hammer2 - freemap part 4, misc fixes
[dragonfly.git] / sys / vfs / hammer2 / hammer2_disk.h
blob9e3901c6eab47058d5390d8d4ae0bc6e630cf60f
1 /*
2 * Copyright (c) 2011-2012 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #ifndef VFS_HAMMER2_DISK_H_
36 #define VFS_HAMMER2_DISK_H_
38 #ifndef _SYS_UUID_H_
39 #include <sys/uuid.h>
40 #endif
41 #ifndef _SYS_DMSG_H_
42 #include <sys/dmsg.h>
43 #endif
46 * The structures below represent the on-disk media structures for the HAMMER2
47 * filesystem. Note that all fields for on-disk structures are naturally
48 * aligned. The host endian format is typically used - compatibility is
49 * possible if the implementation detects reversed endian and adjusts accesses
50 * accordingly.
52 * HAMMER2 primarily revolves around the directory topology: inodes,
53 * directory entries, and block tables. Block device buffer cache buffers
54 * are always 64KB. Logical file buffers are typically 16KB. All data
55 * references utilize 64-bit byte offsets.
57 * Free block management is handled independently using blocks reserved by
58 * the media topology.
62 * The data at the end of a file or directory may be a fragment in order
63 * to optimize storage efficiency. The minimum fragment size is 1KB.
64 * Since allocations are in powers of 2 fragments must also be sized in
65 * powers of 2 (1024, 2048, ... 65536).
67 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
68 * which is 2^16. Larger extents may be supported in the future. Smaller
69 * fragments might be supported in the future (down to 64 bytes is possible),
70 * but probably will not be.
72 * A full indirect block use supports 1024 x 64-byte blockrefs in a 64KB
73 * buffer. Indirect blocks down to 1KB are supported to keep small
74 * directories small.
76 * A maximally sized file (2^64-1 bytes) requires 5 indirect block levels.
77 * The hammer2_blockset in the volume header or file inode has another 8
78 * entries, giving us 66+3 = 69 bits of address space. However, some bits
79 * are taken up by (potentially) requests for redundant copies. HAMMER2
80 * currently supports up to 8 copies, which brings the address space down
81 * to 66 bits and gives us 2 bits of leeway.
83 #define HAMMER2_MIN_ALLOC 1024 /* minimum allocation size */
84 #define HAMMER2_MIN_RADIX 10 /* minimum allocation size 2^N */
85 #define HAMMER2_MAX_ALLOC 65536 /* maximum allocation size */
86 #define HAMMER2_MAX_RADIX 16 /* maximum allocation size 2^N */
87 #define HAMMER2_KEY_RADIX 64 /* number of bits in key */
90 * MINALLOCSIZE - The minimum allocation size. This can be smaller
91 * or larger than the minimum physical IO size.
93 * NOTE: Should not be larger than 1K since inodes
94 * are 1K.
96 * MINIOSIZE - The minimum IO size. This must be less than
97 * or equal to HAMMER2_LBUFSIZE.
99 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups.
101 * HAMMER2_PBUFSIZE - Topological block size used by files for all
102 * blocks except the block straddling EOF.
104 * HAMMER2_SEGSIZE - Allocation map segment size, typically 2MB
105 * (space represented by a level0 bitmap).
108 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
110 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */
111 #define HAMMER2_PBUFSIZE 65536
112 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */
113 #define HAMMER2_LBUFSIZE 16384
116 * Generally speaking we want to use 16K and 64K I/Os
118 #define HAMMER2_MINIORADIX HAMMER2_LBUFRADIX
119 #define HAMMER2_MINIOSIZE HAMMER2_LBUFSIZE
121 #define HAMMER2_IND_BYTES_MIN HAMMER2_LBUFSIZE
122 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE
123 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \
124 sizeof(hammer2_blockref_t))
125 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \
126 sizeof(hammer2_blockref_t))
129 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
130 * any element can occur at any index and holes can be anywhere. As a
131 * future optimization we will be able to flag that such arrays are sorted
132 * and thus optimize lookups, but for now we don't.
134 * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs,
135 * resulting in highly efficient storage for files <= 512 bytes and for files
136 * <= 512KB. Up to 8 directory entries can be referenced from a directory
137 * without requiring an indirect block.
139 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
140 * or 64KB (1024 blockrefs / ~64MB represented).
142 #define HAMMER2_SET_COUNT 8 /* direct entries */
143 #define HAMMER2_SET_RADIX 3
144 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */
145 #define HAMMER2_EMBEDDED_RADIX 9
147 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1)
148 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1)
149 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1)
151 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK)
152 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE)
153 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK)
154 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE)
155 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK)
157 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
160 * A HAMMER2 filesystem is always sized in multiples of 8MB.
162 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment
163 * contains the volume header (or backup volume header), the free block
164 * table, and possibly other information in the future.
166 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows:
168 * +-----------------------+
169 * | Volume Hdr | block 0 volume header & alternates
170 * +-----------------------+ (first four zones only)
171 * | FreeBlk Section A | block 1-8
172 * +-----------------------+
173 * | FreeBlk Section B | block 9-16
174 * +-----------------------+
175 * | FreeBlk Section C | block 17-24
176 * +-----------------------+
177 * | FreeBlk Section D | block 25-32
178 * +-----------------------+
179 * | | block 33...63
180 * | reserved |
181 * | |
182 * +-----------------------+
184 * The first few 2GB zones contain volume headers and volume header backups.
185 * After that the volume header block# is reserved.
187 * The freemap utilizes blocks #1-32 for now, see the FREEMAP document.
188 * The Free block table has a resolution of 1KB
190 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
191 * (i.e. a multiple of 2MB). VOLUME_ALIGN must be >= ZONE_SEG.
193 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024)
194 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
195 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
196 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
198 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN)
199 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
200 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1)
201 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
203 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024)
204 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1)
205 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024)
206 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG)
207 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
210 * 64 x 64KB blocks are reserved at the base of each 2GB zone. These blocks
211 * are used to store the volume header or volume header backups, allocation
212 * tree, and other information in the future.
214 * All specified blocks are not necessarily used in all 2GB zones. However,
215 * dead areas are reserved for future use and MUST NOT BE USED for other
216 * purposes.
218 * The freemap is arranged into four groups. Modifications rotate through
219 * the groups on a block by block basis (so all the blocks are not necessarily
220 * synchronized to the same group). Because the freemap is flushed
221 * independent of the main filesystem, the freemap only really needs two
222 * groups to operate efficiently.
227 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */
228 #define HAMMER2_ZONE_FREEMAP_A 1 /* freemap layer group A */
229 #define HAMMER2_ZONE_FREEMAP_B 5 /* freemap layer group B */
230 #define HAMMER2_ZONE_FREEMAP_C 9 /* freemap layer group C */
231 #define HAMMER2_ZONE_FREEMAP_D 13 /* freemap layer group D */
233 /* relative to FREEMAP_x */
234 #define HAMMER2_ZONEFM_LEVEL1 0 /* 2GB leafmap */
235 #define HAMMER2_ZONEFM_LEVEL2 1 /* 2TB indmap */
236 #define HAMMER2_ZONEFM_LEVEL3 2 /* 2PB indmap */
237 #define HAMMER2_ZONEFM_LEVEL4 3 /* 2EB indmap */
238 /* LEVEL5 is a set of 8 blockrefs in the volume header 16EB */
242 * Freemap radii. Please note that LEVEL 1 blockref array entries
243 * point to 256-byte sections of the bitmap representing 2MB of storage.
244 * Even though the chain structures represent only 256 bytes, they are
245 * mapped using larger 16K or 64K buffer cache buffers.
247 #define HAMMER2_FREEMAP_LEVEL5_RADIX 64 /* 16EB */
248 #define HAMMER2_FREEMAP_LEVEL4_RADIX 61 /* 2EB */
249 #define HAMMER2_FREEMAP_LEVEL3_RADIX 51 /* 2PB */
250 #define HAMMER2_FREEMAP_LEVEL2_RADIX 41 /* 2TB */
251 #define HAMMER2_FREEMAP_LEVEL1_RADIX 31 /* 2GB */
252 #define HAMMER2_FREEMAP_LEVEL0_RADIX 21 /* 2MB (entry in l-1 leaf) */
254 #define HAMMER2_FREEMAP_LEVELN_PSIZE 65536 /* physical bytes */
256 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
257 sizeof(hammer2_bmap_data_t))
258 #define HAMMER2_FREEMAP_BLOCK_RADIX 14
259 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX)
260 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1)
263 * Two linear areas can be reserved after the initial 2MB segment in the base
264 * zone (the one starting at offset 0). These areas are NOT managed by the
265 * block allocator and do not fall under HAMMER2 crc checking rules based
266 * at the volume header (but can be self-CRCd internally, depending).
268 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN
269 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024)
270 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024)
272 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN
273 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024)
274 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024)
277 * Most HAMMER2 types are implemented as unsigned 64-bit integers.
278 * Transaction ids are monotonic.
280 * We utilize 32-bit iSCSI CRCs.
282 typedef uint64_t hammer2_tid_t;
283 typedef uint64_t hammer2_off_t;
284 typedef uint64_t hammer2_key_t;
285 typedef uint32_t hammer2_crc32_t;
288 * Miscellanious ranges (all are unsigned).
290 #define HAMMER2_MIN_TID 1ULL
291 #define HAMMER2_MAX_TID 0xFFFFFFFFFFFFFFFFULL
292 #define HAMMER2_MIN_KEY 0ULL
293 #define HAMMER2_MAX_KEY 0xFFFFFFFFFFFFFFFFULL
294 #define HAMMER2_MIN_OFFSET 0ULL
295 #define HAMMER2_MAX_OFFSET 0xFFFFFFFFFFFFFFFFULL
298 * HAMMER2 data offset special cases and masking.
300 * All HAMMER2 data offsets have to be broken down into a 64K buffer base
301 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
303 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits
304 * of the data offset field specifies how large the data chunk being pointed
305 * to as a power of 2. The theoretical minimum radix is thus 6 (The space
306 * needed in the low bits of the data offset field). However, the practical
307 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
308 * HAMMER2_MIN_RADIX to 10. The maximum radix is currently 16 (64KB), but
309 * we fully intend to support larger extents in the future.
311 #define HAMMER2_OFF_BAD ((hammer2_off_t)-1)
312 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL
313 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
314 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64)
315 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL
316 #define HAMMER2_MAX_COPIES 6
319 * HAMMER2 directory support and pre-defined keys
321 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL
322 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL
323 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL
324 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL
325 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */
327 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */
330 * The media block reference structure. This forms the core of the HAMMER2
331 * media topology recursion. This 64-byte data structure is embedded in the
332 * volume header, in inodes (which are also directory entries), and in
333 * indirect blocks.
335 * A blockref references a single media item, which typically can be a
336 * directory entry (aka inode), indirect block, or data block.
338 * The primary feature a blockref represents is the ability to validate
339 * the entire tree underneath it via its check code. Any modification to
340 * anything propagates up the blockref tree all the way to the root, replacing
341 * the related blocks. Propagations can shortcut to the volume root to
342 * implement the 'fast syncing' feature but this only delays the eventual
343 * propagation.
345 * The check code can be a simple 32-bit iscsi code, a 64-bit crc,
346 * or as complex as a 192 bit cryptographic hash. 192 bits is the maximum
347 * supported check code size, which is not sufficient for unverified dedup
348 * UNLESS one doesn't mind once-in-a-blue-moon data corruption (such as when
349 * farming web data). HAMMER2 has an unverified dedup feature for just this
350 * purpose.
352 * --
354 * NOTE: The range of keys represented by the blockref is (key) to
355 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates
356 * blocks bottom-up, inserting a new root when radix expansion
357 * is required.
359 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */
360 uint8_t type; /* type of underlying item */
361 uint8_t methods; /* check method & compression method */
362 uint8_t copyid; /* specify which copy this is */
363 uint8_t keybits; /* #of keybits masked off 0=leaf */
364 uint8_t vradix; /* virtual data/meta-data size */
365 uint8_t flags; /* blockref flags */
366 uint8_t reserved06;
367 uint8_t reserved07;
368 hammer2_key_t key; /* key specification */
369 hammer2_tid_t mirror_tid; /* propagate for mirror scan */
370 hammer2_tid_t modify_tid; /* modifications sans propagation */
371 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/
372 union { /* check info */
373 char buf[24];
374 struct {
375 uint32_t value;
376 uint32_t unused[5];
377 } iscsi32;
378 struct {
379 uint64_t value;
380 uint64_t unused[2];
381 } crc64;
382 struct {
383 char data[24];
384 } sha192;
387 * Freemap hints are embedded in addition to the icrc32.
389 * bigmask - Radixes available for allocation (0-31).
390 * Heuristical (may be permissive but not
391 * restrictive). Typically only radix values
392 * 10-16 are used (i.e. (1<<10) through (1<<16)).
394 * avail - Total available space remaining, in bytes
396 struct {
397 uint32_t icrc32;
398 uint32_t bigmask; /* available radixes */
399 uint64_t avail; /* total available bytes */
400 uint64_t unused; /* unused must be 0 */
401 } freemap;
402 } check;
405 typedef struct hammer2_blockref hammer2_blockref_t;
407 #if 0
408 #define HAMMER2_BREF_SYNC1 0x01 /* modification synchronized */
409 #define HAMMER2_BREF_SYNC2 0x02 /* modification committed */
410 #define HAMMER2_BREF_DESYNCCHLD 0x04 /* desynchronize children */
411 #define HAMMER2_BREF_DELETED 0x80 /* indicates a deletion */
412 #endif
414 #define HAMMER2_BLOCKREF_BYTES 64 /* blockref struct in bytes */
416 #define HAMMER2_BREF_TYPE_EMPTY 0
417 #define HAMMER2_BREF_TYPE_INODE 1
418 #define HAMMER2_BREF_TYPE_INDIRECT 2
419 #define HAMMER2_BREF_TYPE_DATA 3
420 #define HAMMER2_BREF_TYPE_UNUSED04 4
421 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5
422 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6
423 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */
424 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */
426 #define HAMMER2_ENC_CHECK(n) ((n) << 4)
427 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15)
429 #define HAMMER2_CHECK_NONE 0
430 #define HAMMER2_CHECK_ISCSI32 1
431 #define HAMMER2_CHECK_CRC64 2
432 #define HAMMER2_CHECK_SHA192 3
433 #define HAMMER2_CHECK_FREEMAP 4
435 #define HAMMER2_ENC_COMP(n) (n)
436 #define HAMMER2_DEC_COMP(n) ((n) & 15)
438 #define HAMMER2_COMP_NONE 0
439 #define HAMMER2_COMP_AUTOZERO 1
443 * HAMMER2 block references are collected into sets of 8 blockrefs. These
444 * sets are fully associative, meaning the elements making up a set are
445 * not sorted in any way and may contain duplicate entries, holes, or
446 * entries which shortcut multiple levels of indirection. Sets are used
447 * in various ways:
449 * (1) When redundancy is desired a set may contain several duplicate
450 * entries pointing to different copies of the same data. Up to 8 copies
451 * are supported but the set structure becomes a bit inefficient once
452 * you go over 4.
454 * (2) The blockrefs in a set can shortcut multiple levels of indirections
455 * within the bounds imposed by the parent of set.
457 * When a set fills up another level of indirection is inserted, moving
458 * some or all of the set's contents into indirect blocks placed under the
459 * set. This is a top-down approach in that indirect blocks are not created
460 * until the set actually becomes full (that is, the entries in the set can
461 * shortcut the indirect blocks when the set is not full). Depending on how
462 * things are filled multiple indirect blocks will eventually be created.
464 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
465 * are also treated as fully set-associative.
467 struct hammer2_blockset {
468 hammer2_blockref_t blockref[HAMMER2_SET_COUNT];
471 typedef struct hammer2_blockset hammer2_blockset_t;
474 * Catch programmer snafus
476 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
477 #error "hammer2 direct radix is incorrect"
478 #endif
479 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
480 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
481 #endif
482 #if (1 << HAMMER2_MIN_RADIX) != HAMMER2_MIN_ALLOC
483 #error "HAMMER2_MIN_RADIX and HAMMER2_MIN_ALLOC are inconsistent"
484 #endif
487 * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
489 * Each 64-byte entry contains the bitmap and meta-data required to manage
490 * a LEVEL0 (2MB) block of storage. The storage is managed in 128 x 16KB
491 * chunks. Smaller allocation granularity is supported via a linear iterator
492 * and/or must otherwise be tracked in ram.
494 * (data structure must be 64 bytes exactly)
496 * linear - A BYTE linear allocation offset. May contain values between
497 * 0 and 2MB. Any value which is 16KB-aligned is effective neutral
498 * (forces the bitmap to be checked), whereas intermediate values
499 * allow iterative allocations from a bitmap that is already marked
500 * allocated.
502 * Please note that file data granularity may be limited by
503 * other issues such as buffer cache direct-mapping and the
504 * desire to support sector sizes up to 16KB (so H2 only issues
505 * I/O's in multiples of 16KB anyway).
507 * radix - Once assigned, radix for clustering. Cleared to 0 only if
508 * the entire leaf becomes free (related device buffer cache buffers
509 * must also be destroyed to avoid later overlap assertions). All
510 * chain's within this 2MB segment must match the clustering radix.
512 * Device I/O size may be further adjusted to the minimum (16KB),
513 * even if radix is smaller. This forms the I/O clustering radix.
515 * Value will typically be 10-16 (1KB to 64KB). Smaller values may
516 * be allowed in the future (probably unnecessary to add that
517 * complication though).
519 * bitmap - Two bits per 16KB allocation block arranged in arrays of
520 * 32-bit elements, 128x2 bits representing ~2MB worth of media
521 * storage. Bit patterns are as follows:
523 * 00 Unallocated
524 * 01 Armed for bulk free scan
525 * 10 Possibly free
526 * 11 Allocated
528 struct hammer2_bmap_data {
529 int32_t linear; /* 00 linear sub-granular allocation offset */
530 uint8_t reserved04; /* 04 */
531 uint8_t radix; /* 05 cluster I/O 0, LBUFRADIX, PBUFRADIX */
532 uint8_t reserved06; /* 06 */
533 uint8_t reserved07; /* 07 */
534 uint32_t reserved08; /* 08 */
535 uint32_t reserved0C; /* 0C */
536 uint32_t reserved10; /* 10 */
537 uint32_t reserved14; /* 14 */
538 uint32_t reserved18; /* 18 */
539 uint32_t avail; /* 1C */
540 uint32_t bitmap[8]; /* 20-3F 256 bits manages 2MB/16KB/2-bits */
543 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
546 * In HAMMER2 inodes ARE directory entries, with a special exception for
547 * hardlinks. The inode number is stored in the inode rather than being
548 * based on the location of the inode (since the location moves every time
549 * the inode or anything underneath the inode is modified).
551 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
552 * for the filename, and 512 bytes worth of direct file data OR an embedded
553 * blockset.
555 * Directories represent one inode per blockref. Inodes are not laid out
556 * as a file but instead are represented by the related blockrefs. The
557 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember
558 * that blocksets are fully associative, so a certain degree efficiency is
559 * achieved just from that.
561 * Up to 512 bytes of direct data can be embedded in an inode, and since
562 * inodes are essentially directory entries this also means that small data
563 * files end up simply being laid out linearly in the directory, resulting
564 * in fewer seeks and highly optimal access.
566 * The compression mode can be changed at any time in the inode and is
567 * recorded on a blockref-by-blockref basis.
569 * Hardlinks are supported via the inode map. Essentially the way a hardlink
570 * works is that all individual directory entries representing the same file
571 * are special cased and specify the same inode number. The actual file
572 * is placed in the nearest parent directory that is parent to all instances
573 * of the hardlink. If all hardlinks to a file are in the same directory
574 * the actual file will also be placed in that directory. This file uses
575 * the inode number as the directory entry key and is invisible to normal
576 * directory scans. Real directory entry keys are differentiated from the
577 * inode number key via bit 63. Access to the hardlink silently looks up
578 * the real file and forwards all operations to that file. Removal of the
579 * last hardlink also removes the real file.
581 * (attr_tid) is only updated when the inode's specific attributes or regular
582 * file size has changed, and affects path lookups and stat. (attr_tid)
583 * represents a special cache coherency lock under the inode. The inode
584 * blockref's modify_tid will always cover it.
586 * (dirent_tid) is only updated when an entry under a directory inode has
587 * been created, deleted, renamed, or had its attributes change, and affects
588 * directory lookups and scans. (dirent_tid) represents another special cache
589 * coherency lock under the inode. The inode blockref's modify_tid will
590 * always cover it.
592 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */
593 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */
594 #define HAMMER2_INODE_VERSION_ONE 1
596 struct hammer2_inode_data {
597 uint16_t version; /* 0000 inode data version */
598 uint16_t reserved02; /* 0002 */
601 * core inode attributes, inode type, misc flags
603 uint32_t uflags; /* 0004 chflags */
604 uint32_t rmajor; /* 0008 available for device nodes */
605 uint32_t rminor; /* 000C available for device nodes */
606 uint64_t ctime; /* 0010 inode change time */
607 uint64_t mtime; /* 0018 modified time */
608 uint64_t atime; /* 0020 access time (unsupported) */
609 uint64_t btime; /* 0028 birth time */
610 uuid_t uid; /* 0030 uid / degenerate unix uid */
611 uuid_t gid; /* 0040 gid / degenerate unix gid */
613 uint8_t type; /* 0050 object type */
614 uint8_t op_flags; /* 0051 operational flags */
615 uint16_t cap_flags; /* 0052 capability flags */
616 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */
619 * inode size, identification, localized recursive configuration
620 * for compression and backup copies.
622 hammer2_tid_t inum; /* 0058 inode number */
623 hammer2_off_t size; /* 0060 size of file */
624 uint64_t nlinks; /* 0068 hard links (typ only dirs) */
625 hammer2_tid_t iparent; /* 0070 parent inum (recovery only) */
626 hammer2_key_t name_key; /* 0078 full filename key */
627 uint16_t name_len; /* 0080 filename length */
628 uint8_t ncopies; /* 0082 ncopies to local media */
629 uint8_t comp_algo; /* 0083 compression request & algo */
632 * These fields are currently only applicable to PFSROOTs.
634 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
635 * identify an instance of a PFS in the cluster because
636 * a mount may contain more than one copy of the PFS as
637 * a separate node. {pfs_clid, pfs_fsid} must be used for
638 * registration in the cluster.
640 uint8_t target_type; /* 0084 hardlink target type */
641 uint8_t reserved85; /* 0085 */
642 uint8_t reserved86; /* 0086 */
643 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */
644 uint64_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */
645 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */
646 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */
649 * Quotas and cumulative sub-tree counters.
651 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */
652 hammer2_key_t data_count; /* 00B8 subtree byte count */
653 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */
654 hammer2_key_t inode_count; /* 00C8 subtree inode count */
655 hammer2_tid_t attr_tid; /* 00D0 attributes changed */
656 hammer2_tid_t dirent_tid; /* 00D8 directory/attr changed */
659 * Tracks (possibly degenerate) free areas covering all sub-tree
660 * allocations under inode, not counting the inode itself.
661 * 0/0 indicates empty entry. fully set-associative.
663 hammer2_off_t freezones[4]; /* 00E0/E8/F0/F8 base|radix */
665 unsigned char filename[HAMMER2_INODE_MAXNAME];
666 /* 0100-01FF (256 char, unterminated) */
667 union { /* 0200-03FF (64x8 = 512 bytes) */
668 struct hammer2_blockset blockset;
669 char data[HAMMER2_EMBEDDED_BYTES];
670 } u;
673 typedef struct hammer2_inode_data hammer2_inode_data_t;
675 #define HAMMER2_OPFLAG_DIRECTDATA 0x01
676 #define HAMMER2_OPFLAG_PFSROOT 0x02
677 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */
679 #define HAMMER2_OBJTYPE_UNKNOWN 0
680 #define HAMMER2_OBJTYPE_DIRECTORY 1
681 #define HAMMER2_OBJTYPE_REGFILE 2
682 #define HAMMER2_OBJTYPE_FIFO 4
683 #define HAMMER2_OBJTYPE_CDEV 5
684 #define HAMMER2_OBJTYPE_BDEV 6
685 #define HAMMER2_OBJTYPE_SOFTLINK 7
686 #define HAMMER2_OBJTYPE_HARDLINK 8 /* dummy entry for hardlink */
687 #define HAMMER2_OBJTYPE_SOCKET 9
688 #define HAMMER2_OBJTYPE_WHITEOUT 10
690 #define HAMMER2_COPYID_NONE 0
691 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1)
694 * PEER types identify connections and help cluster controller filter
695 * out unwanted SPANs.
697 #define HAMMER2_PEER_NONE DMSG_PEER_NONE
698 #define HAMMER2_PEER_CLUSTER DMSG_PEER_CLUSTER
699 #define HAMMER2_PEER_BLOCK DMSG_PEER_BLOCK
700 #define HAMMER2_PEER_HAMMER2 DMSG_PEER_HAMMER2
702 #define HAMMER2_COPYID_COUNT DMSG_COPYID_COUNT
705 * PFS types identify a PFS on media and in LNK_SPAN messages.
707 #define HAMMER2_PFSTYPE_NONE DMSG_PFSTYPE_NONE
708 #define HAMMER2_PFSTYPE_ADMIN DMSG_PFSTYPE_ADMIN
709 #define HAMMER2_PFSTYPE_CLIENT DMSG_PFSTYPE_CLIENT
710 #define HAMMER2_PFSTYPE_CACHE DMSG_PFSTYPE_CACHE
711 #define HAMMER2_PFSTYPE_COPY DMSG_PFSTYPE_COPY
712 #define HAMMER2_PFSTYPE_SLAVE DMSG_PFSTYPE_SLAVE
713 #define HAMMER2_PFSTYPE_SOFT_SLAVE DMSG_PFSTYPE_SOFT_SLAVE
714 #define HAMMER2_PFSTYPE_SOFT_MASTER DMSG_PFSTYPE_SOFT_MASTER
715 #define HAMMER2_PFSTYPE_MASTER DMSG_PFSTYPE_MASTER
716 #define HAMMER2_PFSTYPE_SNAPSHOT DMSG_PFSTYPE_SNAPSHOT
717 #define HAMMER2_PFSTYPE_MAX DMSG_PFSTYPE_MAX
720 * Allocation Table
726 * Flags (8 bits) - blockref, for freemap only
728 * Note that the minimum chunk size is 1KB so we could theoretically have
729 * 10 bits here, but we might have some future extension that allows a
730 * chunk size down to 256 bytes and if so we will need bits 8 and 9.
732 #define HAMMER2_AVF_SELMASK 0x03 /* select group */
733 #define HAMMER2_AVF_ALL_ALLOC 0x04 /* indicate all allocated */
734 #define HAMMER2_AVF_ALL_FREE 0x08 /* indicate all free */
735 #define HAMMER2_AVF_RESERVED10 0x10
736 #define HAMMER2_AVF_RESERVED20 0x20
737 #define HAMMER2_AVF_RESERVED40 0x40
738 #define HAMMER2_AVF_RESERVED80 0x80
739 #define HAMMER2_AVF_AVMASK32 ((uint32_t)0xFFFFFF00LU)
740 #define HAMMER2_AVF_AVMASK64 ((uint64_t)0xFFFFFFFFFFFFFF00LLU)
742 #define HAMMER2_AV_SELECT_A 0x00
743 #define HAMMER2_AV_SELECT_B 0x01
744 #define HAMMER2_AV_SELECT_C 0x02
745 #define HAMMER2_AV_SELECT_D 0x03
748 * The volume header eats a 64K block. There is currently an issue where
749 * we want to try to fit all nominal filesystem updates in a 512-byte section
750 * but it may be a lost cause due to the need for a blockset.
752 * All information is stored in host byte order. The volume header's magic
753 * number may be checked to determine the byte order. If you wish to mount
754 * between machines w/ different endian modes you'll need filesystem code
755 * which acts on the media data consistently (either all one way or all the
756 * other). Our code currently does not do that.
758 * A read-write mount may have to recover missing allocations by doing an
759 * incremental mirror scan looking for modifications made after alloc_tid.
760 * If alloc_tid == last_tid then no recovery operation is needed. Recovery
761 * operations are usually very, very fast.
763 * Read-only mounts do not need to do any recovery, access to the filesystem
764 * topology is always consistent after a crash (is always consistent, period).
765 * However, there may be shortcutted blockref updates present from deep in
766 * the tree which are stored in the volumeh eader and must be tracked on
767 * the fly.
769 * NOTE: The copyinfo[] array contains the configuration for both the
770 * cluster connections and any local media copies. The volume
771 * header will be replicated for each local media copy.
773 * The mount command may specify multiple medias or just one and
774 * allow HAMMER2 to pick up the others when it checks the copyinfo[]
775 * array on mount.
777 * NOTE: root_blockref points to the super-root directory, not the root
778 * directory. The root directory will be a subdirectory under the
779 * super-root.
781 * The super-root directory contains all root directories and all
782 * snapshots (readonly or writable). It is possible to do a
783 * null-mount of the super-root using special path constructions
784 * relative to your mounted root.
786 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
787 * a PFS, including mirroring and storage quota operations, and this is
788 * prefered over creating discrete PFSs in the super-root. Instead
789 * the super-root is most typically used to create writable snapshots,
790 * alternative roots, and so forth. The super-root is also used by
791 * the automatic snapshotting mechanism.
793 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU
794 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU
796 struct hammer2_volume_data {
798 * sector #0 - 512 bytes
800 uint64_t magic; /* 0000 Signature */
801 hammer2_off_t boot_beg; /* 0008 Boot area (future) */
802 hammer2_off_t boot_end; /* 0010 (size = end - beg) */
803 hammer2_off_t aux_beg; /* 0018 Aux area (future) */
804 hammer2_off_t aux_end; /* 0020 (size = end - beg) */
805 hammer2_off_t volu_size; /* 0028 Volume size, bytes */
807 uint32_t version; /* 0030 */
808 uint32_t flags; /* 0034 */
809 uint8_t copyid; /* 0038 copyid of phys vol */
810 uint8_t freemap_version; /* 0039 freemap algorithm */
811 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */
812 uint8_t reserved003B; /* 003B */
813 uint32_t reserved003C; /* 003C */
815 uuid_t fsid; /* 0040 */
816 uuid_t fstype; /* 0050 */
819 * allocator_size is precalculated at newfs time and does not include
820 * reserved blocks, boot, or redo areas.
822 * Initial non-reserved-area allocations do not use the freemap
823 * but instead adjust alloc_iterator. Dynamic allocations take
824 * over starting at (allocator_beg). This makes newfs_hammer2's
825 * job a lot easier and can also serve as a testing jig.
827 hammer2_off_t allocator_size; /* 0060 Total data space */
828 hammer2_off_t allocator_free; /* 0068 Free space */
829 hammer2_off_t allocator_beg; /* 0070 Initial allocations */
830 hammer2_tid_t mirror_tid; /* 0078 best committed tid */
831 hammer2_tid_t alloc_tid; /* 0080 Alloctable modify tid */
832 hammer2_blockref_t reserved0088; /* 0088-00C7 */
835 * Copyids are allocated dynamically from the copyexists bitmap.
836 * An id from the active copies set (up to 8, see copyinfo later on)
837 * may still exist after the copy set has been removed from the
838 * volume header and its bit will remain active in the bitmap and
839 * cannot be reused until it is 100% removed from the hierarchy.
841 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */
842 char reserved0140[248]; /* 00E8-01DF */
845 * 32 bit CRC array at the end of the first 512 byte sector.
847 * icrc_sects[7] - First 512-4 bytes of volume header (including all
848 * the other icrc's except this one).
850 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
851 * the blockset for the root.
853 * icrc_sects[5] - Sector 2
854 * icrc_sects[4] - Sector 3
855 * icrc_sects[3] - Sector 4 (the freemap blockset)
857 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */
860 * sector #1 - 512 bytes
862 * The entire sector is used by a blockset.
864 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */
867 * sector #2-7
869 char sector2[512]; /* 0400-05FF reserved */
870 char sector3[512]; /* 0600-07FF reserved */
871 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */
872 char sector5[512]; /* 0A00-0BFF reserved */
873 char sector6[512]; /* 0C00-0DFF reserved */
874 char sector7[512]; /* 0E00-0FFF reserved */
877 * sector #8-71 - 32768 bytes
879 * Contains the configuration for up to 256 copyinfo targets. These
880 * specify local and remote copies operating as masters or slaves.
881 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
882 * indicates the local media).
884 * Each inode contains a set of up to 8 copyids, either inherited
885 * from its parent or explicitly specified in the inode, which
886 * indexes into this array.
888 /* 1000-8FFF copyinfo config */
889 dmsg_vol_data_t copyinfo[HAMMER2_COPYID_COUNT];
892 * Remaining sections are reserved for future use.
894 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */
897 * icrc on entire volume header
899 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/
902 typedef struct hammer2_volume_data hammer2_volume_data_t;
905 * Various parts of the volume header have their own iCRCs.
907 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
908 * and not included the icrc calculation.
910 * The second 512 bytes also has its own iCRC but it is stored in the first
911 * 512 bytes so it covers the entire second 512 bytes.
913 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
914 * which is where the iCRC for the whole volume is stored. This is currently
915 * a catch-all for anything not individually iCRCd.
917 #define HAMMER2_VOL_ICRC_SECT0 7
918 #define HAMMER2_VOL_ICRC_SECT1 6
920 #define HAMMER2_VOLUME_BYTES 65536
922 #define HAMMER2_VOLUME_ICRC0_OFF 0
923 #define HAMMER2_VOLUME_ICRC1_OFF 512
924 #define HAMMER2_VOLUME_ICRCVH_OFF 0
926 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4)
927 #define HAMMER2_VOLUME_ICRC1_SIZE (512)
928 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4)
930 #define HAMMER2_VOL_VERSION_MIN 1
931 #define HAMMER2_VOL_VERSION_DEFAULT 1
932 #define HAMMER2_VOL_VERSION_WIP 2
934 #define HAMMER2_NUM_VOLHDRS 4
936 union hammer2_media_data {
937 hammer2_volume_data_t voldata;
938 hammer2_inode_data_t ipdata;
939 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX];
940 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT];
941 char buf[HAMMER2_PBUFSIZE];
944 typedef union hammer2_media_data hammer2_media_data_t;
946 #endif