HAMMER VFS - Fix assertion in hammer_btree_mirror_propagate()
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
blob9cc7397a6316f155639a7422d22d2db69c19ee1b
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
38 * HAMMER B-Tree index
40 * HAMMER implements a modified B+Tree. In documentation this will
41 * simply be refered to as the HAMMER B-Tree. Basically a HAMMER B-Tree
42 * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43 * of the tree), but adds two additional boundary elements which describe
44 * the left-most and right-most element a node is able to represent. In
45 * otherwords, we have boundary elements at the two ends of a B-Tree node
46 * instead of sub-tree pointers.
48 * A B-Tree internal node looks like this:
50 * B N N N N N N B <-- boundary and internal elements
51 * S S S S S S S <-- subtree pointers
53 * A B-Tree leaf node basically looks like this:
55 * L L L L L L L L <-- leaf elemenets
57 * The radix for an internal node is 1 less then a leaf but we get a
58 * number of significant benefits for our troubles.
60 * The big benefit to using a B-Tree containing boundary information
61 * is that it is possible to cache pointers into the middle of the tree
62 * and not have to start searches, insertions, OR deletions at the root
63 * node. In particular, searches are able to progress in a definitive
64 * direction from any point in the tree without revisting nodes. This
65 * greatly improves the efficiency of many operations, most especially
66 * record appends.
68 * B-Trees also make the stacking of trees fairly straightforward.
70 * INSERTIONS: A search performed with the intention of doing
71 * an insert will guarantee that the terminal leaf node is not full by
72 * splitting full nodes. Splits occur top-down during the dive down the
73 * B-Tree.
75 * DELETIONS: A deletion makes no attempt to proactively balance the
76 * tree and will recursively remove nodes that become empty. If a
77 * deadlock occurs a deletion may not be able to remove an empty leaf.
78 * Deletions never allow internal nodes to become empty (that would blow
79 * up the boundaries).
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
97 * Iterate records after a search. The cursor is iterated forwards past
98 * the current record until a record matching the key-range requirements
99 * is found. ENOENT is returned if the iteration goes past the ending
100 * key.
102 * The iteration is inclusive of key_beg and can be inclusive or exclusive
103 * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105 * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106 * may be modified by B-Tree functions.
108 * cursor->key_beg may or may not be modified by this function during
109 * the iteration. XXX future - in case of an inverted lock we may have
110 * to reinitiate the lookup and set key_beg to properly pick up where we
111 * left off.
113 * NOTE! EDEADLK *CANNOT* be returned by this procedure.
116 hammer_btree_iterate(hammer_cursor_t cursor)
118 hammer_node_ondisk_t node;
119 hammer_btree_elm_t elm;
120 hammer_mount_t hmp;
121 int error = 0;
122 int r;
123 int s;
126 * Skip past the current record
128 hmp = cursor->trans->hmp;
129 node = cursor->node->ondisk;
130 if (node == NULL)
131 return(ENOENT);
132 if (cursor->index < node->count &&
133 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
134 ++cursor->index;
138 * HAMMER can wind up being cpu-bound.
140 if (++hmp->check_yield > hammer_yield_check) {
141 hmp->check_yield = 0;
142 lwkt_user_yield();
147 * Loop until an element is found or we are done.
149 for (;;) {
151 * We iterate up the tree and then index over one element
152 * while we are at the last element in the current node.
154 * If we are at the root of the filesystem, cursor_up
155 * returns ENOENT.
157 * XXX this could be optimized by storing the information in
158 * the parent reference.
160 * XXX we can lose the node lock temporarily, this could mess
161 * up our scan.
163 ++hammer_stats_btree_iterations;
164 hammer_flusher_clean_loose_ios(hmp);
166 if (cursor->index == node->count) {
167 if (hammer_debug_btree) {
168 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
169 (long long)cursor->node->node_offset,
170 cursor->index,
171 (long long)(cursor->parent ? cursor->parent->node_offset : -1),
172 cursor->parent_index,
173 curthread);
175 KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
176 error = hammer_cursor_up(cursor);
177 if (error)
178 break;
179 /* reload stale pointer */
180 node = cursor->node->ondisk;
181 KKASSERT(cursor->index != node->count);
184 * If we are reblocking we want to return internal
185 * nodes. Note that the internal node will be
186 * returned multiple times, on each upward recursion
187 * from its children. The caller selects which
188 * revisit it cares about (usually first or last only).
190 if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
191 cursor->flags |= HAMMER_CURSOR_ATEDISK;
192 return(0);
194 ++cursor->index;
195 continue;
199 * Check internal or leaf element. Determine if the record
200 * at the cursor has gone beyond the end of our range.
202 * We recurse down through internal nodes.
204 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
205 elm = &node->elms[cursor->index];
207 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
208 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
209 if (hammer_debug_btree) {
210 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
211 (long long)cursor->node->node_offset,
212 cursor->index,
213 (long long)elm[0].internal.base.obj_id,
214 elm[0].internal.base.rec_type,
215 (long long)elm[0].internal.base.key,
216 elm[0].internal.base.localization,
218 curthread
220 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
221 (long long)cursor->node->node_offset,
222 cursor->index + 1,
223 (long long)elm[1].internal.base.obj_id,
224 elm[1].internal.base.rec_type,
225 (long long)elm[1].internal.base.key,
226 elm[1].internal.base.localization,
231 if (r < 0) {
232 error = ENOENT;
233 break;
235 if (r == 0 && (cursor->flags &
236 HAMMER_CURSOR_END_INCLUSIVE) == 0) {
237 error = ENOENT;
238 break;
240 KKASSERT(s <= 0);
243 * Better not be zero
245 KKASSERT(elm->internal.subtree_offset != 0);
248 * If running the mirror filter see if we can skip
249 * one or more entire sub-trees. If we can we
250 * return the internal mode and the caller processes
251 * the skipped range (see mirror_read)
253 if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
254 if (elm->internal.mirror_tid <
255 cursor->cmirror->mirror_tid) {
256 hammer_cursor_mirror_filter(cursor);
257 return(0);
261 error = hammer_cursor_down(cursor);
262 if (error)
263 break;
264 KKASSERT(cursor->index == 0);
265 /* reload stale pointer */
266 node = cursor->node->ondisk;
267 continue;
268 } else {
269 elm = &node->elms[cursor->index];
270 r = hammer_btree_cmp(&cursor->key_end, &elm->base);
271 if (hammer_debug_btree) {
272 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
273 (long long)cursor->node->node_offset,
274 cursor->index,
275 (elm[0].leaf.base.btype ?
276 elm[0].leaf.base.btype : '?'),
277 (long long)elm[0].leaf.base.obj_id,
278 elm[0].leaf.base.rec_type,
279 (long long)elm[0].leaf.base.key,
280 elm[0].leaf.base.localization,
284 if (r < 0) {
285 error = ENOENT;
286 break;
290 * We support both end-inclusive and
291 * end-exclusive searches.
293 if (r == 0 &&
294 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
295 error = ENOENT;
296 break;
299 switch(elm->leaf.base.btype) {
300 case HAMMER_BTREE_TYPE_RECORD:
301 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
302 hammer_btree_chkts(cursor->asof, &elm->base)) {
303 ++cursor->index;
304 continue;
306 error = 0;
307 break;
308 default:
309 error = EINVAL;
310 break;
312 if (error)
313 break;
316 * node pointer invalid after loop
320 * Return entry
322 if (hammer_debug_btree) {
323 int i = cursor->index;
324 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
325 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
326 cursor->node, i,
327 (long long)elm->internal.base.obj_id,
328 elm->internal.base.rec_type,
329 (long long)elm->internal.base.key,
330 elm->internal.base.localization
333 return(0);
335 return(error);
339 * We hit an internal element that we could skip as part of a mirroring
340 * scan. Calculate the entire range being skipped.
342 * It is important to include any gaps between the parent's left_bound
343 * and the node's left_bound, and same goes for the right side.
345 static void
346 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
348 struct hammer_cmirror *cmirror;
349 hammer_node_ondisk_t ondisk;
350 hammer_btree_elm_t elm;
352 ondisk = cursor->node->ondisk;
353 cmirror = cursor->cmirror;
356 * Calculate the skipped range
358 elm = &ondisk->elms[cursor->index];
359 if (cursor->index == 0)
360 cmirror->skip_beg = *cursor->left_bound;
361 else
362 cmirror->skip_beg = elm->internal.base;
363 while (cursor->index < ondisk->count) {
364 if (elm->internal.mirror_tid >= cmirror->mirror_tid)
365 break;
366 ++cursor->index;
367 ++elm;
369 if (cursor->index == ondisk->count)
370 cmirror->skip_end = *cursor->right_bound;
371 else
372 cmirror->skip_end = elm->internal.base;
375 * clip the returned result.
377 if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
378 cmirror->skip_beg = cursor->key_beg;
379 if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
380 cmirror->skip_end = cursor->key_end;
384 * Iterate in the reverse direction. This is used by the pruning code to
385 * avoid overlapping records.
388 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
390 hammer_node_ondisk_t node;
391 hammer_btree_elm_t elm;
392 int error = 0;
393 int r;
394 int s;
396 /* mirror filtering not supported for reverse iteration */
397 KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
400 * Skip past the current record. For various reasons the cursor
401 * may end up set to -1 or set to point at the end of the current
402 * node. These cases must be addressed.
404 node = cursor->node->ondisk;
405 if (node == NULL)
406 return(ENOENT);
407 if (cursor->index != -1 &&
408 (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
409 --cursor->index;
411 if (cursor->index == cursor->node->ondisk->count)
412 --cursor->index;
415 * Loop until an element is found or we are done.
417 for (;;) {
418 ++hammer_stats_btree_iterations;
419 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
422 * We iterate up the tree and then index over one element
423 * while we are at the last element in the current node.
425 if (cursor->index == -1) {
426 error = hammer_cursor_up(cursor);
427 if (error) {
428 cursor->index = 0; /* sanity */
429 break;
431 /* reload stale pointer */
432 node = cursor->node->ondisk;
433 KKASSERT(cursor->index != node->count);
434 --cursor->index;
435 continue;
439 * Check internal or leaf element. Determine if the record
440 * at the cursor has gone beyond the end of our range.
442 * We recurse down through internal nodes.
444 KKASSERT(cursor->index != node->count);
445 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
446 elm = &node->elms[cursor->index];
447 r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
448 s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
449 if (hammer_debug_btree) {
450 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
451 (long long)cursor->node->node_offset,
452 cursor->index,
453 (long long)elm[0].internal.base.obj_id,
454 elm[0].internal.base.rec_type,
455 (long long)elm[0].internal.base.key,
456 elm[0].internal.base.localization,
459 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
460 (long long)cursor->node->node_offset,
461 cursor->index + 1,
462 (long long)elm[1].internal.base.obj_id,
463 elm[1].internal.base.rec_type,
464 (long long)elm[1].internal.base.key,
465 elm[1].internal.base.localization,
470 if (s >= 0) {
471 error = ENOENT;
472 break;
474 KKASSERT(r >= 0);
477 * Better not be zero
479 KKASSERT(elm->internal.subtree_offset != 0);
481 error = hammer_cursor_down(cursor);
482 if (error)
483 break;
484 KKASSERT(cursor->index == 0);
485 /* reload stale pointer */
486 node = cursor->node->ondisk;
488 /* this can assign -1 if the leaf was empty */
489 cursor->index = node->count - 1;
490 continue;
491 } else {
492 elm = &node->elms[cursor->index];
493 s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
494 if (hammer_debug_btree) {
495 kprintf("ELEMENT %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
496 (long long)cursor->node->node_offset,
497 cursor->index,
498 (elm[0].leaf.base.btype ?
499 elm[0].leaf.base.btype : '?'),
500 (long long)elm[0].leaf.base.obj_id,
501 elm[0].leaf.base.rec_type,
502 (long long)elm[0].leaf.base.key,
503 elm[0].leaf.base.localization,
507 if (s > 0) {
508 error = ENOENT;
509 break;
512 switch(elm->leaf.base.btype) {
513 case HAMMER_BTREE_TYPE_RECORD:
514 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
515 hammer_btree_chkts(cursor->asof, &elm->base)) {
516 --cursor->index;
517 continue;
519 error = 0;
520 break;
521 default:
522 error = EINVAL;
523 break;
525 if (error)
526 break;
529 * node pointer invalid after loop
533 * Return entry
535 if (hammer_debug_btree) {
536 int i = cursor->index;
537 hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
538 kprintf("ITERATE %p:%d %016llx %02x %016llx lo=%02x\n",
539 cursor->node, i,
540 (long long)elm->internal.base.obj_id,
541 elm->internal.base.rec_type,
542 (long long)elm->internal.base.key,
543 elm->internal.base.localization
546 return(0);
548 return(error);
552 * Lookup cursor->key_beg. 0 is returned on success, ENOENT if the entry
553 * could not be found, EDEADLK if inserting and a retry is needed, and a
554 * fatal error otherwise. When retrying, the caller must terminate the
555 * cursor and reinitialize it. EDEADLK cannot be returned if not inserting.
557 * The cursor is suitably positioned for a deletion on success, and suitably
558 * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
559 * specified.
561 * The cursor may begin anywhere, the search will traverse the tree in
562 * either direction to locate the requested element.
564 * Most of the logic implementing historical searches is handled here. We
565 * do an initial lookup with create_tid set to the asof TID. Due to the
566 * way records are laid out, a backwards iteration may be required if
567 * ENOENT is returned to locate the historical record. Here's the
568 * problem:
570 * create_tid: 10 15 20
571 * LEAF1 LEAF2
572 * records: (11) (18)
574 * Lets say we want to do a lookup AS-OF timestamp 17. We will traverse
575 * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
576 * not visible and thus causes ENOENT to be returned. We really need
577 * to check record 11 in LEAF1. If it also fails then the search fails
578 * (e.g. it might represent the range 11-16 and thus still not match our
579 * AS-OF timestamp of 17). Note that LEAF1 could be empty, requiring
580 * further iterations.
582 * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
583 * and the cursor->create_check TID if an iteration might be needed.
584 * In the above example create_check would be set to 14.
587 hammer_btree_lookup(hammer_cursor_t cursor)
589 int error;
591 KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
592 cursor->trans->sync_lock_refs > 0);
593 ++hammer_stats_btree_lookups;
594 if (cursor->flags & HAMMER_CURSOR_ASOF) {
595 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
596 cursor->key_beg.create_tid = cursor->asof;
597 for (;;) {
598 cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
599 error = btree_search(cursor, 0);
600 if (error != ENOENT ||
601 (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
603 * Stop if no error.
604 * Stop if error other then ENOENT.
605 * Stop if ENOENT and not special case.
607 break;
609 if (hammer_debug_btree) {
610 kprintf("CREATE_CHECK %016llx\n",
611 (long long)cursor->create_check);
613 cursor->key_beg.create_tid = cursor->create_check;
614 /* loop */
616 } else {
617 error = btree_search(cursor, 0);
619 if (error == 0)
620 error = hammer_btree_extract(cursor, cursor->flags);
621 return(error);
625 * Execute the logic required to start an iteration. The first record
626 * located within the specified range is returned and iteration control
627 * flags are adjusted for successive hammer_btree_iterate() calls.
629 * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
630 * in a loop without worrying about it. Higher-level merged searches will
631 * adjust the flag appropriately.
634 hammer_btree_first(hammer_cursor_t cursor)
636 int error;
638 error = hammer_btree_lookup(cursor);
639 if (error == ENOENT) {
640 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
641 error = hammer_btree_iterate(cursor);
643 cursor->flags |= HAMMER_CURSOR_ATEDISK;
644 return(error);
648 * Similarly but for an iteration in the reverse direction.
650 * Set ATEDISK when iterating backwards to skip the current entry,
651 * which after an ENOENT lookup will be pointing beyond our end point.
653 * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
654 * in a loop without worrying about it. Higher-level merged searches will
655 * adjust the flag appropriately.
658 hammer_btree_last(hammer_cursor_t cursor)
660 struct hammer_base_elm save;
661 int error;
663 save = cursor->key_beg;
664 cursor->key_beg = cursor->key_end;
665 error = hammer_btree_lookup(cursor);
666 cursor->key_beg = save;
667 if (error == ENOENT ||
668 (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
669 cursor->flags |= HAMMER_CURSOR_ATEDISK;
670 error = hammer_btree_iterate_reverse(cursor);
672 cursor->flags |= HAMMER_CURSOR_ATEDISK;
673 return(error);
677 * Extract the record and/or data associated with the cursor's current
678 * position. Any prior record or data stored in the cursor is replaced.
679 * The cursor must be positioned at a leaf node.
681 * NOTE: All extractions occur at the leaf of the B-Tree.
684 hammer_btree_extract(hammer_cursor_t cursor, int flags)
686 hammer_node_ondisk_t node;
687 hammer_btree_elm_t elm;
688 hammer_off_t data_off;
689 hammer_mount_t hmp;
690 int32_t data_len;
691 int error;
694 * The case where the data reference resolves to the same buffer
695 * as the record reference must be handled.
697 node = cursor->node->ondisk;
698 elm = &node->elms[cursor->index];
699 cursor->data = NULL;
700 hmp = cursor->node->hmp;
703 * There is nothing to extract for an internal element.
705 if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
706 return(EINVAL);
709 * Only record types have data.
711 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
712 cursor->leaf = &elm->leaf;
714 if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
715 return(0);
716 if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
717 return(0);
718 data_off = elm->leaf.data_offset;
719 data_len = elm->leaf.data_len;
720 if (data_off == 0)
721 return(0);
724 * Load the data
726 KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
727 cursor->data = hammer_bread_ext(hmp, data_off, data_len,
728 &error, &cursor->data_buffer);
731 * Mark the data buffer as not being meta-data if it isn't
732 * meta-data (sometimes bulk data is accessed via a volume
733 * block device).
735 if (error == 0) {
736 switch(elm->leaf.base.rec_type) {
737 case HAMMER_RECTYPE_DATA:
738 case HAMMER_RECTYPE_DB:
739 hammer_io_notmeta(cursor->data_buffer);
740 break;
741 default:
742 break;
747 * Deal with CRC errors on the extracted data.
749 if (error == 0 &&
750 hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
751 kprintf("CRC DATA @ %016llx/%d FAILED\n",
752 (long long)elm->leaf.data_offset, elm->leaf.data_len);
753 if (hammer_debug_critical)
754 Debugger("CRC FAILED: DATA");
755 if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
756 error = EDOM; /* less critical (mirroring) */
757 else
758 error = EIO; /* critical */
760 return(error);
765 * Insert a leaf element into the B-Tree at the current cursor position.
766 * The cursor is positioned such that the element at and beyond the cursor
767 * are shifted to make room for the new record.
769 * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
770 * flag set and that call must return ENOENT before this function can be
771 * called.
773 * The caller may depend on the cursor's exclusive lock after return to
774 * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
776 * ENOSPC is returned if there is no room to insert a new record.
779 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
780 int *doprop)
782 hammer_node_ondisk_t node;
783 int i;
784 int error;
786 *doprop = 0;
787 if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
788 return(error);
789 ++hammer_stats_btree_inserts;
792 * Insert the element at the leaf node and update the count in the
793 * parent. It is possible for parent to be NULL, indicating that
794 * the filesystem's ROOT B-Tree node is a leaf itself, which is
795 * possible. The root inode can never be deleted so the leaf should
796 * never be empty.
798 * Remember that the right-hand boundary is not included in the
799 * count.
801 hammer_modify_node_all(cursor->trans, cursor->node);
802 node = cursor->node->ondisk;
803 i = cursor->index;
804 KKASSERT(elm->base.btype != 0);
805 KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
806 KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
807 if (i != node->count) {
808 bcopy(&node->elms[i], &node->elms[i+1],
809 (node->count - i) * sizeof(*elm));
811 node->elms[i].leaf = *elm;
812 ++node->count;
813 hammer_cursor_inserted_element(cursor->node, i);
816 * Update the leaf node's aggregate mirror_tid for mirroring
817 * support.
819 if (node->mirror_tid < elm->base.delete_tid) {
820 node->mirror_tid = elm->base.delete_tid;
821 *doprop = 1;
823 if (node->mirror_tid < elm->base.create_tid) {
824 node->mirror_tid = elm->base.create_tid;
825 *doprop = 1;
827 hammer_modify_node_done(cursor->node);
830 * Debugging sanity checks.
832 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
833 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
834 if (i) {
835 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
837 if (i != node->count - 1)
838 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
840 return(0);
844 * Delete a record from the B-Tree at the current cursor position.
845 * The cursor is positioned such that the current element is the one
846 * to be deleted.
848 * On return the cursor will be positioned after the deleted element and
849 * MAY point to an internal node. It will be suitable for the continuation
850 * of an iteration but not for an insertion or deletion.
852 * Deletions will attempt to partially rebalance the B-Tree in an upward
853 * direction, but will terminate rather then deadlock. Empty internal nodes
854 * are never allowed by a deletion which deadlocks may end up giving us an
855 * empty leaf. The pruner will clean up and rebalance the tree.
857 * This function can return EDEADLK, requiring the caller to retry the
858 * operation after clearing the deadlock.
861 hammer_btree_delete(hammer_cursor_t cursor)
863 hammer_node_ondisk_t ondisk;
864 hammer_node_t node;
865 hammer_node_t parent;
866 int error;
867 int i;
869 KKASSERT (cursor->trans->sync_lock_refs > 0);
870 if ((error = hammer_cursor_upgrade(cursor)) != 0)
871 return(error);
872 ++hammer_stats_btree_deletes;
875 * Delete the element from the leaf node.
877 * Remember that leaf nodes do not have boundaries.
879 node = cursor->node;
880 ondisk = node->ondisk;
881 i = cursor->index;
883 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
884 KKASSERT(i >= 0 && i < ondisk->count);
885 hammer_modify_node_all(cursor->trans, node);
886 if (i + 1 != ondisk->count) {
887 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
888 (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
890 --ondisk->count;
891 hammer_modify_node_done(node);
892 hammer_cursor_deleted_element(node, i);
895 * Validate local parent
897 if (ondisk->parent) {
898 parent = cursor->parent;
900 KKASSERT(parent != NULL);
901 KKASSERT(parent->node_offset == ondisk->parent);
905 * If the leaf becomes empty it must be detached from the parent,
906 * potentially recursing through to the filesystem root.
908 * This may reposition the cursor at one of the parent's of the
909 * current node.
911 * Ignore deadlock errors, that simply means that btree_remove
912 * was unable to recurse and had to leave us with an empty leaf.
914 KKASSERT(cursor->index <= ondisk->count);
915 if (ondisk->count == 0) {
916 error = btree_remove(cursor);
917 if (error == EDEADLK)
918 error = 0;
919 } else {
920 error = 0;
922 KKASSERT(cursor->parent == NULL ||
923 cursor->parent_index < cursor->parent->ondisk->count);
924 return(error);
928 * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
930 * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
932 * The search can begin ANYWHERE in the B-Tree. As a first step the search
933 * iterates up the tree as necessary to properly position itself prior to
934 * actually doing the sarch.
936 * INSERTIONS: The search will split full nodes and leaves on its way down
937 * and guarentee that the leaf it ends up on is not full. If we run out
938 * of space the search continues to the leaf (to position the cursor for
939 * the spike), but ENOSPC is returned.
941 * The search is only guarenteed to end up on a leaf if an error code of 0
942 * is returned, or if inserting and an error code of ENOENT is returned.
943 * Otherwise it can stop at an internal node. On success a search returns
944 * a leaf node.
946 * COMPLEXITY WARNING! This is the core B-Tree search code for the entire
947 * filesystem, and it is not simple code. Please note the following facts:
949 * - Internal node recursions have a boundary on the left AND right. The
950 * right boundary is non-inclusive. The create_tid is a generic part
951 * of the key for internal nodes.
953 * - Leaf nodes contain terminal elements only now.
955 * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
956 * historical search. ASOF and INSERT are mutually exclusive. When
957 * doing an as-of lookup btree_search() checks for a right-edge boundary
958 * case. If while recursing down the left-edge differs from the key
959 * by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
960 * with cursor->create_check. This is used by btree_lookup() to iterate.
961 * The iteration backwards because as-of searches can wind up going
962 * down the wrong branch of the B-Tree.
964 static
966 btree_search(hammer_cursor_t cursor, int flags)
968 hammer_node_ondisk_t node;
969 hammer_btree_elm_t elm;
970 int error;
971 int enospc = 0;
972 int i;
973 int r;
974 int s;
976 flags |= cursor->flags;
977 ++hammer_stats_btree_searches;
979 if (hammer_debug_btree) {
980 kprintf("SEARCH %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
981 (long long)cursor->node->node_offset,
982 cursor->index,
983 (long long)cursor->key_beg.obj_id,
984 cursor->key_beg.rec_type,
985 (long long)cursor->key_beg.key,
986 (long long)cursor->key_beg.create_tid,
987 cursor->key_beg.localization,
988 curthread
990 if (cursor->parent)
991 kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
992 (long long)cursor->parent->node_offset,
993 cursor->parent_index,
994 (long long)cursor->left_bound->obj_id,
995 (long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
996 (long long)cursor->right_bound->obj_id,
997 (long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
998 cursor->left_bound,
999 &cursor->parent->ondisk->elms[cursor->parent_index],
1000 cursor->right_bound,
1001 &cursor->parent->ondisk->elms[cursor->parent_index+1]
1006 * Move our cursor up the tree until we find a node whos range covers
1007 * the key we are trying to locate.
1009 * The left bound is inclusive, the right bound is non-inclusive.
1010 * It is ok to cursor up too far.
1012 for (;;) {
1013 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1014 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1015 if (r >= 0 && s < 0)
1016 break;
1017 KKASSERT(cursor->parent);
1018 ++hammer_stats_btree_iterations;
1019 error = hammer_cursor_up(cursor);
1020 if (error)
1021 goto done;
1025 * The delete-checks below are based on node, not parent. Set the
1026 * initial delete-check based on the parent.
1028 if (r == 1) {
1029 KKASSERT(cursor->left_bound->create_tid != 1);
1030 cursor->create_check = cursor->left_bound->create_tid - 1;
1031 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1035 * We better have ended up with a node somewhere.
1037 KKASSERT(cursor->node != NULL);
1040 * If we are inserting we can't start at a full node if the parent
1041 * is also full (because there is no way to split the node),
1042 * continue running up the tree until the requirement is satisfied
1043 * or we hit the root of the filesystem.
1045 * (If inserting we aren't doing an as-of search so we don't have
1046 * to worry about create_check).
1048 while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1049 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1050 if (btree_node_is_full(cursor->node->ondisk) == 0)
1051 break;
1052 } else {
1053 if (btree_node_is_full(cursor->node->ondisk) ==0)
1054 break;
1056 if (cursor->node->ondisk->parent == 0 ||
1057 cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1058 break;
1060 ++hammer_stats_btree_iterations;
1061 error = hammer_cursor_up(cursor);
1062 /* node may have become stale */
1063 if (error)
1064 goto done;
1068 * Push down through internal nodes to locate the requested key.
1070 node = cursor->node->ondisk;
1071 while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1073 * Scan the node to find the subtree index to push down into.
1074 * We go one-past, then back-up.
1076 * We must proactively remove deleted elements which may
1077 * have been left over from a deadlocked btree_remove().
1079 * The left and right boundaries are included in the loop
1080 * in order to detect edge cases.
1082 * If the separator only differs by create_tid (r == 1)
1083 * and we are doing an as-of search, we may end up going
1084 * down a branch to the left of the one containing the
1085 * desired key. This requires numerous special cases.
1087 ++hammer_stats_btree_iterations;
1088 if (hammer_debug_btree) {
1089 kprintf("SEARCH-I %016llx count=%d\n",
1090 (long long)cursor->node->node_offset,
1091 node->count);
1095 * Try to shortcut the search before dropping into the
1096 * linear loop. Locate the first node where r <= 1.
1098 i = hammer_btree_search_node(&cursor->key_beg, node);
1099 while (i <= node->count) {
1100 ++hammer_stats_btree_elements;
1101 elm = &node->elms[i];
1102 r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1103 if (hammer_debug_btree > 2) {
1104 kprintf(" IELM %p %d r=%d\n",
1105 &node->elms[i], i, r);
1107 if (r < 0)
1108 break;
1109 if (r == 1) {
1110 KKASSERT(elm->base.create_tid != 1);
1111 cursor->create_check = elm->base.create_tid - 1;
1112 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1114 ++i;
1116 if (hammer_debug_btree) {
1117 kprintf("SEARCH-I preI=%d/%d r=%d\n",
1118 i, node->count, r);
1122 * These cases occur when the parent's idea of the boundary
1123 * is wider then the child's idea of the boundary, and
1124 * require special handling. If not inserting we can
1125 * terminate the search early for these cases but the
1126 * child's boundaries cannot be unconditionally modified.
1128 if (i == 0) {
1130 * If i == 0 the search terminated to the LEFT of the
1131 * left_boundary but to the RIGHT of the parent's left
1132 * boundary.
1134 u_int8_t save;
1136 elm = &node->elms[0];
1139 * If we aren't inserting we can stop here.
1141 if ((flags & (HAMMER_CURSOR_INSERT |
1142 HAMMER_CURSOR_PRUNING)) == 0) {
1143 cursor->index = 0;
1144 return(ENOENT);
1148 * Correct a left-hand boundary mismatch.
1150 * We can only do this if we can upgrade the lock,
1151 * and synchronized as a background cursor (i.e.
1152 * inserting or pruning).
1154 * WARNING: We can only do this if inserting, i.e.
1155 * we are running on the backend.
1157 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1158 return(error);
1159 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1160 hammer_modify_node_field(cursor->trans, cursor->node,
1161 elms[0]);
1162 save = node->elms[0].base.btype;
1163 node->elms[0].base = *cursor->left_bound;
1164 node->elms[0].base.btype = save;
1165 hammer_modify_node_done(cursor->node);
1166 } else if (i == node->count + 1) {
1168 * If i == node->count + 1 the search terminated to
1169 * the RIGHT of the right boundary but to the LEFT
1170 * of the parent's right boundary. If we aren't
1171 * inserting we can stop here.
1173 * Note that the last element in this case is
1174 * elms[i-2] prior to adjustments to 'i'.
1176 --i;
1177 if ((flags & (HAMMER_CURSOR_INSERT |
1178 HAMMER_CURSOR_PRUNING)) == 0) {
1179 cursor->index = i;
1180 return (ENOENT);
1184 * Correct a right-hand boundary mismatch.
1185 * (actual push-down record is i-2 prior to
1186 * adjustments to i).
1188 * We can only do this if we can upgrade the lock,
1189 * and synchronized as a background cursor (i.e.
1190 * inserting or pruning).
1192 * WARNING: We can only do this if inserting, i.e.
1193 * we are running on the backend.
1195 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1196 return(error);
1197 elm = &node->elms[i];
1198 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1199 hammer_modify_node(cursor->trans, cursor->node,
1200 &elm->base, sizeof(elm->base));
1201 elm->base = *cursor->right_bound;
1202 hammer_modify_node_done(cursor->node);
1203 --i;
1204 } else {
1206 * The push-down index is now i - 1. If we had
1207 * terminated on the right boundary this will point
1208 * us at the last element.
1210 --i;
1212 cursor->index = i;
1213 elm = &node->elms[i];
1215 if (hammer_debug_btree) {
1216 kprintf("RESULT-I %016llx[%d] %016llx %02x "
1217 "key=%016llx cre=%016llx lo=%02x\n",
1218 (long long)cursor->node->node_offset,
1220 (long long)elm->internal.base.obj_id,
1221 elm->internal.base.rec_type,
1222 (long long)elm->internal.base.key,
1223 (long long)elm->internal.base.create_tid,
1224 elm->internal.base.localization
1229 * We better have a valid subtree offset.
1231 KKASSERT(elm->internal.subtree_offset != 0);
1234 * Handle insertion and deletion requirements.
1236 * If inserting split full nodes. The split code will
1237 * adjust cursor->node and cursor->index if the current
1238 * index winds up in the new node.
1240 * If inserting and a left or right edge case was detected,
1241 * we cannot correct the left or right boundary and must
1242 * prepend and append an empty leaf node in order to make
1243 * the boundary correction.
1245 * If we run out of space we set enospc and continue on
1246 * to a leaf to provide the spike code with a good point
1247 * of entry.
1249 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1250 if (btree_node_is_full(node)) {
1251 error = btree_split_internal(cursor);
1252 if (error) {
1253 if (error != ENOSPC)
1254 goto done;
1255 enospc = 1;
1258 * reload stale pointers
1260 i = cursor->index;
1261 node = cursor->node->ondisk;
1266 * Push down (push into new node, existing node becomes
1267 * the parent) and continue the search.
1269 error = hammer_cursor_down(cursor);
1270 /* node may have become stale */
1271 if (error)
1272 goto done;
1273 node = cursor->node->ondisk;
1277 * We are at a leaf, do a linear search of the key array.
1279 * On success the index is set to the matching element and 0
1280 * is returned.
1282 * On failure the index is set to the insertion point and ENOENT
1283 * is returned.
1285 * Boundaries are not stored in leaf nodes, so the index can wind
1286 * up to the left of element 0 (index == 0) or past the end of
1287 * the array (index == node->count). It is also possible that the
1288 * leaf might be empty.
1290 ++hammer_stats_btree_iterations;
1291 KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1292 KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1293 if (hammer_debug_btree) {
1294 kprintf("SEARCH-L %016llx count=%d\n",
1295 (long long)cursor->node->node_offset,
1296 node->count);
1300 * Try to shortcut the search before dropping into the
1301 * linear loop. Locate the first node where r <= 1.
1303 i = hammer_btree_search_node(&cursor->key_beg, node);
1304 while (i < node->count) {
1305 ++hammer_stats_btree_elements;
1306 elm = &node->elms[i];
1308 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1310 if (hammer_debug_btree > 1)
1311 kprintf(" ELM %p %d r=%d\n", &node->elms[i], i, r);
1314 * We are at a record element. Stop if we've flipped past
1315 * key_beg, not counting the create_tid test. Allow the
1316 * r == 1 case (key_beg > element but differs only by its
1317 * create_tid) to fall through to the AS-OF check.
1319 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1321 if (r < 0)
1322 goto failed;
1323 if (r > 1) {
1324 ++i;
1325 continue;
1329 * Check our as-of timestamp against the element.
1331 if (flags & HAMMER_CURSOR_ASOF) {
1332 if (hammer_btree_chkts(cursor->asof,
1333 &node->elms[i].base) != 0) {
1334 ++i;
1335 continue;
1337 /* success */
1338 } else {
1339 if (r > 0) { /* can only be +1 */
1340 ++i;
1341 continue;
1343 /* success */
1345 cursor->index = i;
1346 error = 0;
1347 if (hammer_debug_btree) {
1348 kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1349 (long long)cursor->node->node_offset, i);
1351 goto done;
1355 * The search of the leaf node failed. i is the insertion point.
1357 failed:
1358 if (hammer_debug_btree) {
1359 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1360 (long long)cursor->node->node_offset, i);
1364 * No exact match was found, i is now at the insertion point.
1366 * If inserting split a full leaf before returning. This
1367 * may have the side effect of adjusting cursor->node and
1368 * cursor->index.
1370 cursor->index = i;
1371 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1372 btree_node_is_full(node)) {
1373 error = btree_split_leaf(cursor);
1374 if (error) {
1375 if (error != ENOSPC)
1376 goto done;
1377 enospc = 1;
1380 * reload stale pointers
1382 /* NOT USED
1383 i = cursor->index;
1384 node = &cursor->node->internal;
1389 * We reached a leaf but did not find the key we were looking for.
1390 * If this is an insert we will be properly positioned for an insert
1391 * (ENOENT) or spike (ENOSPC) operation.
1393 error = enospc ? ENOSPC : ENOENT;
1394 done:
1395 return(error);
1399 * Heuristical search for the first element whos comparison is <= 1. May
1400 * return an index whos compare result is > 1 but may only return an index
1401 * whos compare result is <= 1 if it is the first element with that result.
1404 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1406 int b;
1407 int s;
1408 int i;
1409 int r;
1412 * Don't bother if the node does not have very many elements
1414 b = 0;
1415 s = node->count;
1416 while (s - b > 4) {
1417 i = b + (s - b) / 2;
1418 ++hammer_stats_btree_elements;
1419 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1420 if (r <= 1) {
1421 s = i;
1422 } else {
1423 b = i;
1426 return(b);
1430 /************************************************************************
1431 * SPLITTING AND MERGING *
1432 ************************************************************************
1434 * These routines do all the dirty work required to split and merge nodes.
1438 * Split an internal node into two nodes and move the separator at the split
1439 * point to the parent.
1441 * (cursor->node, cursor->index) indicates the element the caller intends
1442 * to push into. We will adjust node and index if that element winds
1443 * up in the split node.
1445 * If we are at the root of the filesystem a new root must be created with
1446 * two elements, one pointing to the original root and one pointing to the
1447 * newly allocated split node.
1449 static
1451 btree_split_internal(hammer_cursor_t cursor)
1453 hammer_node_ondisk_t ondisk;
1454 hammer_node_t node;
1455 hammer_node_t parent;
1456 hammer_node_t new_node;
1457 hammer_btree_elm_t elm;
1458 hammer_btree_elm_t parent_elm;
1459 struct hammer_node_lock lockroot;
1460 hammer_mount_t hmp = cursor->trans->hmp;
1461 hammer_off_t hint;
1462 int parent_index;
1463 int made_root;
1464 int split;
1465 int error;
1466 int i;
1467 const int esize = sizeof(*elm);
1469 hammer_node_lock_init(&lockroot, cursor->node);
1470 error = hammer_btree_lock_children(cursor, 1, &lockroot);
1471 if (error)
1472 goto done;
1473 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1474 goto done;
1475 ++hammer_stats_btree_splits;
1478 * Calculate the split point. If the insertion point is at the
1479 * end of the leaf we adjust the split point significantly to the
1480 * right to try to optimize node fill and flag it. If we hit
1481 * that same leaf again our heuristic failed and we don't try
1482 * to optimize node fill (it could lead to a degenerate case).
1484 node = cursor->node;
1485 ondisk = node->ondisk;
1486 KKASSERT(ondisk->count > 4);
1487 if (cursor->index == ondisk->count &&
1488 (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1489 split = (ondisk->count + 1) * 3 / 4;
1490 node->flags |= HAMMER_NODE_NONLINEAR;
1491 } else {
1493 * We are splitting but elms[split] will be promoted to
1494 * the parent, leaving the right hand node with one less
1495 * element. If the insertion point will be on the
1496 * left-hand side adjust the split point to give the
1497 * right hand side one additional node.
1499 split = (ondisk->count + 1) / 2;
1500 if (cursor->index <= split)
1501 --split;
1505 * If we are at the root of the filesystem, create a new root node
1506 * with 1 element and split normally. Avoid making major
1507 * modifications until we know the whole operation will work.
1509 if (ondisk->parent == 0) {
1510 parent = hammer_alloc_btree(cursor->trans, node->node_offset,
1511 &error);
1512 if (parent == NULL)
1513 goto done;
1514 hammer_lock_ex(&parent->lock);
1515 hammer_modify_node_noundo(cursor->trans, parent);
1516 ondisk = parent->ondisk;
1517 ondisk->count = 1;
1518 ondisk->parent = 0;
1519 ondisk->mirror_tid = node->ondisk->mirror_tid;
1520 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1521 ondisk->elms[0].base = hmp->root_btree_beg;
1522 ondisk->elms[0].base.btype = node->ondisk->type;
1523 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1524 ondisk->elms[1].base = hmp->root_btree_end;
1525 hammer_modify_node_done(parent);
1526 /* ondisk->elms[1].base.btype - not used */
1527 made_root = 1;
1528 parent_index = 0; /* index of current node in parent */
1529 } else {
1530 made_root = 0;
1531 parent = cursor->parent;
1532 parent_index = cursor->parent_index;
1536 * Calculate a hint for the allocation of the new B-Tree node.
1537 * The most likely expansion is coming from the insertion point
1538 * at cursor->index, so try to localize the allocation of our
1539 * new node to accomodate that sub-tree.
1541 * Use the right-most sub-tree when expandinging on the right edge.
1542 * This is a very common case when copying a directory tree.
1544 if (cursor->index == ondisk->count)
1545 hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1546 else
1547 hint = ondisk->elms[cursor->index].internal.subtree_offset;
1550 * Split node into new_node at the split point.
1552 * B O O O P N N B <-- P = node->elms[split] (index 4)
1553 * 0 1 2 3 4 5 6 <-- subtree indices
1555 * x x P x x
1556 * s S S s
1557 * / \
1558 * B O O O B B N N B <--- inner boundary points are 'P'
1559 * 0 1 2 3 4 5 6
1561 new_node = hammer_alloc_btree(cursor->trans, hint, &error);
1562 if (new_node == NULL) {
1563 if (made_root) {
1564 hammer_unlock(&parent->lock);
1565 hammer_delete_node(cursor->trans, parent);
1566 hammer_rel_node(parent);
1568 goto done;
1570 hammer_lock_ex(&new_node->lock);
1573 * Create the new node. P becomes the left-hand boundary in the
1574 * new node. Copy the right-hand boundary as well.
1576 * elm is the new separator.
1578 hammer_modify_node_noundo(cursor->trans, new_node);
1579 hammer_modify_node_all(cursor->trans, node);
1580 ondisk = node->ondisk;
1581 elm = &ondisk->elms[split];
1582 bcopy(elm, &new_node->ondisk->elms[0],
1583 (ondisk->count - split + 1) * esize);
1584 new_node->ondisk->count = ondisk->count - split;
1585 new_node->ondisk->parent = parent->node_offset;
1586 new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1587 new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1588 KKASSERT(ondisk->type == new_node->ondisk->type);
1589 hammer_cursor_split_node(node, new_node, split);
1592 * Cleanup the original node. Elm (P) becomes the new boundary,
1593 * its subtree_offset was moved to the new node. If we had created
1594 * a new root its parent pointer may have changed.
1596 elm->internal.subtree_offset = 0;
1597 ondisk->count = split;
1600 * Insert the separator into the parent, fixup the parent's
1601 * reference to the original node, and reference the new node.
1602 * The separator is P.
1604 * Remember that base.count does not include the right-hand boundary.
1606 hammer_modify_node_all(cursor->trans, parent);
1607 ondisk = parent->ondisk;
1608 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1609 parent_elm = &ondisk->elms[parent_index+1];
1610 bcopy(parent_elm, parent_elm + 1,
1611 (ondisk->count - parent_index) * esize);
1612 parent_elm->internal.base = elm->base; /* separator P */
1613 parent_elm->internal.base.btype = new_node->ondisk->type;
1614 parent_elm->internal.subtree_offset = new_node->node_offset;
1615 parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1616 ++ondisk->count;
1617 hammer_modify_node_done(parent);
1618 hammer_cursor_inserted_element(parent, parent_index + 1);
1621 * The children of new_node need their parent pointer set to new_node.
1622 * The children have already been locked by
1623 * hammer_btree_lock_children().
1625 for (i = 0; i < new_node->ondisk->count; ++i) {
1626 elm = &new_node->ondisk->elms[i];
1627 error = btree_set_parent(cursor->trans, new_node, elm);
1628 if (error) {
1629 panic("btree_split_internal: btree-fixup problem");
1632 hammer_modify_node_done(new_node);
1635 * The filesystem's root B-Tree pointer may have to be updated.
1637 if (made_root) {
1638 hammer_volume_t volume;
1640 volume = hammer_get_root_volume(hmp, &error);
1641 KKASSERT(error == 0);
1643 hammer_modify_volume_field(cursor->trans, volume,
1644 vol0_btree_root);
1645 volume->ondisk->vol0_btree_root = parent->node_offset;
1646 hammer_modify_volume_done(volume);
1647 node->ondisk->parent = parent->node_offset;
1648 if (cursor->parent) {
1649 hammer_unlock(&cursor->parent->lock);
1650 hammer_rel_node(cursor->parent);
1652 cursor->parent = parent; /* lock'd and ref'd */
1653 hammer_rel_volume(volume, 0);
1655 hammer_modify_node_done(node);
1658 * Ok, now adjust the cursor depending on which element the original
1659 * index was pointing at. If we are >= the split point the push node
1660 * is now in the new node.
1662 * NOTE: If we are at the split point itself we cannot stay with the
1663 * original node because the push index will point at the right-hand
1664 * boundary, which is illegal.
1666 * NOTE: The cursor's parent or parent_index must be adjusted for
1667 * the case where a new parent (new root) was created, and the case
1668 * where the cursor is now pointing at the split node.
1670 if (cursor->index >= split) {
1671 cursor->parent_index = parent_index + 1;
1672 cursor->index -= split;
1673 hammer_unlock(&cursor->node->lock);
1674 hammer_rel_node(cursor->node);
1675 cursor->node = new_node; /* locked and ref'd */
1676 } else {
1677 cursor->parent_index = parent_index;
1678 hammer_unlock(&new_node->lock);
1679 hammer_rel_node(new_node);
1683 * Fixup left and right bounds
1685 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1686 cursor->left_bound = &parent_elm[0].internal.base;
1687 cursor->right_bound = &parent_elm[1].internal.base;
1688 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1689 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1690 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1691 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1693 done:
1694 hammer_btree_unlock_children(cursor, &lockroot);
1695 hammer_cursor_downgrade(cursor);
1696 return (error);
1700 * Same as the above, but splits a full leaf node.
1702 * This function
1704 static
1706 btree_split_leaf(hammer_cursor_t cursor)
1708 hammer_node_ondisk_t ondisk;
1709 hammer_node_t parent;
1710 hammer_node_t leaf;
1711 hammer_mount_t hmp;
1712 hammer_node_t new_leaf;
1713 hammer_btree_elm_t elm;
1714 hammer_btree_elm_t parent_elm;
1715 hammer_base_elm_t mid_boundary;
1716 hammer_off_t hint;
1717 int parent_index;
1718 int made_root;
1719 int split;
1720 int error;
1721 const size_t esize = sizeof(*elm);
1723 if ((error = hammer_cursor_upgrade(cursor)) != 0)
1724 return(error);
1725 ++hammer_stats_btree_splits;
1727 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1728 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1729 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1730 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1733 * Calculate the split point. If the insertion point is at the
1734 * end of the leaf we adjust the split point significantly to the
1735 * right to try to optimize node fill and flag it. If we hit
1736 * that same leaf again our heuristic failed and we don't try
1737 * to optimize node fill (it could lead to a degenerate case).
1739 * Spikes are made up of two leaf elements which cannot be
1740 * safely split.
1742 leaf = cursor->node;
1743 ondisk = leaf->ondisk;
1744 KKASSERT(ondisk->count > 4);
1745 if (cursor->index == ondisk->count &&
1746 (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1747 split = (ondisk->count + 1) * 3 / 4;
1748 leaf->flags |= HAMMER_NODE_NONLINEAR;
1749 } else {
1750 split = (ondisk->count + 1) / 2;
1753 #if 0
1755 * If the insertion point is at the split point shift the
1756 * split point left so we don't have to worry about
1758 if (cursor->index == split)
1759 --split;
1760 #endif
1761 KKASSERT(split > 0 && split < ondisk->count);
1763 error = 0;
1764 hmp = leaf->hmp;
1766 elm = &ondisk->elms[split];
1768 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1769 KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1770 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1771 KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1774 * If we are at the root of the tree, create a new root node with
1775 * 1 element and split normally. Avoid making major modifications
1776 * until we know the whole operation will work.
1778 if (ondisk->parent == 0) {
1779 parent = hammer_alloc_btree(cursor->trans, leaf->node_offset,
1780 &error);
1781 if (parent == NULL)
1782 goto done;
1783 hammer_lock_ex(&parent->lock);
1784 hammer_modify_node_noundo(cursor->trans, parent);
1785 ondisk = parent->ondisk;
1786 ondisk->count = 1;
1787 ondisk->parent = 0;
1788 ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1789 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1790 ondisk->elms[0].base = hmp->root_btree_beg;
1791 ondisk->elms[0].base.btype = leaf->ondisk->type;
1792 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1793 ondisk->elms[1].base = hmp->root_btree_end;
1794 /* ondisk->elms[1].base.btype = not used */
1795 hammer_modify_node_done(parent);
1796 made_root = 1;
1797 parent_index = 0; /* insertion point in parent */
1798 } else {
1799 made_root = 0;
1800 parent = cursor->parent;
1801 parent_index = cursor->parent_index;
1805 * Calculate a hint for the allocation of the new B-Tree leaf node.
1806 * For now just try to localize it within the same bigblock as
1807 * the current leaf.
1809 * If the insertion point is at the end of the leaf we recognize a
1810 * likely append sequence of some sort (data, meta-data, inodes,
1811 * whatever). Set the hint to zero to allocate out of linear space
1812 * instead of trying to completely fill previously hinted space.
1814 * This also sets the stage for recursive splits to localize using
1815 * the new space.
1817 ondisk = leaf->ondisk;
1818 if (cursor->index == ondisk->count)
1819 hint = 0;
1820 else
1821 hint = leaf->node_offset;
1824 * Split leaf into new_leaf at the split point. Select a separator
1825 * value in-between the two leafs but with a bent towards the right
1826 * leaf since comparisons use an 'elm >= separator' inequality.
1828 * L L L L L L L L
1830 * x x P x x
1831 * s S S s
1832 * / \
1833 * L L L L L L L L
1835 new_leaf = hammer_alloc_btree(cursor->trans, hint, &error);
1836 if (new_leaf == NULL) {
1837 if (made_root) {
1838 hammer_unlock(&parent->lock);
1839 hammer_delete_node(cursor->trans, parent);
1840 hammer_rel_node(parent);
1842 goto done;
1844 hammer_lock_ex(&new_leaf->lock);
1847 * Create the new node and copy the leaf elements from the split
1848 * point on to the new node.
1850 hammer_modify_node_all(cursor->trans, leaf);
1851 hammer_modify_node_noundo(cursor->trans, new_leaf);
1852 ondisk = leaf->ondisk;
1853 elm = &ondisk->elms[split];
1854 bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1855 new_leaf->ondisk->count = ondisk->count - split;
1856 new_leaf->ondisk->parent = parent->node_offset;
1857 new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1858 new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1859 KKASSERT(ondisk->type == new_leaf->ondisk->type);
1860 hammer_modify_node_done(new_leaf);
1861 hammer_cursor_split_node(leaf, new_leaf, split);
1864 * Cleanup the original node. Because this is a leaf node and
1865 * leaf nodes do not have a right-hand boundary, there
1866 * aren't any special edge cases to clean up. We just fixup the
1867 * count.
1869 ondisk->count = split;
1872 * Insert the separator into the parent, fixup the parent's
1873 * reference to the original node, and reference the new node.
1874 * The separator is P.
1876 * Remember that base.count does not include the right-hand boundary.
1877 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1879 hammer_modify_node_all(cursor->trans, parent);
1880 ondisk = parent->ondisk;
1881 KKASSERT(split != 0);
1882 KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1883 parent_elm = &ondisk->elms[parent_index+1];
1884 bcopy(parent_elm, parent_elm + 1,
1885 (ondisk->count - parent_index) * esize);
1887 hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1888 parent_elm->internal.base.btype = new_leaf->ondisk->type;
1889 parent_elm->internal.subtree_offset = new_leaf->node_offset;
1890 parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1891 mid_boundary = &parent_elm->base;
1892 ++ondisk->count;
1893 hammer_modify_node_done(parent);
1894 hammer_cursor_inserted_element(parent, parent_index + 1);
1897 * The filesystem's root B-Tree pointer may have to be updated.
1899 if (made_root) {
1900 hammer_volume_t volume;
1902 volume = hammer_get_root_volume(hmp, &error);
1903 KKASSERT(error == 0);
1905 hammer_modify_volume_field(cursor->trans, volume,
1906 vol0_btree_root);
1907 volume->ondisk->vol0_btree_root = parent->node_offset;
1908 hammer_modify_volume_done(volume);
1909 leaf->ondisk->parent = parent->node_offset;
1910 if (cursor->parent) {
1911 hammer_unlock(&cursor->parent->lock);
1912 hammer_rel_node(cursor->parent);
1914 cursor->parent = parent; /* lock'd and ref'd */
1915 hammer_rel_volume(volume, 0);
1917 hammer_modify_node_done(leaf);
1920 * Ok, now adjust the cursor depending on which element the original
1921 * index was pointing at. If we are >= the split point the push node
1922 * is now in the new node.
1924 * NOTE: If we are at the split point itself we need to select the
1925 * old or new node based on where key_beg's insertion point will be.
1926 * If we pick the wrong side the inserted element will wind up in
1927 * the wrong leaf node and outside that node's bounds.
1929 if (cursor->index > split ||
1930 (cursor->index == split &&
1931 hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1932 cursor->parent_index = parent_index + 1;
1933 cursor->index -= split;
1934 hammer_unlock(&cursor->node->lock);
1935 hammer_rel_node(cursor->node);
1936 cursor->node = new_leaf;
1937 } else {
1938 cursor->parent_index = parent_index;
1939 hammer_unlock(&new_leaf->lock);
1940 hammer_rel_node(new_leaf);
1944 * Fixup left and right bounds
1946 parent_elm = &parent->ondisk->elms[cursor->parent_index];
1947 cursor->left_bound = &parent_elm[0].internal.base;
1948 cursor->right_bound = &parent_elm[1].internal.base;
1951 * Assert that the bounds are correct.
1953 KKASSERT(hammer_btree_cmp(cursor->left_bound,
1954 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1955 KKASSERT(hammer_btree_cmp(cursor->right_bound,
1956 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1957 KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1958 KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1960 done:
1961 hammer_cursor_downgrade(cursor);
1962 return (error);
1965 #if 0
1968 * Recursively correct the right-hand boundary's create_tid to (tid) as
1969 * long as the rest of the key matches. We have to recurse upward in
1970 * the tree as well as down the left side of each parent's right node.
1972 * Return EDEADLK if we were only partially successful, forcing the caller
1973 * to try again. The original cursor is not modified. This routine can
1974 * also fail with EDEADLK if it is forced to throw away a portion of its
1975 * record history.
1977 * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1979 struct hammer_rhb {
1980 TAILQ_ENTRY(hammer_rhb) entry;
1981 hammer_node_t node;
1982 int index;
1985 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1988 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1990 struct hammer_mount *hmp;
1991 struct hammer_rhb_list rhb_list;
1992 hammer_base_elm_t elm;
1993 hammer_node_t orig_node;
1994 struct hammer_rhb *rhb;
1995 int orig_index;
1996 int error;
1998 TAILQ_INIT(&rhb_list);
1999 hmp = cursor->trans->hmp;
2002 * Save our position so we can restore it on return. This also
2003 * gives us a stable 'elm'.
2005 orig_node = cursor->node;
2006 hammer_ref_node(orig_node);
2007 hammer_lock_sh(&orig_node->lock);
2008 orig_index = cursor->index;
2009 elm = &orig_node->ondisk->elms[orig_index].base;
2012 * Now build a list of parents going up, allocating a rhb
2013 * structure for each one.
2015 while (cursor->parent) {
2017 * Stop if we no longer have any right-bounds to fix up
2019 if (elm->obj_id != cursor->right_bound->obj_id ||
2020 elm->rec_type != cursor->right_bound->rec_type ||
2021 elm->key != cursor->right_bound->key) {
2022 break;
2026 * Stop if the right-hand bound's create_tid does not
2027 * need to be corrected.
2029 if (cursor->right_bound->create_tid >= tid)
2030 break;
2032 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2033 rhb->node = cursor->parent;
2034 rhb->index = cursor->parent_index;
2035 hammer_ref_node(rhb->node);
2036 hammer_lock_sh(&rhb->node->lock);
2037 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2039 hammer_cursor_up(cursor);
2043 * now safely adjust the right hand bound for each rhb. This may
2044 * also require taking the right side of the tree and iterating down
2045 * ITS left side.
2047 error = 0;
2048 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2049 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2050 if (error)
2051 break;
2052 TAILQ_REMOVE(&rhb_list, rhb, entry);
2053 hammer_unlock(&rhb->node->lock);
2054 hammer_rel_node(rhb->node);
2055 kfree(rhb, hmp->m_misc);
2057 switch (cursor->node->ondisk->type) {
2058 case HAMMER_BTREE_TYPE_INTERNAL:
2060 * Right-boundary for parent at internal node
2061 * is one element to the right of the element whos
2062 * right boundary needs adjusting. We must then
2063 * traverse down the left side correcting any left
2064 * bounds (which may now be too far to the left).
2066 ++cursor->index;
2067 error = hammer_btree_correct_lhb(cursor, tid);
2068 break;
2069 default:
2070 panic("hammer_btree_correct_rhb(): Bad node type");
2071 error = EINVAL;
2072 break;
2077 * Cleanup
2079 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2080 TAILQ_REMOVE(&rhb_list, rhb, entry);
2081 hammer_unlock(&rhb->node->lock);
2082 hammer_rel_node(rhb->node);
2083 kfree(rhb, hmp->m_misc);
2085 error = hammer_cursor_seek(cursor, orig_node, orig_index);
2086 hammer_unlock(&orig_node->lock);
2087 hammer_rel_node(orig_node);
2088 return (error);
2092 * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2093 * bound going downward starting at the current cursor position.
2095 * This function does not restore the cursor after use.
2098 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2100 struct hammer_rhb_list rhb_list;
2101 hammer_base_elm_t elm;
2102 hammer_base_elm_t cmp;
2103 struct hammer_rhb *rhb;
2104 struct hammer_mount *hmp;
2105 int error;
2107 TAILQ_INIT(&rhb_list);
2108 hmp = cursor->trans->hmp;
2110 cmp = &cursor->node->ondisk->elms[cursor->index].base;
2113 * Record the node and traverse down the left-hand side for all
2114 * matching records needing a boundary correction.
2116 error = 0;
2117 for (;;) {
2118 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2119 rhb->node = cursor->node;
2120 rhb->index = cursor->index;
2121 hammer_ref_node(rhb->node);
2122 hammer_lock_sh(&rhb->node->lock);
2123 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2125 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2127 * Nothing to traverse down if we are at the right
2128 * boundary of an internal node.
2130 if (cursor->index == cursor->node->ondisk->count)
2131 break;
2132 } else {
2133 elm = &cursor->node->ondisk->elms[cursor->index].base;
2134 if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2135 break;
2136 panic("Illegal leaf record type %02x", elm->btype);
2138 error = hammer_cursor_down(cursor);
2139 if (error)
2140 break;
2142 elm = &cursor->node->ondisk->elms[cursor->index].base;
2143 if (elm->obj_id != cmp->obj_id ||
2144 elm->rec_type != cmp->rec_type ||
2145 elm->key != cmp->key) {
2146 break;
2148 if (elm->create_tid >= tid)
2149 break;
2154 * Now we can safely adjust the left-hand boundary from the bottom-up.
2155 * The last element we remove from the list is the caller's right hand
2156 * boundary, which must also be adjusted.
2158 while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2159 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2160 if (error)
2161 break;
2162 TAILQ_REMOVE(&rhb_list, rhb, entry);
2163 hammer_unlock(&rhb->node->lock);
2164 hammer_rel_node(rhb->node);
2165 kfree(rhb, hmp->m_misc);
2167 elm = &cursor->node->ondisk->elms[cursor->index].base;
2168 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2169 hammer_modify_node(cursor->trans, cursor->node,
2170 &elm->create_tid,
2171 sizeof(elm->create_tid));
2172 elm->create_tid = tid;
2173 hammer_modify_node_done(cursor->node);
2174 } else {
2175 panic("hammer_btree_correct_lhb(): Bad element type");
2180 * Cleanup
2182 while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2183 TAILQ_REMOVE(&rhb_list, rhb, entry);
2184 hammer_unlock(&rhb->node->lock);
2185 hammer_rel_node(rhb->node);
2186 kfree(rhb, hmp->m_misc);
2188 return (error);
2191 #endif
2194 * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2195 * (cursor->node). Returns 0 on success, EDEADLK if we could not complete
2196 * the operation due to a deadlock, or some other error.
2198 * This routine is initially called with an empty leaf and may be
2199 * recursively called with single-element internal nodes.
2201 * It should also be noted that when removing empty leaves we must be sure
2202 * to test and update mirror_tid because another thread may have deadlocked
2203 * against us (or someone) trying to propagate it up and cannot retry once
2204 * the node has been deleted.
2206 * On return the cursor may end up pointing to an internal node, suitable
2207 * for further iteration but not for an immediate insertion or deletion.
2209 static int
2210 btree_remove(hammer_cursor_t cursor)
2212 hammer_node_ondisk_t ondisk;
2213 hammer_btree_elm_t elm;
2214 hammer_node_t node;
2215 hammer_node_t parent;
2216 const int esize = sizeof(*elm);
2217 int error;
2219 node = cursor->node;
2222 * When deleting the root of the filesystem convert it to
2223 * an empty leaf node. Internal nodes cannot be empty.
2225 ondisk = node->ondisk;
2226 if (ondisk->parent == 0) {
2227 KKASSERT(cursor->parent == NULL);
2228 hammer_modify_node_all(cursor->trans, node);
2229 KKASSERT(ondisk == node->ondisk);
2230 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2231 ondisk->count = 0;
2232 hammer_modify_node_done(node);
2233 cursor->index = 0;
2234 return(0);
2237 parent = cursor->parent;
2240 * Attempt to remove the parent's reference to the child. If the
2241 * parent would become empty we have to recurse. If we fail we
2242 * leave the parent pointing to an empty leaf node.
2244 * We have to recurse successfully before we can delete the internal
2245 * node as it is illegal to have empty internal nodes. Even though
2246 * the operation may be aborted we must still fixup any unlocked
2247 * cursors as if we had deleted the element prior to recursing
2248 * (by calling hammer_cursor_deleted_element()) so those cursors
2249 * are properly forced up the chain by the recursion.
2251 if (parent->ondisk->count == 1) {
2253 * This special cursor_up_locked() call leaves the original
2254 * node exclusively locked and referenced, leaves the
2255 * original parent locked (as the new node), and locks the
2256 * new parent. It can return EDEADLK.
2258 * We cannot call hammer_cursor_removed_node() until we are
2259 * actually able to remove the node. If we did then tracked
2260 * cursors in the middle of iterations could be repointed
2261 * to a parent node. If this occurs they could end up
2262 * scanning newly inserted records into the node (that could
2263 * not be deleted) when they push down again.
2265 * Due to the way the recursion works the final parent is left
2266 * in cursor->parent after the recursion returns. Each
2267 * layer on the way back up is thus able to call
2268 * hammer_cursor_removed_node() and 'jump' the node up to
2269 * the (same) final parent.
2271 * NOTE! The local variable 'parent' is invalid after we
2272 * call hammer_cursor_up_locked().
2274 error = hammer_cursor_up_locked(cursor);
2275 parent = NULL;
2277 if (error == 0) {
2278 hammer_cursor_deleted_element(cursor->node, 0);
2279 error = btree_remove(cursor);
2280 if (error == 0) {
2281 KKASSERT(node != cursor->node);
2282 hammer_cursor_removed_node(
2283 node, cursor->node,
2284 cursor->index);
2285 hammer_modify_node_all(cursor->trans, node);
2286 ondisk = node->ondisk;
2287 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2288 ondisk->count = 0;
2289 hammer_modify_node_done(node);
2290 hammer_flush_node(node);
2291 hammer_delete_node(cursor->trans, node);
2292 } else {
2294 * Defer parent removal because we could not
2295 * get the lock, just let the leaf remain
2296 * empty.
2298 /**/
2300 hammer_unlock(&node->lock);
2301 hammer_rel_node(node);
2302 } else {
2304 * Defer parent removal because we could not
2305 * get the lock, just let the leaf remain
2306 * empty.
2308 /**/
2310 } else {
2311 KKASSERT(parent->ondisk->count > 1);
2313 hammer_modify_node_all(cursor->trans, parent);
2314 ondisk = parent->ondisk;
2315 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2317 elm = &ondisk->elms[cursor->parent_index];
2318 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2319 KKASSERT(ondisk->count > 0);
2322 * We must retain the highest mirror_tid. The deleted
2323 * range is now encompassed by the element to the left.
2324 * If we are already at the left edge the new left edge
2325 * inherits mirror_tid.
2327 * Note that bounds of the parent to our parent may create
2328 * a gap to the left of our left-most node or to the right
2329 * of our right-most node. The gap is silently included
2330 * in the mirror_tid's area of effect from the point of view
2331 * of the scan.
2333 if (cursor->parent_index) {
2334 if (elm[-1].internal.mirror_tid <
2335 elm[0].internal.mirror_tid) {
2336 elm[-1].internal.mirror_tid =
2337 elm[0].internal.mirror_tid;
2339 } else {
2340 if (elm[1].internal.mirror_tid <
2341 elm[0].internal.mirror_tid) {
2342 elm[1].internal.mirror_tid =
2343 elm[0].internal.mirror_tid;
2348 * Delete the subtree reference in the parent. Include
2349 * boundary element at end.
2351 bcopy(&elm[1], &elm[0],
2352 (ondisk->count - cursor->parent_index) * esize);
2353 --ondisk->count;
2354 hammer_modify_node_done(parent);
2355 hammer_cursor_removed_node(node, parent, cursor->parent_index);
2356 hammer_cursor_deleted_element(parent, cursor->parent_index);
2357 hammer_flush_node(node);
2358 hammer_delete_node(cursor->trans, node);
2361 * cursor->node is invalid, cursor up to make the cursor
2362 * valid again.
2364 error = hammer_cursor_up(cursor);
2366 return (error);
2370 * Propagate cursor->trans->tid up the B-Tree starting at the current
2371 * cursor position using pseudofs info gleaned from the passed inode.
2373 * The passed inode has no relationship to the cursor position other
2374 * then being in the same pseudofs as the insertion or deletion we
2375 * are propagating the mirror_tid for.
2377 * WARNING! Because we push and pop the passed cursor, it may be
2378 * modified by other B-Tree operations while it is unlocked
2379 * and things like the node & leaf pointers, and indexes might
2380 * change.
2382 void
2383 hammer_btree_do_propagation(hammer_cursor_t cursor,
2384 hammer_pseudofs_inmem_t pfsm,
2385 hammer_btree_leaf_elm_t leaf)
2387 hammer_cursor_t ncursor;
2388 hammer_tid_t mirror_tid;
2389 int error;
2392 * We do not propagate a mirror_tid if the filesystem was mounted
2393 * in no-mirror mode.
2395 if (cursor->trans->hmp->master_id < 0)
2396 return;
2399 * This is a bit of a hack because we cannot deadlock or return
2400 * EDEADLK here. The related operation has already completed and
2401 * we must propagate the mirror_tid now regardless.
2403 * Generate a new cursor which inherits the original's locks and
2404 * unlock the original. Use the new cursor to propagate the
2405 * mirror_tid. Then clean up the new cursor and reacquire locks
2406 * on the original.
2408 * hammer_dup_cursor() cannot dup locks. The dup inherits the
2409 * original's locks and the original is tracked and must be
2410 * re-locked.
2412 mirror_tid = cursor->node->ondisk->mirror_tid;
2413 KKASSERT(mirror_tid != 0);
2414 ncursor = hammer_push_cursor(cursor);
2415 error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2416 KKASSERT(error == 0);
2417 hammer_pop_cursor(cursor, ncursor);
2418 /* WARNING: cursor's leaf pointer may change after pop */
2423 * Propagate a mirror TID update upwards through the B-Tree to the root.
2425 * A locked internal node must be passed in. The node will remain locked
2426 * on return.
2428 * This function syncs mirror_tid at the specified internal node's element,
2429 * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2431 static int
2432 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2434 hammer_btree_internal_elm_t elm;
2435 hammer_node_t node;
2436 int error;
2438 for (;;) {
2439 error = hammer_cursor_up(cursor);
2440 if (error == 0)
2441 error = hammer_cursor_upgrade(cursor);
2442 while (error == EDEADLK) {
2443 hammer_recover_cursor(cursor);
2444 error = hammer_cursor_upgrade(cursor);
2446 if (error)
2447 break;
2450 * If the cursor deadlocked it could end up at a leaf
2451 * after we lost the lock.
2453 node = cursor->node;
2454 if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2455 continue;
2458 * Adjust the node's element
2460 elm = &node->ondisk->elms[cursor->index].internal;
2461 if (elm->mirror_tid >= mirror_tid)
2462 break;
2463 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2464 sizeof(elm->mirror_tid));
2465 elm->mirror_tid = mirror_tid;
2466 hammer_modify_node_done(node);
2467 if (hammer_debug_general & 0x0002) {
2468 kprintf("mirror_propagate: propagate "
2469 "%016llx @%016llx:%d\n",
2470 (long long)mirror_tid,
2471 (long long)node->node_offset,
2472 cursor->index);
2477 * Adjust the node's mirror_tid aggregator
2479 if (node->ondisk->mirror_tid >= mirror_tid)
2480 return(0);
2481 hammer_modify_node_field(cursor->trans, node, mirror_tid);
2482 node->ondisk->mirror_tid = mirror_tid;
2483 hammer_modify_node_done(node);
2484 if (hammer_debug_general & 0x0002) {
2485 kprintf("mirror_propagate: propagate "
2486 "%016llx @%016llx\n",
2487 (long long)mirror_tid,
2488 (long long)node->node_offset);
2491 if (error == ENOENT)
2492 error = 0;
2493 return(error);
2496 hammer_node_t
2497 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2498 int *parent_indexp, int *errorp, int try_exclusive)
2500 hammer_node_t parent;
2501 hammer_btree_elm_t elm;
2502 int i;
2505 * Get the node
2507 parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2508 if (*errorp) {
2509 KKASSERT(parent == NULL);
2510 return(NULL);
2512 KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2515 * Lock the node
2517 if (try_exclusive) {
2518 if (hammer_lock_ex_try(&parent->lock)) {
2519 hammer_rel_node(parent);
2520 *errorp = EDEADLK;
2521 return(NULL);
2523 } else {
2524 hammer_lock_sh(&parent->lock);
2528 * Figure out which element in the parent is pointing to the
2529 * child.
2531 if (node->ondisk->count) {
2532 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2533 parent->ondisk);
2534 } else {
2535 i = 0;
2537 while (i < parent->ondisk->count) {
2538 elm = &parent->ondisk->elms[i];
2539 if (elm->internal.subtree_offset == node->node_offset)
2540 break;
2541 ++i;
2543 if (i == parent->ondisk->count) {
2544 hammer_unlock(&parent->lock);
2545 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2547 *parent_indexp = i;
2548 KKASSERT(*errorp == 0);
2549 return(parent);
2553 * The element (elm) has been moved to a new internal node (node).
2555 * If the element represents a pointer to an internal node that node's
2556 * parent must be adjusted to the element's new location.
2558 * XXX deadlock potential here with our exclusive locks
2561 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2562 hammer_btree_elm_t elm)
2564 hammer_node_t child;
2565 int error;
2567 error = 0;
2569 switch(elm->base.btype) {
2570 case HAMMER_BTREE_TYPE_INTERNAL:
2571 case HAMMER_BTREE_TYPE_LEAF:
2572 child = hammer_get_node(trans, elm->internal.subtree_offset,
2573 0, &error);
2574 if (error == 0) {
2575 hammer_modify_node_field(trans, child, parent);
2576 child->ondisk->parent = node->node_offset;
2577 hammer_modify_node_done(child);
2578 hammer_rel_node(child);
2580 break;
2581 default:
2582 break;
2584 return(error);
2588 * Initialize the root of a recursive B-Tree node lock list structure.
2590 void
2591 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2593 TAILQ_INIT(&parent->list);
2594 parent->parent = NULL;
2595 parent->node = node;
2596 parent->index = -1;
2597 parent->count = node->ondisk->count;
2598 parent->copy = NULL;
2599 parent->flags = 0;
2603 * Exclusively lock all the children of node. This is used by the split
2604 * code to prevent anyone from accessing the children of a cursor node
2605 * while we fix-up its parent offset.
2607 * If we don't lock the children we can really mess up cursors which block
2608 * trying to cursor-up into our node.
2610 * On failure EDEADLK (or some other error) is returned. If a deadlock
2611 * error is returned the cursor is adjusted to block on termination.
2613 * The caller is responsible for managing parent->node, the root's node
2614 * is usually aliased from a cursor.
2617 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2618 hammer_node_lock_t parent)
2620 hammer_node_t node;
2621 hammer_node_lock_t item;
2622 hammer_node_ondisk_t ondisk;
2623 hammer_btree_elm_t elm;
2624 hammer_node_t child;
2625 struct hammer_mount *hmp;
2626 int error;
2627 int i;
2629 node = parent->node;
2630 ondisk = node->ondisk;
2631 error = 0;
2632 hmp = cursor->trans->hmp;
2635 * We really do not want to block on I/O with exclusive locks held,
2636 * pre-get the children before trying to lock the mess. This is
2637 * only done one-level deep for now.
2639 for (i = 0; i < ondisk->count; ++i) {
2640 ++hammer_stats_btree_elements;
2641 elm = &ondisk->elms[i];
2642 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2643 elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2644 continue;
2646 child = hammer_get_node(cursor->trans,
2647 elm->internal.subtree_offset,
2648 0, &error);
2649 if (child)
2650 hammer_rel_node(child);
2654 * Do it for real
2656 for (i = 0; error == 0 && i < ondisk->count; ++i) {
2657 ++hammer_stats_btree_elements;
2658 elm = &ondisk->elms[i];
2660 switch(elm->base.btype) {
2661 case HAMMER_BTREE_TYPE_INTERNAL:
2662 case HAMMER_BTREE_TYPE_LEAF:
2663 KKASSERT(elm->internal.subtree_offset != 0);
2664 child = hammer_get_node(cursor->trans,
2665 elm->internal.subtree_offset,
2666 0, &error);
2667 break;
2668 default:
2669 child = NULL;
2670 break;
2672 if (child) {
2673 if (hammer_lock_ex_try(&child->lock) != 0) {
2674 if (cursor->deadlk_node == NULL) {
2675 cursor->deadlk_node = child;
2676 hammer_ref_node(cursor->deadlk_node);
2678 error = EDEADLK;
2679 hammer_rel_node(child);
2680 } else {
2681 item = kmalloc(sizeof(*item), hmp->m_misc,
2682 M_WAITOK|M_ZERO);
2683 TAILQ_INSERT_TAIL(&parent->list, item, entry);
2684 TAILQ_INIT(&item->list);
2685 item->parent = parent;
2686 item->node = child;
2687 item->index = i;
2688 item->count = child->ondisk->count;
2691 * Recurse (used by the rebalancing code)
2693 if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2694 error = hammer_btree_lock_children(
2695 cursor,
2696 depth - 1,
2697 item);
2702 if (error)
2703 hammer_btree_unlock_children(cursor, parent);
2704 return(error);
2708 * Create an in-memory copy of all B-Tree nodes listed, recursively,
2709 * including the parent.
2711 void
2712 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2714 hammer_mount_t hmp = cursor->trans->hmp;
2715 hammer_node_lock_t item;
2717 if (parent->copy == NULL) {
2718 parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2719 M_WAITOK);
2720 *parent->copy = *parent->node->ondisk;
2722 TAILQ_FOREACH(item, &parent->list, entry) {
2723 hammer_btree_lock_copy(cursor, item);
2728 * Recursively sync modified copies to the media.
2731 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2733 hammer_node_lock_t item;
2734 int count = 0;
2736 if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2737 ++count;
2738 hammer_modify_node_all(cursor->trans, parent->node);
2739 *parent->node->ondisk = *parent->copy;
2740 hammer_modify_node_done(parent->node);
2741 if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2742 hammer_flush_node(parent->node);
2743 hammer_delete_node(cursor->trans, parent->node);
2746 TAILQ_FOREACH(item, &parent->list, entry) {
2747 count += hammer_btree_sync_copy(cursor, item);
2749 return(count);
2753 * Release previously obtained node locks. The caller is responsible for
2754 * cleaning up parent->node itself (its usually just aliased from a cursor),
2755 * but this function will take care of the copies.
2757 void
2758 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2760 hammer_node_lock_t item;
2762 if (parent->copy) {
2763 kfree(parent->copy, cursor->trans->hmp->m_misc);
2764 parent->copy = NULL; /* safety */
2766 while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2767 TAILQ_REMOVE(&parent->list, item, entry);
2768 hammer_btree_unlock_children(cursor, item);
2769 hammer_unlock(&item->node->lock);
2770 hammer_rel_node(item->node);
2771 kfree(item, cursor->trans->hmp->m_misc);
2775 /************************************************************************
2776 * MISCELLANIOUS SUPPORT *
2777 ************************************************************************/
2780 * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2782 * Note that for this particular function a return value of -1, 0, or +1
2783 * can denote a match if create_tid is otherwise discounted. A create_tid
2784 * of zero is considered to be 'infinity' in comparisons.
2786 * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2789 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2791 if (key1->localization < key2->localization)
2792 return(-5);
2793 if (key1->localization > key2->localization)
2794 return(5);
2796 if (key1->obj_id < key2->obj_id)
2797 return(-4);
2798 if (key1->obj_id > key2->obj_id)
2799 return(4);
2801 if (key1->rec_type < key2->rec_type)
2802 return(-3);
2803 if (key1->rec_type > key2->rec_type)
2804 return(3);
2806 if (key1->key < key2->key)
2807 return(-2);
2808 if (key1->key > key2->key)
2809 return(2);
2812 * A create_tid of zero indicates a record which is undeletable
2813 * and must be considered to have a value of positive infinity.
2815 if (key1->create_tid == 0) {
2816 if (key2->create_tid == 0)
2817 return(0);
2818 return(1);
2820 if (key2->create_tid == 0)
2821 return(-1);
2822 if (key1->create_tid < key2->create_tid)
2823 return(-1);
2824 if (key1->create_tid > key2->create_tid)
2825 return(1);
2826 return(0);
2830 * Test a timestamp against an element to determine whether the
2831 * element is visible. A timestamp of 0 means 'infinity'.
2834 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2836 if (asof == 0) {
2837 if (base->delete_tid)
2838 return(1);
2839 return(0);
2841 if (asof < base->create_tid)
2842 return(-1);
2843 if (base->delete_tid && asof >= base->delete_tid)
2844 return(1);
2845 return(0);
2849 * Create a separator half way inbetween key1 and key2. For fields just
2850 * one unit apart, the separator will match key2. key1 is on the left-hand
2851 * side and key2 is on the right-hand side.
2853 * key2 must be >= the separator. It is ok for the separator to match key2.
2855 * NOTE: Even if key1 does not match key2, the separator may wind up matching
2856 * key2.
2858 * NOTE: It might be beneficial to just scrap this whole mess and just
2859 * set the separator to key2.
2861 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2862 dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2864 static void
2865 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2866 hammer_base_elm_t dest)
2868 bzero(dest, sizeof(*dest));
2870 dest->rec_type = key2->rec_type;
2871 dest->key = key2->key;
2872 dest->obj_id = key2->obj_id;
2873 dest->create_tid = key2->create_tid;
2875 MAKE_SEPARATOR(key1, key2, dest, localization);
2876 if (key1->localization == key2->localization) {
2877 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2878 if (key1->obj_id == key2->obj_id) {
2879 MAKE_SEPARATOR(key1, key2, dest, rec_type);
2880 if (key1->rec_type == key2->rec_type) {
2881 MAKE_SEPARATOR(key1, key2, dest, key);
2883 * Don't bother creating a separator for
2884 * create_tid, which also conveniently avoids
2885 * having to handle the create_tid == 0
2886 * (infinity) case. Just leave create_tid
2887 * set to key2.
2889 * Worst case, dest matches key2 exactly,
2890 * which is acceptable.
2897 #undef MAKE_SEPARATOR
2900 * Return whether a generic internal or leaf node is full
2902 static int
2903 btree_node_is_full(hammer_node_ondisk_t node)
2905 switch(node->type) {
2906 case HAMMER_BTREE_TYPE_INTERNAL:
2907 if (node->count == HAMMER_BTREE_INT_ELMS)
2908 return(1);
2909 break;
2910 case HAMMER_BTREE_TYPE_LEAF:
2911 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2912 return(1);
2913 break;
2914 default:
2915 panic("illegal btree subtype");
2917 return(0);
2920 #if 0
2921 static int
2922 btree_max_elements(u_int8_t type)
2924 if (type == HAMMER_BTREE_TYPE_LEAF)
2925 return(HAMMER_BTREE_LEAF_ELMS);
2926 if (type == HAMMER_BTREE_TYPE_INTERNAL)
2927 return(HAMMER_BTREE_INT_ELMS);
2928 panic("btree_max_elements: bad type %d\n", type);
2930 #endif
2932 void
2933 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2935 hammer_btree_elm_t elm;
2936 int i;
2938 kprintf("node %p count=%d parent=%016llx type=%c\n",
2939 ondisk, ondisk->count,
2940 (long long)ondisk->parent, ondisk->type);
2943 * Dump both boundary elements if an internal node
2945 if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2946 for (i = 0; i <= ondisk->count; ++i) {
2947 elm = &ondisk->elms[i];
2948 hammer_print_btree_elm(elm, ondisk->type, i);
2950 } else {
2951 for (i = 0; i < ondisk->count; ++i) {
2952 elm = &ondisk->elms[i];
2953 hammer_print_btree_elm(elm, ondisk->type, i);
2958 void
2959 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2961 kprintf(" %2d", i);
2962 kprintf("\tobj_id = %016llx\n", (long long)elm->base.obj_id);
2963 kprintf("\tkey = %016llx\n", (long long)elm->base.key);
2964 kprintf("\tcreate_tid = %016llx\n", (long long)elm->base.create_tid);
2965 kprintf("\tdelete_tid = %016llx\n", (long long)elm->base.delete_tid);
2966 kprintf("\trec_type = %04x\n", elm->base.rec_type);
2967 kprintf("\tobj_type = %02x\n", elm->base.obj_type);
2968 kprintf("\tbtype = %02x (%c)\n",
2969 elm->base.btype,
2970 (elm->base.btype ? elm->base.btype : '?'));
2971 kprintf("\tlocalization = %02x\n", elm->base.localization);
2973 switch(type) {
2974 case HAMMER_BTREE_TYPE_INTERNAL:
2975 kprintf("\tsubtree_off = %016llx\n",
2976 (long long)elm->internal.subtree_offset);
2977 break;
2978 case HAMMER_BTREE_TYPE_RECORD:
2979 kprintf("\tdata_offset = %016llx\n",
2980 (long long)elm->leaf.data_offset);
2981 kprintf("\tdata_len = %08x\n", elm->leaf.data_len);
2982 kprintf("\tdata_crc = %08x\n", elm->leaf.data_crc);
2983 break;