Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / netinet / ip_input.c
blob2a152648be8b9d2bfcbd6a881c84914234074d54
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.115 2008/10/28 07:09:26 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
96 #include <sys/lock.h>
98 #include <machine/stdarg.h>
100 #include <net/if.h>
101 #include <net/if_types.h>
102 #include <net/if_var.h>
103 #include <net/if_dl.h>
104 #include <net/pfil.h>
105 #include <net/route.h>
106 #include <net/netisr.h>
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
115 #include <netinet/ip_divert.h>
116 #include <netinet/ip_flow.h>
118 #include <sys/thread2.h>
119 #include <sys/msgport2.h>
120 #include <net/netmsg2.h>
122 #include <sys/socketvar.h>
124 #include <net/ipfw/ip_fw.h>
125 #include <net/dummynet/ip_dummynet.h>
127 #ifdef IPSEC
128 #include <netinet6/ipsec.h>
129 #include <netproto/key/key.h>
130 #endif
132 #ifdef FAST_IPSEC
133 #include <netproto/ipsec/ipsec.h>
134 #include <netproto/ipsec/key.h>
135 #endif
137 int rsvp_on = 0;
138 static int ip_rsvp_on;
139 struct socket *ip_rsvpd;
141 int ip_mpsafe = 0;
142 TUNABLE_INT("net.inet.ip.mpsafe", &ip_mpsafe);
144 int ipforwarding = 0;
145 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
146 &ipforwarding, 0, "Enable IP forwarding between interfaces");
148 static int ipsendredirects = 1; /* XXX */
149 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
150 &ipsendredirects, 0, "Enable sending IP redirects");
152 int ip_defttl = IPDEFTTL;
153 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
154 &ip_defttl, 0, "Maximum TTL on IP packets");
156 static int ip_dosourceroute = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
158 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
160 static int ip_acceptsourceroute = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
162 CTLFLAG_RW, &ip_acceptsourceroute, 0,
163 "Enable accepting source routed IP packets");
165 static int ip_keepfaith = 0;
166 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
167 &ip_keepfaith, 0,
168 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
170 static int nipq = 0; /* total # of reass queues */
171 static int maxnipq;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
173 &maxnipq, 0,
174 "Maximum number of IPv4 fragment reassembly queue entries");
176 static int maxfragsperpacket;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
178 &maxfragsperpacket, 0,
179 "Maximum number of IPv4 fragments allowed per packet");
181 static int ip_sendsourcequench = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
183 &ip_sendsourcequench, 0,
184 "Enable the transmission of source quench packets");
186 int ip_do_randomid = 1;
187 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
188 &ip_do_randomid, 0,
189 "Assign random ip_id values");
191 * XXX - Setting ip_checkinterface mostly implements the receive side of
192 * the Strong ES model described in RFC 1122, but since the routing table
193 * and transmit implementation do not implement the Strong ES model,
194 * setting this to 1 results in an odd hybrid.
196 * XXX - ip_checkinterface currently must be disabled if you use ipnat
197 * to translate the destination address to another local interface.
199 * XXX - ip_checkinterface must be disabled if you add IP aliases
200 * to the loopback interface instead of the interface where the
201 * packets for those addresses are received.
203 static int ip_checkinterface = 0;
204 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
205 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
207 #ifdef DIAGNOSTIC
208 static int ipprintfs = 0;
209 #endif
211 extern int udp_mpsafe_proto;
212 extern int tcp_mpsafe_proto;
214 extern struct domain inetdomain;
215 extern struct protosw inetsw[];
216 u_char ip_protox[IPPROTO_MAX];
217 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
218 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
219 /* inet addr hash table */
220 u_long in_ifaddrhmask; /* mask for hash table */
222 struct ip_stats ipstats_percpu[MAXCPU];
223 #ifdef SMP
224 static int
225 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
227 int cpu, error = 0;
229 for (cpu = 0; cpu < ncpus; ++cpu) {
230 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
231 sizeof(struct ip_stats))))
232 break;
233 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
234 sizeof(struct ip_stats))))
235 break;
238 return (error);
240 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
241 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
242 #else
243 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
244 &ipstat, ip_stats, "IP statistics");
245 #endif
247 /* Packet reassembly stuff */
248 #define IPREASS_NHASH_LOG2 6
249 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
250 #define IPREASS_HMASK (IPREASS_NHASH - 1)
251 #define IPREASS_HASH(x,y) \
252 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
254 static struct ipq ipq[IPREASS_NHASH];
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258 &ip_mtu, 0, "Default MTU");
259 #endif
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
268 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
270 struct pfil_head inet_pfil_hook;
273 * struct ip_srcrt_opt is used to store packet state while it travels
274 * through the stack.
276 * XXX Note that the code even makes assumptions on the size and
277 * alignment of fields inside struct ip_srcrt so e.g. adding some
278 * fields will break the code. This needs to be fixed.
280 * We need to save the IP options in case a protocol wants to respond
281 * to an incoming packet over the same route if the packet got here
282 * using IP source routing. This allows connection establishment and
283 * maintenance when the remote end is on a network that is not known
284 * to us.
286 struct ip_srcrt {
287 struct in_addr dst; /* final destination */
288 char nop; /* one NOP to align */
289 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
290 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
293 struct ip_srcrt_opt {
294 int ip_nhops;
295 struct ip_srcrt ip_srcrt;
298 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
299 static struct malloc_pipe ipq_mpipe;
301 static void save_rte(struct mbuf *, u_char *, struct in_addr);
302 static int ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
303 static void ip_freef(struct ipq *);
304 static void ip_input_handler(struct netmsg *);
307 * IP initialization: fill in IP protocol switch table.
308 * All protocols not implemented in kernel go to raw IP protocol handler.
310 void
311 ip_init(void)
313 struct protosw *pr;
314 uint32_t flags;
315 int i;
316 #ifdef SMP
317 int cpu;
318 #endif
321 * Make sure we can handle a reasonable number of fragments but
322 * cap it at 4000 (XXX).
324 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
325 IFQ_MAXLEN, 4000, 0, NULL);
326 for (i = 0; i < ncpus; ++i) {
327 TAILQ_INIT(&in_ifaddrheads[i]);
328 in_ifaddrhashtbls[i] =
329 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
331 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
332 if (pr == NULL)
333 panic("ip_init");
334 for (i = 0; i < IPPROTO_MAX; i++)
335 ip_protox[i] = pr - inetsw;
336 for (pr = inetdomain.dom_protosw;
337 pr < inetdomain.dom_protoswNPROTOSW; pr++) {
338 if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
339 if (pr->pr_protocol != IPPROTO_RAW)
340 ip_protox[pr->pr_protocol] = pr - inetsw;
342 /* XXX */
343 switch (pr->pr_protocol) {
344 case IPPROTO_TCP:
345 if (tcp_mpsafe_proto)
346 pr->pr_flags |= PR_MPSAFE;
347 break;
349 case IPPROTO_UDP:
350 if (udp_mpsafe_proto)
351 pr->pr_flags |= PR_MPSAFE;
352 break;
357 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
358 inet_pfil_hook.ph_af = AF_INET;
359 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
360 kprintf("%s: WARNING: unable to register pfil hook, "
361 "error %d\n", __func__, i);
364 for (i = 0; i < IPREASS_NHASH; i++)
365 ipq[i].next = ipq[i].prev = &ipq[i];
367 maxnipq = nmbclusters / 32;
368 maxfragsperpacket = 16;
370 ip_id = time_second & 0xffff;
373 * Initialize IP statistics counters for each CPU.
376 #ifdef SMP
377 for (cpu = 0; cpu < ncpus; ++cpu) {
378 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
380 #else
381 bzero(&ipstat, sizeof(struct ip_stats));
382 #endif
384 #if defined(IPSEC) || defined(FAST_IPSEC)
385 /* XXX IPSEC is not MPSAFE yet */
386 flags = NETISR_FLAG_NOTMPSAFE;
387 #else
388 if (ip_mpsafe) {
389 kprintf("ip: MPSAFE\n");
390 flags = NETISR_FLAG_MPSAFE;
391 } else {
392 flags = NETISR_FLAG_NOTMPSAFE;
394 #endif
395 netisr_register(NETISR_IP, ip_mport_in, ip_input_handler, flags);
399 * XXX watch out this one. It is perhaps used as a cache for
400 * the most recently used route ? it is cleared in in_addroute()
401 * when a new route is successfully created.
403 struct route ipforward_rt[MAXCPU];
405 /* Do transport protocol processing. */
406 static void
407 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
409 const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
412 * Switch out to protocol's input routine.
414 PR_GET_MPLOCK(pr);
415 pr->pr_input(m, hlen, ip->ip_p);
416 PR_REL_MPLOCK(pr);
419 static void
420 transport_processing_handler(netmsg_t netmsg)
422 struct netmsg_packet *pmsg = (struct netmsg_packet *)netmsg;
423 struct ip *ip;
424 int hlen;
426 ip = mtod(pmsg->nm_packet, struct ip *);
427 hlen = pmsg->nm_netmsg.nm_lmsg.u.ms_result;
429 transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
430 /* netmsg was embedded in the mbuf, do not reply! */
433 static void
434 ip_input_handler(struct netmsg *msg0)
436 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
438 ip_input(m);
439 /* msg0 was embedded in the mbuf, do not reply! */
443 * IP input routine. Checksum and byte swap header. If fragmented
444 * try to reassemble. Process options. Pass to next level.
446 void
447 ip_input(struct mbuf *m)
449 struct ip *ip;
450 struct in_ifaddr *ia = NULL;
451 struct in_ifaddr_container *iac;
452 int hlen, checkif;
453 u_short sum;
454 struct in_addr pkt_dst;
455 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
456 boolean_t needredispatch = FALSE;
457 struct in_addr odst; /* original dst address(NAT) */
458 struct m_tag *mtag;
459 struct sockaddr_in *next_hop = NULL;
460 #ifdef FAST_IPSEC
461 struct tdb_ident *tdbi;
462 struct secpolicy *sp;
463 int error;
464 #endif
466 M_ASSERTPKTHDR(m);
468 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
469 /* Next hop */
470 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
471 KKASSERT(mtag != NULL);
472 next_hop = m_tag_data(mtag);
475 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
476 /* dummynet already filtered us */
477 ip = mtod(m, struct ip *);
478 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
479 goto iphack;
482 ipstat.ips_total++;
484 /* length checks already done in ip_mport() */
485 KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
486 ip = mtod(m, struct ip *);
488 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
489 ipstat.ips_badvers++;
490 goto bad;
493 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
494 /* length checks already done in ip_mport() */
495 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
496 KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
498 /* 127/8 must not appear on wire - RFC1122 */
499 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
500 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
501 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
502 ipstat.ips_badaddr++;
503 goto bad;
507 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
508 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
509 } else {
510 if (hlen == sizeof(struct ip))
511 sum = in_cksum_hdr(ip);
512 else
513 sum = in_cksum(m, hlen);
515 if (sum != 0) {
516 ipstat.ips_badsum++;
517 goto bad;
520 #ifdef ALTQ
521 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
522 /* packet is dropped by traffic conditioner */
523 return;
525 #endif
527 * Convert fields to host representation.
529 ip->ip_len = ntohs(ip->ip_len);
530 ip->ip_off = ntohs(ip->ip_off);
532 /* length checks already done in ip_mport() */
533 KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
534 KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
537 * Trim mbufs if longer than the IP header would have us expect.
539 if (m->m_pkthdr.len > ip->ip_len) {
540 if (m->m_len == m->m_pkthdr.len) {
541 m->m_len = ip->ip_len;
542 m->m_pkthdr.len = ip->ip_len;
543 } else {
544 m_adj(m, ip->ip_len - m->m_pkthdr.len);
547 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
549 * Bypass packet filtering for packets from a tunnel (gif).
551 if (ipsec_gethist(m, NULL))
552 goto pass;
553 #endif
556 * IpHack's section.
557 * Right now when no processing on packet has done
558 * and it is still fresh out of network we do our black
559 * deals with it.
560 * - Firewall: deny/allow/divert
561 * - Xlate: translate packet's addr/port (NAT).
562 * - Pipe: pass pkt through dummynet.
563 * - Wrap: fake packet's addr/port <unimpl.>
564 * - Encapsulate: put it in another IP and send out. <unimp.>
567 iphack:
569 * If we've been forwarded from the output side, then
570 * skip the firewall a second time
572 if (next_hop != NULL)
573 goto ours;
575 /* No pfil hooks */
576 if (!pfil_has_hooks(&inet_pfil_hook)) {
577 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
579 * Strip dummynet tags from stranded packets
581 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
582 KKASSERT(mtag != NULL);
583 m_tag_delete(m, mtag);
584 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
586 goto pass;
590 * Run through list of hooks for input packets.
592 * NB: Beware of the destination address changing (e.g.
593 * by NAT rewriting). When this happens, tell
594 * ip_forward to do the right thing.
596 odst = ip->ip_dst;
597 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
598 return;
599 if (m == NULL) /* consumed by filter */
600 return;
601 ip = mtod(m, struct ip *);
602 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
603 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
605 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
606 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
607 KKASSERT(mtag != NULL);
608 next_hop = m_tag_data(mtag);
610 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
611 ip_dn_queue(m);
612 return;
614 if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
615 needredispatch = TRUE;
616 m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
618 pass:
620 * Process options and, if not destined for us,
621 * ship it on. ip_dooptions returns 1 when an
622 * error was detected (causing an icmp message
623 * to be sent and the original packet to be freed).
625 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
626 return;
628 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
629 * matter if it is destined to another node, or whether it is
630 * a multicast one, RSVP wants it! and prevents it from being forwarded
631 * anywhere else. Also checks if the rsvp daemon is running before
632 * grabbing the packet.
634 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
635 goto ours;
638 * Check our list of addresses, to see if the packet is for us.
639 * If we don't have any addresses, assume any unicast packet
640 * we receive might be for us (and let the upper layers deal
641 * with it).
643 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
644 !(m->m_flags & (M_MCAST | M_BCAST)))
645 goto ours;
648 * Cache the destination address of the packet; this may be
649 * changed by use of 'ipfw fwd'.
651 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
654 * Enable a consistency check between the destination address
655 * and the arrival interface for a unicast packet (the RFC 1122
656 * strong ES model) if IP forwarding is disabled and the packet
657 * is not locally generated and the packet is not subject to
658 * 'ipfw fwd'.
660 * XXX - Checking also should be disabled if the destination
661 * address is ipnat'ed to a different interface.
663 * XXX - Checking is incompatible with IP aliases added
664 * to the loopback interface instead of the interface where
665 * the packets are received.
667 checkif = ip_checkinterface &&
668 !ipforwarding &&
669 m->m_pkthdr.rcvif != NULL &&
670 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
671 next_hop == NULL;
674 * Check for exact addresses in the hash bucket.
676 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
677 ia = iac->ia;
680 * If the address matches, verify that the packet
681 * arrived via the correct interface if checking is
682 * enabled.
684 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
685 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
686 goto ours;
688 ia = NULL;
691 * Check for broadcast addresses.
693 * Only accept broadcast packets that arrive via the matching
694 * interface. Reception of forwarded directed broadcasts would
695 * be handled via ip_forward() and ether_output() with the loopback
696 * into the stack for SIMPLEX interfaces handled by ether_output().
698 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
699 struct ifaddr_container *ifac;
701 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
702 ifa_link) {
703 struct ifaddr *ifa = ifac->ifa;
705 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
706 continue;
707 if (ifa->ifa_addr->sa_family != AF_INET)
708 continue;
709 ia = ifatoia(ifa);
710 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
711 pkt_dst.s_addr)
712 goto ours;
713 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
714 goto ours;
715 #ifdef BOOTP_COMPAT
716 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
717 goto ours;
718 #endif
721 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
722 struct in_multi *inm;
724 /* XXX Multicast is not MPSAFE yet */
725 get_mplock();
727 if (ip_mrouter != NULL) {
729 * If we are acting as a multicast router, all
730 * incoming multicast packets are passed to the
731 * kernel-level multicast forwarding function.
732 * The packet is returned (relatively) intact; if
733 * ip_mforward() returns a non-zero value, the packet
734 * must be discarded, else it may be accepted below.
736 if (ip_mforward != NULL &&
737 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
738 rel_mplock();
739 ipstat.ips_cantforward++;
740 m_freem(m);
741 return;
745 * The process-level routing daemon needs to receive
746 * all multicast IGMP packets, whether or not this
747 * host belongs to their destination groups.
749 if (ip->ip_p == IPPROTO_IGMP) {
750 rel_mplock();
751 goto ours;
753 ipstat.ips_forward++;
756 * See if we belong to the destination multicast group on the
757 * arrival interface.
759 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
760 if (inm == NULL) {
761 rel_mplock();
762 ipstat.ips_notmember++;
763 m_freem(m);
764 return;
767 rel_mplock();
768 goto ours;
770 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
771 goto ours;
772 if (ip->ip_dst.s_addr == INADDR_ANY)
773 goto ours;
776 * FAITH(Firewall Aided Internet Translator)
778 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
779 if (ip_keepfaith) {
780 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
781 goto ours;
783 m_freem(m);
784 return;
788 * Not for us; forward if possible and desirable.
790 if (!ipforwarding) {
791 ipstat.ips_cantforward++;
792 m_freem(m);
793 } else {
794 #ifdef IPSEC
796 * Enforce inbound IPsec SPD.
798 if (ipsec4_in_reject(m, NULL)) {
799 ipsecstat.in_polvio++;
800 goto bad;
802 #endif
803 #ifdef FAST_IPSEC
804 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
805 crit_enter();
806 if (mtag != NULL) {
807 tdbi = (struct tdb_ident *)m_tag_data(mtag);
808 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
809 } else {
810 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
811 IP_FORWARDING, &error);
813 if (sp == NULL) { /* NB: can happen if error */
814 crit_exit();
815 /*XXX error stat???*/
816 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
817 goto bad;
821 * Check security policy against packet attributes.
823 error = ipsec_in_reject(sp, m);
824 KEY_FREESP(&sp);
825 crit_exit();
826 if (error) {
827 ipstat.ips_cantforward++;
828 goto bad;
830 #endif
831 ip_forward(m, using_srcrt, next_hop);
833 return;
835 ours:
838 * IPSTEALTH: Process non-routing options only
839 * if the packet is destined for us.
841 if (ipstealth &&
842 hlen > sizeof(struct ip) &&
843 ip_dooptions(m, 1, next_hop))
844 return;
846 /* Count the packet in the ip address stats */
847 if (ia != NULL) {
848 ia->ia_ifa.if_ipackets++;
849 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
853 * If offset or IP_MF are set, must reassemble.
854 * Otherwise, nothing need be done.
855 * (We could look in the reassembly queue to see
856 * if the packet was previously fragmented,
857 * but it's not worth the time; just let them time out.)
859 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
861 * Attempt reassembly; if it succeeds, proceed.
862 * ip_reass() will return a different mbuf.
864 m = ip_reass(m);
865 if (m == NULL)
866 return;
867 ip = mtod(m, struct ip *);
869 /* Get the header length of the reassembled packet */
870 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
872 needredispatch = TRUE;
873 } else {
874 ip->ip_len -= hlen;
877 #ifdef IPSEC
879 * enforce IPsec policy checking if we are seeing last header.
880 * note that we do not visit this with protocols with pcb layer
881 * code - like udp/tcp/raw ip.
883 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
884 ipsec4_in_reject(m, NULL)) {
885 ipsecstat.in_polvio++;
886 goto bad;
888 #endif
889 #if FAST_IPSEC
891 * enforce IPsec policy checking if we are seeing last header.
892 * note that we do not visit this with protocols with pcb layer
893 * code - like udp/tcp/raw ip.
895 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
897 * Check if the packet has already had IPsec processing
898 * done. If so, then just pass it along. This tag gets
899 * set during AH, ESP, etc. input handling, before the
900 * packet is returned to the ip input queue for delivery.
902 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
903 crit_enter();
904 if (mtag != NULL) {
905 tdbi = (struct tdb_ident *)m_tag_data(mtag);
906 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
907 } else {
908 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
909 IP_FORWARDING, &error);
911 if (sp != NULL) {
913 * Check security policy against packet attributes.
915 error = ipsec_in_reject(sp, m);
916 KEY_FREESP(&sp);
917 } else {
918 /* XXX error stat??? */
919 error = EINVAL;
920 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
921 goto bad;
923 crit_exit();
924 if (error)
925 goto bad;
927 #endif /* FAST_IPSEC */
929 ipstat.ips_delivered++;
930 if (needredispatch) {
931 struct netmsg_packet *pmsg;
932 lwkt_port_t port;
934 ip->ip_off = htons(ip->ip_off);
935 ip->ip_len = htons(ip->ip_len);
936 port = ip_mport_in(&m);
937 if (port == NULL)
938 return;
940 pmsg = &m->m_hdr.mh_netmsg;
941 netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, MSGF_MPSAFE,
942 transport_processing_handler);
943 pmsg->nm_packet = m;
944 pmsg->nm_netmsg.nm_lmsg.u.ms_result = hlen;
946 ip = mtod(m, struct ip *);
947 ip->ip_len = ntohs(ip->ip_len);
948 ip->ip_off = ntohs(ip->ip_off);
949 lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
950 } else {
951 transport_processing_oncpu(m, hlen, ip);
953 return;
955 bad:
956 m_freem(m);
960 * Take incoming datagram fragment and try to reassemble it into
961 * whole datagram. If a chain for reassembly of this datagram already
962 * exists, then it is given as fp; otherwise have to make a chain.
964 struct mbuf *
965 ip_reass(struct mbuf *m)
967 struct ip *ip = mtod(m, struct ip *);
968 struct mbuf *p = NULL, *q, *nq;
969 struct mbuf *n;
970 struct ipq *fp = NULL;
971 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
972 int i, next;
973 u_short sum;
975 /* If maxnipq is 0, never accept fragments. */
976 if (maxnipq == 0) {
977 ipstat.ips_fragments++;
978 ipstat.ips_fragdropped++;
979 m_freem(m);
980 return NULL;
983 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
985 * Look for queue of fragments of this datagram.
987 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
988 if (ip->ip_id == fp->ipq_id &&
989 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
990 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
991 ip->ip_p == fp->ipq_p)
992 goto found;
994 fp = NULL;
997 * Enforce upper bound on number of fragmented packets
998 * for which we attempt reassembly;
999 * If maxnipq is -1, accept all fragments without limitation.
1001 if (nipq > maxnipq && maxnipq > 0) {
1003 * drop something from the tail of the current queue
1004 * before proceeding further
1006 if (ipq[sum].prev == &ipq[sum]) { /* gak */
1007 for (i = 0; i < IPREASS_NHASH; i++) {
1008 if (ipq[i].prev != &ipq[i]) {
1009 ipstat.ips_fragtimeout +=
1010 ipq[i].prev->ipq_nfrags;
1011 ip_freef(ipq[i].prev);
1012 break;
1015 } else {
1016 ipstat.ips_fragtimeout +=
1017 ipq[sum].prev->ipq_nfrags;
1018 ip_freef(ipq[sum].prev);
1021 found:
1023 * Adjust ip_len to not reflect header,
1024 * convert offset of this to bytes.
1026 ip->ip_len -= hlen;
1027 if (ip->ip_off & IP_MF) {
1029 * Make sure that fragments have a data length
1030 * that's a non-zero multiple of 8 bytes.
1032 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1033 ipstat.ips_toosmall++; /* XXX */
1034 m_freem(m);
1035 return NULL;
1037 m->m_flags |= M_FRAG;
1038 } else
1039 m->m_flags &= ~M_FRAG;
1040 ip->ip_off <<= 3;
1042 ipstat.ips_fragments++;
1043 m->m_pkthdr.header = ip;
1046 * If the hardware has not done csum over this fragment
1047 * then csum_data is not valid at all.
1049 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1050 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1051 m->m_pkthdr.csum_data = 0;
1052 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1056 * Presence of header sizes in mbufs
1057 * would confuse code below.
1059 m->m_data += hlen;
1060 m->m_len -= hlen;
1063 * If first fragment to arrive, create a reassembly queue.
1065 if (fp == NULL) {
1066 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1067 goto dropfrag;
1068 insque(fp, &ipq[sum]);
1069 nipq++;
1070 fp->ipq_nfrags = 1;
1071 fp->ipq_ttl = IPFRAGTTL;
1072 fp->ipq_p = ip->ip_p;
1073 fp->ipq_id = ip->ip_id;
1074 fp->ipq_src = ip->ip_src;
1075 fp->ipq_dst = ip->ip_dst;
1076 fp->ipq_frags = m;
1077 m->m_nextpkt = NULL;
1078 goto inserted;
1079 } else {
1080 fp->ipq_nfrags++;
1083 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1086 * Find a segment which begins after this one does.
1088 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1089 if (GETIP(q)->ip_off > ip->ip_off)
1090 break;
1093 * If there is a preceding segment, it may provide some of
1094 * our data already. If so, drop the data from the incoming
1095 * segment. If it provides all of our data, drop us, otherwise
1096 * stick new segment in the proper place.
1098 * If some of the data is dropped from the the preceding
1099 * segment, then it's checksum is invalidated.
1101 if (p) {
1102 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1103 if (i > 0) {
1104 if (i >= ip->ip_len)
1105 goto dropfrag;
1106 m_adj(m, i);
1107 m->m_pkthdr.csum_flags = 0;
1108 ip->ip_off += i;
1109 ip->ip_len -= i;
1111 m->m_nextpkt = p->m_nextpkt;
1112 p->m_nextpkt = m;
1113 } else {
1114 m->m_nextpkt = fp->ipq_frags;
1115 fp->ipq_frags = m;
1119 * While we overlap succeeding segments trim them or,
1120 * if they are completely covered, dequeue them.
1122 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1123 q = nq) {
1124 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1125 if (i < GETIP(q)->ip_len) {
1126 GETIP(q)->ip_len -= i;
1127 GETIP(q)->ip_off += i;
1128 m_adj(q, i);
1129 q->m_pkthdr.csum_flags = 0;
1130 break;
1132 nq = q->m_nextpkt;
1133 m->m_nextpkt = nq;
1134 ipstat.ips_fragdropped++;
1135 fp->ipq_nfrags--;
1136 q->m_nextpkt = NULL;
1137 m_freem(q);
1140 inserted:
1142 * Check for complete reassembly and perform frag per packet
1143 * limiting.
1145 * Frag limiting is performed here so that the nth frag has
1146 * a chance to complete the packet before we drop the packet.
1147 * As a result, n+1 frags are actually allowed per packet, but
1148 * only n will ever be stored. (n = maxfragsperpacket.)
1151 next = 0;
1152 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1153 if (GETIP(q)->ip_off != next) {
1154 if (fp->ipq_nfrags > maxfragsperpacket) {
1155 ipstat.ips_fragdropped += fp->ipq_nfrags;
1156 ip_freef(fp);
1158 return (NULL);
1160 next += GETIP(q)->ip_len;
1162 /* Make sure the last packet didn't have the IP_MF flag */
1163 if (p->m_flags & M_FRAG) {
1164 if (fp->ipq_nfrags > maxfragsperpacket) {
1165 ipstat.ips_fragdropped += fp->ipq_nfrags;
1166 ip_freef(fp);
1168 return (NULL);
1172 * Reassembly is complete. Make sure the packet is a sane size.
1174 q = fp->ipq_frags;
1175 ip = GETIP(q);
1176 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1177 ipstat.ips_toolong++;
1178 ipstat.ips_fragdropped += fp->ipq_nfrags;
1179 ip_freef(fp);
1180 return (NULL);
1184 * Concatenate fragments.
1186 m = q;
1187 n = m->m_next;
1188 m->m_next = NULL;
1189 m_cat(m, n);
1190 nq = q->m_nextpkt;
1191 q->m_nextpkt = NULL;
1192 for (q = nq; q != NULL; q = nq) {
1193 nq = q->m_nextpkt;
1194 q->m_nextpkt = NULL;
1195 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1196 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1197 m_cat(m, q);
1201 * Clean up the 1's complement checksum. Carry over 16 bits must
1202 * be added back. This assumes no more then 65535 packet fragments
1203 * were reassembled. A second carry can also occur (but not a third).
1205 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1206 (m->m_pkthdr.csum_data >> 16);
1207 if (m->m_pkthdr.csum_data > 0xFFFF)
1208 m->m_pkthdr.csum_data -= 0xFFFF;
1211 * Create header for new ip packet by
1212 * modifying header of first packet;
1213 * dequeue and discard fragment reassembly header.
1214 * Make header visible.
1216 ip->ip_len = next;
1217 ip->ip_src = fp->ipq_src;
1218 ip->ip_dst = fp->ipq_dst;
1219 remque(fp);
1220 nipq--;
1221 mpipe_free(&ipq_mpipe, fp);
1222 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1223 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1224 /* some debugging cruft by sklower, below, will go away soon */
1225 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1226 int plen = 0;
1228 for (n = m; n; n = n->m_next)
1229 plen += n->m_len;
1230 m->m_pkthdr.len = plen;
1233 ipstat.ips_reassembled++;
1234 return (m);
1236 dropfrag:
1237 ipstat.ips_fragdropped++;
1238 if (fp != NULL)
1239 fp->ipq_nfrags--;
1240 m_freem(m);
1241 return (NULL);
1243 #undef GETIP
1247 * Free a fragment reassembly header and all
1248 * associated datagrams.
1250 static void
1251 ip_freef(struct ipq *fp)
1253 struct mbuf *q;
1255 while (fp->ipq_frags) {
1256 q = fp->ipq_frags;
1257 fp->ipq_frags = q->m_nextpkt;
1258 q->m_nextpkt = NULL;
1259 m_freem(q);
1261 remque(fp);
1262 mpipe_free(&ipq_mpipe, fp);
1263 nipq--;
1267 * IP timer processing;
1268 * if a timer expires on a reassembly
1269 * queue, discard it.
1271 void
1272 ip_slowtimo(void)
1274 struct ipq *fp;
1275 int i;
1277 crit_enter();
1278 for (i = 0; i < IPREASS_NHASH; i++) {
1279 fp = ipq[i].next;
1280 if (fp == NULL)
1281 continue;
1282 while (fp != &ipq[i]) {
1283 --fp->ipq_ttl;
1284 fp = fp->next;
1285 if (fp->prev->ipq_ttl == 0) {
1286 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1287 ip_freef(fp->prev);
1292 * If we are over the maximum number of fragments
1293 * (due to the limit being lowered), drain off
1294 * enough to get down to the new limit.
1296 if (maxnipq >= 0 && nipq > maxnipq) {
1297 for (i = 0; i < IPREASS_NHASH; i++) {
1298 while (nipq > maxnipq &&
1299 (ipq[i].next != &ipq[i])) {
1300 ipstat.ips_fragdropped +=
1301 ipq[i].next->ipq_nfrags;
1302 ip_freef(ipq[i].next);
1306 ipflow_slowtimo();
1307 crit_exit();
1311 * Drain off all datagram fragments.
1313 void
1314 ip_drain(void)
1316 int i;
1318 for (i = 0; i < IPREASS_NHASH; i++) {
1319 while (ipq[i].next != &ipq[i]) {
1320 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1321 ip_freef(ipq[i].next);
1324 in_rtqdrain();
1328 * Do option processing on a datagram,
1329 * possibly discarding it if bad options are encountered,
1330 * or forwarding it if source-routed.
1331 * The pass argument is used when operating in the IPSTEALTH
1332 * mode to tell what options to process:
1333 * [LS]SRR (pass 0) or the others (pass 1).
1334 * The reason for as many as two passes is that when doing IPSTEALTH,
1335 * non-routing options should be processed only if the packet is for us.
1336 * Returns 1 if packet has been forwarded/freed,
1337 * 0 if the packet should be processed further.
1339 static int
1340 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1342 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1343 struct ip *ip = mtod(m, struct ip *);
1344 u_char *cp;
1345 struct in_ifaddr *ia;
1346 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1347 boolean_t forward = FALSE;
1348 struct in_addr *sin, dst;
1349 n_time ntime;
1351 dst = ip->ip_dst;
1352 cp = (u_char *)(ip + 1);
1353 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1354 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1355 opt = cp[IPOPT_OPTVAL];
1356 if (opt == IPOPT_EOL)
1357 break;
1358 if (opt == IPOPT_NOP)
1359 optlen = 1;
1360 else {
1361 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1362 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1363 goto bad;
1365 optlen = cp[IPOPT_OLEN];
1366 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1367 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1368 goto bad;
1371 switch (opt) {
1373 default:
1374 break;
1377 * Source routing with record.
1378 * Find interface with current destination address.
1379 * If none on this machine then drop if strictly routed,
1380 * or do nothing if loosely routed.
1381 * Record interface address and bring up next address
1382 * component. If strictly routed make sure next
1383 * address is on directly accessible net.
1385 case IPOPT_LSRR:
1386 case IPOPT_SSRR:
1387 if (ipstealth && pass > 0)
1388 break;
1389 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1390 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1391 goto bad;
1393 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1394 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1395 goto bad;
1397 ipaddr.sin_addr = ip->ip_dst;
1398 ia = (struct in_ifaddr *)
1399 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1400 if (ia == NULL) {
1401 if (opt == IPOPT_SSRR) {
1402 type = ICMP_UNREACH;
1403 code = ICMP_UNREACH_SRCFAIL;
1404 goto bad;
1406 if (!ip_dosourceroute)
1407 goto nosourcerouting;
1409 * Loose routing, and not at next destination
1410 * yet; nothing to do except forward.
1412 break;
1414 off--; /* 0 origin */
1415 if (off > optlen - (int)sizeof(struct in_addr)) {
1417 * End of source route. Should be for us.
1419 if (!ip_acceptsourceroute)
1420 goto nosourcerouting;
1421 save_rte(m, cp, ip->ip_src);
1422 break;
1424 if (ipstealth)
1425 goto dropit;
1426 if (!ip_dosourceroute) {
1427 if (ipforwarding) {
1428 char buf[sizeof "aaa.bbb.ccc.ddd"];
1431 * Acting as a router, so generate ICMP
1433 nosourcerouting:
1434 strcpy(buf, inet_ntoa(ip->ip_dst));
1435 log(LOG_WARNING,
1436 "attempted source route from %s to %s\n",
1437 inet_ntoa(ip->ip_src), buf);
1438 type = ICMP_UNREACH;
1439 code = ICMP_UNREACH_SRCFAIL;
1440 goto bad;
1441 } else {
1443 * Not acting as a router,
1444 * so silently drop.
1446 dropit:
1447 ipstat.ips_cantforward++;
1448 m_freem(m);
1449 return (1);
1454 * locate outgoing interface
1456 memcpy(&ipaddr.sin_addr, cp + off,
1457 sizeof ipaddr.sin_addr);
1459 if (opt == IPOPT_SSRR) {
1460 #define INA struct in_ifaddr *
1461 #define SA struct sockaddr *
1462 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1463 == NULL)
1464 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1465 } else
1466 ia = ip_rtaddr(ipaddr.sin_addr,
1467 &ipforward_rt[mycpuid]);
1468 if (ia == NULL) {
1469 type = ICMP_UNREACH;
1470 code = ICMP_UNREACH_SRCFAIL;
1471 goto bad;
1473 ip->ip_dst = ipaddr.sin_addr;
1474 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1475 sizeof(struct in_addr));
1476 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1478 * Let ip_intr's mcast routing check handle mcast pkts
1480 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1481 break;
1483 case IPOPT_RR:
1484 if (ipstealth && pass == 0)
1485 break;
1486 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1487 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1488 goto bad;
1490 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1491 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1492 goto bad;
1495 * If no space remains, ignore.
1497 off--; /* 0 origin */
1498 if (off > optlen - (int)sizeof(struct in_addr))
1499 break;
1500 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1501 sizeof ipaddr.sin_addr);
1503 * locate outgoing interface; if we're the destination,
1504 * use the incoming interface (should be same).
1506 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1507 (ia = ip_rtaddr(ipaddr.sin_addr,
1508 &ipforward_rt[mycpuid]))
1509 == NULL) {
1510 type = ICMP_UNREACH;
1511 code = ICMP_UNREACH_HOST;
1512 goto bad;
1514 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1515 sizeof(struct in_addr));
1516 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1517 break;
1519 case IPOPT_TS:
1520 if (ipstealth && pass == 0)
1521 break;
1522 code = cp - (u_char *)ip;
1523 if (optlen < 4 || optlen > 40) {
1524 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1525 goto bad;
1527 if ((off = cp[IPOPT_OFFSET]) < 5) {
1528 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1529 goto bad;
1531 if (off > optlen - (int)sizeof(int32_t)) {
1532 cp[IPOPT_OFFSET + 1] += (1 << 4);
1533 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1534 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1535 goto bad;
1537 break;
1539 off--; /* 0 origin */
1540 sin = (struct in_addr *)(cp + off);
1541 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1543 case IPOPT_TS_TSONLY:
1544 break;
1546 case IPOPT_TS_TSANDADDR:
1547 if (off + sizeof(n_time) +
1548 sizeof(struct in_addr) > optlen) {
1549 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1550 goto bad;
1552 ipaddr.sin_addr = dst;
1553 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1554 m->m_pkthdr.rcvif);
1555 if (ia == NULL)
1556 continue;
1557 memcpy(sin, &IA_SIN(ia)->sin_addr,
1558 sizeof(struct in_addr));
1559 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1560 off += sizeof(struct in_addr);
1561 break;
1563 case IPOPT_TS_PRESPEC:
1564 if (off + sizeof(n_time) +
1565 sizeof(struct in_addr) > optlen) {
1566 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1567 goto bad;
1569 memcpy(&ipaddr.sin_addr, sin,
1570 sizeof(struct in_addr));
1571 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1572 continue;
1573 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1574 off += sizeof(struct in_addr);
1575 break;
1577 default:
1578 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1579 goto bad;
1581 ntime = iptime();
1582 memcpy(cp + off, &ntime, sizeof(n_time));
1583 cp[IPOPT_OFFSET] += sizeof(n_time);
1586 if (forward && ipforwarding) {
1587 ip_forward(m, TRUE, next_hop);
1588 return (1);
1590 return (0);
1591 bad:
1592 icmp_error(m, type, code, 0, 0);
1593 ipstat.ips_badoptions++;
1594 return (1);
1598 * Given address of next destination (final or next hop),
1599 * return internet address info of interface to be used to get there.
1601 struct in_ifaddr *
1602 ip_rtaddr(struct in_addr dst, struct route *ro)
1604 struct sockaddr_in *sin;
1606 sin = (struct sockaddr_in *)&ro->ro_dst;
1608 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1609 if (ro->ro_rt != NULL) {
1610 RTFREE(ro->ro_rt);
1611 ro->ro_rt = NULL;
1613 sin->sin_family = AF_INET;
1614 sin->sin_len = sizeof *sin;
1615 sin->sin_addr = dst;
1616 rtalloc_ign(ro, RTF_PRCLONING);
1619 if (ro->ro_rt == NULL)
1620 return (NULL);
1622 return (ifatoia(ro->ro_rt->rt_ifa));
1626 * Save incoming source route for use in replies,
1627 * to be picked up later by ip_srcroute if the receiver is interested.
1629 static void
1630 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1632 struct m_tag *mtag;
1633 struct ip_srcrt_opt *opt;
1634 unsigned olen;
1636 mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), MB_DONTWAIT);
1637 if (mtag == NULL)
1638 return;
1639 opt = m_tag_data(mtag);
1641 olen = option[IPOPT_OLEN];
1642 #ifdef DIAGNOSTIC
1643 if (ipprintfs)
1644 kprintf("save_rte: olen %d\n", olen);
1645 #endif
1646 if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1647 m_tag_free(mtag);
1648 return;
1650 bcopy(option, opt->ip_srcrt.srcopt, olen);
1651 opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1652 opt->ip_srcrt.dst = dst;
1653 m_tag_prepend(m, mtag);
1657 * Retrieve incoming source route for use in replies,
1658 * in the same form used by setsockopt.
1659 * The first hop is placed before the options, will be removed later.
1661 struct mbuf *
1662 ip_srcroute(struct mbuf *m0)
1664 struct in_addr *p, *q;
1665 struct mbuf *m;
1666 struct m_tag *mtag;
1667 struct ip_srcrt_opt *opt;
1669 if (m0 == NULL)
1670 return NULL;
1672 mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1673 if (mtag == NULL)
1674 return NULL;
1675 opt = m_tag_data(mtag);
1677 if (opt->ip_nhops == 0)
1678 return (NULL);
1679 m = m_get(MB_DONTWAIT, MT_HEADER);
1680 if (m == NULL)
1681 return (NULL);
1683 #define OPTSIZ (sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1685 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1686 m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1687 sizeof(struct in_addr) + OPTSIZ;
1688 #ifdef DIAGNOSTIC
1689 if (ipprintfs) {
1690 kprintf("ip_srcroute: nhops %d mlen %d",
1691 opt->ip_nhops, m->m_len);
1693 #endif
1696 * First save first hop for return route
1698 p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1699 *(mtod(m, struct in_addr *)) = *p--;
1700 #ifdef DIAGNOSTIC
1701 if (ipprintfs)
1702 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1703 #endif
1706 * Copy option fields and padding (nop) to mbuf.
1708 opt->ip_srcrt.nop = IPOPT_NOP;
1709 opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1710 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1711 OPTSIZ);
1712 q = (struct in_addr *)(mtod(m, caddr_t) +
1713 sizeof(struct in_addr) + OPTSIZ);
1714 #undef OPTSIZ
1716 * Record return path as an IP source route,
1717 * reversing the path (pointers are now aligned).
1719 while (p >= opt->ip_srcrt.route) {
1720 #ifdef DIAGNOSTIC
1721 if (ipprintfs)
1722 kprintf(" %x", ntohl(q->s_addr));
1723 #endif
1724 *q++ = *p--;
1727 * Last hop goes to final destination.
1729 *q = opt->ip_srcrt.dst;
1730 m_tag_delete(m0, mtag);
1731 #ifdef DIAGNOSTIC
1732 if (ipprintfs)
1733 kprintf(" %x\n", ntohl(q->s_addr));
1734 #endif
1735 return (m);
1739 * Strip out IP options.
1741 void
1742 ip_stripoptions(struct mbuf *m)
1744 int datalen;
1745 struct ip *ip = mtod(m, struct ip *);
1746 caddr_t opts;
1747 int optlen;
1749 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1750 opts = (caddr_t)(ip + 1);
1751 datalen = m->m_len - (sizeof(struct ip) + optlen);
1752 bcopy(opts + optlen, opts, datalen);
1753 m->m_len -= optlen;
1754 if (m->m_flags & M_PKTHDR)
1755 m->m_pkthdr.len -= optlen;
1756 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1759 u_char inetctlerrmap[PRC_NCMDS] = {
1760 0, 0, 0, 0,
1761 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1762 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1763 EMSGSIZE, EHOSTUNREACH, 0, 0,
1764 0, 0, 0, 0,
1765 ENOPROTOOPT, ECONNREFUSED
1769 * Forward a packet. If some error occurs return the sender
1770 * an icmp packet. Note we can't always generate a meaningful
1771 * icmp message because icmp doesn't have a large enough repertoire
1772 * of codes and types.
1774 * If not forwarding, just drop the packet. This could be confusing
1775 * if ipforwarding was zero but some routing protocol was advancing
1776 * us as a gateway to somewhere. However, we must let the routing
1777 * protocol deal with that.
1779 * The using_srcrt parameter indicates whether the packet is being forwarded
1780 * via a source route.
1782 void
1783 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1785 struct ip *ip = mtod(m, struct ip *);
1786 struct sockaddr_in *ipforward_rtaddr;
1787 struct rtentry *rt;
1788 int error, type = 0, code = 0, destmtu = 0;
1789 struct mbuf *mcopy;
1790 n_long dest;
1791 struct in_addr pkt_dst;
1792 struct route *cache_rt = &ipforward_rt[mycpuid];
1794 dest = INADDR_ANY;
1796 * Cache the destination address of the packet; this may be
1797 * changed by use of 'ipfw fwd'.
1799 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1801 #ifdef DIAGNOSTIC
1802 if (ipprintfs)
1803 kprintf("forward: src %x dst %x ttl %x\n",
1804 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1805 #endif
1807 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1808 ipstat.ips_cantforward++;
1809 m_freem(m);
1810 return;
1812 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1813 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1814 return;
1817 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1818 if (cache_rt->ro_rt == NULL ||
1819 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1820 if (cache_rt->ro_rt != NULL) {
1821 RTFREE(cache_rt->ro_rt);
1822 cache_rt->ro_rt = NULL;
1824 ipforward_rtaddr->sin_family = AF_INET;
1825 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1826 ipforward_rtaddr->sin_addr = pkt_dst;
1827 rtalloc_ign(cache_rt, RTF_PRCLONING);
1828 if (cache_rt->ro_rt == NULL) {
1829 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1830 return;
1833 rt = cache_rt->ro_rt;
1836 * Save the IP header and at most 8 bytes of the payload,
1837 * in case we need to generate an ICMP message to the src.
1839 * XXX this can be optimized a lot by saving the data in a local
1840 * buffer on the stack (72 bytes at most), and only allocating the
1841 * mbuf if really necessary. The vast majority of the packets
1842 * are forwarded without having to send an ICMP back (either
1843 * because unnecessary, or because rate limited), so we are
1844 * really we are wasting a lot of work here.
1846 * We don't use m_copy() because it might return a reference
1847 * to a shared cluster. Both this function and ip_output()
1848 * assume exclusive access to the IP header in `m', so any
1849 * data in a cluster may change before we reach icmp_error().
1851 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1852 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1854 * It's probably ok if the pkthdr dup fails (because
1855 * the deep copy of the tag chain failed), but for now
1856 * be conservative and just discard the copy since
1857 * code below may some day want the tags.
1859 m_free(mcopy);
1860 mcopy = NULL;
1862 if (mcopy != NULL) {
1863 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1864 (int)ip->ip_len);
1865 mcopy->m_pkthdr.len = mcopy->m_len;
1866 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1869 if (!ipstealth)
1870 ip->ip_ttl -= IPTTLDEC;
1873 * If forwarding packet using same interface that it came in on,
1874 * perhaps should send a redirect to sender to shortcut a hop.
1875 * Only send redirect if source is sending directly to us,
1876 * and if packet was not source routed (or has any options).
1877 * Also, don't send redirect if forwarding using a default route
1878 * or a route modified by a redirect.
1880 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1881 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1882 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1883 ipsendredirects && !using_srcrt && next_hop == NULL) {
1884 u_long src = ntohl(ip->ip_src.s_addr);
1885 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1887 if (rt_ifa != NULL &&
1888 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1889 if (rt->rt_flags & RTF_GATEWAY)
1890 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1891 else
1892 dest = pkt_dst.s_addr;
1894 * Router requirements says to only send
1895 * host redirects.
1897 type = ICMP_REDIRECT;
1898 code = ICMP_REDIRECT_HOST;
1899 #ifdef DIAGNOSTIC
1900 if (ipprintfs)
1901 kprintf("redirect (%d) to %x\n", code, dest);
1902 #endif
1906 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL, NULL);
1907 if (error == 0) {
1908 ipstat.ips_forward++;
1909 if (type == 0) {
1910 if (mcopy) {
1911 ipflow_create(cache_rt, mcopy);
1912 m_freem(mcopy);
1914 return; /* most common case */
1915 } else {
1916 ipstat.ips_redirectsent++;
1918 } else {
1919 ipstat.ips_cantforward++;
1922 if (mcopy == NULL)
1923 return;
1926 * Send ICMP message.
1929 switch (error) {
1931 case 0: /* forwarded, but need redirect */
1932 /* type, code set above */
1933 break;
1935 case ENETUNREACH: /* shouldn't happen, checked above */
1936 case EHOSTUNREACH:
1937 case ENETDOWN:
1938 case EHOSTDOWN:
1939 default:
1940 type = ICMP_UNREACH;
1941 code = ICMP_UNREACH_HOST;
1942 break;
1944 case EMSGSIZE:
1945 type = ICMP_UNREACH;
1946 code = ICMP_UNREACH_NEEDFRAG;
1947 #ifdef IPSEC
1949 * If the packet is routed over IPsec tunnel, tell the
1950 * originator the tunnel MTU.
1951 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1952 * XXX quickhack!!!
1954 if (cache_rt->ro_rt != NULL) {
1955 struct secpolicy *sp = NULL;
1956 int ipsecerror;
1957 int ipsechdr;
1958 struct route *ro;
1960 sp = ipsec4_getpolicybyaddr(mcopy,
1961 IPSEC_DIR_OUTBOUND,
1962 IP_FORWARDING,
1963 &ipsecerror);
1965 if (sp == NULL)
1966 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
1967 else {
1968 /* count IPsec header size */
1969 ipsechdr = ipsec4_hdrsiz(mcopy,
1970 IPSEC_DIR_OUTBOUND,
1971 NULL);
1974 * find the correct route for outer IPv4
1975 * header, compute tunnel MTU.
1978 if (sp->req != NULL && sp->req->sav != NULL &&
1979 sp->req->sav->sah != NULL) {
1980 ro = &sp->req->sav->sah->sa_route;
1981 if (ro->ro_rt != NULL &&
1982 ro->ro_rt->rt_ifp != NULL) {
1983 destmtu =
1984 ro->ro_rt->rt_ifp->if_mtu;
1985 destmtu -= ipsechdr;
1989 key_freesp(sp);
1992 #elif FAST_IPSEC
1994 * If the packet is routed over IPsec tunnel, tell the
1995 * originator the tunnel MTU.
1996 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1997 * XXX quickhack!!!
1999 if (cache_rt->ro_rt != NULL) {
2000 struct secpolicy *sp = NULL;
2001 int ipsecerror;
2002 int ipsechdr;
2003 struct route *ro;
2005 sp = ipsec_getpolicybyaddr(mcopy,
2006 IPSEC_DIR_OUTBOUND,
2007 IP_FORWARDING,
2008 &ipsecerror);
2010 if (sp == NULL)
2011 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2012 else {
2013 /* count IPsec header size */
2014 ipsechdr = ipsec4_hdrsiz(mcopy,
2015 IPSEC_DIR_OUTBOUND,
2016 NULL);
2019 * find the correct route for outer IPv4
2020 * header, compute tunnel MTU.
2023 if (sp->req != NULL &&
2024 sp->req->sav != NULL &&
2025 sp->req->sav->sah != NULL) {
2026 ro = &sp->req->sav->sah->sa_route;
2027 if (ro->ro_rt != NULL &&
2028 ro->ro_rt->rt_ifp != NULL) {
2029 destmtu =
2030 ro->ro_rt->rt_ifp->if_mtu;
2031 destmtu -= ipsechdr;
2035 KEY_FREESP(&sp);
2038 #else /* !IPSEC && !FAST_IPSEC */
2039 if (cache_rt->ro_rt != NULL)
2040 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2041 #endif /*IPSEC*/
2042 ipstat.ips_cantfrag++;
2043 break;
2045 case ENOBUFS:
2047 * A router should not generate ICMP_SOURCEQUENCH as
2048 * required in RFC1812 Requirements for IP Version 4 Routers.
2049 * Source quench could be a big problem under DoS attacks,
2050 * or if the underlying interface is rate-limited.
2051 * Those who need source quench packets may re-enable them
2052 * via the net.inet.ip.sendsourcequench sysctl.
2054 if (!ip_sendsourcequench) {
2055 m_freem(mcopy);
2056 return;
2057 } else {
2058 type = ICMP_SOURCEQUENCH;
2059 code = 0;
2061 break;
2063 case EACCES: /* ipfw denied packet */
2064 m_freem(mcopy);
2065 return;
2067 icmp_error(mcopy, type, code, dest, destmtu);
2070 void
2071 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2072 struct mbuf *m)
2074 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2075 struct timeval tv;
2077 microtime(&tv);
2078 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2079 SCM_TIMESTAMP, SOL_SOCKET);
2080 if (*mp)
2081 mp = &(*mp)->m_next;
2083 if (inp->inp_flags & INP_RECVDSTADDR) {
2084 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2085 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2086 if (*mp)
2087 mp = &(*mp)->m_next;
2089 if (inp->inp_flags & INP_RECVTTL) {
2090 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2091 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2092 if (*mp)
2093 mp = &(*mp)->m_next;
2095 #ifdef notyet
2096 /* XXX
2097 * Moving these out of udp_input() made them even more broken
2098 * than they already were.
2100 /* options were tossed already */
2101 if (inp->inp_flags & INP_RECVOPTS) {
2102 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2103 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2104 if (*mp)
2105 mp = &(*mp)->m_next;
2107 /* ip_srcroute doesn't do what we want here, need to fix */
2108 if (inp->inp_flags & INP_RECVRETOPTS) {
2109 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2110 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2111 if (*mp)
2112 mp = &(*mp)->m_next;
2114 #endif
2115 if (inp->inp_flags & INP_RECVIF) {
2116 struct ifnet *ifp;
2117 struct sdlbuf {
2118 struct sockaddr_dl sdl;
2119 u_char pad[32];
2120 } sdlbuf;
2121 struct sockaddr_dl *sdp;
2122 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2124 if (((ifp = m->m_pkthdr.rcvif)) &&
2125 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2126 sdp = IF_LLSOCKADDR(ifp);
2128 * Change our mind and don't try copy.
2130 if ((sdp->sdl_family != AF_LINK) ||
2131 (sdp->sdl_len > sizeof(sdlbuf))) {
2132 goto makedummy;
2134 bcopy(sdp, sdl2, sdp->sdl_len);
2135 } else {
2136 makedummy:
2137 sdl2->sdl_len =
2138 offsetof(struct sockaddr_dl, sdl_data[0]);
2139 sdl2->sdl_family = AF_LINK;
2140 sdl2->sdl_index = 0;
2141 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2143 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2144 IP_RECVIF, IPPROTO_IP);
2145 if (*mp)
2146 mp = &(*mp)->m_next;
2151 * XXX these routines are called from the upper part of the kernel.
2153 * They could also be moved to ip_mroute.c, since all the RSVP
2154 * handling is done there already.
2157 ip_rsvp_init(struct socket *so)
2159 if (so->so_type != SOCK_RAW ||
2160 so->so_proto->pr_protocol != IPPROTO_RSVP)
2161 return EOPNOTSUPP;
2163 if (ip_rsvpd != NULL)
2164 return EADDRINUSE;
2166 ip_rsvpd = so;
2168 * This may seem silly, but we need to be sure we don't over-increment
2169 * the RSVP counter, in case something slips up.
2171 if (!ip_rsvp_on) {
2172 ip_rsvp_on = 1;
2173 rsvp_on++;
2176 return 0;
2180 ip_rsvp_done(void)
2182 ip_rsvpd = NULL;
2184 * This may seem silly, but we need to be sure we don't over-decrement
2185 * the RSVP counter, in case something slips up.
2187 if (ip_rsvp_on) {
2188 ip_rsvp_on = 0;
2189 rsvp_on--;
2191 return 0;
2194 void
2195 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2197 int off, proto;
2198 __va_list ap;
2200 __va_start(ap, m);
2201 off = __va_arg(ap, int);
2202 proto = __va_arg(ap, int);
2203 __va_end(ap);
2205 if (rsvp_input_p) { /* call the real one if loaded */
2206 rsvp_input_p(m, off, proto);
2207 return;
2210 /* Can still get packets with rsvp_on = 0 if there is a local member
2211 * of the group to which the RSVP packet is addressed. But in this
2212 * case we want to throw the packet away.
2215 if (!rsvp_on) {
2216 m_freem(m);
2217 return;
2220 if (ip_rsvpd != NULL) {
2221 rip_input(m, off, proto);
2222 return;
2224 /* Drop the packet */
2225 m_freem(m);