG_ZERO);
3828 vm_page_io_finish(m);
3830 vm_object_pip_wakeupn(obj, 0);
3835 * vfs_busy_pages:
3837 * This routine is called before a device strategy routine.
3838 * It is used to tell the VM system that paging I/O is in
3839 * progress, and treat the pages associated with the buffer
3840 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3841 * flag is handled to make sure that the object doesn't become
3842 * inconsistant.
3844 * Since I/O has not been initiated yet, certain buffer flags
3845 * such as B_ERROR or B_INVAL may be in an inconsistant state
3846 * and should be ignored.
3848 void
3849 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3851 int i, bogus;
3852 struct lwp *lp = curthread->td_lwp;
3855 * The buffer's I/O command must already be set. If reading,
3856 * B_CACHE must be 0 (double check against callers only doing
3857 * I/O when B_CACHE is 0).
3859 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3860 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3862 if (bp->b_flags & B_VMIO) {
3863 vm_object_t obj;
3865 obj = vp->v_object;
3866 KASSERT(bp->b_loffset != NOOFFSET,
3867 ("vfs_busy_pages: no buffer offset"));
3870 * Loop until none of the pages are busy.
3872 retry:
3873 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3874 vm_page_t m = bp->b_xio.xio_pages[i];
3876 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3877 goto retry;
3881 * Setup for I/O, soft-busy the page right now because
3882 * the next loop may block.
3884 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3885 vm_page_t m = bp->b_xio.xio_pages[i];
3887 vm_page_flag_clear(m, PG_ZERO);
3888 if ((bp->b_flags & B_CLUSTER) == 0) {
3889 vm_object_pip_add(obj, 1);
3890 vm_page_io_start(m);
3895 * Adjust protections for I/O and do bogus-page mapping.
3896 * Assume that vm_page_protect() can block (it can block
3897 * if VM_PROT_NONE, don't take any chances regardless).
3899 * In particular note that for writes we must incorporate
3900 * page dirtyness from the VM system into the buffer's
3901 * dirty range.
3903 * For reads we theoretically must incorporate page dirtyness
3904 * from the VM system to determine if the page needs bogus
3905 * replacement, but we shortcut the test by simply checking
3906 * that all m->valid bits are set, indicating that the page
3907 * is fully valid and does not need to be re-read. For any
3908 * VM system dirtyness the page will also be fully valid
3909 * since it was mapped at one point.
3911 bogus = 0;
3912 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3913 vm_page_t m = bp->b_xio.xio_pages[i];
3915 vm_page_flag_clear(m, PG_ZERO); /* XXX */
3916 if (bp->b_cmd == BUF_CMD_WRITE) {
3918 * When readying a vnode-backed buffer for
3919 * a write we must zero-fill any invalid
3920 * portions of the backing VM pages, mark
3921 * it valid and clear related dirty bits.
3923 * vfs_clean_one_page() incorporates any
3924 * VM dirtyness and updates the b_dirtyoff
3925 * range (after we've made the page RO).
3927 * It is also expected that the pmap modified
3928 * bit has already been cleared by the
3929 * vm_page_protect(). We may not be able
3930 * to clear all dirty bits for a page if it
3931 * was also memory mapped (NFS).
3933 * Finally be sure to unassign any swap-cache
3934 * backing store as it is now stale.
3936 vm_page_protect(m, VM_PROT_READ);
3937 vfs_clean_one_page(bp, i, m);
3938 swap_pager_unswapped(m);
3939 } else if (m->valid == VM_PAGE_BITS_ALL) {
3941 * When readying a vnode-backed buffer for
3942 * read we must replace any dirty pages with
3943 * a bogus page so dirty data is not destroyed
3944 * when filling gaps.
3946 * To avoid testing whether the page is
3947 * dirty we instead test that the page was
3948 * at some point mapped (m->valid fully
3949 * valid) with the understanding that
3950 * this also covers the dirty case.
3952 bp->b_xio.xio_pages[i] = bogus_page;
3953 bogus++;
3954 } else if (m->valid & m->dirty) {
3956 * This case should not occur as partial
3957 * dirtyment can only happen if the buffer
3958 * is B_CACHE, and this code is not entered
3959 * if the buffer is B_CACHE.
3961 kprintf("Warning: vfs_busy_pages - page not "
3962 "fully valid! loff=%jx bpf=%08x "
3963 "idx=%d val=%02x dir=%02x\n",
3964 (intmax_t)bp->b_loffset, bp->b_flags,
3965 i, m->valid, m->dirty);
3966 vm_page_protect(m, VM_PROT_NONE);
3967 } else {
3969 * The page is not valid and can be made
3970 * part of the read.
3972 vm_page_protect(m, VM_PROT_NONE);
3975 if (bogus) {
3976 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3977 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3982 * This is the easiest place to put the process accounting for the I/O
3983 * for now.
3985 if (lp != NULL) {
3986 if (bp->b_cmd == BUF_CMD_READ)
3987 lp->lwp_ru.ru_inblock++;
3988 else
3989 lp->lwp_ru.ru_oublock++;
3994 * vfs_clean_pages:
3996 * Tell the VM system that the pages associated with this buffer
3997 * are clean. This is used for delayed writes where the data is
3998 * going to go to disk eventually without additional VM intevention.
4000 * Note that while we only really need to clean through to b_bcount, we
4001 * just go ahead and clean through to b_bufsize.
4003 static void
4004 vfs_clean_pages(struct buf *bp)
4006 vm_page_t m;
4007 int i;
4009 if ((bp->b_flags & B_VMIO) == 0)
4010 return;
4012 KASSERT(bp->b_loffset != NOOFFSET,
4013 ("vfs_clean_pages: no buffer offset"));
4015 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4016 m = bp->b_xio.xio_pages[i];
4017 vfs_clean_one_page(bp, i, m);
4022 * vfs_clean_one_page:
4024 * Set the valid bits and clear the dirty bits in a page within a
4025 * buffer. The range is restricted to the buffer's size and the
4026 * buffer's logical offset might index into the first page.
4028 * The caller has busied or soft-busied the page and it is not mapped,
4029 * test and incorporate the dirty bits into b_dirtyoff/end before
4030 * clearing them. Note that we need to clear the pmap modified bits
4031 * after determining the the page was dirty, vm_page_set_validclean()
4032 * does not do it for us.
4034 * This routine is typically called after a read completes (dirty should
4035 * be zero in that case as we are not called on bogus-replace pages),
4036 * or before a write is initiated.
4038 static void
4039 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4041 int bcount;
4042 int xoff;
4043 int soff;
4044 int eoff;
4047 * Calculate offset range within the page but relative to buffer's
4048 * loffset. loffset might be offset into the first page.
4050 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4051 bcount = bp->b_bcount + xoff; /* offset adjusted */
4053 if (pageno == 0) {
4054 soff = xoff;
4055 eoff = PAGE_SIZE;
4056 } else {
4057 soff = (pageno << PAGE_SHIFT);
4058 eoff = soff + PAGE_SIZE;
4060 if (eoff > bcount)
4061 eoff = bcount;
4062 if (soff >= eoff)
4063 return;
4066 * Test dirty bits and adjust b_dirtyoff/end.
4068 * If dirty pages are incorporated into the bp any prior
4069 * B_NEEDCOMMIT state (NFS) must be cleared because the
4070 * caller has not taken into account the new dirty data.
4072 * If the page was memory mapped the dirty bits might go beyond the
4073 * end of the buffer, but we can't really make the assumption that
4074 * a file EOF straddles the buffer (even though this is the case for
4075 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4076 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4077 * This also saves some console spam.
4079 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4080 * NFS can handle huge commits but not huge writes.
4082 vm_page_test_dirty(m);
4083 if (m->dirty) {
4084 if ((bp->b_flags & B_NEEDCOMMIT) &&
4085 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4086 if (debug_commit)
4087 kprintf("Warning: vfs_clean_one_page: bp %p "
4088 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4089 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4090 "doff/end %d %d\n",
4091 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4092 bp->b_flags, bp->b_cmd,
4093 m->valid, m->dirty, xoff, soff, eoff,
4094 bp->b_dirtyoff, bp->b_dirtyend);
4095 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4096 if (debug_commit)
4097 print_backtrace();
4100 * Only clear the pmap modified bits if ALL the dirty bits
4101 * are set, otherwise the system might mis-clear portions
4102 * of a page.
4104 if (m->dirty == VM_PAGE_BITS_ALL &&
4105 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4106 pmap_clear_modify(m);
4108 if (bp->b_dirtyoff > soff - xoff)
4109 bp->b_dirtyoff = soff - xoff;
4110 if (bp->b_dirtyend < eoff - xoff)
4111 bp->b_dirtyend = eoff - xoff;
4115 * Set related valid bits, clear related dirty bits.
4116 * Does not mess with the pmap modified bit.
4118 * WARNING! We cannot just clear all of m->dirty here as the
4119 * buffer cache buffers may use a DEV_BSIZE'd aligned
4120 * block size, or have an odd size (e.g. NFS at file EOF).
4121 * The putpages code can clear m->dirty to 0.
4123 * If a VOP_WRITE generates a buffer cache buffer which
4124 * covers the same space as mapped writable pages the
4125 * buffer flush might not be able to clear all the dirty
4126 * bits and still require a putpages from the VM system
4127 * to finish it off.
4129 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4133 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4134 * The page data is assumed to be valid (there is no zeroing here).
4136 static void
4137 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4139 int bcount;
4140 int xoff;
4141 int soff;
4142 int eoff;
4145 * Calculate offset range within the page but relative to buffer's
4146 * loffset. loffset might be offset into the first page.
4148 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4149 bcount = bp->b_bcount + xoff; /* offset adjusted */
4151 if (pageno == 0) {
4152 soff = xoff;
4153 eoff = PAGE_SIZE;
4154 } else {
4155 soff = (pageno << PAGE_SHIFT);
4156 eoff = soff + PAGE_SIZE;
4158 if (eoff > bcount)
4159 eoff = bcount;
4160 if (soff >= eoff)
4161 return;
4162 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4166 * vfs_bio_clrbuf:
4168 * Clear a buffer. This routine essentially fakes an I/O, so we need
4169 * to clear B_ERROR and B_INVAL.
4171 * Note that while we only theoretically need to clear through b_bcount,
4172 * we go ahead and clear through b_bufsize.
4175 void
4176 vfs_bio_clrbuf(struct buf *bp)
4178 int i, mask = 0;
4179 caddr_t sa, ea;
4180 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4181 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4182 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4183 (bp->b_loffset & PAGE_MASK) == 0) {
4184 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4185 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4186 bp->b_resid = 0;
4187 return;
4189 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4190 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4191 bzero(bp->b_data, bp->b_bufsize);
4192 bp->b_xio.xio_pages[0]->valid |= mask;
4193 bp->b_resid = 0;
4194 return;
4197 sa = bp->b_data;
4198 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4199 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4200 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4201 ea = (caddr_t)(vm_offset_t)ulmin(
4202 (u_long)(vm_offset_t)ea,
4203 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4204 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4205 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4206 continue;
4207 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4208 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4209 bzero(sa, ea - sa);
4211 } else {
4212 for (; sa < ea; sa += DEV_BSIZE, j++) {
4213 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4214 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4215 bzero(sa, DEV_BSIZE);
4218 bp->b_xio.xio_pages[i]->valid |= mask;
4219 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4221 bp->b_resid = 0;
4222 } else {
4223 clrbuf(bp);
4228 * vm_hold_load_pages:
4230 * Load pages into the buffer's address space. The pages are
4231 * allocated from the kernel object in order to reduce interference
4232 * with the any VM paging I/O activity. The range of loaded
4233 * pages will be wired.
4235 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4236 * retrieve the full range (to - from) of pages.
4239 void
4240 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4242 vm_offset_t pg;
4243 vm_page_t p;
4244 int index;
4246 to = round_page(to);
4247 from = round_page(from);
4248 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4250 pg = from;
4251 while (pg < to) {
4253 * Note: must allocate system pages since blocking here
4254 * could intefere with paging I/O, no matter which
4255 * process we are.
4257 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4258 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4259 if (p) {
4260 vm_page_wire(p);
4261 p->valid = VM_PAGE_BITS_ALL;
4262 vm_page_flag_clear(p, PG_ZERO);
4263 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4264 bp->b_xio.xio_pages[index] = p;
4265 vm_page_wakeup(p);
4267 pg += PAGE_SIZE;
4268 ++index;
4271 bp->b_xio.xio_npages = index;
4275 * Allocate pages for a buffer cache buffer.
4277 * Under extremely severe memory conditions even allocating out of the
4278 * system reserve can fail. If this occurs we must allocate out of the
4279 * interrupt reserve to avoid a deadlock with the pageout daemon.
4281 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4282 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4283 * against the pageout daemon if pages are not freed from other sources.
4285 static
4286 vm_page_t
4287 bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4289 vm_page_t p;
4292 * Try a normal allocation, allow use of system reserve.
4294 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4295 if (p)
4296 return(p);
4299 * The normal allocation failed and we clearly have a page
4300 * deficit. Try to reclaim some clean VM pages directly
4301 * from the buffer cache.
4303 vm_pageout_deficit += deficit;
4304 recoverbufpages();
4307 * We may have blocked, the caller will know what to do if the
4308 * page now exists.
4310 if (vm_page_lookup(obj, pg))
4311 return(NULL);
4314 * Allocate and allow use of the interrupt reserve.
4316 * If after all that we still can't allocate a VM page we are
4317 * in real trouble, but we slog on anyway hoping that the system
4318 * won't deadlock.
4320 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4321 VM_ALLOC_INTERRUPT);
4322 if (p) {
4323 if (vm_page_count_severe()) {
4324 kprintf("bio_page_alloc: WARNING emergency page "
4325 "allocation\n");
4326 vm_wait(hz / 20);
4328 } else {
4329 kprintf("bio_page_alloc: WARNING emergency page "
4330 "allocation failed\n");
4331 vm_wait(hz * 5);
4333 return(p);
4337 * vm_hold_free_pages:
4339 * Return pages associated with the buffer back to the VM system.
4341 * The range of pages underlying the buffer's address space will
4342 * be unmapped and un-wired.
4344 void
4345 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4347 vm_offset_t pg;
4348 vm_page_t p;
4349 int index, newnpages;
4351 from = round_page(from);
4352 to = round_page(to);
4353 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4355 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4356 p = bp->b_xio.xio_pages[index];
4357 if (p && (index < bp->b_xio.xio_npages)) {
4358 if (p->busy) {
4359 kprintf("vm_hold_free_pages: doffset: %lld, "
4360 "loffset: %lld\n",
4361 (long long)bp->b_bio2.bio_offset,
4362 (long long)bp->b_loffset);
4364 bp->b_xio.xio_pages[index] = NULL;
4365 pmap_kremove(pg);
4366 vm_page_busy(p);
4367 vm_page_unwire(p, 0);
4368 vm_page_free(p);
4371 bp->b_xio.xio_npages = newnpages;
4375 * vmapbuf:
4377 * Map a user buffer into KVM via a pbuf. On return the buffer's
4378 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4379 * initialized.
4382 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4384 caddr_t addr;
4385 vm_offset_t va;
4386 vm_page_t m;
4387 int vmprot;
4388 int error;
4389 int pidx;
4390 int i;
4393 * bp had better have a command and it better be a pbuf.
4395 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4396 KKASSERT(bp->b_flags & B_PAGING);
4398 if (bytes < 0)
4399 return (-1);
4402 * Map the user data into KVM. Mappings have to be page-aligned.
4404 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4405 pidx = 0;
4407 vmprot = VM_PROT_READ;
4408 if (bp->b_cmd == BUF_CMD_READ)
4409 vmprot |= VM_PROT_WRITE;
4411 while (addr < udata + bytes) {
4413 * Do the vm_fault if needed; do the copy-on-write thing
4414 * when reading stuff off device into memory.
4416 * vm_fault_page*() returns a held VM page.
4418 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4419 va = trunc_page(va);
4421 m = vm_fault_page_quick(va, vmprot, &error);
4422 if (m == NULL) {
4423 for (i = 0; i < pidx; ++i) {
4424 vm_page_unhold(bp->b_xio.xio_pages[i]);
4425 bp->b_xio.xio_pages[i] = NULL;
4427 return(-1);
4429 bp->b_xio.xio_pages[pidx] = m;
4430 addr += PAGE_SIZE;
4431 ++pidx;
4435 * Map the page array and set the buffer fields to point to
4436 * the mapped data buffer.
4438 if (pidx > btoc(MAXPHYS))
4439 panic("vmapbuf: mapped more than MAXPHYS");
4440 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4442 bp->b_xio.xio_npages = pidx;
4443 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4444 bp->b_bcount = bytes;
4445 bp->b_bufsize = bytes;
4446 return(0);
4450 * vunmapbuf:
4452 * Free the io map PTEs associated with this IO operation.
4453 * We also invalidate the TLB entries and restore the original b_addr.
4455 void
4456 vunmapbuf(struct buf *bp)
4458 int pidx;
4459 int npages;
4461 KKASSERT(bp->b_flags & B_PAGING);
4463 npages = bp->b_xio.xio_npages;
4464 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4465 for (pidx = 0; pidx < npages; ++pidx) {
4466 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4467 bp->b_xio.xio_pages[pidx] = NULL;
4469 bp->b_xio.xio_npages = 0;
4470 bp->b_data = bp->b_kvabase;
4474 * Scan all buffers in the system and issue the callback.
4477 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4479 int count = 0;
4480 int error;
4481 int n;
4483 for (n = 0; n < nbuf; ++n) {
4484 if ((error = callback(&buf[n], info)) < 0) {
4485 count = error;
4486 break;
4488 count += error;
4490 return (count);
4494 * print out statistics from the current status of the buffer pool
4495 * this can be toggeled by the system control option debug.syncprt
4497 #ifdef DEBUG
4498 void
4499 vfs_bufstats(void)
4501 int i, j, count;
4502 struct buf *bp;
4503 struct bqueues *dp;
4504 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4505 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4507 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4508 count = 0;
4509 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4510 counts[j] = 0;
4511 crit_enter();
4512 TAILQ_FOREACH(bp, dp, b_freelist) {
4513 counts[bp->b_bufsize/PAGE_SIZE]++;
4514 count++;
4516 crit_exit();
4517 kprintf("%s: total-%d", bname[i], count);
4518 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4519 if (counts[j] != 0)
4520 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4521 kprintf("\n");
4524 #endif
4526 #ifdef DDB
4528 DB_SHOW_COMMAND(buffer, db_show_buffer)
4530 /* get args */
4531 struct buf *bp = (struct buf *)addr;
4533 if (!have_addr) {
4534 db_printf("usage: show buffer <addr>\n");
4535 return;
4538 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4539 db_printf("b_cmd = %d\n", bp->b_cmd);
4540 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4541 "b_resid = %d\n, b_data = %p, "
4542 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4543 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4544 bp->b_data,
4545 (long long)bp->b_bio2.bio_offset,
4546 (long long)(bp->b_bio2.bio_next ?
4547 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4548 if (bp->b_xio.xio_npages) {
4549 int i;
4550 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4551 bp->b_xio.xio_npages);
4552 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4553 vm_page_t m;
4554 m = bp->b_xio.xio_pages[i];
4555 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4556 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4557 if ((i + 1) < bp->b_xio.xio_npages)
4558 db_printf(",");
4560 db_printf("\n");
4563 #endif /* DDB */