Pre-2.0 release, MFC 63 - HAMMER I/O error handling and catastrophic
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
blob8d42d7c89192cfd7e9df98bbd6a7507cbff65303
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.69.2.2 2008/07/18 00:21:09 dillon Exp $
37 * Manage HAMMER's on-disk structures. These routines are primarily
38 * responsible for interfacing with the kernel's I/O subsystem and for
39 * managing in-memory structures.
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
53 static int
54 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 if (vol1->vol_no < vol2->vol_no)
57 return(-1);
58 if (vol1->vol_no > vol2->vol_no)
59 return(1);
60 return(0);
63 static int
64 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
66 if (buf1->zoneX_offset < buf2->zoneX_offset)
67 return(-1);
68 if (buf1->zoneX_offset > buf2->zoneX_offset)
69 return(1);
70 return(0);
73 static int
74 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
76 if (node1->node_offset < node2->node_offset)
77 return(-1);
78 if (node1->node_offset > node2->node_offset)
79 return(1);
80 return(0);
83 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
84 hammer_vol_rb_compare, int32_t, vol_no);
85 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
86 hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
87 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
88 hammer_nod_rb_compare, hammer_off_t, node_offset);
90 /************************************************************************
91 * VOLUMES *
92 ************************************************************************
94 * Load a HAMMER volume by name. Returns 0 on success or a positive error
95 * code on failure. Volumes must be loaded at mount time, get_volume() will
96 * not load a new volume.
98 * Calls made to hammer_load_volume() or single-threaded
101 hammer_install_volume(struct hammer_mount *hmp, const char *volname)
103 struct mount *mp;
104 hammer_volume_t volume;
105 struct hammer_volume_ondisk *ondisk;
106 struct nlookupdata nd;
107 struct buf *bp = NULL;
108 int error;
109 int ronly;
110 int setmp = 0;
112 mp = hmp->mp;
113 ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
116 * Allocate a volume structure
118 ++hammer_count_volumes;
119 volume = kmalloc(sizeof(*volume), M_HAMMER, M_WAITOK|M_ZERO);
120 volume->vol_name = kstrdup(volname, M_HAMMER);
121 hammer_io_init(&volume->io, hmp, HAMMER_STRUCTURE_VOLUME);
122 volume->io.offset = 0LL;
123 volume->io.bytes = HAMMER_BUFSIZE;
126 * Get the device vnode
128 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
129 if (error == 0)
130 error = nlookup(&nd);
131 if (error == 0)
132 error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
133 nlookup_done(&nd);
134 if (error == 0) {
135 if (vn_isdisk(volume->devvp, &error)) {
136 error = vfs_mountedon(volume->devvp);
139 if (error == 0 &&
140 count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
141 error = EBUSY;
143 if (error == 0) {
144 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
145 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
146 if (error == 0) {
147 error = VOP_OPEN(volume->devvp,
148 (ronly ? FREAD : FREAD|FWRITE),
149 FSCRED, NULL);
151 vn_unlock(volume->devvp);
153 if (error) {
154 hammer_free_volume(volume);
155 return(error);
157 volume->devvp->v_rdev->si_mountpoint = mp;
158 setmp = 1;
161 * Extract the volume number from the volume header and do various
162 * sanity checks.
164 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
165 if (error)
166 goto late_failure;
167 ondisk = (void *)bp->b_data;
168 if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
169 kprintf("hammer_mount: volume %s has an invalid header\n",
170 volume->vol_name);
171 error = EFTYPE;
172 goto late_failure;
174 volume->vol_no = ondisk->vol_no;
175 volume->buffer_base = ondisk->vol_buf_beg;
176 volume->vol_flags = ondisk->vol_flags;
177 volume->nblocks = ondisk->vol_nblocks;
178 volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
179 ondisk->vol_buf_end - ondisk->vol_buf_beg);
180 volume->maxraw_off = ondisk->vol_buf_end;
182 if (RB_EMPTY(&hmp->rb_vols_root)) {
183 hmp->fsid = ondisk->vol_fsid;
184 } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
185 kprintf("hammer_mount: volume %s's fsid does not match "
186 "other volumes\n", volume->vol_name);
187 error = EFTYPE;
188 goto late_failure;
192 * Insert the volume structure into the red-black tree.
194 if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
195 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
196 volume->vol_name, volume->vol_no);
197 error = EEXIST;
201 * Set the root volume . HAMMER special cases rootvol the structure.
202 * We do not hold a ref because this would prevent related I/O
203 * from being flushed.
205 if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
206 hmp->rootvol = volume;
207 hmp->nvolumes = ondisk->vol_count;
208 if (bp) {
209 brelse(bp);
210 bp = NULL;
212 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
213 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
214 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
215 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
217 late_failure:
218 if (bp)
219 brelse(bp);
220 if (error) {
221 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
222 if (setmp)
223 volume->devvp->v_rdev->si_mountpoint = NULL;
224 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
225 hammer_free_volume(volume);
227 return (error);
231 * This is called for each volume when updating the mount point from
232 * read-write to read-only or vise-versa.
235 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
237 if (volume->devvp) {
238 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
239 if (volume->io.hmp->ronly) {
240 /* do not call vinvalbuf */
241 VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
242 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
243 } else {
244 /* do not call vinvalbuf */
245 VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
246 VOP_CLOSE(volume->devvp, FREAD);
248 vn_unlock(volume->devvp);
250 return(0);
254 * Unload and free a HAMMER volume. Must return >= 0 to continue scan
255 * so returns -1 on failure.
258 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
260 struct hammer_mount *hmp = volume->io.hmp;
261 int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
262 struct buf *bp;
265 * Clean up the root volume pointer, which is held unlocked in hmp.
267 if (hmp->rootvol == volume)
268 hmp->rootvol = NULL;
271 * We must not flush a dirty buffer to disk on umount. It should
272 * have already been dealt with by the flusher, or we may be in
273 * catastrophic failure.
275 hammer_io_clear_modify(&volume->io, 1);
276 volume->io.waitdep = 1;
277 bp = hammer_io_release(&volume->io, 1);
280 * Clean up the persistent ref ioerror might have on the volume
282 if (volume->io.ioerror) {
283 volume->io.ioerror = 0;
284 hammer_unref(&volume->io.lock);
288 * There should be no references on the volume, no clusters, and
289 * no super-clusters.
291 KKASSERT(volume->io.lock.refs == 0);
292 if (bp)
293 brelse(bp);
295 volume->ondisk = NULL;
296 if (volume->devvp) {
297 if (volume->devvp->v_rdev &&
298 volume->devvp->v_rdev->si_mountpoint == hmp->mp
300 volume->devvp->v_rdev->si_mountpoint = NULL;
302 if (ronly) {
304 * Make sure we don't sync anything to disk if we
305 * are in read-only mode (1) or critically-errored
306 * (2). Note that there may be dirty buffers in
307 * normal read-only mode from crash recovery.
309 vinvalbuf(volume->devvp, 0, 0, 0);
310 VOP_CLOSE(volume->devvp, FREAD);
311 } else {
313 * Normal termination, save any dirty buffers
314 * (XXX there really shouldn't be any).
316 vinvalbuf(volume->devvp, V_SAVE, 0, 0);
317 VOP_CLOSE(volume->devvp, FREAD|FWRITE);
322 * Destroy the structure
324 RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
325 hammer_free_volume(volume);
326 return(0);
329 static
330 void
331 hammer_free_volume(hammer_volume_t volume)
333 if (volume->vol_name) {
334 kfree(volume->vol_name, M_HAMMER);
335 volume->vol_name = NULL;
337 if (volume->devvp) {
338 vrele(volume->devvp);
339 volume->devvp = NULL;
341 --hammer_count_volumes;
342 kfree(volume, M_HAMMER);
346 * Get a HAMMER volume. The volume must already exist.
348 hammer_volume_t
349 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
351 struct hammer_volume *volume;
354 * Locate the volume structure
356 volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
357 if (volume == NULL) {
358 *errorp = ENOENT;
359 return(NULL);
361 hammer_ref(&volume->io.lock);
364 * Deal with on-disk info
366 if (volume->ondisk == NULL || volume->io.loading) {
367 *errorp = hammer_load_volume(volume);
368 if (*errorp) {
369 hammer_rel_volume(volume, 1);
370 volume = NULL;
372 } else {
373 *errorp = 0;
375 return(volume);
379 hammer_ref_volume(hammer_volume_t volume)
381 int error;
383 hammer_ref(&volume->io.lock);
386 * Deal with on-disk info
388 if (volume->ondisk == NULL || volume->io.loading) {
389 error = hammer_load_volume(volume);
390 if (error)
391 hammer_rel_volume(volume, 1);
392 } else {
393 error = 0;
395 return (error);
398 hammer_volume_t
399 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
401 hammer_volume_t volume;
403 volume = hmp->rootvol;
404 KKASSERT(volume != NULL);
405 hammer_ref(&volume->io.lock);
408 * Deal with on-disk info
410 if (volume->ondisk == NULL || volume->io.loading) {
411 *errorp = hammer_load_volume(volume);
412 if (*errorp) {
413 hammer_rel_volume(volume, 1);
414 volume = NULL;
416 } else {
417 *errorp = 0;
419 return (volume);
423 * Load a volume's on-disk information. The volume must be referenced and
424 * not locked. We temporarily acquire an exclusive lock to interlock
425 * against releases or multiple get's.
427 static int
428 hammer_load_volume(hammer_volume_t volume)
430 int error;
432 ++volume->io.loading;
433 hammer_lock_ex(&volume->io.lock);
435 if (volume->ondisk == NULL) {
436 error = hammer_io_read(volume->devvp, &volume->io,
437 volume->maxraw_off);
438 if (error == 0)
439 volume->ondisk = (void *)volume->io.bp->b_data;
440 } else {
441 error = 0;
443 --volume->io.loading;
444 hammer_unlock(&volume->io.lock);
445 return(error);
449 * Release a volume. Call hammer_io_release on the last reference. We have
450 * to acquire an exclusive lock to interlock against volume->ondisk tests
451 * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
452 * lock to be held.
454 * Volumes are not unloaded from memory during normal operation.
456 void
457 hammer_rel_volume(hammer_volume_t volume, int flush)
459 struct buf *bp = NULL;
461 crit_enter();
462 if (volume->io.lock.refs == 1) {
463 ++volume->io.loading;
464 hammer_lock_ex(&volume->io.lock);
465 if (volume->io.lock.refs == 1) {
466 volume->ondisk = NULL;
467 bp = hammer_io_release(&volume->io, flush);
469 --volume->io.loading;
470 hammer_unlock(&volume->io.lock);
472 hammer_unref(&volume->io.lock);
473 if (bp)
474 brelse(bp);
475 crit_exit();
479 hammer_mountcheck_volumes(struct hammer_mount *hmp)
481 hammer_volume_t vol;
482 int i;
484 for (i = 0; i < hmp->nvolumes; ++i) {
485 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
486 if (vol == NULL)
487 return(EINVAL);
489 return(0);
492 /************************************************************************
493 * BUFFERS *
494 ************************************************************************
496 * Manage buffers. Currently all blockmap-backed zones are translated
497 * to zone-2 buffer offsets.
499 hammer_buffer_t
500 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
501 int bytes, int isnew, int *errorp)
503 hammer_buffer_t buffer;
504 hammer_volume_t volume;
505 hammer_off_t zone2_offset;
506 hammer_io_type_t iotype;
507 int vol_no;
508 int zone;
510 buf_offset &= ~HAMMER_BUFMASK64;
511 again:
513 * Shortcut if the buffer is already cached
515 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
516 if (buffer) {
517 if (buffer->io.lock.refs == 0)
518 ++hammer_count_refedbufs;
519 hammer_ref(&buffer->io.lock);
522 * Onced refed the ondisk field will not be cleared by
523 * any other action.
525 if (buffer->ondisk && buffer->io.loading == 0) {
526 *errorp = 0;
527 return(buffer);
531 * The buffer is no longer loose if it has a ref, and
532 * cannot become loose once it gains a ref. Loose
533 * buffers will never be in a modified state. This should
534 * only occur on the 0->1 transition of refs.
536 * lose_list can be modified via a biodone() interrupt.
538 if (buffer->io.mod_list == &hmp->lose_list) {
539 crit_enter(); /* biodone race against list */
540 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
541 mod_entry);
542 crit_exit();
543 buffer->io.mod_list = NULL;
544 KKASSERT(buffer->io.modified == 0);
546 goto found;
550 * What is the buffer class?
552 zone = HAMMER_ZONE_DECODE(buf_offset);
554 switch(zone) {
555 case HAMMER_ZONE_LARGE_DATA_INDEX:
556 case HAMMER_ZONE_SMALL_DATA_INDEX:
557 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
558 break;
559 case HAMMER_ZONE_UNDO_INDEX:
560 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
561 break;
562 case HAMMER_ZONE_META_INDEX:
563 default:
565 * NOTE: inode data and directory entries are placed in this
566 * zone. inode atime/mtime is updated in-place and thus
567 * buffers containing inodes must be synchronized as
568 * meta-buffers, same as buffers containing B-Tree info.
570 iotype = HAMMER_STRUCTURE_META_BUFFER;
571 break;
575 * Handle blockmap offset translations
577 if (zone >= HAMMER_ZONE_BTREE_INDEX) {
578 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
579 } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
580 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
581 } else {
582 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
583 zone2_offset = buf_offset;
584 *errorp = 0;
586 if (*errorp)
587 return(NULL);
590 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
591 * specifications.
593 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
594 HAMMER_ZONE_RAW_BUFFER);
595 vol_no = HAMMER_VOL_DECODE(zone2_offset);
596 volume = hammer_get_volume(hmp, vol_no, errorp);
597 if (volume == NULL)
598 return(NULL);
600 KKASSERT(zone2_offset < volume->maxbuf_off);
603 * Allocate a new buffer structure. We will check for races later.
605 ++hammer_count_buffers;
606 buffer = kmalloc(sizeof(*buffer), M_HAMMER,
607 M_WAITOK|M_ZERO|M_USE_RESERVE);
608 buffer->zone2_offset = zone2_offset;
609 buffer->zoneX_offset = buf_offset;
610 buffer->volume = volume;
612 hammer_io_init(&buffer->io, hmp, iotype);
613 buffer->io.offset = volume->ondisk->vol_buf_beg +
614 (zone2_offset & HAMMER_OFF_SHORT_MASK);
615 buffer->io.bytes = bytes;
616 TAILQ_INIT(&buffer->clist);
617 hammer_ref(&buffer->io.lock);
620 * Insert the buffer into the RB tree and handle late collisions.
622 if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
623 hammer_unref(&buffer->io.lock);
624 --hammer_count_buffers;
625 kfree(buffer, M_HAMMER);
626 goto again;
628 ++hammer_count_refedbufs;
629 found:
632 * Deal with on-disk info and loading races.
634 if (buffer->ondisk == NULL || buffer->io.loading) {
635 *errorp = hammer_load_buffer(buffer, isnew);
636 if (*errorp) {
637 hammer_rel_buffer(buffer, 1);
638 buffer = NULL;
640 } else {
641 *errorp = 0;
643 return(buffer);
647 * This is used by the direct-read code to deal with large-data buffers
648 * created by the reblocker and mirror-write code. The direct-read code
649 * bypasses the HAMMER buffer subsystem and so any aliased dirty hammer
650 * buffers must be fully synced to disk before we can issue the direct-read.
652 * This code path is not considered critical as only the rebocker and
653 * mirror-write code will create large-data buffers via the HAMMER buffer
654 * subsystem. They do that because they operate at the B-Tree level and
655 * do not access the vnode/inode structures.
657 void
658 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
660 hammer_buffer_t buffer;
661 int error;
663 KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
664 HAMMER_ZONE_LARGE_DATA);
666 while (bytes > 0) {
667 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
668 base_offset);
669 if (buffer && buffer->io.modified) {
670 error = hammer_ref_buffer(buffer);
671 if (error == 0 && buffer->io.modified) {
672 hammer_io_write_interlock(&buffer->io);
673 hammer_io_flush(&buffer->io);
674 hammer_io_done_interlock(&buffer->io);
675 hammer_io_wait(&buffer->io);
676 hammer_rel_buffer(buffer, 0);
679 base_offset += HAMMER_BUFSIZE;
680 bytes -= HAMMER_BUFSIZE;
685 * Destroy all buffers covering the specified zoneX offset range. This
686 * is called when the related blockmap layer2 entry is freed or when
687 * a direct write bypasses our buffer/buffer-cache subsystem.
689 * The buffers may be referenced by the caller itself. Setting reclaim
690 * will cause the buffer to be destroyed when it's ref count reaches zero.
692 void
693 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
694 hammer_off_t zone2_offset, int bytes)
696 hammer_buffer_t buffer;
697 hammer_volume_t volume;
698 int vol_no;
699 int error;
701 vol_no = HAMMER_VOL_DECODE(zone2_offset);
702 volume = hammer_get_volume(hmp, vol_no, &error);
703 KKASSERT(error == 0);
705 while (bytes > 0) {
706 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
707 base_offset);
708 if (buffer) {
709 error = hammer_ref_buffer(buffer);
710 if (error == 0) {
711 KKASSERT(buffer->zone2_offset == zone2_offset);
712 hammer_io_clear_modify(&buffer->io, 1);
713 buffer->io.reclaim = 1;
714 KKASSERT(buffer->volume == volume);
715 hammer_rel_buffer(buffer, 0);
717 } else {
718 hammer_io_inval(volume, zone2_offset);
720 base_offset += HAMMER_BUFSIZE;
721 zone2_offset += HAMMER_BUFSIZE;
722 bytes -= HAMMER_BUFSIZE;
724 hammer_rel_volume(volume, 0);
727 static int
728 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
730 hammer_volume_t volume;
731 int error;
734 * Load the buffer's on-disk info
736 volume = buffer->volume;
737 ++buffer->io.loading;
738 hammer_lock_ex(&buffer->io.lock);
740 if (hammer_debug_io & 0x0001) {
741 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
742 buffer->zoneX_offset, buffer->zone2_offset, isnew,
743 buffer->ondisk);
746 if (buffer->ondisk == NULL) {
747 if (isnew) {
748 error = hammer_io_new(volume->devvp, &buffer->io);
749 } else {
750 error = hammer_io_read(volume->devvp, &buffer->io,
751 volume->maxraw_off);
753 if (error == 0)
754 buffer->ondisk = (void *)buffer->io.bp->b_data;
755 } else if (isnew) {
756 error = hammer_io_new(volume->devvp, &buffer->io);
757 } else {
758 error = 0;
760 --buffer->io.loading;
761 hammer_unlock(&buffer->io.lock);
762 return (error);
766 * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
767 * This routine is only called during unmount.
770 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
773 * Clean up the persistent ref ioerror might have on the buffer
774 * and acquire a ref (steal ioerror's if we can).
776 if (buffer->io.ioerror) {
777 buffer->io.ioerror = 0;
778 } else {
779 if (buffer->io.lock.refs == 0)
780 ++hammer_count_refedbufs;
781 hammer_ref(&buffer->io.lock);
785 * We must not flush a dirty buffer to disk on umount. It should
786 * have already been dealt with by the flusher, or we may be in
787 * catastrophic failure.
789 hammer_io_clear_modify(&buffer->io, 1);
790 hammer_flush_buffer_nodes(buffer);
791 KKASSERT(buffer->io.lock.refs == 1);
792 hammer_rel_buffer(buffer, 2);
793 return(0);
797 * Reference a buffer that is either already referenced or via a specially
798 * handled pointer (aka cursor->buffer).
801 hammer_ref_buffer(hammer_buffer_t buffer)
803 int error;
805 if (buffer->io.lock.refs == 0)
806 ++hammer_count_refedbufs;
807 hammer_ref(&buffer->io.lock);
810 * At this point a biodone() will not touch the buffer other then
811 * incidental bits. However, lose_list can be modified via
812 * a biodone() interrupt.
814 * No longer loose
816 if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
817 crit_enter();
818 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
819 buffer->io.mod_list = NULL;
820 crit_exit();
823 if (buffer->ondisk == NULL || buffer->io.loading) {
824 error = hammer_load_buffer(buffer, 0);
825 if (error) {
826 hammer_rel_buffer(buffer, 1);
828 * NOTE: buffer pointer can become stale after
829 * the above release.
832 } else {
833 error = 0;
835 return(error);
839 * Release a buffer. We have to deal with several places where
840 * another thread can ref the buffer.
842 * Only destroy the structure itself if the related buffer cache buffer
843 * was disassociated from it. This ties the management of the structure
844 * to the buffer cache subsystem. buffer->ondisk determines whether the
845 * embedded io is referenced or not.
847 void
848 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
850 hammer_volume_t volume;
851 struct buf *bp = NULL;
852 int freeme = 0;
854 crit_enter();
855 if (buffer->io.lock.refs == 1) {
856 ++buffer->io.loading; /* force interlock check */
857 hammer_lock_ex(&buffer->io.lock);
858 if (buffer->io.lock.refs == 1) {
859 bp = hammer_io_release(&buffer->io, flush);
861 if (buffer->io.lock.refs == 1)
862 --hammer_count_refedbufs;
864 if (buffer->io.bp == NULL &&
865 buffer->io.lock.refs == 1) {
867 * Final cleanup
869 * NOTE: It is impossible for any associated
870 * B-Tree nodes to have refs if the buffer
871 * has no additional refs.
873 RB_REMOVE(hammer_buf_rb_tree,
874 &buffer->io.hmp->rb_bufs_root,
875 buffer);
876 volume = buffer->volume;
877 buffer->volume = NULL; /* sanity */
878 hammer_rel_volume(volume, 0);
879 hammer_io_clear_modlist(&buffer->io);
880 hammer_flush_buffer_nodes(buffer);
881 KKASSERT(TAILQ_EMPTY(&buffer->clist));
882 freeme = 1;
885 --buffer->io.loading;
886 hammer_unlock(&buffer->io.lock);
888 hammer_unref(&buffer->io.lock);
889 crit_exit();
890 if (bp)
891 brelse(bp);
892 if (freeme) {
893 --hammer_count_buffers;
894 kfree(buffer, M_HAMMER);
899 * Access the filesystem buffer containing the specified hammer offset.
900 * buf_offset is a conglomeration of the volume number and vol_buf_beg
901 * relative buffer offset. It must also have bit 55 set to be valid.
902 * (see hammer_off_t in hammer_disk.h).
904 * Any prior buffer in *bufferp will be released and replaced by the
905 * requested buffer.
907 static __inline
908 void *
909 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
910 int *errorp, struct hammer_buffer **bufferp)
912 hammer_buffer_t buffer;
913 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
915 buf_offset &= ~HAMMER_BUFMASK64;
916 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
918 buffer = *bufferp;
919 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
920 buffer->zoneX_offset != buf_offset)) {
921 if (buffer)
922 hammer_rel_buffer(buffer, 0);
923 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
924 *bufferp = buffer;
925 } else {
926 *errorp = 0;
930 * Return a pointer to the buffer data.
932 if (buffer == NULL)
933 return(NULL);
934 else
935 return((char *)buffer->ondisk + xoff);
938 void *
939 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
940 int *errorp, struct hammer_buffer **bufferp)
942 return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
945 void *
946 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
947 int *errorp, struct hammer_buffer **bufferp)
949 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
950 return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
954 * Access the filesystem buffer containing the specified hammer offset.
955 * No disk read operation occurs. The result buffer may contain garbage.
957 * Any prior buffer in *bufferp will be released and replaced by the
958 * requested buffer.
960 * This function marks the buffer dirty but does not increment its
961 * modify_refs count.
963 static __inline
964 void *
965 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
966 int *errorp, struct hammer_buffer **bufferp)
968 hammer_buffer_t buffer;
969 int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
971 buf_offset &= ~HAMMER_BUFMASK64;
973 buffer = *bufferp;
974 if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
975 buffer->zoneX_offset != buf_offset)) {
976 if (buffer)
977 hammer_rel_buffer(buffer, 0);
978 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
979 *bufferp = buffer;
980 } else {
981 *errorp = 0;
985 * Return a pointer to the buffer data.
987 if (buffer == NULL)
988 return(NULL);
989 else
990 return((char *)buffer->ondisk + xoff);
993 void *
994 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
995 int *errorp, struct hammer_buffer **bufferp)
997 return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1000 void *
1001 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1002 int *errorp, struct hammer_buffer **bufferp)
1004 bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1005 return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1008 /************************************************************************
1009 * NODES *
1010 ************************************************************************
1012 * Manage B-Tree nodes. B-Tree nodes represent the primary indexing
1013 * method used by the HAMMER filesystem.
1015 * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1016 * associated with its buffer, and will only referenced the buffer while
1017 * the node itself is referenced.
1019 * A hammer_node can also be passively associated with other HAMMER
1020 * structures, such as inodes, while retaining 0 references. These
1021 * associations can be cleared backwards using a pointer-to-pointer in
1022 * the hammer_node.
1024 * This allows the HAMMER implementation to cache hammer_nodes long-term
1025 * and short-cut a great deal of the infrastructure's complexity. In
1026 * most cases a cached node can be reacquired without having to dip into
1027 * either the buffer or cluster management code.
1029 * The caller must pass a referenced cluster on call and will retain
1030 * ownership of the reference on return. The node will acquire its own
1031 * additional references, if necessary.
1033 hammer_node_t
1034 hammer_get_node(hammer_mount_t hmp, hammer_off_t node_offset,
1035 int isnew, int *errorp)
1037 hammer_node_t node;
1039 KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1042 * Locate the structure, allocating one if necessary.
1044 again:
1045 node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1046 if (node == NULL) {
1047 ++hammer_count_nodes;
1048 node = kmalloc(sizeof(*node), M_HAMMER, M_WAITOK|M_ZERO|M_USE_RESERVE);
1049 node->node_offset = node_offset;
1050 node->hmp = hmp;
1051 TAILQ_INIT(&node->cursor_list);
1052 TAILQ_INIT(&node->cache_list);
1053 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1054 --hammer_count_nodes;
1055 kfree(node, M_HAMMER);
1056 goto again;
1059 hammer_ref(&node->lock);
1060 if (node->ondisk)
1061 *errorp = 0;
1062 else
1063 *errorp = hammer_load_node(node, isnew);
1064 if (*errorp) {
1065 hammer_rel_node(node);
1066 node = NULL;
1068 return(node);
1072 * Reference an already-referenced node.
1074 void
1075 hammer_ref_node(hammer_node_t node)
1077 KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1078 hammer_ref(&node->lock);
1082 * Load a node's on-disk data reference.
1084 static int
1085 hammer_load_node(hammer_node_t node, int isnew)
1087 hammer_buffer_t buffer;
1088 hammer_off_t buf_offset;
1089 int error;
1091 error = 0;
1092 ++node->loading;
1093 hammer_lock_ex(&node->lock);
1094 if (node->ondisk == NULL) {
1096 * This is a little confusing but the jist is that
1097 * node->buffer determines whether the node is on
1098 * the buffer's clist and node->ondisk determines
1099 * whether the buffer is referenced.
1101 * We could be racing a buffer release, in which case
1102 * node->buffer may become NULL while we are blocked
1103 * referencing the buffer.
1105 if ((buffer = node->buffer) != NULL) {
1106 error = hammer_ref_buffer(buffer);
1107 if (error == 0 && node->buffer == NULL) {
1108 TAILQ_INSERT_TAIL(&buffer->clist,
1109 node, entry);
1110 node->buffer = buffer;
1112 } else {
1113 buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1114 buffer = hammer_get_buffer(node->hmp, buf_offset,
1115 HAMMER_BUFSIZE, 0, &error);
1116 if (buffer) {
1117 KKASSERT(error == 0);
1118 TAILQ_INSERT_TAIL(&buffer->clist,
1119 node, entry);
1120 node->buffer = buffer;
1123 if (error)
1124 goto failed;
1125 node->ondisk = (void *)((char *)buffer->ondisk +
1126 (node->node_offset & HAMMER_BUFMASK));
1127 if (isnew == 0 &&
1128 (node->flags & HAMMER_NODE_CRCGOOD) == 0) {
1129 if (hammer_crc_test_btree(node->ondisk) == 0)
1130 Debugger("CRC FAILED: B-TREE NODE");
1131 node->flags |= HAMMER_NODE_CRCGOOD;
1134 failed:
1135 --node->loading;
1136 hammer_unlock(&node->lock);
1137 return (error);
1141 * Safely reference a node, interlock against flushes via the IO subsystem.
1143 hammer_node_t
1144 hammer_ref_node_safe(struct hammer_mount *hmp, hammer_node_cache_t cache,
1145 int *errorp)
1147 hammer_node_t node;
1149 node = cache->node;
1150 if (node != NULL) {
1151 hammer_ref(&node->lock);
1152 if (node->ondisk)
1153 *errorp = 0;
1154 else
1155 *errorp = hammer_load_node(node, 0);
1156 if (*errorp) {
1157 hammer_rel_node(node);
1158 node = NULL;
1160 } else {
1161 *errorp = ENOENT;
1163 return(node);
1167 * Release a hammer_node. On the last release the node dereferences
1168 * its underlying buffer and may or may not be destroyed.
1170 void
1171 hammer_rel_node(hammer_node_t node)
1173 hammer_buffer_t buffer;
1176 * If this isn't the last ref just decrement the ref count and
1177 * return.
1179 if (node->lock.refs > 1) {
1180 hammer_unref(&node->lock);
1181 return;
1185 * If there is no ondisk info or no buffer the node failed to load,
1186 * remove the last reference and destroy the node.
1188 if (node->ondisk == NULL) {
1189 hammer_unref(&node->lock);
1190 hammer_flush_node(node);
1191 /* node is stale now */
1192 return;
1196 * Do not disassociate the node from the buffer if it represents
1197 * a modified B-Tree node that still needs its crc to be generated.
1199 if (node->flags & HAMMER_NODE_NEEDSCRC)
1200 return;
1203 * Do final cleanups and then either destroy the node and leave it
1204 * passively cached. The buffer reference is removed regardless.
1206 buffer = node->buffer;
1207 node->ondisk = NULL;
1209 if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1210 hammer_unref(&node->lock);
1211 hammer_rel_buffer(buffer, 0);
1212 return;
1216 * Destroy the node.
1218 hammer_unref(&node->lock);
1219 hammer_flush_node(node);
1220 /* node is stale */
1221 hammer_rel_buffer(buffer, 0);
1225 * Free space on-media associated with a B-Tree node.
1227 void
1228 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1230 KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1231 node->flags |= HAMMER_NODE_DELETED;
1232 hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1236 * Passively cache a referenced hammer_node. The caller may release
1237 * the node on return.
1239 void
1240 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1243 * If the node doesn't exist, or is being deleted, don't cache it!
1245 * The node can only ever be NULL in the I/O failure path.
1247 if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1248 return;
1249 if (cache->node == node)
1250 return;
1251 while (cache->node)
1252 hammer_uncache_node(cache);
1253 if (node->flags & HAMMER_NODE_DELETED)
1254 return;
1255 cache->node = node;
1256 TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1259 void
1260 hammer_uncache_node(hammer_node_cache_t cache)
1262 hammer_node_t node;
1264 if ((node = cache->node) != NULL) {
1265 TAILQ_REMOVE(&node->cache_list, cache, entry);
1266 cache->node = NULL;
1267 if (TAILQ_EMPTY(&node->cache_list))
1268 hammer_flush_node(node);
1273 * Remove a node's cache references and destroy the node if it has no
1274 * other references or backing store.
1276 void
1277 hammer_flush_node(hammer_node_t node)
1279 hammer_node_cache_t cache;
1280 hammer_buffer_t buffer;
1282 while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1283 TAILQ_REMOVE(&node->cache_list, cache, entry);
1284 cache->node = NULL;
1286 if (node->lock.refs == 0 && node->ondisk == NULL) {
1287 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1288 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1289 if ((buffer = node->buffer) != NULL) {
1290 node->buffer = NULL;
1291 TAILQ_REMOVE(&buffer->clist, node, entry);
1292 /* buffer is unreferenced because ondisk is NULL */
1294 --hammer_count_nodes;
1295 kfree(node, M_HAMMER);
1300 * Flush passively cached B-Tree nodes associated with this buffer.
1301 * This is only called when the buffer is about to be destroyed, so
1302 * none of the nodes should have any references. The buffer is locked.
1304 * We may be interlocked with the buffer.
1306 void
1307 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1309 hammer_node_t node;
1311 while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1312 KKASSERT(node->ondisk == NULL);
1313 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1315 if (node->lock.refs == 0) {
1316 hammer_ref(&node->lock);
1317 node->flags |= HAMMER_NODE_FLUSH;
1318 hammer_rel_node(node);
1319 } else {
1320 KKASSERT(node->loading != 0);
1321 KKASSERT(node->buffer != NULL);
1322 buffer = node->buffer;
1323 node->buffer = NULL;
1324 TAILQ_REMOVE(&buffer->clist, node, entry);
1325 /* buffer is unreferenced because ondisk is NULL */
1331 /************************************************************************
1332 * ALLOCATORS *
1333 ************************************************************************/
1336 * Allocate a B-Tree node.
1338 hammer_node_t
1339 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1341 hammer_buffer_t buffer = NULL;
1342 hammer_node_t node = NULL;
1343 hammer_off_t node_offset;
1345 node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1346 sizeof(struct hammer_node_ondisk),
1347 errorp);
1348 if (*errorp == 0) {
1349 node = hammer_get_node(trans->hmp, node_offset, 1, errorp);
1350 hammer_modify_node_noundo(trans, node);
1351 bzero(node->ondisk, sizeof(*node->ondisk));
1352 hammer_modify_node_done(node);
1354 if (buffer)
1355 hammer_rel_buffer(buffer, 0);
1356 return(node);
1360 * Allocate data. If the address of a data buffer is supplied then
1361 * any prior non-NULL *data_bufferp will be released and *data_bufferp
1362 * will be set to the related buffer. The caller must release it when
1363 * finally done. The initial *data_bufferp should be set to NULL by
1364 * the caller.
1366 * The caller is responsible for making hammer_modify*() calls on the
1367 * *data_bufferp.
1369 void *
1370 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1371 u_int16_t rec_type, hammer_off_t *data_offsetp,
1372 struct hammer_buffer **data_bufferp, int *errorp)
1374 void *data;
1375 int zone;
1378 * Allocate data
1380 if (data_len) {
1381 switch(rec_type) {
1382 case HAMMER_RECTYPE_INODE:
1383 case HAMMER_RECTYPE_DIRENTRY:
1384 case HAMMER_RECTYPE_EXT:
1385 case HAMMER_RECTYPE_FIX:
1386 case HAMMER_RECTYPE_PFS:
1387 zone = HAMMER_ZONE_META_INDEX;
1388 break;
1389 case HAMMER_RECTYPE_DATA:
1390 case HAMMER_RECTYPE_DB:
1391 if (data_len <= HAMMER_BUFSIZE / 2) {
1392 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1393 } else {
1394 data_len = (data_len + HAMMER_BUFMASK) &
1395 ~HAMMER_BUFMASK;
1396 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1398 break;
1399 default:
1400 panic("hammer_alloc_data: rec_type %04x unknown",
1401 rec_type);
1402 zone = 0; /* NOT REACHED */
1403 break;
1405 *data_offsetp = hammer_blockmap_alloc(trans, zone,
1406 data_len, errorp);
1407 } else {
1408 *data_offsetp = 0;
1410 if (*errorp == 0 && data_bufferp) {
1411 if (data_len) {
1412 data = hammer_bread_ext(trans->hmp, *data_offsetp,
1413 data_len, errorp, data_bufferp);
1414 } else {
1415 data = NULL;
1417 } else {
1418 data = NULL;
1420 return(data);
1424 * Sync dirty buffers to the media and clean-up any loose ends.
1426 * These functions do not start the flusher going, they simply
1427 * queue everything up to the flusher.
1429 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1430 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1433 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1435 struct hammer_sync_info info;
1437 info.error = 0;
1438 info.waitfor = waitfor;
1439 if (waitfor == MNT_WAIT) {
1440 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1441 hammer_sync_scan1, hammer_sync_scan2, &info);
1442 } else {
1443 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1444 hammer_sync_scan1, hammer_sync_scan2, &info);
1446 return(info.error);
1450 * Filesystem sync. If doing a synchronous sync make a second pass on
1451 * the vnodes in case any were already flushing during the first pass,
1452 * and activate the flusher twice (the second time brings the UNDO FIFO's
1453 * start position up to the end position after the first call).
1456 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1458 struct hammer_sync_info info;
1460 info.error = 0;
1461 info.waitfor = MNT_NOWAIT;
1462 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1463 hammer_sync_scan1, hammer_sync_scan2, &info);
1464 if (info.error == 0 && waitfor == MNT_WAIT) {
1465 info.waitfor = waitfor;
1466 vmntvnodescan(hmp->mp, VMSC_GETVP,
1467 hammer_sync_scan1, hammer_sync_scan2, &info);
1469 if (waitfor == MNT_WAIT) {
1470 hammer_flusher_sync(hmp);
1471 hammer_flusher_sync(hmp);
1472 } else {
1473 hammer_flusher_async(hmp, NULL);
1475 return(info.error);
1478 static int
1479 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1481 struct hammer_inode *ip;
1483 ip = VTOI(vp);
1484 if (vp->v_type == VNON || ip == NULL ||
1485 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1486 RB_EMPTY(&vp->v_rbdirty_tree))) {
1487 return(-1);
1489 return(0);
1492 static int
1493 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1495 struct hammer_sync_info *info = data;
1496 struct hammer_inode *ip;
1497 int error;
1499 ip = VTOI(vp);
1500 if (vp->v_type == VNON || vp->v_type == VBAD ||
1501 ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1502 RB_EMPTY(&vp->v_rbdirty_tree))) {
1503 return(0);
1505 error = VOP_FSYNC(vp, MNT_NOWAIT);
1506 if (error)
1507 info->error = error;
1508 return(0);