linprocfs - Introduce /proc/mounts
[dragonfly.git] / sys / kern / kern_synch.c
bloba8c3ddf012b556543f4ab60325ebc17f3cc0de5c
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
43 #include "opt_ktrace.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 #include <sys/mplock2.h>
68 #include <machine/cpu.h>
69 #include <machine/smp.h>
71 TAILQ_HEAD(tslpque, thread);
73 static void sched_setup (void *dummy);
74 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
76 int hogticks;
77 int lbolt;
78 int lbolt_syncer;
79 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */
80 int ncpus;
81 int ncpus2, ncpus2_shift, ncpus2_mask;
82 int ncpus_fit, ncpus_fit_mask;
83 int safepri;
84 int tsleep_now_works;
86 static struct callout loadav_callout;
87 static struct callout schedcpu_callout;
88 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 #if !defined(KTR_TSLEEP)
91 #define KTR_TSLEEP KTR_ALL
92 #endif
93 KTR_INFO_MASTER(tsleep);
94 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
95 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
96 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
97 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
98 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", sizeof(void *));
100 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
101 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
103 struct loadavg averunnable =
104 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
106 * Constants for averages over 1, 5, and 15 minutes
107 * when sampling at 5 second intervals.
109 static fixpt_t cexp[3] = {
110 0.9200444146293232 * FSCALE, /* exp(-1/12) */
111 0.9834714538216174 * FSCALE, /* exp(-1/60) */
112 0.9944598480048967 * FSCALE, /* exp(-1/180) */
115 static void endtsleep (void *);
116 static void loadav (void *arg);
117 static void schedcpu (void *arg);
118 #ifdef SMP
119 static void tsleep_wakeup(struct thread *td);
120 #endif
123 * Adjust the scheduler quantum. The quantum is specified in microseconds.
124 * Note that 'tick' is in microseconds per tick.
126 static int
127 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
129 int error, new_val;
131 new_val = sched_quantum * ustick;
132 error = sysctl_handle_int(oidp, &new_val, 0, req);
133 if (error != 0 || req->newptr == NULL)
134 return (error);
135 if (new_val < ustick)
136 return (EINVAL);
137 sched_quantum = new_val / ustick;
138 hogticks = 2 * sched_quantum;
139 return (0);
142 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
143 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
146 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
147 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
148 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
150 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
151 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
153 * If you don't want to bother with the faster/more-accurate formula, you
154 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
155 * (more general) method of calculating the %age of CPU used by a process.
157 * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
159 #define CCPU_SHIFT 11
161 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
162 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
165 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
167 int fscale __unused = FSCALE; /* exported to systat */
168 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
171 * Recompute process priorities, once a second.
173 * Since the userland schedulers are typically event oriented, if the
174 * estcpu calculation at wakeup() time is not sufficient to make a
175 * process runnable relative to other processes in the system we have
176 * a 1-second recalc to help out.
178 * This code also allows us to store sysclock_t data in the process structure
179 * without fear of an overrun, since sysclock_t are guarenteed to hold
180 * several seconds worth of count.
182 * WARNING! callouts can preempt normal threads. However, they will not
183 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
185 static int schedcpu_stats(struct proc *p, void *data __unused);
186 static int schedcpu_resource(struct proc *p, void *data __unused);
188 static void
189 schedcpu(void *arg)
191 allproc_scan(schedcpu_stats, NULL);
192 allproc_scan(schedcpu_resource, NULL);
193 wakeup((caddr_t)&lbolt);
194 wakeup((caddr_t)&lbolt_syncer);
195 callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
199 * General process statistics once a second
201 static int
202 schedcpu_stats(struct proc *p, void *data __unused)
204 struct lwp *lp;
206 crit_enter();
207 p->p_swtime++;
208 FOREACH_LWP_IN_PROC(lp, p) {
209 if (lp->lwp_stat == LSSLEEP)
210 lp->lwp_slptime++;
213 * Only recalculate processes that are active or have slept
214 * less then 2 seconds. The schedulers understand this.
216 if (lp->lwp_slptime <= 1) {
217 p->p_usched->recalculate(lp);
218 } else {
219 lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
222 crit_exit();
223 return(0);
227 * Resource checks. XXX break out since ksignal/killproc can block,
228 * limiting us to one process killed per second. There is probably
229 * a better way.
231 static int
232 schedcpu_resource(struct proc *p, void *data __unused)
234 u_int64_t ttime;
235 struct lwp *lp;
237 crit_enter();
238 if (p->p_stat == SIDL ||
239 p->p_stat == SZOMB ||
240 p->p_limit == NULL
242 crit_exit();
243 return(0);
246 ttime = 0;
247 FOREACH_LWP_IN_PROC(lp, p) {
249 * We may have caught an lp in the middle of being
250 * created, lwp_thread can be NULL.
252 if (lp->lwp_thread) {
253 ttime += lp->lwp_thread->td_sticks;
254 ttime += lp->lwp_thread->td_uticks;
258 switch(plimit_testcpulimit(p->p_limit, ttime)) {
259 case PLIMIT_TESTCPU_KILL:
260 killproc(p, "exceeded maximum CPU limit");
261 break;
262 case PLIMIT_TESTCPU_XCPU:
263 if ((p->p_flag & P_XCPU) == 0) {
264 p->p_flag |= P_XCPU;
265 ksignal(p, SIGXCPU);
267 break;
268 default:
269 break;
271 crit_exit();
272 return(0);
276 * This is only used by ps. Generate a cpu percentage use over
277 * a period of one second.
279 * MPSAFE
281 void
282 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
284 fixpt_t acc;
285 int remticks;
287 acc = (cpticks << FSHIFT) / ttlticks;
288 if (ttlticks >= ESTCPUFREQ) {
289 lp->lwp_pctcpu = acc;
290 } else {
291 remticks = ESTCPUFREQ - ttlticks;
292 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
293 ESTCPUFREQ;
298 * tsleep/wakeup hash table parameters. Try to find the sweet spot for
299 * like addresses being slept on.
301 #define TABLESIZE 1024
302 #define LOOKUP(x) (((intptr_t)(x) >> 6) & (TABLESIZE - 1))
304 static cpumask_t slpque_cpumasks[TABLESIZE];
307 * General scheduler initialization. We force a reschedule 25 times
308 * a second by default. Note that cpu0 is initialized in early boot and
309 * cannot make any high level calls.
311 * Each cpu has its own sleep queue.
313 void
314 sleep_gdinit(globaldata_t gd)
316 static struct tslpque slpque_cpu0[TABLESIZE];
317 int i;
319 if (gd->gd_cpuid == 0) {
320 sched_quantum = (hz + 24) / 25;
321 hogticks = 2 * sched_quantum;
323 gd->gd_tsleep_hash = slpque_cpu0;
324 } else {
325 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
326 M_TSLEEP, M_WAITOK | M_ZERO);
328 for (i = 0; i < TABLESIZE; ++i)
329 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
333 * This is a dandy function that allows us to interlock tsleep/wakeup
334 * operations with unspecified upper level locks, such as lockmgr locks,
335 * simply by holding a critical section. The sequence is:
337 * (acquire upper level lock)
338 * tsleep_interlock(blah)
339 * (release upper level lock)
340 * tsleep(blah, ...)
342 * Basically this functions queues us on the tsleep queue without actually
343 * descheduling us. When tsleep() is later called with PINTERLOCK it
344 * assumes the thread was already queued, otherwise it queues it there.
346 * Thus it is possible to receive the wakeup prior to going to sleep and
347 * the race conditions are covered.
349 static __inline void
350 _tsleep_interlock(globaldata_t gd, void *ident, int flags)
352 thread_t td = gd->gd_curthread;
353 int id;
355 crit_enter_quick(td);
356 if (td->td_flags & TDF_TSLEEPQ) {
357 id = LOOKUP(td->td_wchan);
358 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
359 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
360 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
361 } else {
362 td->td_flags |= TDF_TSLEEPQ;
364 id = LOOKUP(ident);
365 TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
366 atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
367 td->td_wchan = ident;
368 td->td_wdomain = flags & PDOMAIN_MASK;
369 crit_exit_quick(td);
372 void
373 tsleep_interlock(void *ident, int flags)
375 _tsleep_interlock(mycpu, ident, flags);
379 * Remove thread from sleepq. Must be called with a critical section held.
381 static __inline void
382 _tsleep_remove(thread_t td)
384 globaldata_t gd = mycpu;
385 int id;
387 KKASSERT(td->td_gd == gd);
388 if (td->td_flags & TDF_TSLEEPQ) {
389 td->td_flags &= ~TDF_TSLEEPQ;
390 id = LOOKUP(td->td_wchan);
391 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
392 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
393 atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
394 td->td_wchan = NULL;
395 td->td_wdomain = 0;
399 void
400 tsleep_remove(thread_t td)
402 _tsleep_remove(td);
406 * This function removes a thread from the tsleep queue and schedules
407 * it. This function may act asynchronously. The target thread may be
408 * sleeping on a different cpu.
410 * This function mus be called while in a critical section but if the
411 * target thread is sleeping on a different cpu we cannot safely probe
412 * td_flags.
414 static __inline
415 void
416 _tsleep_wakeup(struct thread *td)
418 #ifdef SMP
419 globaldata_t gd = mycpu;
421 if (td->td_gd != gd) {
422 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
423 return;
425 #endif
426 _tsleep_remove(td);
427 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
428 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
429 lwkt_schedule(td);
433 #ifdef SMP
434 static
435 void
436 tsleep_wakeup(struct thread *td)
438 _tsleep_wakeup(td);
440 #endif
444 * General sleep call. Suspends the current process until a wakeup is
445 * performed on the specified identifier. The process will then be made
446 * runnable with the specified priority. Sleeps at most timo/hz seconds
447 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
448 * before and after sleeping, else signals are not checked. Returns 0 if
449 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
450 * signal needs to be delivered, ERESTART is returned if the current system
451 * call should be restarted if possible, and EINTR is returned if the system
452 * call should be interrupted by the signal (return EINTR).
454 * Note that if we are a process, we release_curproc() before messing with
455 * the LWKT scheduler.
457 * During autoconfiguration or after a panic, a sleep will simply
458 * lower the priority briefly to allow interrupts, then return.
461 tsleep(void *ident, int flags, const char *wmesg, int timo)
463 struct thread *td = curthread;
464 struct lwp *lp = td->td_lwp;
465 struct proc *p = td->td_proc; /* may be NULL */
466 globaldata_t gd;
467 int sig;
468 int catch;
469 int id;
470 int error;
471 int oldpri;
472 struct callout thandle;
475 * NOTE: removed KTRPOINT, it could cause races due to blocking
476 * even in stable. Just scrap it for now.
478 if (tsleep_now_works == 0 || panicstr) {
480 * After a panic, or before we actually have an operational
481 * softclock, just give interrupts a chance, then just return;
483 * don't run any other procs or panic below,
484 * in case this is the idle process and already asleep.
486 splz();
487 oldpri = td->td_pri & TDPRI_MASK;
488 lwkt_setpri_self(safepri);
489 lwkt_switch();
490 lwkt_setpri_self(oldpri);
491 return (0);
493 logtsleep2(tsleep_beg, ident);
494 gd = td->td_gd;
495 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
498 * NOTE: all of this occurs on the current cpu, including any
499 * callout-based wakeups, so a critical section is a sufficient
500 * interlock.
502 * The entire sequence through to where we actually sleep must
503 * run without breaking the critical section.
505 catch = flags & PCATCH;
506 error = 0;
507 sig = 0;
509 crit_enter_quick(td);
511 KASSERT(ident != NULL, ("tsleep: no ident"));
512 KASSERT(lp == NULL ||
513 lp->lwp_stat == LSRUN || /* Obvious */
514 lp->lwp_stat == LSSTOP, /* Set in tstop */
515 ("tsleep %p %s %d",
516 ident, wmesg, lp->lwp_stat));
519 * Setup for the current process (if this is a process).
521 if (lp) {
522 if (catch) {
524 * Early termination if PCATCH was set and a
525 * signal is pending, interlocked with the
526 * critical section.
528 * Early termination only occurs when tsleep() is
529 * entered while in a normal LSRUN state.
531 if ((sig = CURSIG(lp)) != 0)
532 goto resume;
535 * Early termination if PCATCH was set and a
536 * mailbox signal was possibly delivered prior to
537 * the system call even being made, in order to
538 * allow the user to interlock without having to
539 * make additional system calls.
541 if (p->p_flag & P_MAILBOX)
542 goto resume;
545 * Causes ksignal to wake us up when.
547 lp->lwp_flag |= LWP_SINTR;
552 * We interlock the sleep queue if the caller has not already done
553 * it for us.
555 if ((flags & PINTERLOCKED) == 0) {
556 id = LOOKUP(ident);
557 _tsleep_interlock(gd, ident, flags);
562 * If no interlock was set we do an integrated interlock here.
563 * Make sure the current process has been untangled from
564 * the userland scheduler and initialize slptime to start
565 * counting. We must interlock the sleep queue before doing
566 * this to avoid wakeup/process-ipi races which can occur under
567 * heavy loads.
569 if (lp) {
570 p->p_usched->release_curproc(lp);
571 lp->lwp_slptime = 0;
575 * If the interlocked flag is set but our cpu bit in the slpqueue
576 * is no longer set, then a wakeup was processed inbetween the
577 * tsleep_interlock() (ours or the callers), and here. This can
578 * occur under numerous circumstances including when we release the
579 * current process.
581 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
582 * to process incoming IPIs, thus draining incoming wakeups.
584 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
585 logtsleep2(ilockfail, ident);
586 goto resume;
590 * scheduling is blocked while in a critical section. Coincide
591 * the descheduled-by-tsleep flag with the descheduling of the
592 * lwkt.
594 lwkt_deschedule_self(td);
595 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
596 td->td_wmesg = wmesg;
599 * Setup the timeout, if any
601 if (timo) {
602 callout_init(&thandle);
603 callout_reset(&thandle, timo, endtsleep, td);
607 * Beddy bye bye.
609 if (lp) {
611 * Ok, we are sleeping. Place us in the SSLEEP state.
613 KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
615 * tstop() sets LSSTOP, so don't fiddle with that.
617 if (lp->lwp_stat != LSSTOP)
618 lp->lwp_stat = LSSLEEP;
619 lp->lwp_ru.ru_nvcsw++;
620 lwkt_switch();
623 * And when we are woken up, put us back in LSRUN. If we
624 * slept for over a second, recalculate our estcpu.
626 lp->lwp_stat = LSRUN;
627 if (lp->lwp_slptime)
628 p->p_usched->recalculate(lp);
629 lp->lwp_slptime = 0;
630 } else {
631 lwkt_switch();
635 * Make sure we haven't switched cpus while we were asleep. It's
636 * not supposed to happen. Cleanup our temporary flags.
638 KKASSERT(gd == td->td_gd);
641 * Cleanup the timeout.
643 if (timo) {
644 if (td->td_flags & TDF_TIMEOUT) {
645 td->td_flags &= ~TDF_TIMEOUT;
646 error = EWOULDBLOCK;
647 } else {
648 callout_stop(&thandle);
653 * Make sure we have been removed from the sleepq. This should
654 * have been done for us already.
656 _tsleep_remove(td);
657 td->td_wmesg = NULL;
658 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
659 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
660 kprintf("td %p (%s) unexpectedly rescheduled\n",
661 td, td->td_comm);
665 * Figure out the correct error return. If interrupted by a
666 * signal we want to return EINTR or ERESTART.
668 * If P_MAILBOX is set no automatic system call restart occurs
669 * and we return EINTR. P_MAILBOX is meant to be used as an
670 * interlock, the user must poll it prior to any system call
671 * that it wishes to interlock a mailbox signal against since
672 * the flag is cleared on *any* system call that sleeps.
674 resume:
675 if (p) {
676 if (catch && error == 0) {
677 if ((p->p_flag & P_MAILBOX) && sig == 0) {
678 error = EINTR;
679 } else if (sig != 0 || (sig = CURSIG(lp))) {
680 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
681 error = EINTR;
682 else
683 error = ERESTART;
686 lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
687 p->p_flag &= ~P_MAILBOX;
689 logtsleep1(tsleep_end);
690 crit_exit_quick(td);
691 return (error);
695 * Interlocked spinlock sleep. An exclusively held spinlock must
696 * be passed to ssleep(). The function will atomically release the
697 * spinlock and tsleep on the ident, then reacquire the spinlock and
698 * return.
700 * This routine is fairly important along the critical path, so optimize it
701 * heavily.
704 ssleep(void *ident, struct spinlock *spin, int flags,
705 const char *wmesg, int timo)
707 globaldata_t gd = mycpu;
708 int error;
710 _tsleep_interlock(gd, ident, flags);
711 spin_unlock_wr_quick(gd, spin);
712 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
713 spin_lock_wr_quick(gd, spin);
715 return (error);
719 lksleep(void *ident, struct lock *lock, int flags,
720 const char *wmesg, int timo)
722 globaldata_t gd = mycpu;
723 int error;
725 _tsleep_interlock(gd, ident, flags);
726 lockmgr(lock, LK_RELEASE);
727 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
728 lockmgr(lock, LK_EXCLUSIVE);
730 return (error);
734 * Interlocked mutex sleep. An exclusively held mutex must be passed
735 * to mtxsleep(). The function will atomically release the mutex
736 * and tsleep on the ident, then reacquire the mutex and return.
739 mtxsleep(void *ident, struct mtx *mtx, int flags,
740 const char *wmesg, int timo)
742 globaldata_t gd = mycpu;
743 int error;
745 _tsleep_interlock(gd, ident, flags);
746 mtx_unlock(mtx);
747 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
748 mtx_lock_ex_quick(mtx, wmesg);
750 return (error);
754 * Interlocked serializer sleep. An exclusively held serializer must
755 * be passed to zsleep(). The function will atomically release
756 * the serializer and tsleep on the ident, then reacquire the serializer
757 * and return.
760 zsleep(void *ident, struct lwkt_serialize *slz, int flags,
761 const char *wmesg, int timo)
763 globaldata_t gd = mycpu;
764 int ret;
766 ASSERT_SERIALIZED(slz);
768 _tsleep_interlock(gd, ident, flags);
769 lwkt_serialize_exit(slz);
770 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
771 lwkt_serialize_enter(slz);
773 return ret;
777 * Directly block on the LWKT thread by descheduling it. This
778 * is much faster then tsleep(), but the only legal way to wake
779 * us up is to directly schedule the thread.
781 * Setting TDF_SINTR will cause new signals to directly schedule us.
783 * This routine must be called while in a critical section.
786 lwkt_sleep(const char *wmesg, int flags)
788 thread_t td = curthread;
789 int sig;
791 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
792 td->td_flags |= TDF_BLOCKED;
793 td->td_wmesg = wmesg;
794 lwkt_deschedule_self(td);
795 lwkt_switch();
796 td->td_wmesg = NULL;
797 td->td_flags &= ~TDF_BLOCKED;
798 return(0);
800 if ((sig = CURSIG(td->td_lwp)) != 0) {
801 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
802 return(EINTR);
803 else
804 return(ERESTART);
807 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
808 td->td_wmesg = wmesg;
809 lwkt_deschedule_self(td);
810 lwkt_switch();
811 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
812 td->td_wmesg = NULL;
813 return(0);
817 * Implement the timeout for tsleep.
819 * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
820 * we only call setrunnable if the process is not stopped.
822 * This type of callout timeout is scheduled on the same cpu the process
823 * is sleeping on. Also, at the moment, the MP lock is held.
825 static void
826 endtsleep(void *arg)
828 thread_t td = arg;
829 struct lwp *lp;
831 ASSERT_MP_LOCK_HELD(curthread);
832 crit_enter();
835 * cpu interlock. Thread flags are only manipulated on
836 * the cpu owning the thread. proc flags are only manipulated
837 * by the older of the MP lock. We have both.
839 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
840 td->td_flags |= TDF_TIMEOUT;
842 if ((lp = td->td_lwp) != NULL) {
843 lp->lwp_flag |= LWP_BREAKTSLEEP;
844 if (lp->lwp_proc->p_stat != SSTOP)
845 setrunnable(lp);
846 } else {
847 _tsleep_wakeup(td);
850 crit_exit();
854 * Make all processes sleeping on the specified identifier runnable.
855 * count may be zero or one only.
857 * The domain encodes the sleep/wakeup domain AND the first cpu to check
858 * (which is always the current cpu). As we iterate across cpus
860 * This call may run without the MP lock held. We can only manipulate thread
861 * state on the cpu owning the thread. We CANNOT manipulate process state
862 * at all.
864 static void
865 _wakeup(void *ident, int domain)
867 struct tslpque *qp;
868 struct thread *td;
869 struct thread *ntd;
870 globaldata_t gd;
871 #ifdef SMP
872 cpumask_t mask;
873 #endif
874 int id;
876 crit_enter();
877 logtsleep2(wakeup_beg, ident);
878 gd = mycpu;
879 id = LOOKUP(ident);
880 qp = &gd->gd_tsleep_hash[id];
881 restart:
882 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
883 ntd = TAILQ_NEXT(td, td_sleepq);
884 if (td->td_wchan == ident &&
885 td->td_wdomain == (domain & PDOMAIN_MASK)
887 KKASSERT(td->td_gd == gd);
888 _tsleep_remove(td);
889 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
890 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
891 lwkt_schedule(td);
892 if (domain & PWAKEUP_ONE)
893 goto done;
895 goto restart;
899 #ifdef SMP
901 * We finished checking the current cpu but there still may be
902 * more work to do. Either wakeup_one was requested and no matching
903 * thread was found, or a normal wakeup was requested and we have
904 * to continue checking cpus.
906 * It should be noted that this scheme is actually less expensive then
907 * the old scheme when waking up multiple threads, since we send
908 * only one IPI message per target candidate which may then schedule
909 * multiple threads. Before we could have wound up sending an IPI
910 * message for each thread on the target cpu (!= current cpu) that
911 * needed to be woken up.
913 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
914 * should be ok since we are passing idents in the IPI rather then
915 * thread pointers.
917 if ((domain & PWAKEUP_MYCPU) == 0 &&
918 (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
919 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
920 domain | PWAKEUP_MYCPU);
922 #endif
923 done:
924 logtsleep1(wakeup_end);
925 crit_exit();
929 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
931 void
932 wakeup(void *ident)
934 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
938 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
940 void
941 wakeup_one(void *ident)
943 /* XXX potentially round-robin the first responding cpu */
944 _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
948 * Wakeup threads tsleep()ing on the specified ident on the current cpu
949 * only.
951 void
952 wakeup_mycpu(void *ident)
954 _wakeup(ident, PWAKEUP_MYCPU);
958 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
959 * only.
961 void
962 wakeup_mycpu_one(void *ident)
964 /* XXX potentially round-robin the first responding cpu */
965 _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
969 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
970 * only.
972 void
973 wakeup_oncpu(globaldata_t gd, void *ident)
975 #ifdef SMP
976 if (gd == mycpu) {
977 _wakeup(ident, PWAKEUP_MYCPU);
978 } else {
979 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
981 #else
982 _wakeup(ident, PWAKEUP_MYCPU);
983 #endif
987 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
988 * only.
990 void
991 wakeup_oncpu_one(globaldata_t gd, void *ident)
993 #ifdef SMP
994 if (gd == mycpu) {
995 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
996 } else {
997 lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
999 #else
1000 _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
1001 #endif
1005 * Wakeup all threads waiting on the specified ident that slept using
1006 * the specified domain, on all cpus.
1008 void
1009 wakeup_domain(void *ident, int domain)
1011 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1015 * Wakeup one thread waiting on the specified ident that slept using
1016 * the specified domain, on any cpu.
1018 void
1019 wakeup_domain_one(void *ident, int domain)
1021 /* XXX potentially round-robin the first responding cpu */
1022 _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1026 * setrunnable()
1028 * Make a process runnable. The MP lock must be held on call. This only
1029 * has an effect if we are in SSLEEP. We only break out of the
1030 * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1032 * NOTE: With the MP lock held we can only safely manipulate the process
1033 * structure. We cannot safely manipulate the thread structure.
1035 void
1036 setrunnable(struct lwp *lp)
1038 crit_enter();
1039 ASSERT_MP_LOCK_HELD(curthread);
1040 if (lp->lwp_stat == LSSTOP)
1041 lp->lwp_stat = LSSLEEP;
1042 if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1043 _tsleep_wakeup(lp->lwp_thread);
1044 crit_exit();
1048 * The process is stopped due to some condition, usually because p_stat is
1049 * set to SSTOP, but also possibly due to being traced.
1051 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1052 * because the parent may check the child's status before the child actually
1053 * gets to this routine.
1055 * This routine is called with the current lwp only, typically just
1056 * before returning to userland.
1058 * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1059 * SIGCONT to break out of the tsleep.
1061 void
1062 tstop(void)
1064 struct lwp *lp = curthread->td_lwp;
1065 struct proc *p = lp->lwp_proc;
1067 crit_enter();
1069 * If LWP_WSTOP is set, we were sleeping
1070 * while our process was stopped. At this point
1071 * we were already counted as stopped.
1073 if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1075 * If we're the last thread to stop, signal
1076 * our parent.
1078 p->p_nstopped++;
1079 lp->lwp_flag |= LWP_WSTOP;
1080 wakeup(&p->p_nstopped);
1081 if (p->p_nstopped == p->p_nthreads) {
1082 p->p_flag &= ~P_WAITED;
1083 wakeup(p->p_pptr);
1084 if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1085 ksignal(p->p_pptr, SIGCHLD);
1088 while (p->p_stat == SSTOP) {
1089 lp->lwp_flag |= LWP_BREAKTSLEEP;
1090 lp->lwp_stat = LSSTOP;
1091 tsleep(p, 0, "stop", 0);
1093 p->p_nstopped--;
1094 lp->lwp_flag &= ~LWP_WSTOP;
1095 crit_exit();
1099 * Yield / synchronous reschedule. This is a bit tricky because the trap
1100 * code might have set a lazy release on the switch function. Setting
1101 * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1102 * switch, and that we are given a greater chance of affinity with our
1103 * current cpu.
1105 * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1106 * run queue. lwkt_switch() will also execute any assigned passive release
1107 * (which usually calls release_curproc()), allowing a same/higher priority
1108 * process to be designated as the current process.
1110 * While it is possible for a lower priority process to be designated,
1111 * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1112 * round-robin back to us and we will be able to re-acquire the current
1113 * process designation.
1115 * MPSAFE
1117 void
1118 uio_yield(void)
1120 struct thread *td = curthread;
1121 struct proc *p = td->td_proc;
1123 lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1124 if (p) {
1125 p->p_flag |= P_PASSIVE_ACQ;
1126 lwkt_switch();
1127 p->p_flag &= ~P_PASSIVE_ACQ;
1128 } else {
1129 lwkt_switch();
1134 * Compute a tenex style load average of a quantity on
1135 * 1, 5 and 15 minute intervals.
1137 static int loadav_count_runnable(struct lwp *p, void *data);
1139 static void
1140 loadav(void *arg)
1142 struct loadavg *avg;
1143 int i, nrun;
1145 nrun = 0;
1146 alllwp_scan(loadav_count_runnable, &nrun);
1147 avg = &averunnable;
1148 for (i = 0; i < 3; i++) {
1149 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1150 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1154 * Schedule the next update to occur after 5 seconds, but add a
1155 * random variation to avoid synchronisation with processes that
1156 * run at regular intervals.
1158 callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1159 loadav, NULL);
1162 static int
1163 loadav_count_runnable(struct lwp *lp, void *data)
1165 int *nrunp = data;
1166 thread_t td;
1168 switch (lp->lwp_stat) {
1169 case LSRUN:
1170 if ((td = lp->lwp_thread) == NULL)
1171 break;
1172 if (td->td_flags & TDF_BLOCKED)
1173 break;
1174 ++*nrunp;
1175 break;
1176 default:
1177 break;
1179 return(0);
1182 /* ARGSUSED */
1183 static void
1184 sched_setup(void *dummy)
1186 callout_init(&loadav_callout);
1187 callout_init(&schedcpu_callout);
1189 /* Kick off timeout driven events by calling first time. */
1190 schedcpu(NULL);
1191 loadav(NULL);