Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / netinet / tcp_subr.c
blob6484054310c307c940ff754ccb4177ff1744e811
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
67 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
68 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.63 2008/11/11 10:46:58 sephe Exp $
71 #include "opt_compat.h"
72 #include "opt_inet6.h"
73 #include "opt_ipsec.h"
74 #include "opt_tcpdebug.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 #include <sys/malloc.h>
82 #include <sys/mpipe.h>
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif
87 #include <sys/proc.h>
88 #include <sys/priv.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/protosw.h>
92 #include <sys/random.h>
93 #include <sys/in_cksum.h>
94 #include <sys/ktr.h>
96 #include <vm/vm_zone.h>
98 #include <net/route.h>
99 #include <net/if.h>
100 #include <net/netisr.h>
102 #define _IP_VHL
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip6.h>
107 #include <netinet/in_pcb.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip_var.h>
111 #include <netinet6/ip6_var.h>
112 #include <netinet/ip_icmp.h>
113 #ifdef INET6
114 #include <netinet/icmp6.h>
115 #endif
116 #include <netinet/tcp.h>
117 #include <netinet/tcp_fsm.h>
118 #include <netinet/tcp_seq.h>
119 #include <netinet/tcp_timer.h>
120 #include <netinet/tcp_timer2.h>
121 #include <netinet/tcp_var.h>
122 #include <netinet6/tcp6_var.h>
123 #include <netinet/tcpip.h>
124 #ifdef TCPDEBUG
125 #include <netinet/tcp_debug.h>
126 #endif
127 #include <netinet6/ip6protosw.h>
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #ifdef INET6
132 #include <netinet6/ipsec6.h>
133 #endif
134 #endif
136 #ifdef FAST_IPSEC
137 #include <netproto/ipsec/ipsec.h>
138 #ifdef INET6
139 #include <netproto/ipsec/ipsec6.h>
140 #endif
141 #define IPSEC
142 #endif
144 #include <sys/md5.h>
145 #include <sys/msgport2.h>
146 #include <machine/smp.h>
148 #include <net/netmsg2.h>
150 #if !defined(KTR_TCP)
151 #define KTR_TCP KTR_ALL
152 #endif
153 KTR_INFO_MASTER(tcp);
154 KTR_INFO(KTR_TCP, tcp, rxmsg, 0, "tcp getmsg", 0);
155 KTR_INFO(KTR_TCP, tcp, wait, 1, "tcp waitmsg", 0);
156 KTR_INFO(KTR_TCP, tcp, delayed, 2, "tcp execute delayed ops", 0);
157 #define logtcp(name) KTR_LOG(tcp_ ## name)
159 struct inpcbinfo tcbinfo[MAXCPU];
160 struct tcpcbackqhead tcpcbackq[MAXCPU];
162 int tcp_mpsafe_proto = 0;
163 TUNABLE_INT("net.inet.tcp.mpsafe_proto", &tcp_mpsafe_proto);
165 static int tcp_mpsafe_thread = 0;
166 TUNABLE_INT("net.inet.tcp.mpsafe_thread", &tcp_mpsafe_thread);
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
168 &tcp_mpsafe_thread, 0,
169 "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
171 int tcp_mssdflt = TCP_MSS;
172 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
173 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
175 #ifdef INET6
176 int tcp_v6mssdflt = TCP6_MSS;
177 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
178 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
179 #endif
181 #if 0
182 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
183 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
184 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
185 #endif
187 int tcp_do_rfc1323 = 1;
188 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
189 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
191 int tcp_do_rfc1644 = 0;
192 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
193 &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
195 static int tcp_tcbhashsize = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
197 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
199 static int do_tcpdrain = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201 "Enable tcp_drain routine for extra help when low on mbufs");
203 /* XXX JH */
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
205 &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
207 static int icmp_may_rst = 1;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
209 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
211 static int tcp_isn_reseed_interval = 0;
212 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
213 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
216 * TCP bandwidth limiting sysctls. Note that the default lower bound of
217 * 1024 exists only for debugging. A good production default would be
218 * something like 6100.
220 static int tcp_inflight_enable = 0;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
222 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
224 static int tcp_inflight_debug = 0;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
226 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
228 static int tcp_inflight_min = 6144;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
230 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
232 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
234 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
236 static int tcp_inflight_stab = 20;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
238 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
240 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
241 static struct malloc_pipe tcptemp_mpipe;
243 static void tcp_willblock(int);
244 static void tcp_cleartaocache (void);
245 static void tcp_notify (struct inpcb *, int);
247 struct tcp_stats tcpstats_percpu[MAXCPU];
248 #ifdef SMP
249 static int
250 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
252 int cpu, error = 0;
254 for (cpu = 0; cpu < ncpus; ++cpu) {
255 if ((error = SYSCTL_OUT(req, &tcpstats_percpu[cpu],
256 sizeof(struct tcp_stats))))
257 break;
258 if ((error = SYSCTL_IN(req, &tcpstats_percpu[cpu],
259 sizeof(struct tcp_stats))))
260 break;
263 return (error);
265 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
266 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
267 #else
268 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
269 &tcpstat, tcp_stats, "TCP statistics");
270 #endif
273 * Target size of TCP PCB hash tables. Must be a power of two.
275 * Note that this can be overridden by the kernel environment
276 * variable net.inet.tcp.tcbhashsize
278 #ifndef TCBHASHSIZE
279 #define TCBHASHSIZE 512
280 #endif
283 * This is the actual shape of what we allocate using the zone
284 * allocator. Doing it this way allows us to protect both structures
285 * using the same generation count, and also eliminates the overhead
286 * of allocating tcpcbs separately. By hiding the structure here,
287 * we avoid changing most of the rest of the code (although it needs
288 * to be changed, eventually, for greater efficiency).
290 #define ALIGNMENT 32
291 #define ALIGNM1 (ALIGNMENT - 1)
292 struct inp_tp {
293 union {
294 struct inpcb inp;
295 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
296 } inp_tp_u;
297 struct tcpcb tcb;
298 struct tcp_callout inp_tp_rexmt;
299 struct tcp_callout inp_tp_persist;
300 struct tcp_callout inp_tp_keep;
301 struct tcp_callout inp_tp_2msl;
302 struct tcp_callout inp_tp_delack;
303 struct netmsg_tcp_timer inp_tp_timermsg;
305 #undef ALIGNMENT
306 #undef ALIGNM1
309 * Tcp initialization
311 void
312 tcp_init(void)
314 struct inpcbporthead *porthashbase;
315 u_long porthashmask;
316 struct vm_zone *ipi_zone;
317 int hashsize = TCBHASHSIZE;
318 int cpu;
321 * note: tcptemp is used for keepalives, and it is ok for an
322 * allocation to fail so do not specify MPF_INT.
324 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
325 25, -1, 0, NULL);
327 tcp_ccgen = 1;
328 tcp_cleartaocache();
330 tcp_delacktime = TCPTV_DELACK;
331 tcp_keepinit = TCPTV_KEEP_INIT;
332 tcp_keepidle = TCPTV_KEEP_IDLE;
333 tcp_keepintvl = TCPTV_KEEPINTVL;
334 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
335 tcp_msl = TCPTV_MSL;
336 tcp_rexmit_min = TCPTV_MIN;
337 tcp_rexmit_slop = TCPTV_CPU_VAR;
339 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
340 if (!powerof2(hashsize)) {
341 kprintf("WARNING: TCB hash size not a power of 2\n");
342 hashsize = 512; /* safe default */
344 tcp_tcbhashsize = hashsize;
345 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
346 ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
347 ZONE_INTERRUPT, 0);
349 for (cpu = 0; cpu < ncpus2; cpu++) {
350 in_pcbinfo_init(&tcbinfo[cpu]);
351 tcbinfo[cpu].cpu = cpu;
352 tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
353 &tcbinfo[cpu].hashmask);
354 tcbinfo[cpu].porthashbase = porthashbase;
355 tcbinfo[cpu].porthashmask = porthashmask;
356 tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
357 &tcbinfo[cpu].wildcardhashmask);
358 tcbinfo[cpu].ipi_zone = ipi_zone;
359 TAILQ_INIT(&tcpcbackq[cpu]);
362 tcp_reass_maxseg = nmbclusters / 16;
363 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
365 #ifdef INET6
366 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
367 #else
368 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
369 #endif
370 if (max_protohdr < TCP_MINPROTOHDR)
371 max_protohdr = TCP_MINPROTOHDR;
372 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
373 panic("tcp_init");
374 #undef TCP_MINPROTOHDR
377 * Initialize TCP statistics counters for each CPU.
379 #ifdef SMP
380 for (cpu = 0; cpu < ncpus; ++cpu) {
381 bzero(&tcpstats_percpu[cpu], sizeof(struct tcp_stats));
383 #else
384 bzero(&tcpstat, sizeof(struct tcp_stats));
385 #endif
387 syncache_init();
388 tcp_thread_init();
391 void
392 tcpmsg_service_loop(void *dummy)
394 struct netmsg *msg;
395 int mplocked;
398 * Thread was started with TDF_MPSAFE
400 mplocked = 0;
402 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
403 do {
404 logtcp(rxmsg);
405 mplocked = netmsg_service(msg, tcp_mpsafe_thread,
406 mplocked);
407 } while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
409 logtcp(delayed);
410 tcp_willblock(mplocked);
411 logtcp(wait);
415 static void
416 tcp_willblock(int mplocked)
418 struct tcpcb *tp;
419 int cpu = mycpu->gd_cpuid;
420 int unlock = 0;
422 if (!mplocked && !tcp_mpsafe_proto) {
423 if (TAILQ_EMPTY(&tcpcbackq[cpu]))
424 return;
426 get_mplock();
427 mplocked = 1;
428 unlock = 1;
431 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
432 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
433 tp->t_flags &= ~TF_ONOUTPUTQ;
434 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
435 tcp_output(tp);
438 if (unlock)
439 rel_mplock();
444 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
445 * tcp_template used to store this data in mbufs, but we now recopy it out
446 * of the tcpcb each time to conserve mbufs.
448 void
449 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
451 struct inpcb *inp = tp->t_inpcb;
452 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
454 #ifdef INET6
455 if (inp->inp_vflag & INP_IPV6) {
456 struct ip6_hdr *ip6;
458 ip6 = (struct ip6_hdr *)ip_ptr;
459 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
460 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
461 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
462 (IPV6_VERSION & IPV6_VERSION_MASK);
463 ip6->ip6_nxt = IPPROTO_TCP;
464 ip6->ip6_plen = sizeof(struct tcphdr);
465 ip6->ip6_src = inp->in6p_laddr;
466 ip6->ip6_dst = inp->in6p_faddr;
467 tcp_hdr->th_sum = 0;
468 } else
469 #endif
471 struct ip *ip = (struct ip *) ip_ptr;
473 ip->ip_vhl = IP_VHL_BORING;
474 ip->ip_tos = 0;
475 ip->ip_len = 0;
476 ip->ip_id = 0;
477 ip->ip_off = 0;
478 ip->ip_ttl = 0;
479 ip->ip_sum = 0;
480 ip->ip_p = IPPROTO_TCP;
481 ip->ip_src = inp->inp_laddr;
482 ip->ip_dst = inp->inp_faddr;
483 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
484 ip->ip_dst.s_addr,
485 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
488 tcp_hdr->th_sport = inp->inp_lport;
489 tcp_hdr->th_dport = inp->inp_fport;
490 tcp_hdr->th_seq = 0;
491 tcp_hdr->th_ack = 0;
492 tcp_hdr->th_x2 = 0;
493 tcp_hdr->th_off = 5;
494 tcp_hdr->th_flags = 0;
495 tcp_hdr->th_win = 0;
496 tcp_hdr->th_urp = 0;
500 * Create template to be used to send tcp packets on a connection.
501 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
502 * use for this function is in keepalives, which use tcp_respond.
504 struct tcptemp *
505 tcp_maketemplate(struct tcpcb *tp)
507 struct tcptemp *tmp;
509 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
510 return (NULL);
511 tcp_fillheaders(tp, &tmp->tt_ipgen, &tmp->tt_t);
512 return (tmp);
515 void
516 tcp_freetemplate(struct tcptemp *tmp)
518 mpipe_free(&tcptemp_mpipe, tmp);
522 * Send a single message to the TCP at address specified by
523 * the given TCP/IP header. If m == NULL, then we make a copy
524 * of the tcpiphdr at ti and send directly to the addressed host.
525 * This is used to force keep alive messages out using the TCP
526 * template for a connection. If flags are given then we send
527 * a message back to the TCP which originated the * segment ti,
528 * and discard the mbuf containing it and any other attached mbufs.
530 * In any case the ack and sequence number of the transmitted
531 * segment are as specified by the parameters.
533 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
535 void
536 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
537 tcp_seq ack, tcp_seq seq, int flags)
539 int tlen;
540 int win = 0;
541 struct route *ro = NULL;
542 struct route sro;
543 struct ip *ip = ipgen;
544 struct tcphdr *nth;
545 int ipflags = 0;
546 struct route_in6 *ro6 = NULL;
547 struct route_in6 sro6;
548 struct ip6_hdr *ip6 = ipgen;
549 boolean_t use_tmpro = TRUE;
550 #ifdef INET6
551 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
552 #else
553 const boolean_t isipv6 = FALSE;
554 #endif
556 if (tp != NULL) {
557 if (!(flags & TH_RST)) {
558 win = ssb_space(&tp->t_inpcb->inp_socket->so_rcv);
559 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
560 win = (long)TCP_MAXWIN << tp->rcv_scale;
563 * Don't use the route cache of a listen socket,
564 * it is not MPSAFE; use temporary route cache.
566 if (tp->t_state != TCPS_LISTEN) {
567 if (isipv6)
568 ro6 = &tp->t_inpcb->in6p_route;
569 else
570 ro = &tp->t_inpcb->inp_route;
571 use_tmpro = FALSE;
574 if (use_tmpro) {
575 if (isipv6) {
576 ro6 = &sro6;
577 bzero(ro6, sizeof *ro6);
578 } else {
579 ro = &sro;
580 bzero(ro, sizeof *ro);
583 if (m == NULL) {
584 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
585 if (m == NULL)
586 return;
587 tlen = 0;
588 m->m_data += max_linkhdr;
589 if (isipv6) {
590 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
591 ip6 = mtod(m, struct ip6_hdr *);
592 nth = (struct tcphdr *)(ip6 + 1);
593 } else {
594 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
595 ip = mtod(m, struct ip *);
596 nth = (struct tcphdr *)(ip + 1);
598 bcopy(th, nth, sizeof(struct tcphdr));
599 flags = TH_ACK;
600 } else {
601 m_freem(m->m_next);
602 m->m_next = NULL;
603 m->m_data = (caddr_t)ipgen;
604 /* m_len is set later */
605 tlen = 0;
606 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
607 if (isipv6) {
608 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
609 nth = (struct tcphdr *)(ip6 + 1);
610 } else {
611 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
612 nth = (struct tcphdr *)(ip + 1);
614 if (th != nth) {
616 * this is usually a case when an extension header
617 * exists between the IPv6 header and the
618 * TCP header.
620 nth->th_sport = th->th_sport;
621 nth->th_dport = th->th_dport;
623 xchg(nth->th_dport, nth->th_sport, n_short);
624 #undef xchg
626 if (isipv6) {
627 ip6->ip6_flow = 0;
628 ip6->ip6_vfc = IPV6_VERSION;
629 ip6->ip6_nxt = IPPROTO_TCP;
630 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
631 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
632 } else {
633 tlen += sizeof(struct tcpiphdr);
634 ip->ip_len = tlen;
635 ip->ip_ttl = ip_defttl;
637 m->m_len = tlen;
638 m->m_pkthdr.len = tlen;
639 m->m_pkthdr.rcvif = (struct ifnet *) NULL;
640 nth->th_seq = htonl(seq);
641 nth->th_ack = htonl(ack);
642 nth->th_x2 = 0;
643 nth->th_off = sizeof(struct tcphdr) >> 2;
644 nth->th_flags = flags;
645 if (tp != NULL)
646 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
647 else
648 nth->th_win = htons((u_short)win);
649 nth->th_urp = 0;
650 if (isipv6) {
651 nth->th_sum = 0;
652 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
653 sizeof(struct ip6_hdr),
654 tlen - sizeof(struct ip6_hdr));
655 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
656 (ro6 && ro6->ro_rt) ?
657 ro6->ro_rt->rt_ifp : NULL);
658 } else {
659 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
660 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
661 m->m_pkthdr.csum_flags = CSUM_TCP;
662 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
664 #ifdef TCPDEBUG
665 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
666 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
667 #endif
668 if (isipv6) {
669 ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
670 tp ? tp->t_inpcb : NULL);
671 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
672 RTFREE(ro6->ro_rt);
673 ro6->ro_rt = NULL;
675 } else {
676 ipflags |= IP_DEBUGROUTE;
677 ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
678 if ((ro == &sro) && (ro->ro_rt != NULL)) {
679 RTFREE(ro->ro_rt);
680 ro->ro_rt = NULL;
686 * Create a new TCP control block, making an
687 * empty reassembly queue and hooking it to the argument
688 * protocol control block. The `inp' parameter must have
689 * come from the zone allocator set up in tcp_init().
691 struct tcpcb *
692 tcp_newtcpcb(struct inpcb *inp)
694 struct inp_tp *it;
695 struct tcpcb *tp;
696 #ifdef INET6
697 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
698 #else
699 const boolean_t isipv6 = FALSE;
700 #endif
702 it = (struct inp_tp *)inp;
703 tp = &it->tcb;
704 bzero(tp, sizeof(struct tcpcb));
705 LIST_INIT(&tp->t_segq);
706 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
708 /* Set up our timeouts. */
709 tp->tt_rexmt = &it->inp_tp_rexmt;
710 tp->tt_persist = &it->inp_tp_persist;
711 tp->tt_keep = &it->inp_tp_keep;
712 tp->tt_2msl = &it->inp_tp_2msl;
713 tp->tt_delack = &it->inp_tp_delack;
714 tcp_inittimers(tp);
716 tp->tt_msg = &it->inp_tp_timermsg;
717 if (isipv6) {
718 /* Don't mess with IPv6; always create timer message */
719 tcp_create_timermsg(tp);
720 } else {
722 * Zero out timer message. We don't create it here,
723 * since the current CPU may not be the owner of this
724 * inpcb.
726 bzero(tp->tt_msg, sizeof(*tp->tt_msg));
729 if (tcp_do_rfc1323)
730 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
731 if (tcp_do_rfc1644)
732 tp->t_flags |= TF_REQ_CC;
733 tp->t_inpcb = inp; /* XXX */
734 tp->t_state = TCPS_CLOSED;
736 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
738 * reasonable initial retransmit time.
740 tp->t_srtt = TCPTV_SRTTBASE;
741 tp->t_rttvar =
742 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
743 tp->t_rttmin = tcp_rexmit_min;
744 tp->t_rxtcur = TCPTV_RTOBASE;
745 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 tp->t_rcvtime = ticks;
750 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
751 * because the socket may be bound to an IPv6 wildcard address,
752 * which may match an IPv4-mapped IPv6 address.
754 inp->inp_ip_ttl = ip_defttl;
755 inp->inp_ppcb = tp;
756 tcp_sack_tcpcb_init(tp);
757 return (tp); /* XXX */
761 * Drop a TCP connection, reporting the specified error.
762 * If connection is synchronized, then send a RST to peer.
764 struct tcpcb *
765 tcp_drop(struct tcpcb *tp, int error)
767 struct socket *so = tp->t_inpcb->inp_socket;
769 if (TCPS_HAVERCVDSYN(tp->t_state)) {
770 tp->t_state = TCPS_CLOSED;
771 tcp_output(tp);
772 tcpstat.tcps_drops++;
773 } else
774 tcpstat.tcps_conndrops++;
775 if (error == ETIMEDOUT && tp->t_softerror)
776 error = tp->t_softerror;
777 so->so_error = error;
778 return (tcp_close(tp));
781 #ifdef SMP
783 struct netmsg_remwildcard {
784 struct netmsg nm_netmsg;
785 struct inpcb *nm_inp;
786 struct inpcbinfo *nm_pcbinfo;
787 #if defined(INET6)
788 int nm_isinet6;
789 #else
790 int nm_unused01;
791 #endif
795 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
796 * inp can be detached. We do this by cycling through the cpus, ending up
797 * on the cpu controlling the inp last and then doing the disconnect.
799 static void
800 in_pcbremwildcardhash_handler(struct netmsg *msg0)
802 struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
803 int cpu;
805 cpu = msg->nm_pcbinfo->cpu;
807 if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
808 /* note: detach removes any wildcard hash entry */
809 #ifdef INET6
810 if (msg->nm_isinet6)
811 in6_pcbdetach(msg->nm_inp);
812 else
813 #endif
814 in_pcbdetach(msg->nm_inp);
815 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
816 } else {
817 in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
818 cpu = (cpu + 1) % ncpus2;
819 msg->nm_pcbinfo = &tcbinfo[cpu];
820 lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
824 #endif
827 * Close a TCP control block:
828 * discard all space held by the tcp
829 * discard internet protocol block
830 * wake up any sleepers
832 struct tcpcb *
833 tcp_close(struct tcpcb *tp)
835 struct tseg_qent *q;
836 struct inpcb *inp = tp->t_inpcb;
837 struct socket *so = inp->inp_socket;
838 struct rtentry *rt;
839 boolean_t dosavessthresh;
840 #ifdef SMP
841 int cpu;
842 #endif
843 #ifdef INET6
844 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
845 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
846 #else
847 const boolean_t isipv6 = FALSE;
848 #endif
851 * The tp is not instantly destroyed in the wildcard case. Setting
852 * the state to TCPS_TERMINATING will prevent the TCP stack from
853 * messing with it, though it should be noted that this change may
854 * not take effect on other cpus until we have chained the wildcard
855 * hash removal.
857 * XXX we currently depend on the BGL to synchronize the tp->t_state
858 * update and prevent other tcp protocol threads from accepting new
859 * connections on the listen socket we might be trying to close down.
861 KKASSERT(tp->t_state != TCPS_TERMINATING);
862 tp->t_state = TCPS_TERMINATING;
865 * Make sure that all of our timers are stopped before we
866 * delete the PCB. For listen TCP socket (tp->tt_msg == NULL),
867 * timers are never used.
869 if (tp->tt_msg != NULL) {
870 tcp_callout_stop(tp, tp->tt_rexmt);
871 tcp_callout_stop(tp, tp->tt_persist);
872 tcp_callout_stop(tp, tp->tt_keep);
873 tcp_callout_stop(tp, tp->tt_2msl);
874 tcp_callout_stop(tp, tp->tt_delack);
877 if (tp->t_flags & TF_ONOUTPUTQ) {
878 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
879 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
880 tp->t_flags &= ~TF_ONOUTPUTQ;
884 * If we got enough samples through the srtt filter,
885 * save the rtt and rttvar in the routing entry.
886 * 'Enough' is arbitrarily defined as the 16 samples.
887 * 16 samples is enough for the srtt filter to converge
888 * to within 5% of the correct value; fewer samples and
889 * we could save a very bogus rtt.
891 * Don't update the default route's characteristics and don't
892 * update anything that the user "locked".
894 if (tp->t_rttupdated >= 16) {
895 u_long i = 0;
897 if (isipv6) {
898 struct sockaddr_in6 *sin6;
900 if ((rt = inp->in6p_route.ro_rt) == NULL)
901 goto no_valid_rt;
902 sin6 = (struct sockaddr_in6 *)rt_key(rt);
903 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
904 goto no_valid_rt;
905 } else
906 if ((rt = inp->inp_route.ro_rt) == NULL ||
907 ((struct sockaddr_in *)rt_key(rt))->
908 sin_addr.s_addr == INADDR_ANY)
909 goto no_valid_rt;
911 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
912 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
913 if (rt->rt_rmx.rmx_rtt && i)
915 * filter this update to half the old & half
916 * the new values, converting scale.
917 * See route.h and tcp_var.h for a
918 * description of the scaling constants.
920 rt->rt_rmx.rmx_rtt =
921 (rt->rt_rmx.rmx_rtt + i) / 2;
922 else
923 rt->rt_rmx.rmx_rtt = i;
924 tcpstat.tcps_cachedrtt++;
926 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
927 i = tp->t_rttvar *
928 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
929 if (rt->rt_rmx.rmx_rttvar && i)
930 rt->rt_rmx.rmx_rttvar =
931 (rt->rt_rmx.rmx_rttvar + i) / 2;
932 else
933 rt->rt_rmx.rmx_rttvar = i;
934 tcpstat.tcps_cachedrttvar++;
937 * The old comment here said:
938 * update the pipelimit (ssthresh) if it has been updated
939 * already or if a pipesize was specified & the threshhold
940 * got below half the pipesize. I.e., wait for bad news
941 * before we start updating, then update on both good
942 * and bad news.
944 * But we want to save the ssthresh even if no pipesize is
945 * specified explicitly in the route, because such
946 * connections still have an implicit pipesize specified
947 * by the global tcp_sendspace. In the absence of a reliable
948 * way to calculate the pipesize, it will have to do.
950 i = tp->snd_ssthresh;
951 if (rt->rt_rmx.rmx_sendpipe != 0)
952 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
953 else
954 dosavessthresh = (i < so->so_snd.ssb_hiwat/2);
955 if (dosavessthresh ||
956 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
957 (rt->rt_rmx.rmx_ssthresh != 0))) {
959 * convert the limit from user data bytes to
960 * packets then to packet data bytes.
962 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
963 if (i < 2)
964 i = 2;
965 i *= tp->t_maxseg +
966 (isipv6 ?
967 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
968 sizeof(struct tcpiphdr));
969 if (rt->rt_rmx.rmx_ssthresh)
970 rt->rt_rmx.rmx_ssthresh =
971 (rt->rt_rmx.rmx_ssthresh + i) / 2;
972 else
973 rt->rt_rmx.rmx_ssthresh = i;
974 tcpstat.tcps_cachedssthresh++;
978 no_valid_rt:
979 /* free the reassembly queue, if any */
980 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
981 LIST_REMOVE(q, tqe_q);
982 m_freem(q->tqe_m);
983 FREE(q, M_TSEGQ);
984 tcp_reass_qsize--;
986 /* throw away SACK blocks in scoreboard*/
987 if (TCP_DO_SACK(tp))
988 tcp_sack_cleanup(&tp->scb);
990 inp->inp_ppcb = NULL;
991 soisdisconnected(so);
993 tcp_destroy_timermsg(tp);
996 * Discard the inp. In the SMP case a wildcard inp's hash (created
997 * by a listen socket or an INADDR_ANY udp socket) is replicated
998 * for each protocol thread and must be removed in the context of
999 * that thread. This is accomplished by chaining the message
1000 * through the cpus.
1002 * If the inp is not wildcarded we simply detach, which will remove
1003 * the any hashes still present for this inp.
1005 #ifdef SMP
1006 if (inp->inp_flags & INP_WILDCARD_MP) {
1007 struct netmsg_remwildcard *msg;
1009 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
1010 msg = kmalloc(sizeof(struct netmsg_remwildcard),
1011 M_LWKTMSG, M_INTWAIT);
1012 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1013 in_pcbremwildcardhash_handler);
1014 #ifdef INET6
1015 msg->nm_isinet6 = isafinet6;
1016 #endif
1017 msg->nm_inp = inp;
1018 msg->nm_pcbinfo = &tcbinfo[cpu];
1019 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1020 } else
1021 #endif
1023 /* note: detach removes any wildcard hash entry */
1024 #ifdef INET6
1025 if (isafinet6)
1026 in6_pcbdetach(inp);
1027 else
1028 #endif
1029 in_pcbdetach(inp);
1031 tcpstat.tcps_closed++;
1032 return (NULL);
1035 static __inline void
1036 tcp_drain_oncpu(struct inpcbhead *head)
1038 struct inpcb *inpb;
1039 struct tcpcb *tcpb;
1040 struct tseg_qent *te;
1042 LIST_FOREACH(inpb, head, inp_list) {
1043 if (inpb->inp_flags & INP_PLACEMARKER)
1044 continue;
1045 if ((tcpb = intotcpcb(inpb))) {
1046 while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
1047 LIST_REMOVE(te, tqe_q);
1048 m_freem(te->tqe_m);
1049 FREE(te, M_TSEGQ);
1050 tcp_reass_qsize--;
1056 #ifdef SMP
1057 struct netmsg_tcp_drain {
1058 struct netmsg nm_netmsg;
1059 struct inpcbhead *nm_head;
1062 static void
1063 tcp_drain_handler(netmsg_t netmsg)
1065 struct netmsg_tcp_drain *nm = (void *)netmsg;
1067 tcp_drain_oncpu(nm->nm_head);
1068 lwkt_replymsg(&nm->nm_netmsg.nm_lmsg, 0);
1070 #endif
1072 void
1073 tcp_drain(void)
1075 #ifdef SMP
1076 int cpu;
1077 #endif
1079 if (!do_tcpdrain)
1080 return;
1083 * Walk the tcpbs, if existing, and flush the reassembly queue,
1084 * if there is one...
1085 * XXX: The "Net/3" implementation doesn't imply that the TCP
1086 * reassembly queue should be flushed, but in a situation
1087 * where we're really low on mbufs, this is potentially
1088 * useful.
1090 #ifdef SMP
1091 for (cpu = 0; cpu < ncpus2; cpu++) {
1092 struct netmsg_tcp_drain *msg;
1094 if (cpu == mycpu->gd_cpuid) {
1095 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1096 } else {
1097 msg = kmalloc(sizeof(struct netmsg_tcp_drain),
1098 M_LWKTMSG, M_NOWAIT);
1099 if (msg == NULL)
1100 continue;
1101 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1102 tcp_drain_handler);
1103 msg->nm_head = &tcbinfo[cpu].pcblisthead;
1104 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_netmsg.nm_lmsg);
1107 #else
1108 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1109 #endif
1113 * Notify a tcp user of an asynchronous error;
1114 * store error as soft error, but wake up user
1115 * (for now, won't do anything until can select for soft error).
1117 * Do not wake up user since there currently is no mechanism for
1118 * reporting soft errors (yet - a kqueue filter may be added).
1120 static void
1121 tcp_notify(struct inpcb *inp, int error)
1123 struct tcpcb *tp = intotcpcb(inp);
1126 * Ignore some errors if we are hooked up.
1127 * If connection hasn't completed, has retransmitted several times,
1128 * and receives a second error, give up now. This is better
1129 * than waiting a long time to establish a connection that
1130 * can never complete.
1132 if (tp->t_state == TCPS_ESTABLISHED &&
1133 (error == EHOSTUNREACH || error == ENETUNREACH ||
1134 error == EHOSTDOWN)) {
1135 return;
1136 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1137 tp->t_softerror)
1138 tcp_drop(tp, error);
1139 else
1140 tp->t_softerror = error;
1141 #if 0
1142 wakeup(&so->so_timeo);
1143 sorwakeup(so);
1144 sowwakeup(so);
1145 #endif
1148 static int
1149 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1151 int error, i, n;
1152 struct inpcb *marker;
1153 struct inpcb *inp;
1154 inp_gen_t gencnt;
1155 globaldata_t gd;
1156 int origcpu, ccpu;
1158 error = 0;
1159 n = 0;
1162 * The process of preparing the TCB list is too time-consuming and
1163 * resource-intensive to repeat twice on every request.
1165 if (req->oldptr == NULL) {
1166 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1167 gd = globaldata_find(ccpu);
1168 n += tcbinfo[gd->gd_cpuid].ipi_count;
1170 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1171 return (0);
1174 if (req->newptr != NULL)
1175 return (EPERM);
1177 marker = kmalloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1178 marker->inp_flags |= INP_PLACEMARKER;
1181 * OK, now we're committed to doing something. Run the inpcb list
1182 * for each cpu in the system and construct the output. Use a
1183 * list placemarker to deal with list changes occuring during
1184 * copyout blockages (but otherwise depend on being on the correct
1185 * cpu to avoid races).
1187 origcpu = mycpu->gd_cpuid;
1188 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1189 globaldata_t rgd;
1190 caddr_t inp_ppcb;
1191 struct xtcpcb xt;
1192 int cpu_id;
1194 cpu_id = (origcpu + ccpu) % ncpus;
1195 if ((smp_active_mask & (1 << cpu_id)) == 0)
1196 continue;
1197 rgd = globaldata_find(cpu_id);
1198 lwkt_setcpu_self(rgd);
1200 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1201 n = tcbinfo[cpu_id].ipi_count;
1203 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1204 i = 0;
1205 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1207 * process a snapshot of pcbs, ignoring placemarkers
1208 * and using our own to allow SYSCTL_OUT to block.
1210 LIST_REMOVE(marker, inp_list);
1211 LIST_INSERT_AFTER(inp, marker, inp_list);
1213 if (inp->inp_flags & INP_PLACEMARKER)
1214 continue;
1215 if (inp->inp_gencnt > gencnt)
1216 continue;
1217 if (prison_xinpcb(req->td, inp))
1218 continue;
1220 xt.xt_len = sizeof xt;
1221 bcopy(inp, &xt.xt_inp, sizeof *inp);
1222 inp_ppcb = inp->inp_ppcb;
1223 if (inp_ppcb != NULL)
1224 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1225 else
1226 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1227 if (inp->inp_socket)
1228 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1229 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1230 break;
1231 ++i;
1233 LIST_REMOVE(marker, inp_list);
1234 if (error == 0 && i < n) {
1235 bzero(&xt, sizeof xt);
1236 xt.xt_len = sizeof xt;
1237 while (i < n) {
1238 error = SYSCTL_OUT(req, &xt, sizeof xt);
1239 if (error)
1240 break;
1241 ++i;
1247 * Make sure we are on the same cpu we were on originally, since
1248 * higher level callers expect this. Also don't pollute caches with
1249 * migrated userland data by (eventually) returning to userland
1250 * on a different cpu.
1252 lwkt_setcpu_self(globaldata_find(origcpu));
1253 kfree(marker, M_TEMP);
1254 return (error);
1257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1258 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1260 static int
1261 tcp_getcred(SYSCTL_HANDLER_ARGS)
1263 struct sockaddr_in addrs[2];
1264 struct inpcb *inp;
1265 int cpu;
1266 int error;
1268 error = priv_check(req->td, PRIV_ROOT);
1269 if (error != 0)
1270 return (error);
1271 error = SYSCTL_IN(req, addrs, sizeof addrs);
1272 if (error != 0)
1273 return (error);
1274 crit_enter();
1275 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1276 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1277 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1278 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1279 if (inp == NULL || inp->inp_socket == NULL) {
1280 error = ENOENT;
1281 goto out;
1283 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1284 out:
1285 crit_exit();
1286 return (error);
1289 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1290 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1292 #ifdef INET6
1293 static int
1294 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1296 struct sockaddr_in6 addrs[2];
1297 struct inpcb *inp;
1298 int error;
1299 boolean_t mapped = FALSE;
1301 error = priv_check(req->td, PRIV_ROOT);
1302 if (error != 0)
1303 return (error);
1304 error = SYSCTL_IN(req, addrs, sizeof addrs);
1305 if (error != 0)
1306 return (error);
1307 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1308 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1309 mapped = TRUE;
1310 else
1311 return (EINVAL);
1313 crit_enter();
1314 if (mapped) {
1315 inp = in_pcblookup_hash(&tcbinfo[0],
1316 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1317 addrs[1].sin6_port,
1318 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1319 addrs[0].sin6_port,
1320 0, NULL);
1321 } else {
1322 inp = in6_pcblookup_hash(&tcbinfo[0],
1323 &addrs[1].sin6_addr, addrs[1].sin6_port,
1324 &addrs[0].sin6_addr, addrs[0].sin6_port,
1325 0, NULL);
1327 if (inp == NULL || inp->inp_socket == NULL) {
1328 error = ENOENT;
1329 goto out;
1331 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1332 out:
1333 crit_exit();
1334 return (error);
1337 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1338 0, 0,
1339 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1340 #endif
1342 struct netmsg_tcp_notify {
1343 struct netmsg nm_nmsg;
1344 void (*nm_notify)(struct inpcb *, int);
1345 struct in_addr nm_faddr;
1346 int nm_arg;
1349 static void
1350 tcp_notifyall_oncpu(struct netmsg *netmsg)
1352 struct netmsg_tcp_notify *nmsg = (struct netmsg_tcp_notify *)netmsg;
1353 int nextcpu;
1355 in_pcbnotifyall(&tcbinfo[mycpuid].pcblisthead, nmsg->nm_faddr,
1356 nmsg->nm_arg, nmsg->nm_notify);
1358 nextcpu = mycpuid + 1;
1359 if (nextcpu < ncpus2)
1360 lwkt_forwardmsg(tcp_cport(nextcpu), &netmsg->nm_lmsg);
1361 else
1362 lwkt_replymsg(&netmsg->nm_lmsg, 0);
1365 void
1366 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1368 struct ip *ip = vip;
1369 struct tcphdr *th;
1370 struct in_addr faddr;
1371 struct inpcb *inp;
1372 struct tcpcb *tp;
1373 void (*notify)(struct inpcb *, int) = tcp_notify;
1374 tcp_seq icmpseq;
1375 int arg, cpu;
1377 if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
1378 return;
1381 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1382 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1383 return;
1385 arg = inetctlerrmap[cmd];
1386 if (cmd == PRC_QUENCH) {
1387 notify = tcp_quench;
1388 } else if (icmp_may_rst &&
1389 (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1390 cmd == PRC_UNREACH_PORT ||
1391 cmd == PRC_TIMXCEED_INTRANS) &&
1392 ip != NULL) {
1393 notify = tcp_drop_syn_sent;
1394 } else if (cmd == PRC_MSGSIZE) {
1395 struct icmp *icmp = (struct icmp *)
1396 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1398 arg = ntohs(icmp->icmp_nextmtu);
1399 notify = tcp_mtudisc;
1400 } else if (PRC_IS_REDIRECT(cmd)) {
1401 ip = NULL;
1402 notify = in_rtchange;
1403 } else if (cmd == PRC_HOSTDEAD) {
1404 ip = NULL;
1407 if (ip != NULL) {
1408 crit_enter();
1409 th = (struct tcphdr *)((caddr_t)ip +
1410 (IP_VHL_HL(ip->ip_vhl) << 2));
1411 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1412 ip->ip_src.s_addr, th->th_sport);
1413 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1414 ip->ip_src, th->th_sport, 0, NULL);
1415 if ((inp != NULL) && (inp->inp_socket != NULL)) {
1416 icmpseq = htonl(th->th_seq);
1417 tp = intotcpcb(inp);
1418 if (SEQ_GEQ(icmpseq, tp->snd_una) &&
1419 SEQ_LT(icmpseq, tp->snd_max))
1420 (*notify)(inp, arg);
1421 } else {
1422 struct in_conninfo inc;
1424 inc.inc_fport = th->th_dport;
1425 inc.inc_lport = th->th_sport;
1426 inc.inc_faddr = faddr;
1427 inc.inc_laddr = ip->ip_src;
1428 #ifdef INET6
1429 inc.inc_isipv6 = 0;
1430 #endif
1431 syncache_unreach(&inc, th);
1433 crit_exit();
1434 } else {
1435 struct netmsg_tcp_notify nmsg;
1437 KKASSERT(&curthread->td_msgport == cpu_portfn(0));
1438 netmsg_init(&nmsg.nm_nmsg, &curthread->td_msgport, 0,
1439 tcp_notifyall_oncpu);
1440 nmsg.nm_faddr = faddr;
1441 nmsg.nm_arg = arg;
1442 nmsg.nm_notify = notify;
1444 lwkt_domsg(tcp_cport(0), &nmsg.nm_nmsg.nm_lmsg, 0);
1448 #ifdef INET6
1449 void
1450 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1452 struct tcphdr th;
1453 void (*notify) (struct inpcb *, int) = tcp_notify;
1454 struct ip6_hdr *ip6;
1455 struct mbuf *m;
1456 struct ip6ctlparam *ip6cp = NULL;
1457 const struct sockaddr_in6 *sa6_src = NULL;
1458 int off;
1459 struct tcp_portonly {
1460 u_int16_t th_sport;
1461 u_int16_t th_dport;
1462 } *thp;
1463 int arg;
1465 if (sa->sa_family != AF_INET6 ||
1466 sa->sa_len != sizeof(struct sockaddr_in6))
1467 return;
1469 arg = 0;
1470 if (cmd == PRC_QUENCH)
1471 notify = tcp_quench;
1472 else if (cmd == PRC_MSGSIZE) {
1473 struct ip6ctlparam *ip6cp = d;
1474 struct icmp6_hdr *icmp6 = ip6cp->ip6c_icmp6;
1476 arg = ntohl(icmp6->icmp6_mtu);
1477 notify = tcp_mtudisc;
1478 } else if (!PRC_IS_REDIRECT(cmd) &&
1479 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) {
1480 return;
1483 /* if the parameter is from icmp6, decode it. */
1484 if (d != NULL) {
1485 ip6cp = (struct ip6ctlparam *)d;
1486 m = ip6cp->ip6c_m;
1487 ip6 = ip6cp->ip6c_ip6;
1488 off = ip6cp->ip6c_off;
1489 sa6_src = ip6cp->ip6c_src;
1490 } else {
1491 m = NULL;
1492 ip6 = NULL;
1493 off = 0; /* fool gcc */
1494 sa6_src = &sa6_any;
1497 if (ip6 != NULL) {
1498 struct in_conninfo inc;
1500 * XXX: We assume that when IPV6 is non NULL,
1501 * M and OFF are valid.
1504 /* check if we can safely examine src and dst ports */
1505 if (m->m_pkthdr.len < off + sizeof *thp)
1506 return;
1508 bzero(&th, sizeof th);
1509 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1511 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1512 (struct sockaddr *)ip6cp->ip6c_src,
1513 th.th_sport, cmd, arg, notify);
1515 inc.inc_fport = th.th_dport;
1516 inc.inc_lport = th.th_sport;
1517 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1518 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1519 inc.inc_isipv6 = 1;
1520 syncache_unreach(&inc, &th);
1521 } else
1522 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1523 (const struct sockaddr *)sa6_src, 0, cmd, arg, notify);
1525 #endif
1528 * Following is where TCP initial sequence number generation occurs.
1530 * There are two places where we must use initial sequence numbers:
1531 * 1. In SYN-ACK packets.
1532 * 2. In SYN packets.
1534 * All ISNs for SYN-ACK packets are generated by the syncache. See
1535 * tcp_syncache.c for details.
1537 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1538 * depends on this property. In addition, these ISNs should be
1539 * unguessable so as to prevent connection hijacking. To satisfy
1540 * the requirements of this situation, the algorithm outlined in
1541 * RFC 1948 is used to generate sequence numbers.
1543 * Implementation details:
1545 * Time is based off the system timer, and is corrected so that it
1546 * increases by one megabyte per second. This allows for proper
1547 * recycling on high speed LANs while still leaving over an hour
1548 * before rollover.
1550 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1551 * between seeding of isn_secret. This is normally set to zero,
1552 * as reseeding should not be necessary.
1556 #define ISN_BYTES_PER_SECOND 1048576
1558 u_char isn_secret[32];
1559 int isn_last_reseed;
1560 MD5_CTX isn_ctx;
1562 tcp_seq
1563 tcp_new_isn(struct tcpcb *tp)
1565 u_int32_t md5_buffer[4];
1566 tcp_seq new_isn;
1568 /* Seed if this is the first use, reseed if requested. */
1569 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1570 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1571 < (u_int)ticks))) {
1572 read_random_unlimited(&isn_secret, sizeof isn_secret);
1573 isn_last_reseed = ticks;
1576 /* Compute the md5 hash and return the ISN. */
1577 MD5Init(&isn_ctx);
1578 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1579 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1580 #ifdef INET6
1581 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1582 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1583 sizeof(struct in6_addr));
1584 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1585 sizeof(struct in6_addr));
1586 } else
1587 #endif
1589 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1590 sizeof(struct in_addr));
1591 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1592 sizeof(struct in_addr));
1594 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1595 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1596 new_isn = (tcp_seq) md5_buffer[0];
1597 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1598 return (new_isn);
1602 * When a source quench is received, close congestion window
1603 * to one segment. We will gradually open it again as we proceed.
1605 void
1606 tcp_quench(struct inpcb *inp, int error)
1608 struct tcpcb *tp = intotcpcb(inp);
1610 if (tp != NULL) {
1611 tp->snd_cwnd = tp->t_maxseg;
1612 tp->snd_wacked = 0;
1617 * When a specific ICMP unreachable message is received and the
1618 * connection state is SYN-SENT, drop the connection. This behavior
1619 * is controlled by the icmp_may_rst sysctl.
1621 void
1622 tcp_drop_syn_sent(struct inpcb *inp, int error)
1624 struct tcpcb *tp = intotcpcb(inp);
1626 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1627 tcp_drop(tp, error);
1631 * When a `need fragmentation' ICMP is received, update our idea of the MSS
1632 * based on the new value in the route. Also nudge TCP to send something,
1633 * since we know the packet we just sent was dropped.
1634 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1636 void
1637 tcp_mtudisc(struct inpcb *inp, int mtu)
1639 struct tcpcb *tp = intotcpcb(inp);
1640 struct rtentry *rt;
1641 struct socket *so = inp->inp_socket;
1642 int maxopd, mss;
1643 #ifdef INET6
1644 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1645 #else
1646 const boolean_t isipv6 = FALSE;
1647 #endif
1649 if (tp == NULL)
1650 return;
1653 * If no MTU is provided in the ICMP message, use the
1654 * next lower likely value, as specified in RFC 1191.
1656 if (mtu == 0) {
1657 int oldmtu;
1659 oldmtu = tp->t_maxopd +
1660 (isipv6 ?
1661 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1662 sizeof(struct tcpiphdr));
1663 mtu = ip_next_mtu(oldmtu, 0);
1666 if (isipv6)
1667 rt = tcp_rtlookup6(&inp->inp_inc);
1668 else
1669 rt = tcp_rtlookup(&inp->inp_inc);
1670 if (rt != NULL) {
1671 struct rmxp_tao *taop = rmx_taop(rt->rt_rmx);
1673 if (rt->rt_rmx.rmx_mtu != 0 && rt->rt_rmx.rmx_mtu < mtu)
1674 mtu = rt->rt_rmx.rmx_mtu;
1676 maxopd = mtu -
1677 (isipv6 ?
1678 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1679 sizeof(struct tcpiphdr));
1682 * XXX - The following conditional probably violates the TCP
1683 * spec. The problem is that, since we don't know the
1684 * other end's MSS, we are supposed to use a conservative
1685 * default. But, if we do that, then MTU discovery will
1686 * never actually take place, because the conservative
1687 * default is much less than the MTUs typically seen
1688 * on the Internet today. For the moment, we'll sweep
1689 * this under the carpet.
1691 * The conservative default might not actually be a problem
1692 * if the only case this occurs is when sending an initial
1693 * SYN with options and data to a host we've never talked
1694 * to before. Then, they will reply with an MSS value which
1695 * will get recorded and the new parameters should get
1696 * recomputed. For Further Study.
1698 if (taop->tao_mssopt != 0 && taop->tao_mssopt < maxopd)
1699 maxopd = taop->tao_mssopt;
1700 } else
1701 maxopd = mtu -
1702 (isipv6 ?
1703 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1704 sizeof(struct tcpiphdr));
1706 if (tp->t_maxopd <= maxopd)
1707 return;
1708 tp->t_maxopd = maxopd;
1710 mss = maxopd;
1711 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP | TF_NOOPT)) ==
1712 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1713 mss -= TCPOLEN_TSTAMP_APPA;
1715 if ((tp->t_flags & (TF_REQ_CC | TF_RCVD_CC | TF_NOOPT)) ==
1716 (TF_REQ_CC | TF_RCVD_CC))
1717 mss -= TCPOLEN_CC_APPA;
1719 /* round down to multiple of MCLBYTES */
1720 #if (MCLBYTES & (MCLBYTES - 1)) == 0 /* test if MCLBYTES power of 2 */
1721 if (mss > MCLBYTES)
1722 mss &= ~(MCLBYTES - 1);
1723 #else
1724 if (mss > MCLBYTES)
1725 mss = (mss / MCLBYTES) * MCLBYTES;
1726 #endif
1728 if (so->so_snd.ssb_hiwat < mss)
1729 mss = so->so_snd.ssb_hiwat;
1731 tp->t_maxseg = mss;
1732 tp->t_rtttime = 0;
1733 tp->snd_nxt = tp->snd_una;
1734 tcp_output(tp);
1735 tcpstat.tcps_mturesent++;
1739 * Look-up the routing entry to the peer of this inpcb. If no route
1740 * is found and it cannot be allocated the return NULL. This routine
1741 * is called by TCP routines that access the rmx structure and by tcp_mss
1742 * to get the interface MTU.
1744 struct rtentry *
1745 tcp_rtlookup(struct in_conninfo *inc)
1747 struct route *ro = &inc->inc_route;
1749 if (ro->ro_rt == NULL || !(ro->ro_rt->rt_flags & RTF_UP)) {
1750 /* No route yet, so try to acquire one */
1751 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1753 * unused portions of the structure MUST be zero'd
1754 * out because rtalloc() treats it as opaque data
1756 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1757 ro->ro_dst.sa_family = AF_INET;
1758 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1759 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1760 inc->inc_faddr;
1761 rtalloc(ro);
1764 return (ro->ro_rt);
1767 #ifdef INET6
1768 struct rtentry *
1769 tcp_rtlookup6(struct in_conninfo *inc)
1771 struct route_in6 *ro6 = &inc->inc6_route;
1773 if (ro6->ro_rt == NULL || !(ro6->ro_rt->rt_flags & RTF_UP)) {
1774 /* No route yet, so try to acquire one */
1775 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1777 * unused portions of the structure MUST be zero'd
1778 * out because rtalloc() treats it as opaque data
1780 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1781 ro6->ro_dst.sin6_family = AF_INET6;
1782 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1783 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1784 rtalloc((struct route *)ro6);
1787 return (ro6->ro_rt);
1789 #endif
1791 #ifdef IPSEC
1792 /* compute ESP/AH header size for TCP, including outer IP header. */
1793 size_t
1794 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1796 struct inpcb *inp;
1797 struct mbuf *m;
1798 size_t hdrsiz;
1799 struct ip *ip;
1800 struct tcphdr *th;
1802 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1803 return (0);
1804 MGETHDR(m, MB_DONTWAIT, MT_DATA);
1805 if (!m)
1806 return (0);
1808 #ifdef INET6
1809 if (inp->inp_vflag & INP_IPV6) {
1810 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1812 th = (struct tcphdr *)(ip6 + 1);
1813 m->m_pkthdr.len = m->m_len =
1814 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1815 tcp_fillheaders(tp, ip6, th);
1816 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1817 } else
1818 #endif
1820 ip = mtod(m, struct ip *);
1821 th = (struct tcphdr *)(ip + 1);
1822 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1823 tcp_fillheaders(tp, ip, th);
1824 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1827 m_free(m);
1828 return (hdrsiz);
1830 #endif
1833 * Return a pointer to the cached information about the remote host.
1834 * The cached information is stored in the protocol specific part of
1835 * the route metrics.
1837 struct rmxp_tao *
1838 tcp_gettaocache(struct in_conninfo *inc)
1840 struct rtentry *rt;
1842 #ifdef INET6
1843 if (inc->inc_isipv6)
1844 rt = tcp_rtlookup6(inc);
1845 else
1846 #endif
1847 rt = tcp_rtlookup(inc);
1849 /* Make sure this is a host route and is up. */
1850 if (rt == NULL ||
1851 (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1852 return (NULL);
1854 return (rmx_taop(rt->rt_rmx));
1858 * Clear all the TAO cache entries, called from tcp_init.
1860 * XXX
1861 * This routine is just an empty one, because we assume that the routing
1862 * routing tables are initialized at the same time when TCP, so there is
1863 * nothing in the cache left over.
1865 static void
1866 tcp_cleartaocache(void)
1871 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1873 * This code attempts to calculate the bandwidth-delay product as a
1874 * means of determining the optimal window size to maximize bandwidth,
1875 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1876 * routers. This code also does a fairly good job keeping RTTs in check
1877 * across slow links like modems. We implement an algorithm which is very
1878 * similar (but not meant to be) TCP/Vegas. The code operates on the
1879 * transmitter side of a TCP connection and so only effects the transmit
1880 * side of the connection.
1882 * BACKGROUND: TCP makes no provision for the management of buffer space
1883 * at the end points or at the intermediate routers and switches. A TCP
1884 * stream, whether using NewReno or not, will eventually buffer as
1885 * many packets as it is able and the only reason this typically works is
1886 * due to the fairly small default buffers made available for a connection
1887 * (typicaly 16K or 32K). As machines use larger windows and/or window
1888 * scaling it is now fairly easy for even a single TCP connection to blow-out
1889 * all available buffer space not only on the local interface, but on
1890 * intermediate routers and switches as well. NewReno makes a misguided
1891 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1892 * then backing off, then steadily increasing the window again until another
1893 * failure occurs, ad-infinitum. This results in terrible oscillation that
1894 * is only made worse as network loads increase and the idea of intentionally
1895 * blowing out network buffers is, frankly, a terrible way to manage network
1896 * resources.
1898 * It is far better to limit the transmit window prior to the failure
1899 * condition being achieved. There are two general ways to do this: First
1900 * you can 'scan' through different transmit window sizes and locate the
1901 * point where the RTT stops increasing, indicating that you have filled the
1902 * pipe, then scan backwards until you note that RTT stops decreasing, then
1903 * repeat ad-infinitum. This method works in principle but has severe
1904 * implementation issues due to RTT variances, timer granularity, and
1905 * instability in the algorithm which can lead to many false positives and
1906 * create oscillations as well as interact badly with other TCP streams
1907 * implementing the same algorithm.
1909 * The second method is to limit the window to the bandwidth delay product
1910 * of the link. This is the method we implement. RTT variances and our
1911 * own manipulation of the congestion window, bwnd, can potentially
1912 * destabilize the algorithm. For this reason we have to stabilize the
1913 * elements used to calculate the window. We do this by using the minimum
1914 * observed RTT, the long term average of the observed bandwidth, and
1915 * by adding two segments worth of slop. It isn't perfect but it is able
1916 * to react to changing conditions and gives us a very stable basis on
1917 * which to extend the algorithm.
1919 void
1920 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1922 u_long bw;
1923 u_long bwnd;
1924 int save_ticks;
1925 int delta_ticks;
1928 * If inflight_enable is disabled in the middle of a tcp connection,
1929 * make sure snd_bwnd is effectively disabled.
1931 if (!tcp_inflight_enable) {
1932 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1933 tp->snd_bandwidth = 0;
1934 return;
1938 * Validate the delta time. If a connection is new or has been idle
1939 * a long time we have to reset the bandwidth calculator.
1941 save_ticks = ticks;
1942 delta_ticks = save_ticks - tp->t_bw_rtttime;
1943 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1944 tp->t_bw_rtttime = ticks;
1945 tp->t_bw_rtseq = ack_seq;
1946 if (tp->snd_bandwidth == 0)
1947 tp->snd_bandwidth = tcp_inflight_min;
1948 return;
1950 if (delta_ticks == 0)
1951 return;
1954 * Sanity check, plus ignore pure window update acks.
1956 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1957 return;
1960 * Figure out the bandwidth. Due to the tick granularity this
1961 * is a very rough number and it MUST be averaged over a fairly
1962 * long period of time. XXX we need to take into account a link
1963 * that is not using all available bandwidth, but for now our
1964 * slop will ramp us up if this case occurs and the bandwidth later
1965 * increases.
1967 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1968 tp->t_bw_rtttime = save_ticks;
1969 tp->t_bw_rtseq = ack_seq;
1970 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1972 tp->snd_bandwidth = bw;
1975 * Calculate the semi-static bandwidth delay product, plus two maximal
1976 * segments. The additional slop puts us squarely in the sweet
1977 * spot and also handles the bandwidth run-up case. Without the
1978 * slop we could be locking ourselves into a lower bandwidth.
1980 * Situations Handled:
1981 * (1) Prevents over-queueing of packets on LANs, especially on
1982 * high speed LANs, allowing larger TCP buffers to be
1983 * specified, and also does a good job preventing
1984 * over-queueing of packets over choke points like modems
1985 * (at least for the transmit side).
1987 * (2) Is able to handle changing network loads (bandwidth
1988 * drops so bwnd drops, bandwidth increases so bwnd
1989 * increases).
1991 * (3) Theoretically should stabilize in the face of multiple
1992 * connections implementing the same algorithm (this may need
1993 * a little work).
1995 * (4) Stability value (defaults to 20 = 2 maximal packets) can
1996 * be adjusted with a sysctl but typically only needs to be on
1997 * very slow connections. A value no smaller then 5 should
1998 * be used, but only reduce this default if you have no other
1999 * choice.
2002 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
2003 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
2004 tcp_inflight_stab * (int)tp->t_maxseg / 10;
2005 #undef USERTT
2007 if (tcp_inflight_debug > 0) {
2008 static int ltime;
2009 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2010 ltime = ticks;
2011 kprintf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2012 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
2015 if ((long)bwnd < tcp_inflight_min)
2016 bwnd = tcp_inflight_min;
2017 if (bwnd > tcp_inflight_max)
2018 bwnd = tcp_inflight_max;
2019 if ((long)bwnd < tp->t_maxseg * 2)
2020 bwnd = tp->t_maxseg * 2;
2021 tp->snd_bwnd = bwnd;