dhcpcd: update README.DRAGONFLY
[dragonfly.git] / sys / vm / vm_page2.h
blob73d4c18944f5076b31d4bfcaea446bd680426c5e
1 /*-
2 * Copyright (c) 1982, 1986, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)vmmeter.h 8.2 (Berkeley) 7/10/94
30 * $FreeBSD: src/sys/sys/vmmeter.h,v 1.21.2.2 2002/10/10 19:28:21 dillon Exp $
33 #ifndef _VM_VM_PAGE2_H_
34 #define _VM_VM_PAGE2_H_
36 #ifdef _KERNEL
38 #ifndef _SYS_VMMETER_H_
39 #include <sys/vmmeter.h>
40 #endif
41 #ifndef _SYS_QUEUE_H_
42 #include <sys/queue.h>
43 #endif
44 #ifndef _VM_VM_PAGE_H_
45 #include <vm/vm_page.h>
46 #endif
47 #ifndef _SYS_SPINLOCK_H_
48 #include <sys/spinlock.h>
49 #endif
50 #ifndef _SYS_SPINLOCK2_H_
51 #include <sys/spinlock2.h>
52 #endif
55 * SMP NOTE
57 * VM fault rates are highly dependent on SMP locking conflicts and, on
58 * multi-socket systems, cache mastership changes for globals due to atomic
59 * ops (even simple atomic_add_*() calls). Cache mastership changes can
60 * limit the aggregate fault rate.
62 * For this reason we go through some hoops to access VM statistics for
63 * low-memory handling, pageout, and other triggers. Each cpu collects
64 * adjustments in gd->gd_vmstats_adj. These get rolled up into the global
65 * vmstats structure. The global vmstats structure is then pulled into
66 * gd->gd_vmstats by each cpu when it needs it. Critical path checks always
67 * use the pcpu gd->gd_vmstats structure.
70 * Return TRUE if we are under our severe low-free-pages threshold
72 * This causes user processes to stall to avoid exhausting memory that
73 * the kernel might need.
75 * reserved < severe < minimum < wait < start < target1 < target2
77 static __inline
78 int
79 vm_paging_severe(void)
81 globaldata_t gd = mycpu;
83 if (__predict_false(gd->gd_vmstats.v_free_severe >
84 gd->gd_vmstats.v_free_count +
85 gd->gd_vmstats.v_cache_count))
87 return 1;
89 if (__predict_false(gd->gd_vmstats.v_free_reserved >
90 gd->gd_vmstats.v_free_count))
92 return 1;
94 return 0;
98 * Return TRUE if we are under our minimum low-free-pages threshold. We
99 * will not count (donotcount) free pages as being free (used mainly for
100 * hystersis tests).
102 * This will cause most normal page faults to block and activate the
103 * pageout daemon.
105 * The pageout daemon should already be active due to vm_paging_start(n)
106 * and will typically continue running until it hits target2
108 * reserved < severe < minimum < wait < start < target1 < target2
110 static __inline
112 vm_paging_min_dnc(long donotcount)
114 globaldata_t gd = mycpu;
116 if (__predict_false(gd->gd_vmstats.v_free_min + donotcount >
117 (gd->gd_vmstats.v_free_count +
118 gd->gd_vmstats.v_cache_count)))
120 return 1;
122 if (__predict_false(gd->gd_vmstats.v_free_reserved >
123 gd->gd_vmstats.v_free_count))
125 return 1;
127 return 0;
131 * Returns TRUE if the number of FREE+CACHE pages falls below vm_paging_wait,
132 * based on the nice value the trip point can be between vm_paging_min and
133 * vm_paging_wait.
135 * Used by vm_fault (see vm_wait_pfault()) to block a process on low-memory
136 * based on the process 'nice' value (-20 to +20).
138 static __inline
140 vm_paging_min_nice(int nice)
142 long count;
143 long delta;
145 count = 0;
146 if (nice) {
147 delta = vmstats.v_paging_wait - vmstats.v_free_min - 1;
148 delta = delta >> 1;
149 if (delta > 0) {
150 /* range 0-40, 0 is high priority, 40 is low */
151 count = (nice + 20) * delta / 40;
154 return vm_paging_min_dnc(count);
157 static __inline
159 vm_paging_min(void)
161 return vm_paging_min_dnc(0);
165 * Return TRUE if nominal userland / VM-system allocations should slow
166 * down (but not stop) due to low free pages in the system. This is
167 * typically 1/2 way between min and start.
169 * reserved < severe < minimum < wait < start < target1 < target2
171 static __inline
173 vm_paging_wait(void)
175 globaldata_t gd = mycpu;
177 if (__predict_false(gd->gd_vmstats.v_paging_wait >
178 (gd->gd_vmstats.v_free_count +
179 gd->gd_vmstats.v_cache_count)))
181 return 1;
183 if (__predict_false(gd->gd_vmstats.v_free_reserved >
184 gd->gd_vmstats.v_free_count))
186 return 1;
188 return 0;
192 * Return TRUE if the pageout daemon should be started up or continue
193 * running. Available pages have dropped to a level where we need to
194 * think about freeing some up.
196 * Also handles edge cases for required 'actually-free' pages.
198 * reserved < severe < minimum < wait < start < target1 < target2
200 static __inline
202 vm_paging_start(int adj)
204 globaldata_t gd = mycpu;
206 if (__predict_false(gd->gd_vmstats.v_paging_start >
207 (gd->gd_vmstats.v_free_count +
208 gd->gd_vmstats.v_cache_count + adj)))
210 return 1;
212 if (__predict_false(gd->gd_vmstats.v_free_min >
213 gd->gd_vmstats.v_free_count + adj))
215 return 1;
217 if (__predict_false(gd->gd_vmstats.v_free_reserved >
218 gd->gd_vmstats.v_free_count))
220 return 1;
222 return 0;
226 * Return TRUE if the pageout daemon has not yet reached its initial target.
227 * The pageout daemon works hard to reach target1.
229 * reserved < severe < minimum < wait < start < target1 < target2
231 static __inline
233 vm_paging_target1(void)
235 globaldata_t gd = mycpu;
237 if (__predict_false(gd->gd_vmstats.v_paging_target1 >
238 (gd->gd_vmstats.v_free_count +
239 gd->gd_vmstats.v_cache_count)))
241 return 1;
243 if (__predict_false(gd->gd_vmstats.v_free_reserved >
244 gd->gd_vmstats.v_free_count))
246 return 1;
248 return 0;
251 static __inline
252 long
253 vm_paging_target1_count(void)
255 globaldata_t gd = mycpu;
256 long delta;
258 delta = gd->gd_vmstats.v_paging_target1 -
259 (gd->gd_vmstats.v_free_count + gd->gd_vmstats.v_cache_count);
260 return delta;
264 * Return TRUE if the pageout daemon has not yet reached its final target.
265 * The pageout daemon takes it easy on its way between target1 and target2.
267 * reserved < severe < minimum < wait < start < target1 < target2
269 static __inline
271 vm_paging_target2(void)
273 globaldata_t gd = mycpu;
275 if (__predict_false(gd->gd_vmstats.v_paging_target2 >
276 (gd->gd_vmstats.v_free_count +
277 gd->gd_vmstats.v_cache_count)))
279 return 1;
281 if (__predict_false(gd->gd_vmstats.v_free_reserved >
282 gd->gd_vmstats.v_free_count))
284 return 1;
286 return 0;
289 static __inline
290 long
291 vm_paging_target2_count(void)
293 globaldata_t gd = mycpu;
294 long delta;
296 delta = gd->gd_vmstats.v_paging_target2 -
297 (gd->gd_vmstats.v_free_count + gd->gd_vmstats.v_cache_count);
298 return delta;
302 * Returns TRUE if additional pages must be deactivated, either during a
303 * pageout operation or during the page stats scan.
305 * Inactive tests are used in two places. During heavy paging the
306 * inactive_target is used to refill the inactive queue in staged.
307 * Those pages are then ultimately flushed and moved to the cache or free
308 * queues.
310 * The inactive queue is also used to manage scans to update page stats
311 * (m->act_count). The page stats scan occurs lazily in small batches to
312 * update m->act_count for pages in the active queue and to move pages
313 * (limited by inactive_target) to the inactive queue. Page stats scanning
314 * and active deactivations only run while the inactive queue is below target.
315 * After this, additional page stats scanning just to update m->act_count
316 * (but not do further deactivations) continues to run for a limited period
317 * of time after any pageout daemon activity.
319 static __inline
321 vm_paging_inactive(void)
323 globaldata_t gd = mycpu;
325 if (__predict_false((gd->gd_vmstats.v_free_count +
326 gd->gd_vmstats.v_cache_count +
327 gd->gd_vmstats.v_inactive_count) <
328 (gd->gd_vmstats.v_free_min +
329 gd->gd_vmstats.v_inactive_target)))
331 return 1;
333 return 0;
337 * Return number of pages that need to be deactivated to achieve the inactive
338 * target as a positive number. A negative number indicates that there are
339 * already a sufficient number of inactive pages.
341 static __inline
342 long
343 vm_paging_inactive_count(void)
345 globaldata_t gd = mycpu;
346 long delta;
348 delta = (gd->gd_vmstats.v_free_min + gd->gd_vmstats.v_inactive_target) -
349 (gd->gd_vmstats.v_free_count + gd->gd_vmstats.v_cache_count +
350 gd->gd_vmstats.v_inactive_count);
352 return delta;
356 * Clear dirty bits in the VM page but truncate the
357 * end to a DEV_BSIZE'd boundary.
359 * Used when reading data in, typically via getpages.
360 * The partial device block at the end of the truncation
361 * range should not lose its dirty bit.
363 * NOTE: This function does not clear the pmap modified bit.
365 static __inline
366 void
367 vm_page_clear_dirty_end_nonincl(vm_page_t m, int base, int size)
369 size = (base + size) & ~DEV_BMASK;
370 if (base < size)
371 vm_page_clear_dirty(m, base, size - base);
375 * Clear dirty bits in the VM page but truncate the
376 * beginning to a DEV_BSIZE'd boundary.
378 * Used when truncating a buffer. The partial device
379 * block at the beginning of the truncation range
380 * should not lose its dirty bit.
382 * NOTE: This function does not clear the pmap modified bit.
384 static __inline
385 void
386 vm_page_clear_dirty_beg_nonincl(vm_page_t m, int base, int size)
388 size += base;
389 base = (base + DEV_BMASK) & ~DEV_BMASK;
390 if (base < size)
391 vm_page_clear_dirty(m, base, size - base);
394 static __inline
395 void
396 vm_page_spin_lock(vm_page_t m)
398 spin_lock(&m->spin);
401 static __inline
402 void
403 vm_page_spin_unlock(vm_page_t m)
405 spin_unlock(&m->spin);
409 * Wire a vm_page that is already wired. Does not require a busied
410 * page.
412 static __inline
413 void
414 vm_page_wire_quick(vm_page_t m)
416 if (atomic_fetchadd_int(&m->wire_count, 1) == 0)
417 panic("vm_page_wire_quick: wire_count was 0");
421 * Unwire a vm_page quickly, does not require a busied page.
423 * This routine refuses to drop the wire_count to 0 and will return
424 * TRUE if it would have had to (instead of decrementing it to 0).
425 * The caller can then busy the page and deal with it.
427 static __inline
429 vm_page_unwire_quick(vm_page_t m)
431 KKASSERT(m->wire_count > 0);
432 for (;;) {
433 u_int wire_count = m->wire_count;
435 cpu_ccfence();
436 if (wire_count == 1)
437 return TRUE;
438 if (atomic_cmpset_int(&m->wire_count, wire_count, wire_count - 1))
439 return FALSE;
444 * Functions implemented as macros
447 static __inline void
448 vm_page_flag_set(vm_page_t m, unsigned int bits)
450 atomic_set_int(&(m)->flags, bits);
453 static __inline void
454 vm_page_flag_clear(vm_page_t m, unsigned int bits)
456 atomic_clear_int(&(m)->flags, bits);
460 * Wakeup anyone waiting for the page after potentially unbusying
461 * (hard or soft) or doing other work on a page that might make a
462 * waiter ready. The setting of PBUSY_WANTED is integrated into the
463 * related flags and it can't be set once the flags are already
464 * clear, so there should be no races here.
466 static __inline void
467 vm_page_flash(vm_page_t m)
469 if (m->busy_count & PBUSY_WANTED) {
470 atomic_clear_int(&m->busy_count, PBUSY_WANTED);
471 wakeup(m);
476 * Adjust the soft-busy count on a page. The drop code will issue an
477 * integrated wakeup if busy_count becomes 0.
479 static __inline void
480 vm_page_sbusy_hold(vm_page_t m)
482 atomic_add_int(&m->busy_count, 1);
485 static __inline void
486 vm_page_sbusy_drop(vm_page_t m)
488 uint32_t ocount;
490 ocount = atomic_fetchadd_int(&m->busy_count, -1);
491 if (ocount - 1 == PBUSY_WANTED) {
492 /* WANTED and no longer BUSY or SBUSY */
493 atomic_clear_int(&m->busy_count, PBUSY_WANTED);
494 wakeup(m);
499 * Reduce the protection of a page. This routine never raises the
500 * protection and therefore can be safely called if the page is already
501 * at VM_PROT_NONE (it will be a NOP effectively ).
503 * VM_PROT_NONE will remove all user mappings of a page. This is often
504 * necessary when a page changes state (for example, turns into a copy-on-write
505 * page or needs to be frozen for write I/O) in order to force a fault, or
506 * to force a page's dirty bits to be synchronized and avoid hardware
507 * (modified/accessed) bit update races with pmap changes.
509 * Since 'prot' is usually a constant, this inline usually winds up optimizing
510 * out the primary conditional.
512 * Must be called with (m) hard-busied.
514 * WARNING: VM_PROT_NONE can block, but will loop until all mappings have
515 * been cleared. Callers should be aware that other page related
516 * elements might have changed, however.
518 static __inline void
519 vm_page_protect(vm_page_t m, int prot)
521 KKASSERT(m->busy_count & PBUSY_LOCKED);
522 if (prot == VM_PROT_NONE) {
523 if (pmap_mapped_sync(m) & (PG_MAPPED | PG_WRITEABLE)) {
524 pmap_page_protect(m, VM_PROT_NONE);
525 /* PG_WRITEABLE & PG_MAPPED cleared by call */
527 } else if ((prot == VM_PROT_READ) &&
528 (m->flags & PG_WRITEABLE) &&
529 (pmap_mapped_sync(m) & PG_WRITEABLE)) {
530 pmap_page_protect(m, VM_PROT_READ);
531 /* PG_WRITEABLE cleared by call */
536 * Zero-fill the specified page. The entire contents of the page will be
537 * zero'd out.
539 static __inline boolean_t
540 vm_page_zero_fill(vm_page_t m)
542 pmap_zero_page(VM_PAGE_TO_PHYS(m));
543 return (TRUE);
547 * Copy the contents of src_m to dest_m. The pages must be stable but spl
548 * and other protections depend on context.
550 static __inline void
551 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
553 pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
554 dest_m->valid = VM_PAGE_BITS_ALL;
555 dest_m->dirty = VM_PAGE_BITS_ALL;
559 * Free a page. The page must be marked BUSY.
561 static __inline void
562 vm_page_free(vm_page_t m)
564 vm_page_free_toq(m);
568 * Free a page to the zerod-pages queue. The caller must ensure that the
569 * page has been zerod.
571 static __inline void
572 vm_page_free_zero(vm_page_t m)
574 #ifdef PMAP_DEBUG
575 #ifdef PHYS_TO_DMAP
576 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
577 int i;
579 for (i = 0; i < PAGE_SIZE; i++) {
580 if (p[i] != 0) {
581 panic("non-zero page in vm_page_free_zero()");
584 #endif
585 #endif
586 vm_page_free_toq(m);
590 * Set page to not be dirty. Note: does not clear pmap modify bits .
592 static __inline void
593 vm_page_undirty(vm_page_t m)
595 m->dirty = 0;
598 #endif /* _KERNEL */
599 #endif /* _VM_VM_PAGE2_H_ */