dhcpcd: update README.DRAGONFLY
[dragonfly.git] / sys / vm / vm_kern.c
blob5bd3cb6e1adcb1e2b75347e0d1b25737ba015f9c
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
66 * Kernel memory management.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pageout.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_extern.h>
87 static struct vm_map kernel_map_store;
88 static struct vm_map clean_map_store;
89 static struct vm_map buffer_map_store;
91 struct vm_map *kernel_map = &kernel_map_store;
92 struct vm_map *clean_map = &clean_map_store;
93 struct vm_map *buffer_map = &buffer_map_store;
95 static __inline
96 int
97 KMVMCPU(int kmflags)
99 if ((kmflags & KM_CPU_SPEC) == 0)
100 return 0;
101 return VM_ALLOC_CPU(KM_GETCPU(kmflags));
105 * Allocate pageable swap-backed anonymous memory
107 void *
108 kmem_alloc_swapbacked(kmem_anon_desc_t *kp, vm_size_t size, vm_subsys_t id)
110 int error;
111 vm_pindex_t npages;
113 size = round_page(size);
114 npages = size / PAGE_SIZE;
116 if (kp->map == NULL)
117 kp->map = kernel_map;
118 kp->data = vm_map_min(kernel_map);
119 kp->size = size;
120 kp->object = vm_object_allocate(OBJT_DEFAULT, npages);
122 error = vm_map_find(kp->map, kp->object, NULL, 0,
123 &kp->data, size,
124 PAGE_SIZE, TRUE,
125 VM_MAPTYPE_NORMAL, id,
126 VM_PROT_ALL, VM_PROT_ALL, 0);
127 if (error) {
128 kprintf("kmem_alloc_swapbacked: %zd bytes failed %d\n",
129 size, error);
130 kp->data = (vm_offset_t)0;
131 kmem_free_swapbacked(kp);
132 return NULL;
134 return ((void *)(intptr_t)kp->data);
137 void
138 kmem_free_swapbacked(kmem_anon_desc_t *kp)
140 if (kp->data) {
142 * The object will be deallocated by kmem_free().
144 kmem_free(kp->map, kp->data, kp->size);
145 kp->data = (vm_offset_t)0;
146 } else {
148 * Failure during allocation, object must be deallocated
149 * manually.
151 vm_object_deallocate(kp->object);
153 kp->object = NULL;
157 * Allocate pageable memory to the kernel's address map. "map" must
158 * be kernel_map or a submap of kernel_map. Caller must adjust map or
159 * enter VM pages itself.
161 * No requirements.
163 vm_offset_t
164 kmem_alloc_pageable(vm_map_t map, vm_size_t size, vm_subsys_t id)
166 vm_offset_t addr;
167 int result;
169 size = round_page(size);
170 addr = vm_map_min(map);
171 result = vm_map_find(map, NULL, NULL,
172 (vm_offset_t) 0, &addr, size,
173 PAGE_SIZE, TRUE,
174 VM_MAPTYPE_NORMAL, id,
175 VM_PROT_ALL, VM_PROT_ALL, 0);
176 if (result != KERN_SUCCESS)
177 return (0);
178 return (addr);
182 * Same as kmem_alloc_pageable, except that it create a nofault entry.
184 * No requirements.
186 vm_offset_t
187 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_subsys_t id,
188 vm_size_t align)
190 vm_offset_t addr;
191 int result;
193 size = round_page(size);
194 addr = vm_map_min(map);
195 result = vm_map_find(map, NULL, NULL,
196 (vm_offset_t) 0, &addr, size,
197 align, TRUE,
198 VM_MAPTYPE_NORMAL, id,
199 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
200 if (result != KERN_SUCCESS)
201 return (0);
202 return (addr);
206 * Allocate wired-down memory in the kernel's address map or a submap.
208 * No requirements.
210 vm_offset_t
211 kmem_alloc3(vm_map_t map, vm_size_t size, vm_subsys_t id, int kmflags)
213 vm_offset_t addr;
214 vm_offset_t gstart;
215 vm_offset_t i;
216 int count;
217 int cow;
219 size = round_page(size);
221 if (kmflags & KM_KRESERVE)
222 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
223 else
224 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
226 if (kmflags & KM_STACK) {
227 cow = MAP_IS_KSTACK;
228 gstart = PAGE_SIZE;
229 } else {
230 cow = 0;
231 gstart = 0;
235 * Use the kernel object for wired-down kernel pages. Assume that no
236 * region of the kernel object is referenced more than once.
238 * Locate sufficient space in the map. This will give us the final
239 * virtual address for the new memory, and thus will tell us the
240 * offset within the kernel map.
242 vm_map_lock(map);
243 if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
244 vm_map_unlock(map);
245 if (kmflags & KM_KRESERVE)
246 vm_map_entry_krelease(count);
247 else
248 vm_map_entry_release(count);
249 return (0);
251 vm_object_hold(kernel_object);
252 vm_object_reference_locked(kernel_object);
253 vm_map_insert(map, &count,
254 kernel_object, NULL,
255 addr, NULL,
256 addr, addr + size,
257 VM_MAPTYPE_NORMAL, id,
258 VM_PROT_ALL, VM_PROT_ALL, cow);
259 vm_object_drop(kernel_object);
261 vm_map_unlock(map);
262 if (kmflags & KM_KRESERVE)
263 vm_map_entry_krelease(count);
264 else
265 vm_map_entry_release(count);
268 * Guarantee that there are pages already in this object before
269 * calling vm_map_kernel_wiring(). This is to prevent the following
270 * scenario:
272 * 1) Threads have swapped out, so that there is a pager for the
273 * kernel_object. 2) The kmsg zone is empty, and so we are
274 * kmem_allocing a new page for it. 3) vm_map_kernel_wiring() calls
275 * vm_fault(); there is no page, but there is a pager, so we call
276 * pager_data_request. But the kmsg zone is empty, so we must
277 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
278 * we get the data back from the pager, it will be (very stale)
279 * non-zero data. kmem_alloc is defined to return zero-filled memory.
281 * We're intentionally not activating the pages we allocate to prevent a
282 * race with page-out. vm_map_kernel_wiring() will wire the pages.
284 vm_object_hold(kernel_object);
285 for (i = gstart; i < size; i += PAGE_SIZE) {
286 vm_page_t mem;
288 mem = vm_page_grab(kernel_object, OFF_TO_IDX(addr + i),
289 VM_ALLOC_FORCE_ZERO | VM_ALLOC_NORMAL |
290 VM_ALLOC_RETRY | KMVMCPU(kmflags));
291 vm_page_unqueue_nowakeup(mem);
292 vm_page_wakeup(mem);
294 vm_object_drop(kernel_object);
297 * And finally, mark the data as pageable or non-pageable (unwiring
298 * or wiring the pages), according to the passed-in kmflags.
300 * NOTE: vm_map_kernel_wiring() handles any kstack guard.
302 vm_map_kernel_wiring(map, addr, addr + size, kmflags);
304 return (addr);
308 * Release a region of kernel virtual memory allocated with kmem_alloc,
309 * and return the physical pages associated with that region.
311 * WARNING! If the caller entered pages into the region using pmap_kenter()
312 * it must remove the pages using pmap_kremove[_quick]() before freeing the
313 * underlying kmem, otherwise resident_count will be mistabulated.
315 * No requirements.
317 void
318 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
320 vm_map_remove(map, trunc_page(addr), round_page(addr + size));
324 * Used to break a system map into smaller maps, usually to reduce
325 * contention and to provide large KVA spaces for subsystems like the
326 * buffer cache.
328 * parent Map to take range from
329 * result
330 * size Size of range to find
331 * min, max Returned endpoints of map
332 * pageable Can the region be paged
334 * No requirements.
336 void
337 kmem_suballoc(vm_map_t parent, vm_map_t result,
338 vm_offset_t *min, vm_offset_t *max, vm_size_t size)
340 int ret;
342 size = round_page(size);
344 *min = (vm_offset_t) vm_map_min(parent);
345 ret = vm_map_find(parent, NULL, NULL,
346 (vm_offset_t) 0, min, size,
347 PAGE_SIZE, TRUE,
348 VM_MAPTYPE_UNSPECIFIED, VM_SUBSYS_SYSMAP,
349 VM_PROT_ALL, VM_PROT_ALL, 0);
350 if (ret != KERN_SUCCESS) {
351 kprintf("kmem_suballoc: bad status return of %d.\n", ret);
352 panic("kmem_suballoc");
354 *max = *min + size;
355 pmap_reference(vm_map_pmap(parent));
356 vm_map_init(result, *min, *max, vm_map_pmap(parent));
357 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
358 panic("kmem_suballoc: unable to change range to submap");
362 * Allocates pageable memory from a sub-map of the kernel. If the submap
363 * has no room, the caller sleeps waiting for more memory in the submap.
365 * No requirements.
367 vm_offset_t
368 kmem_alloc_wait(vm_map_t map, vm_size_t size, vm_subsys_t id)
370 vm_offset_t addr;
371 int count;
373 size = round_page(size);
375 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
377 for (;;) {
379 * To make this work for more than one map, use the map's lock
380 * to lock out sleepers/wakers.
382 vm_map_lock(map);
383 if (vm_map_findspace(map, vm_map_min(map),
384 size, PAGE_SIZE, 0, &addr) == 0) {
385 break;
387 /* no space now; see if we can ever get space */
388 if (vm_map_max(map) - vm_map_min(map) < size) {
389 vm_map_entry_release(count);
390 vm_map_unlock(map);
391 return (0);
393 vm_map_unlock(map);
394 tsleep(map, 0, "kmaw", 0);
396 vm_map_insert(map, &count,
397 NULL, NULL,
398 (vm_offset_t)0, NULL,
399 addr, addr + size,
400 VM_MAPTYPE_NORMAL, id,
401 VM_PROT_ALL, VM_PROT_ALL, 0);
402 vm_map_unlock(map);
403 vm_map_entry_release(count);
405 return (addr);
409 * Allocates a region from the kernel address map and physical pages
410 * within the specified address range to the kernel object. Creates a
411 * wired mapping from this region to these pages, and returns the
412 * region's starting virtual address. The allocated pages are not
413 * necessarily physically contiguous. If M_ZERO is specified through the
414 * given flags, then the pages are zeroed before they are mapped.
416 vm_offset_t
417 kmem_alloc_attr(vm_map_t map, vm_size_t size, vm_subsys_t id,
418 int flags, vm_paddr_t low,
419 vm_paddr_t high, vm_memattr_t memattr)
421 vm_offset_t addr, i, offset;
422 vm_page_t m;
423 int count;
425 size = round_page(size);
426 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
427 vm_map_lock(map);
428 if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE,
429 flags, &addr)) {
430 vm_map_unlock(map);
431 vm_map_entry_release(count);
432 return (0);
434 offset = addr - vm_map_min(kernel_map);
435 vm_object_hold(kernel_object);
436 vm_object_reference_locked(kernel_object);
437 vm_map_insert(map, &count,
438 kernel_object, NULL,
439 offset, NULL,
440 addr, addr + size,
441 VM_MAPTYPE_NORMAL, id,
442 VM_PROT_ALL, VM_PROT_ALL, 0);
443 vm_map_unlock(map);
444 vm_map_entry_release(count);
445 vm_object_drop(kernel_object);
446 for (i = 0; i < size; i += PAGE_SIZE) {
447 m = vm_page_alloc_contig(low, high, PAGE_SIZE, 0,
448 PAGE_SIZE, memattr);
449 if (!m) {
450 return (0);
452 vm_object_hold(kernel_object);
453 vm_page_insert(m, kernel_object, OFF_TO_IDX(offset + i));
454 vm_object_drop(kernel_object);
455 if (flags & M_ZERO)
456 pmap_zero_page(VM_PAGE_TO_PHYS(m));
457 m->valid = VM_PAGE_BITS_ALL;
460 /* wire the pages */
461 vm_map_kernel_wiring(map, addr, addr + size, 0);
463 return (addr);
468 * Returns memory to a submap of the kernel, and wakes up any processes
469 * waiting for memory in that map.
471 * No requirements.
473 void
474 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
476 int count;
478 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
479 vm_map_lock(map);
480 vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
481 wakeup(map);
482 vm_map_unlock(map);
483 vm_map_entry_release(count);
487 * Create the kernel_ma for (KvaStart,KvaEnd) and insert mappings to
488 * cover areas already allocated or reserved thus far.
490 * The areas (virtual_start, virtual_end) and (virtual2_start, virtual2_end)
491 * are available so the cutouts are the areas around these ranges between
492 * KvaStart and KvaEnd.
494 * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
495 * Called from the low level boot code only.
497 void
498 kmem_init(void)
500 vm_offset_t addr;
501 vm_map_t m;
502 int count;
504 m = kernel_map;
505 vm_map_init(m, KvaStart, KvaEnd, kernel_pmap);
506 vm_map_lock(m);
507 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
508 m->system_map = 1;
509 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
510 addr = KvaStart;
511 if (virtual2_start) {
512 if (addr < virtual2_start) {
513 vm_map_insert(m, &count,
514 NULL, NULL,
515 (vm_offset_t) 0, NULL,
516 addr, virtual2_start,
517 VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
518 VM_PROT_ALL, VM_PROT_ALL, 0);
520 addr = virtual2_end;
522 if (addr < virtual_start) {
523 vm_map_insert(m, &count,
524 NULL, NULL,
525 (vm_offset_t) 0, NULL,
526 addr, virtual_start,
527 VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
528 VM_PROT_ALL, VM_PROT_ALL, 0);
530 addr = virtual_end;
531 if (addr < KvaEnd) {
532 vm_map_insert(m, &count,
533 NULL, NULL,
534 (vm_offset_t) 0, NULL,
535 addr, KvaEnd,
536 VM_MAPTYPE_NORMAL, VM_SUBSYS_RESERVED,
537 VM_PROT_ALL, VM_PROT_ALL, 0);
539 /* ... and ending with the completion of the above `insert' */
540 vm_map_unlock(m);
541 vm_map_entry_release(count);
545 * No requirements.
547 static int
548 kvm_size(SYSCTL_HANDLER_ARGS)
550 unsigned long ksize = KvaSize;
552 return sysctl_handle_long(oidp, &ksize, 0, req);
554 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_ULONG|CTLFLAG_RD,
555 0, 0, kvm_size, "LU", "Size of KVM");
558 * No requirements.
560 static int
561 kvm_free(SYSCTL_HANDLER_ARGS)
563 unsigned long kfree = virtual_end - kernel_vm_end;
565 return sysctl_handle_long(oidp, &kfree, 0, req);
567 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_ULONG|CTLFLAG_RD,
568 0, 0, kvm_free, "LU", "Amount of KVM free");