Actually hook powernow.4 into the build.
[dragonfly.git] / contrib / cvs-1.12 / lib / md5.c
blob87db8f956c6f8fa9d6722d81a1dbfee96d542217
1 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4 NOTE: The canonical source of this file is maintained with the GNU C
5 Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
27 #include "md5.h"
29 #include <stddef.h>
30 #include <string.h>
32 #if USE_UNLOCKED_IO
33 # include "unlocked-io.h"
34 #endif
36 #ifdef _LIBC
37 # include <endian.h>
38 # if __BYTE_ORDER == __BIG_ENDIAN
39 # define WORDS_BIGENDIAN 1
40 # endif
41 /* We need to keep the namespace clean so define the MD5 function
42 protected using leading __ . */
43 # define md5_init_ctx __md5_init_ctx
44 # define md5_process_block __md5_process_block
45 # define md5_process_bytes __md5_process_bytes
46 # define md5_finish_ctx __md5_finish_ctx
47 # define md5_read_ctx __md5_read_ctx
48 # define md5_stream __md5_stream
49 # define md5_buffer __md5_buffer
50 #endif
52 #ifdef WORDS_BIGENDIAN
53 # define SWAP(n) \
54 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
55 #else
56 # define SWAP(n) (n)
57 #endif
59 #define BLOCKSIZE 4096
60 #if BLOCKSIZE % 64 != 0
61 # error "invalid BLOCKSIZE"
62 #endif
64 /* This array contains the bytes used to pad the buffer to the next
65 64-byte boundary. (RFC 1321, 3.1: Step 1) */
66 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
69 /* Initialize structure containing state of computation.
70 (RFC 1321, 3.3: Step 3) */
71 void
72 md5_init_ctx (struct md5_ctx *ctx)
74 ctx->A = 0x67452301;
75 ctx->B = 0xefcdab89;
76 ctx->C = 0x98badcfe;
77 ctx->D = 0x10325476;
79 ctx->total[0] = ctx->total[1] = 0;
80 ctx->buflen = 0;
83 /* Put result from CTX in first 16 bytes following RESBUF. The result
84 must be in little endian byte order.
86 IMPORTANT: On some systems it is required that RESBUF is correctly
87 aligned for a 32 bits value. */
88 void *
89 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
91 ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
92 ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
93 ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
94 ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
96 return resbuf;
99 /* Process the remaining bytes in the internal buffer and the usual
100 prolog according to the standard and write the result to RESBUF.
102 IMPORTANT: On some systems it is required that RESBUF is correctly
103 aligned for a 32 bits value. */
104 void *
105 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
107 /* Take yet unprocessed bytes into account. */
108 md5_uint32 bytes = ctx->buflen;
109 size_t pad;
111 /* Now count remaining bytes. */
112 ctx->total[0] += bytes;
113 if (ctx->total[0] < bytes)
114 ++ctx->total[1];
116 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
117 memcpy (&ctx->buffer[bytes], fillbuf, pad);
119 /* Put the 64-bit file length in *bits* at the end of the buffer. */
120 *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
121 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
122 (ctx->total[0] >> 29));
124 /* Process last bytes. */
125 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
127 return md5_read_ctx (ctx, resbuf);
130 /* Compute MD5 message digest for bytes read from STREAM. The
131 resulting message digest number will be written into the 16 bytes
132 beginning at RESBLOCK. */
134 md5_stream (FILE *stream, void *resblock)
136 struct md5_ctx ctx;
137 char buffer[BLOCKSIZE + 72];
138 size_t sum;
140 /* Initialize the computation context. */
141 md5_init_ctx (&ctx);
143 /* Iterate over full file contents. */
144 while (1)
146 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
147 computation function processes the whole buffer so that with the
148 next round of the loop another block can be read. */
149 size_t n;
150 sum = 0;
152 /* Read block. Take care for partial reads. */
153 while (1)
155 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
157 sum += n;
159 if (sum == BLOCKSIZE)
160 break;
162 if (n == 0)
164 /* Check for the error flag IFF N == 0, so that we don't
165 exit the loop after a partial read due to e.g., EAGAIN
166 or EWOULDBLOCK. */
167 if (ferror (stream))
168 return 1;
169 goto process_partial_block;
172 /* We've read at least one byte, so ignore errors. But always
173 check for EOF, since feof may be true even though N > 0.
174 Otherwise, we could end up calling fread after EOF. */
175 if (feof (stream))
176 goto process_partial_block;
179 /* Process buffer with BLOCKSIZE bytes. Note that
180 BLOCKSIZE % 64 == 0
182 md5_process_block (buffer, BLOCKSIZE, &ctx);
185 process_partial_block:;
187 /* Process any remaining bytes. */
188 if (sum > 0)
189 md5_process_bytes (buffer, sum, &ctx);
191 /* Construct result in desired memory. */
192 md5_finish_ctx (&ctx, resblock);
193 return 0;
196 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
197 result is always in little endian byte order, so that a byte-wise
198 output yields to the wanted ASCII representation of the message
199 digest. */
200 void *
201 md5_buffer (const char *buffer, size_t len, void *resblock)
203 struct md5_ctx ctx;
205 /* Initialize the computation context. */
206 md5_init_ctx (&ctx);
208 /* Process whole buffer but last len % 64 bytes. */
209 md5_process_bytes (buffer, len, &ctx);
211 /* Put result in desired memory area. */
212 return md5_finish_ctx (&ctx, resblock);
216 void
217 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
219 /* When we already have some bits in our internal buffer concatenate
220 both inputs first. */
221 if (ctx->buflen != 0)
223 size_t left_over = ctx->buflen;
224 size_t add = 128 - left_over > len ? len : 128 - left_over;
226 memcpy (&ctx->buffer[left_over], buffer, add);
227 ctx->buflen += add;
229 if (ctx->buflen > 64)
231 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
233 ctx->buflen &= 63;
234 /* The regions in the following copy operation cannot overlap. */
235 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
236 ctx->buflen);
239 buffer = (const char *) buffer + add;
240 len -= add;
243 /* Process available complete blocks. */
244 if (len >= 64)
246 #if !_STRING_ARCH_unaligned
247 # define alignof(type) offsetof (struct { char c; type x; }, x)
248 # define UNALIGNED_P(p) (((size_t) p) % alignof (md5_uint32) != 0)
249 if (UNALIGNED_P (buffer))
250 while (len > 64)
252 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
253 buffer = (const char *) buffer + 64;
254 len -= 64;
256 else
257 #endif
259 md5_process_block (buffer, len & ~63, ctx);
260 buffer = (const char *) buffer + (len & ~63);
261 len &= 63;
265 /* Move remaining bytes in internal buffer. */
266 if (len > 0)
268 size_t left_over = ctx->buflen;
270 memcpy (&ctx->buffer[left_over], buffer, len);
271 left_over += len;
272 if (left_over >= 64)
274 md5_process_block (ctx->buffer, 64, ctx);
275 left_over -= 64;
276 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
278 ctx->buflen = left_over;
283 /* These are the four functions used in the four steps of the MD5 algorithm
284 and defined in the RFC 1321. The first function is a little bit optimized
285 (as found in Colin Plumbs public domain implementation). */
286 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
287 #define FF(b, c, d) (d ^ (b & (c ^ d)))
288 #define FG(b, c, d) FF (d, b, c)
289 #define FH(b, c, d) (b ^ c ^ d)
290 #define FI(b, c, d) (c ^ (b | ~d))
292 /* Process LEN bytes of BUFFER, accumulating context into CTX.
293 It is assumed that LEN % 64 == 0. */
295 void
296 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
298 md5_uint32 correct_words[16];
299 const md5_uint32 *words = buffer;
300 size_t nwords = len / sizeof (md5_uint32);
301 const md5_uint32 *endp = words + nwords;
302 md5_uint32 A = ctx->A;
303 md5_uint32 B = ctx->B;
304 md5_uint32 C = ctx->C;
305 md5_uint32 D = ctx->D;
307 /* First increment the byte count. RFC 1321 specifies the possible
308 length of the file up to 2^64 bits. Here we only compute the
309 number of bytes. Do a double word increment. */
310 ctx->total[0] += len;
311 if (ctx->total[0] < len)
312 ++ctx->total[1];
314 /* Process all bytes in the buffer with 64 bytes in each round of
315 the loop. */
316 while (words < endp)
318 md5_uint32 *cwp = correct_words;
319 md5_uint32 A_save = A;
320 md5_uint32 B_save = B;
321 md5_uint32 C_save = C;
322 md5_uint32 D_save = D;
324 /* First round: using the given function, the context and a constant
325 the next context is computed. Because the algorithms processing
326 unit is a 32-bit word and it is determined to work on words in
327 little endian byte order we perhaps have to change the byte order
328 before the computation. To reduce the work for the next steps
329 we store the swapped words in the array CORRECT_WORDS. */
331 #define OP(a, b, c, d, s, T) \
332 do \
334 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
335 ++words; \
336 CYCLIC (a, s); \
337 a += b; \
339 while (0)
341 /* It is unfortunate that C does not provide an operator for
342 cyclic rotation. Hope the C compiler is smart enough. */
343 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
345 /* Before we start, one word to the strange constants.
346 They are defined in RFC 1321 as
348 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
350 Here is an equivalent invocation using Perl:
352 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
355 /* Round 1. */
356 OP (A, B, C, D, 7, 0xd76aa478);
357 OP (D, A, B, C, 12, 0xe8c7b756);
358 OP (C, D, A, B, 17, 0x242070db);
359 OP (B, C, D, A, 22, 0xc1bdceee);
360 OP (A, B, C, D, 7, 0xf57c0faf);
361 OP (D, A, B, C, 12, 0x4787c62a);
362 OP (C, D, A, B, 17, 0xa8304613);
363 OP (B, C, D, A, 22, 0xfd469501);
364 OP (A, B, C, D, 7, 0x698098d8);
365 OP (D, A, B, C, 12, 0x8b44f7af);
366 OP (C, D, A, B, 17, 0xffff5bb1);
367 OP (B, C, D, A, 22, 0x895cd7be);
368 OP (A, B, C, D, 7, 0x6b901122);
369 OP (D, A, B, C, 12, 0xfd987193);
370 OP (C, D, A, B, 17, 0xa679438e);
371 OP (B, C, D, A, 22, 0x49b40821);
373 /* For the second to fourth round we have the possibly swapped words
374 in CORRECT_WORDS. Redefine the macro to take an additional first
375 argument specifying the function to use. */
376 #undef OP
377 #define OP(f, a, b, c, d, k, s, T) \
378 do \
380 a += f (b, c, d) + correct_words[k] + T; \
381 CYCLIC (a, s); \
382 a += b; \
384 while (0)
386 /* Round 2. */
387 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
388 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
389 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
390 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
391 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
392 OP (FG, D, A, B, C, 10, 9, 0x02441453);
393 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
394 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
395 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
396 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
397 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
398 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
399 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
400 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
401 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
402 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
404 /* Round 3. */
405 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
406 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
407 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
408 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
409 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
410 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
411 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
412 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
413 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
414 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
415 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
416 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
417 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
418 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
419 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
420 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
422 /* Round 4. */
423 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
424 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
425 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
426 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
427 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
428 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
429 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
430 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
431 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
432 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
433 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
434 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
435 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
436 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
437 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
438 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
440 /* Add the starting values of the context. */
441 A += A_save;
442 B += B_save;
443 C += C_save;
444 D += D_save;
447 /* Put checksum in context given as argument. */
448 ctx->A = A;
449 ctx->B = B;
450 ctx->C = C;
451 ctx->D = D;