kernel - Fix swap issue, implement dynamic pmap PT/PD/PDP deletion (2)
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
bloba77ee6302da89902d89da79310bb003389315869
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2012 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex) _pv_get(pmap, pindex \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #else
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
128 #define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129 #define pv_lock(pv) _pv_lock(pv)
130 #define pv_hold_try(pv) _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
133 #endif
136 * Get PDEs and PTEs for user/kernel address space
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
140 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
150 #define pte_prot(m, p) \
151 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
159 vm_paddr_t avail_start; /* PA of first available physical page */
160 vm_paddr_t avail_end; /* PA of last available physical page */
161 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart; /* VA start of KVA space */
166 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize; /* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
169 //static int pgeflag; /* PG_G or-in */
170 //static int pseflag; /* PG_PS or-in */
171 uint64_t PatMsr;
173 static int ndmpdp;
174 static vm_paddr_t dmaplimit;
175 static int nkpt;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t KPDphys; /* phys addr of kernel level 2 */
184 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys; /* phys addr of kernel level 3 */
186 uint64_t KPML4phys; /* phys addr of kernel level 4 */
188 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
189 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
192 * Data for the pv entry allocation mechanism
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
202 * All those kernel PT submaps that BSD is so fond of
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
210 * PMAP default PG_* bits. Needed to be able to add
211 * EPT/NPT pagetable pmap_bits for the VMM module
213 uint64_t pmap_bits_default[] = {
214 REGULAR_PMAP, /* TYPE_IDX 0 */
215 X86_PG_V, /* PG_V_IDX 1 */
216 X86_PG_RW, /* PG_RW_IDX 2 */
217 X86_PG_U, /* PG_U_IDX 3 */
218 X86_PG_A, /* PG_A_IDX 4 */
219 X86_PG_M, /* PG_M_IDX 5 */
220 X86_PG_PS, /* PG_PS_IDX3 6 */
221 X86_PG_G, /* PG_G_IDX 7 */
222 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
223 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
224 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
225 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
228 * Crashdump maps.
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
233 static int pmap_debug = 0;
234 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
235 &pmap_debug, 0, "Debug pmap's");
236 #ifdef PMAP_DEBUG2
237 static int pmap_enter_debug = 0;
238 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
239 &pmap_enter_debug, 0, "Debug pmap_enter's");
240 #endif
241 static int pmap_yield_count = 64;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
243 &pmap_yield_count, 0, "Yield during init_pt/release");
244 static int pmap_mmu_optimize = 0;
245 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
246 &pmap_mmu_optimize, 0, "Share page table pages when possible");
247 int pmap_fast_kernel_cpusync = 0;
248 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
249 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
251 #define DISABLE_PSE
253 /* Standard user access funtions */
254 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
255 size_t *lencopied);
256 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
257 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
258 extern int std_fubyte (const void *base);
259 extern int std_subyte (void *base, int byte);
260 extern long std_fuword (const void *base);
261 extern int std_suword (void *base, long word);
262 extern int std_suword32 (void *base, int word);
264 static void pv_hold(pv_entry_t pv);
265 static int _pv_hold_try(pv_entry_t pv
266 PMAP_DEBUG_DECL);
267 static void pv_drop(pv_entry_t pv);
268 static void _pv_lock(pv_entry_t pv
269 PMAP_DEBUG_DECL);
270 static void pv_unlock(pv_entry_t pv);
271 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
272 PMAP_DEBUG_DECL);
273 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
274 PMAP_DEBUG_DECL);
275 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
276 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
277 static void pv_put(pv_entry_t pv);
278 static void pv_free(pv_entry_t pv, pv_entry_t pvp, int putaway);
279 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
280 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
281 pv_entry_t *pvpp);
282 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
283 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
284 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
285 pmap_inval_bulk_t *bulk, int destroy);
286 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
287 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
288 pmap_inval_bulk_t *bulk);
290 struct pmap_scan_info;
291 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
292 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
293 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
294 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
295 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
296 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
298 static void i386_protection_init (void);
299 static void create_pagetables(vm_paddr_t *firstaddr);
300 static void pmap_remove_all (vm_page_t m);
301 static boolean_t pmap_testbit (vm_page_t m, int bit);
303 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
304 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
306 static void pmap_pinit_defaults(struct pmap *pmap);
308 static unsigned pdir4mb;
310 static int
311 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
313 if (pv1->pv_pindex < pv2->pv_pindex)
314 return(-1);
315 if (pv1->pv_pindex > pv2->pv_pindex)
316 return(1);
317 return(0);
320 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
321 pv_entry_compare, vm_pindex_t, pv_pindex);
323 static __inline
324 void
325 pmap_page_stats_adding(vm_page_t m)
327 globaldata_t gd = mycpu;
329 if (TAILQ_EMPTY(&m->md.pv_list)) {
330 ++gd->gd_vmtotal.t_arm;
331 } else if (TAILQ_FIRST(&m->md.pv_list) ==
332 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
333 ++gd->gd_vmtotal.t_armshr;
334 ++gd->gd_vmtotal.t_avmshr;
335 } else {
336 ++gd->gd_vmtotal.t_avmshr;
340 static __inline
341 void
342 pmap_page_stats_deleting(vm_page_t m)
344 globaldata_t gd = mycpu;
346 if (TAILQ_EMPTY(&m->md.pv_list)) {
347 --gd->gd_vmtotal.t_arm;
348 } else if (TAILQ_FIRST(&m->md.pv_list) ==
349 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
350 --gd->gd_vmtotal.t_armshr;
351 --gd->gd_vmtotal.t_avmshr;
352 } else {
353 --gd->gd_vmtotal.t_avmshr;
358 * Move the kernel virtual free pointer to the next
359 * 2MB. This is used to help improve performance
360 * by using a large (2MB) page for much of the kernel
361 * (.text, .data, .bss)
363 static
364 vm_offset_t
365 pmap_kmem_choose(vm_offset_t addr)
367 vm_offset_t newaddr = addr;
369 newaddr = roundup2(addr, NBPDR);
370 return newaddr;
374 * pmap_pte_quick:
376 * Super fast pmap_pte routine best used when scanning the pv lists.
377 * This eliminates many course-grained invltlb calls. Note that many of
378 * the pv list scans are across different pmaps and it is very wasteful
379 * to do an entire invltlb when checking a single mapping.
381 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
383 static
384 pt_entry_t *
385 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
387 return pmap_pte(pmap, va);
391 * Returns the pindex of a page table entry (representing a terminal page).
392 * There are NUPTE_TOTAL page table entries possible (a huge number)
394 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
395 * We want to properly translate negative KVAs.
397 static __inline
398 vm_pindex_t
399 pmap_pte_pindex(vm_offset_t va)
401 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
405 * Returns the pindex of a page table.
407 static __inline
408 vm_pindex_t
409 pmap_pt_pindex(vm_offset_t va)
411 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
415 * Returns the pindex of a page directory.
417 static __inline
418 vm_pindex_t
419 pmap_pd_pindex(vm_offset_t va)
421 return (NUPTE_TOTAL + NUPT_TOTAL +
422 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
425 static __inline
426 vm_pindex_t
427 pmap_pdp_pindex(vm_offset_t va)
429 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
430 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
433 static __inline
434 vm_pindex_t
435 pmap_pml4_pindex(void)
437 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
441 * Return various clipped indexes for a given VA
443 * Returns the index of a pt in a page directory, representing a page
444 * table.
446 static __inline
447 vm_pindex_t
448 pmap_pt_index(vm_offset_t va)
450 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
454 * Returns the index of a pd in a page directory page, representing a page
455 * directory.
457 static __inline
458 vm_pindex_t
459 pmap_pd_index(vm_offset_t va)
461 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
465 * Returns the index of a pdp in the pml4 table, representing a page
466 * directory page.
468 static __inline
469 vm_pindex_t
470 pmap_pdp_index(vm_offset_t va)
472 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
476 * Generic procedure to index a pte from a pt, pd, or pdp.
478 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
479 * a page table page index but is instead of PV lookup index.
481 static
482 void *
483 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
485 pt_entry_t *pte;
487 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
488 return(&pte[pindex]);
492 * Return pointer to PDP slot in the PML4
494 static __inline
495 pml4_entry_t *
496 pmap_pdp(pmap_t pmap, vm_offset_t va)
498 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
502 * Return pointer to PD slot in the PDP given a pointer to the PDP
504 static __inline
505 pdp_entry_t *
506 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
508 pdp_entry_t *pd;
510 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
511 return (&pd[pmap_pd_index(va)]);
515 * Return pointer to PD slot in the PDP.
517 static __inline
518 pdp_entry_t *
519 pmap_pd(pmap_t pmap, vm_offset_t va)
521 pml4_entry_t *pdp;
523 pdp = pmap_pdp(pmap, va);
524 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
525 return NULL;
526 return (pmap_pdp_to_pd(*pdp, va));
530 * Return pointer to PT slot in the PD given a pointer to the PD
532 static __inline
533 pd_entry_t *
534 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
536 pd_entry_t *pt;
538 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
539 return (&pt[pmap_pt_index(va)]);
543 * Return pointer to PT slot in the PD
545 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
546 * so we cannot lookup the PD via the PDP. Instead we
547 * must look it up via the pmap.
549 static __inline
550 pd_entry_t *
551 pmap_pt(pmap_t pmap, vm_offset_t va)
553 pdp_entry_t *pd;
554 pv_entry_t pv;
555 vm_pindex_t pd_pindex;
557 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
558 pd_pindex = pmap_pd_pindex(va);
559 spin_lock(&pmap->pm_spin);
560 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
561 spin_unlock(&pmap->pm_spin);
562 if (pv == NULL || pv->pv_m == NULL)
563 return NULL;
564 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
565 } else {
566 pd = pmap_pd(pmap, va);
567 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
568 return NULL;
569 return (pmap_pd_to_pt(*pd, va));
574 * Return pointer to PTE slot in the PT given a pointer to the PT
576 static __inline
577 pt_entry_t *
578 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
580 pt_entry_t *pte;
582 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
583 return (&pte[pmap_pte_index(va)]);
587 * Return pointer to PTE slot in the PT
589 static __inline
590 pt_entry_t *
591 pmap_pte(pmap_t pmap, vm_offset_t va)
593 pd_entry_t *pt;
595 pt = pmap_pt(pmap, va);
596 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
597 return NULL;
598 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
599 return ((pt_entry_t *)pt);
600 return (pmap_pt_to_pte(*pt, va));
604 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
605 * the PT layer. This will speed up core pmap operations considerably.
607 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
608 * must be in a known associated state (typically by being locked when
609 * the pmap spinlock isn't held). We allow the race for that case.
611 static __inline
612 void
613 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
615 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
616 pv->pv_pmap->pm_pvhint = pv;
621 * Return address of PT slot in PD (KVM only)
623 * Cannot be used for user page tables because it might interfere with
624 * the shared page-table-page optimization (pmap_mmu_optimize).
626 static __inline
627 pd_entry_t *
628 vtopt(vm_offset_t va)
630 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
631 NPML4EPGSHIFT)) - 1);
633 return (PDmap + ((va >> PDRSHIFT) & mask));
637 * KVM - return address of PTE slot in PT
639 static __inline
640 pt_entry_t *
641 vtopte(vm_offset_t va)
643 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
644 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
646 return (PTmap + ((va >> PAGE_SHIFT) & mask));
649 static uint64_t
650 allocpages(vm_paddr_t *firstaddr, long n)
652 uint64_t ret;
654 ret = *firstaddr;
655 bzero((void *)ret, n * PAGE_SIZE);
656 *firstaddr += n * PAGE_SIZE;
657 return (ret);
660 static
661 void
662 create_pagetables(vm_paddr_t *firstaddr)
664 long i; /* must be 64 bits */
665 long nkpt_base;
666 long nkpt_phys;
667 int j;
670 * We are running (mostly) V=P at this point
672 * Calculate NKPT - number of kernel page tables. We have to
673 * accomodoate prealloction of the vm_page_array, dump bitmap,
674 * MSGBUF_SIZE, and other stuff. Be generous.
676 * Maxmem is in pages.
678 * ndmpdp is the number of 1GB pages we wish to map.
680 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
681 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
682 ndmpdp = 4;
683 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
686 * Starting at the beginning of kvm (not KERNBASE).
688 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
689 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
690 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
691 ndmpdp) + 511) / 512;
692 nkpt_phys += 128;
695 * Starting at KERNBASE - map 2G worth of page table pages.
696 * KERNBASE is offset -2G from the end of kvm.
698 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
701 * Allocate pages
703 KPTbase = allocpages(firstaddr, nkpt_base);
704 KPTphys = allocpages(firstaddr, nkpt_phys);
705 KPML4phys = allocpages(firstaddr, 1);
706 KPDPphys = allocpages(firstaddr, NKPML4E);
707 KPDphys = allocpages(firstaddr, NKPDPE);
710 * Calculate the page directory base for KERNBASE,
711 * that is where we start populating the page table pages.
712 * Basically this is the end - 2.
714 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
716 DMPDPphys = allocpages(firstaddr, NDMPML4E);
717 if ((amd_feature & AMDID_PAGE1GB) == 0)
718 DMPDphys = allocpages(firstaddr, ndmpdp);
719 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
722 * Fill in the underlying page table pages for the area around
723 * KERNBASE. This remaps low physical memory to KERNBASE.
725 * Read-only from zero to physfree
726 * XXX not fully used, underneath 2M pages
728 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
729 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
730 ((pt_entry_t *)KPTbase)[i] |=
731 pmap_bits_default[PG_RW_IDX] |
732 pmap_bits_default[PG_V_IDX] |
733 pmap_bits_default[PG_G_IDX];
737 * Now map the initial kernel page tables. One block of page
738 * tables is placed at the beginning of kernel virtual memory,
739 * and another block is placed at KERNBASE to map the kernel binary,
740 * data, bss, and initial pre-allocations.
742 for (i = 0; i < nkpt_base; i++) {
743 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
744 ((pd_entry_t *)KPDbase)[i] |=
745 pmap_bits_default[PG_RW_IDX] |
746 pmap_bits_default[PG_V_IDX];
748 for (i = 0; i < nkpt_phys; i++) {
749 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
750 ((pd_entry_t *)KPDphys)[i] |=
751 pmap_bits_default[PG_RW_IDX] |
752 pmap_bits_default[PG_V_IDX];
756 * Map from zero to end of allocations using 2M pages as an
757 * optimization. This will bypass some of the KPTBase pages
758 * above in the KERNBASE area.
760 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
761 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
762 ((pd_entry_t *)KPDbase)[i] |=
763 pmap_bits_default[PG_RW_IDX] |
764 pmap_bits_default[PG_V_IDX] |
765 pmap_bits_default[PG_PS_IDX] |
766 pmap_bits_default[PG_G_IDX];
770 * And connect up the PD to the PDP. The kernel pmap is expected
771 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
773 for (i = 0; i < NKPDPE; i++) {
774 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
775 KPDphys + (i << PAGE_SHIFT);
776 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
777 pmap_bits_default[PG_RW_IDX] |
778 pmap_bits_default[PG_V_IDX] |
779 pmap_bits_default[PG_U_IDX];
783 * Now set up the direct map space using either 2MB or 1GB pages
784 * Preset PG_M and PG_A because demotion expects it.
786 * When filling in entries in the PD pages make sure any excess
787 * entries are set to zero as we allocated enough PD pages
789 if ((amd_feature & AMDID_PAGE1GB) == 0) {
790 for (i = 0; i < NPDEPG * ndmpdp; i++) {
791 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
792 ((pd_entry_t *)DMPDphys)[i] |=
793 pmap_bits_default[PG_RW_IDX] |
794 pmap_bits_default[PG_V_IDX] |
795 pmap_bits_default[PG_PS_IDX] |
796 pmap_bits_default[PG_G_IDX] |
797 pmap_bits_default[PG_M_IDX] |
798 pmap_bits_default[PG_A_IDX];
802 * And the direct map space's PDP
804 for (i = 0; i < ndmpdp; i++) {
805 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
806 (i << PAGE_SHIFT);
807 ((pdp_entry_t *)DMPDPphys)[i] |=
808 pmap_bits_default[PG_RW_IDX] |
809 pmap_bits_default[PG_V_IDX] |
810 pmap_bits_default[PG_U_IDX];
812 } else {
813 for (i = 0; i < ndmpdp; i++) {
814 ((pdp_entry_t *)DMPDPphys)[i] =
815 (vm_paddr_t)i << PDPSHIFT;
816 ((pdp_entry_t *)DMPDPphys)[i] |=
817 pmap_bits_default[PG_RW_IDX] |
818 pmap_bits_default[PG_V_IDX] |
819 pmap_bits_default[PG_PS_IDX] |
820 pmap_bits_default[PG_G_IDX] |
821 pmap_bits_default[PG_M_IDX] |
822 pmap_bits_default[PG_A_IDX];
826 /* And recursively map PML4 to itself in order to get PTmap */
827 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
828 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
829 pmap_bits_default[PG_RW_IDX] |
830 pmap_bits_default[PG_V_IDX] |
831 pmap_bits_default[PG_U_IDX];
834 * Connect the Direct Map slots up to the PML4
836 for (j = 0; j < NDMPML4E; ++j) {
837 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
838 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
839 pmap_bits_default[PG_RW_IDX] |
840 pmap_bits_default[PG_V_IDX] |
841 pmap_bits_default[PG_U_IDX];
845 * Connect the KVA slot up to the PML4
847 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
848 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
849 pmap_bits_default[PG_RW_IDX] |
850 pmap_bits_default[PG_V_IDX] |
851 pmap_bits_default[PG_U_IDX];
855 * Bootstrap the system enough to run with virtual memory.
857 * On the i386 this is called after mapping has already been enabled
858 * and just syncs the pmap module with what has already been done.
859 * [We can't call it easily with mapping off since the kernel is not
860 * mapped with PA == VA, hence we would have to relocate every address
861 * from the linked base (virtual) address "KERNBASE" to the actual
862 * (physical) address starting relative to 0]
864 void
865 pmap_bootstrap(vm_paddr_t *firstaddr)
867 vm_offset_t va;
868 pt_entry_t *pte;
870 KvaStart = VM_MIN_KERNEL_ADDRESS;
871 KvaEnd = VM_MAX_KERNEL_ADDRESS;
872 KvaSize = KvaEnd - KvaStart;
874 avail_start = *firstaddr;
877 * Create an initial set of page tables to run the kernel in.
879 create_pagetables(firstaddr);
881 virtual2_start = KvaStart;
882 virtual2_end = PTOV_OFFSET;
884 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
885 virtual_start = pmap_kmem_choose(virtual_start);
887 virtual_end = VM_MAX_KERNEL_ADDRESS;
889 /* XXX do %cr0 as well */
890 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
891 load_cr3(KPML4phys);
894 * Initialize protection array.
896 i386_protection_init();
899 * The kernel's pmap is statically allocated so we don't have to use
900 * pmap_create, which is unlikely to work correctly at this part of
901 * the boot sequence (XXX and which no longer exists).
903 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
904 kernel_pmap.pm_count = 1;
905 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
906 RB_INIT(&kernel_pmap.pm_pvroot);
907 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
908 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
911 * Reserve some special page table entries/VA space for temporary
912 * mapping of pages.
914 #define SYSMAP(c, p, v, n) \
915 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
917 va = virtual_start;
918 pte = vtopte(va);
921 * CMAP1/CMAP2 are used for zeroing and copying pages.
923 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
926 * Crashdump maps.
928 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
931 * ptvmmap is used for reading arbitrary physical pages via
932 * /dev/mem.
934 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
937 * msgbufp is used to map the system message buffer.
938 * XXX msgbufmap is not used.
940 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
941 atop(round_page(MSGBUF_SIZE)))
943 virtual_start = va;
944 virtual_start = pmap_kmem_choose(virtual_start);
946 *CMAP1 = 0;
949 * PG_G is terribly broken on SMP because we IPI invltlb's in some
950 * cases rather then invl1pg. Actually, I don't even know why it
951 * works under UP because self-referential page table mappings
953 // pgeflag = 0;
956 * Initialize the 4MB page size flag
958 // pseflag = 0;
960 * The 4MB page version of the initial
961 * kernel page mapping.
963 pdir4mb = 0;
965 #if !defined(DISABLE_PSE)
966 if (cpu_feature & CPUID_PSE) {
967 pt_entry_t ptditmp;
969 * Note that we have enabled PSE mode
971 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
972 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
973 ptditmp &= ~(NBPDR - 1);
974 ptditmp |= pmap_bits_default[PG_V_IDX] |
975 pmap_bits_default[PG_RW_IDX] |
976 pmap_bits_default[PG_PS_IDX] |
977 pmap_bits_default[PG_U_IDX];
978 // pgeflag;
979 pdir4mb = ptditmp;
981 #endif
982 cpu_invltlb();
984 /* Initialize the PAT MSR */
985 pmap_init_pat();
986 pmap_pinit_defaults(&kernel_pmap);
988 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
989 &pmap_fast_kernel_cpusync);
994 * Setup the PAT MSR.
996 void
997 pmap_init_pat(void)
999 uint64_t pat_msr;
1000 u_long cr0, cr4;
1003 * Default values mapping PATi,PCD,PWT bits at system reset.
1004 * The default values effectively ignore the PATi bit by
1005 * repeating the encodings for 0-3 in 4-7, and map the PCD
1006 * and PWT bit combinations to the expected PAT types.
1008 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1009 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1010 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1011 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1012 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1013 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1014 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1015 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1016 pat_pte_index[PAT_WRITE_BACK] = 0;
1017 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1018 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1019 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1020 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1021 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1023 if (cpu_feature & CPUID_PAT) {
1025 * If we support the PAT then set-up entries for
1026 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1027 * 4 and 5.
1029 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1030 PAT_VALUE(4, PAT_WRITE_PROTECTED);
1031 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1032 PAT_VALUE(5, PAT_WRITE_COMBINING);
1033 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1034 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1037 * Then enable the PAT
1040 /* Disable PGE. */
1041 cr4 = rcr4();
1042 load_cr4(cr4 & ~CR4_PGE);
1044 /* Disable caches (CD = 1, NW = 0). */
1045 cr0 = rcr0();
1046 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1048 /* Flushes caches and TLBs. */
1049 wbinvd();
1050 cpu_invltlb();
1052 /* Update PAT and index table. */
1053 wrmsr(MSR_PAT, pat_msr);
1055 /* Flush caches and TLBs again. */
1056 wbinvd();
1057 cpu_invltlb();
1059 /* Restore caches and PGE. */
1060 load_cr0(cr0);
1061 load_cr4(cr4);
1062 PatMsr = pat_msr;
1067 * Set 4mb pdir for mp startup
1069 void
1070 pmap_set_opt(void)
1072 if (cpu_feature & CPUID_PSE) {
1073 load_cr4(rcr4() | CR4_PSE);
1074 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1075 cpu_invltlb();
1081 * Initialize the pmap module.
1082 * Called by vm_init, to initialize any structures that the pmap
1083 * system needs to map virtual memory.
1084 * pmap_init has been enhanced to support in a fairly consistant
1085 * way, discontiguous physical memory.
1087 void
1088 pmap_init(void)
1090 int i;
1091 int initial_pvs;
1094 * Allocate memory for random pmap data structures. Includes the
1095 * pv_head_table.
1098 for (i = 0; i < vm_page_array_size; i++) {
1099 vm_page_t m;
1101 m = &vm_page_array[i];
1102 TAILQ_INIT(&m->md.pv_list);
1106 * init the pv free list
1108 initial_pvs = vm_page_array_size;
1109 if (initial_pvs < MINPV)
1110 initial_pvs = MINPV;
1111 pvzone = &pvzone_store;
1112 pvinit = (void *)kmem_alloc(&kernel_map,
1113 initial_pvs * sizeof (struct pv_entry),
1114 VM_SUBSYS_PVENTRY);
1115 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1116 pvinit, initial_pvs);
1119 * Now it is safe to enable pv_table recording.
1121 pmap_initialized = TRUE;
1125 * Initialize the address space (zone) for the pv_entries. Set a
1126 * high water mark so that the system can recover from excessive
1127 * numbers of pv entries.
1129 void
1130 pmap_init2(void)
1132 int shpgperproc = PMAP_SHPGPERPROC;
1133 int entry_max;
1135 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1136 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1137 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1138 pv_entry_high_water = 9 * (pv_entry_max / 10);
1141 * Subtract out pages already installed in the zone (hack)
1143 entry_max = pv_entry_max - vm_page_array_size;
1144 if (entry_max <= 0)
1145 entry_max = 1;
1147 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT);
1151 * Typically used to initialize a fictitious page by vm/device_pager.c
1153 void
1154 pmap_page_init(struct vm_page *m)
1156 vm_page_init(m);
1157 TAILQ_INIT(&m->md.pv_list);
1160 /***************************************************
1161 * Low level helper routines.....
1162 ***************************************************/
1165 * this routine defines the region(s) of memory that should
1166 * not be tested for the modified bit.
1168 static __inline
1170 pmap_track_modified(vm_pindex_t pindex)
1172 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1173 if ((va < clean_sva) || (va >= clean_eva))
1174 return 1;
1175 else
1176 return 0;
1180 * Extract the physical page address associated with the map/VA pair.
1181 * The page must be wired for this to work reliably.
1183 * XXX for the moment we're using pv_find() instead of pv_get(), as
1184 * callers might be expecting non-blocking operation.
1186 vm_paddr_t
1187 pmap_extract(pmap_t pmap, vm_offset_t va)
1189 vm_paddr_t rtval;
1190 pv_entry_t pt_pv;
1191 pt_entry_t *ptep;
1193 rtval = 0;
1194 if (va >= VM_MAX_USER_ADDRESS) {
1196 * Kernel page directories might be direct-mapped and
1197 * there is typically no PV tracking of pte's
1199 pd_entry_t *pt;
1201 pt = pmap_pt(pmap, va);
1202 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1203 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1204 rtval = *pt & PG_PS_FRAME;
1205 rtval |= va & PDRMASK;
1206 } else {
1207 ptep = pmap_pt_to_pte(*pt, va);
1208 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1209 rtval = *ptep & PG_FRAME;
1210 rtval |= va & PAGE_MASK;
1214 } else {
1216 * User pages currently do not direct-map the page directory
1217 * and some pages might not used managed PVs. But all PT's
1218 * will have a PV.
1220 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1221 if (pt_pv) {
1222 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1223 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1224 rtval = *ptep & PG_FRAME;
1225 rtval |= va & PAGE_MASK;
1227 pv_drop(pt_pv);
1230 return rtval;
1234 * Similar to extract but checks protections, SMP-friendly short-cut for
1235 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1236 * fall-through to the real fault code.
1238 * The returned page, if not NULL, is held (and not busied).
1240 vm_page_t
1241 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1243 if (pmap && va < VM_MAX_USER_ADDRESS) {
1244 pv_entry_t pt_pv;
1245 pv_entry_t pte_pv;
1246 pt_entry_t *ptep;
1247 pt_entry_t req;
1248 vm_page_t m;
1249 int error;
1251 req = pmap->pmap_bits[PG_V_IDX] |
1252 pmap->pmap_bits[PG_U_IDX];
1253 if (prot & VM_PROT_WRITE)
1254 req |= pmap->pmap_bits[PG_RW_IDX];
1256 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1257 if (pt_pv == NULL)
1258 return (NULL);
1259 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1260 if ((*ptep & req) != req) {
1261 pv_drop(pt_pv);
1262 return (NULL);
1264 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1265 if (pte_pv && error == 0) {
1266 m = pte_pv->pv_m;
1267 vm_page_hold(m);
1268 if (prot & VM_PROT_WRITE)
1269 vm_page_dirty(m);
1270 pv_put(pte_pv);
1271 } else if (pte_pv) {
1272 pv_drop(pte_pv);
1273 m = NULL;
1274 } else {
1275 m = NULL;
1277 pv_drop(pt_pv);
1278 return(m);
1279 } else {
1280 return(NULL);
1285 * Extract the physical page address associated kernel virtual address.
1287 vm_paddr_t
1288 pmap_kextract(vm_offset_t va)
1290 pd_entry_t pt; /* pt entry in pd */
1291 vm_paddr_t pa;
1293 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1294 pa = DMAP_TO_PHYS(va);
1295 } else {
1296 pt = *vtopt(va);
1297 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1298 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1299 } else {
1301 * Beware of a concurrent promotion that changes the
1302 * PDE at this point! For example, vtopte() must not
1303 * be used to access the PTE because it would use the
1304 * new PDE. It is, however, safe to use the old PDE
1305 * because the page table page is preserved by the
1306 * promotion.
1308 pa = *pmap_pt_to_pte(pt, va);
1309 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1312 return pa;
1315 /***************************************************
1316 * Low level mapping routines.....
1317 ***************************************************/
1320 * Routine: pmap_kenter
1321 * Function:
1322 * Add a wired page to the KVA
1323 * NOTE! note that in order for the mapping to take effect -- you
1324 * should do an invltlb after doing the pmap_kenter().
1326 void
1327 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1329 pt_entry_t *ptep;
1330 pt_entry_t npte;
1332 npte = pa |
1333 kernel_pmap.pmap_bits[PG_RW_IDX] |
1334 kernel_pmap.pmap_bits[PG_V_IDX];
1335 // pgeflag;
1336 ptep = vtopte(va);
1337 #if 1
1338 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1339 #else
1340 /* FUTURE */
1341 if (*ptep)
1342 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1343 else
1344 *ptep = npte;
1345 #endif
1349 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1350 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1351 * (caller can conditionalize calling smp_invltlb()).
1354 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1356 pt_entry_t *ptep;
1357 pt_entry_t npte;
1358 int res;
1360 npte = pa |
1361 kernel_pmap.pmap_bits[PG_RW_IDX] |
1362 kernel_pmap.pmap_bits[PG_V_IDX];
1363 // pgeflag;
1364 ptep = vtopte(va);
1365 #if 1
1366 res = 1;
1367 #else
1368 /* FUTURE */
1369 res = (*ptep != 0);
1370 #endif
1371 *ptep = npte;
1372 cpu_invlpg((void *)va);
1374 return res;
1378 * Enter addresses into the kernel pmap but don't bother
1379 * doing any tlb invalidations. Caller will do a rollup
1380 * invalidation via pmap_rollup_inval().
1383 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1385 pt_entry_t *ptep;
1386 pt_entry_t npte;
1387 int res;
1389 npte = pa |
1390 kernel_pmap.pmap_bits[PG_RW_IDX] |
1391 kernel_pmap.pmap_bits[PG_V_IDX];
1392 // pgeflag;
1393 ptep = vtopte(va);
1394 #if 1
1395 res = 1;
1396 #else
1397 /* FUTURE */
1398 res = (*ptep != 0);
1399 #endif
1400 *ptep = npte;
1401 cpu_invlpg((void *)va);
1403 return res;
1407 * remove a page from the kernel pagetables
1409 void
1410 pmap_kremove(vm_offset_t va)
1412 pt_entry_t *ptep;
1414 ptep = vtopte(va);
1415 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1418 void
1419 pmap_kremove_quick(vm_offset_t va)
1421 pt_entry_t *ptep;
1423 ptep = vtopte(va);
1424 (void)pte_load_clear(ptep);
1425 cpu_invlpg((void *)va);
1429 * Remove addresses from the kernel pmap but don't bother
1430 * doing any tlb invalidations. Caller will do a rollup
1431 * invalidation via pmap_rollup_inval().
1433 void
1434 pmap_kremove_noinval(vm_offset_t va)
1436 pt_entry_t *ptep;
1438 ptep = vtopte(va);
1439 (void)pte_load_clear(ptep);
1443 * XXX these need to be recoded. They are not used in any critical path.
1445 void
1446 pmap_kmodify_rw(vm_offset_t va)
1448 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1449 cpu_invlpg((void *)va);
1452 /* NOT USED
1453 void
1454 pmap_kmodify_nc(vm_offset_t va)
1456 atomic_set_long(vtopte(va), PG_N);
1457 cpu_invlpg((void *)va);
1462 * Used to map a range of physical addresses into kernel virtual
1463 * address space during the low level boot, typically to map the
1464 * dump bitmap, message buffer, and vm_page_array.
1466 * These mappings are typically made at some pointer after the end of the
1467 * kernel text+data.
1469 * We could return PHYS_TO_DMAP(start) here and not allocate any
1470 * via (*virtp), but then kmem from userland and kernel dumps won't
1471 * have access to the related pointers.
1473 vm_offset_t
1474 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1476 vm_offset_t va;
1477 vm_offset_t va_start;
1479 /*return PHYS_TO_DMAP(start);*/
1481 va_start = *virtp;
1482 va = va_start;
1484 while (start < end) {
1485 pmap_kenter_quick(va, start);
1486 va += PAGE_SIZE;
1487 start += PAGE_SIZE;
1489 *virtp = va;
1490 return va_start;
1493 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1496 * Remove the specified set of pages from the data and instruction caches.
1498 * In contrast to pmap_invalidate_cache_range(), this function does not
1499 * rely on the CPU's self-snoop feature, because it is intended for use
1500 * when moving pages into a different cache domain.
1502 void
1503 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1505 vm_offset_t daddr, eva;
1506 int i;
1508 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1509 (cpu_feature & CPUID_CLFSH) == 0)
1510 wbinvd();
1511 else {
1512 cpu_mfence();
1513 for (i = 0; i < count; i++) {
1514 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1515 eva = daddr + PAGE_SIZE;
1516 for (; daddr < eva; daddr += cpu_clflush_line_size)
1517 clflush(daddr);
1519 cpu_mfence();
1523 void
1524 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1526 KASSERT((sva & PAGE_MASK) == 0,
1527 ("pmap_invalidate_cache_range: sva not page-aligned"));
1528 KASSERT((eva & PAGE_MASK) == 0,
1529 ("pmap_invalidate_cache_range: eva not page-aligned"));
1531 if (cpu_feature & CPUID_SS) {
1532 ; /* If "Self Snoop" is supported, do nothing. */
1533 } else {
1534 /* Globally invalidate caches */
1535 cpu_wbinvd_on_all_cpus();
1540 * Invalidate the specified range of virtual memory on all cpus associated
1541 * with the pmap.
1543 void
1544 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1546 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1550 * Add a list of wired pages to the kva. This routine is used for temporary
1551 * kernel mappings such as those found in buffer cache buffer. Page
1552 * modifications and accesses are not tracked or recorded.
1554 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1555 * semantics as previous mappings may have been zerod without any
1556 * invalidation.
1558 * The page *must* be wired.
1560 void
1561 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1563 vm_offset_t end_va;
1564 vm_offset_t va;
1566 end_va = beg_va + count * PAGE_SIZE;
1568 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1569 pt_entry_t *pte;
1571 pte = vtopte(va);
1572 *pte = VM_PAGE_TO_PHYS(*m) |
1573 kernel_pmap.pmap_bits[PG_RW_IDX] |
1574 kernel_pmap.pmap_bits[PG_V_IDX] |
1575 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1576 // pgeflag;
1577 m++;
1579 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1583 * This routine jerks page mappings from the kernel -- it is meant only
1584 * for temporary mappings such as those found in buffer cache buffers.
1585 * No recording modified or access status occurs.
1587 * MPSAFE, INTERRUPT SAFE (cluster callback)
1589 void
1590 pmap_qremove(vm_offset_t beg_va, int count)
1592 vm_offset_t end_va;
1593 vm_offset_t va;
1595 end_va = beg_va + count * PAGE_SIZE;
1597 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1598 pt_entry_t *pte;
1600 pte = vtopte(va);
1601 (void)pte_load_clear(pte);
1602 cpu_invlpg((void *)va);
1604 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1608 * This routine removes temporary kernel mappings, only invalidating them
1609 * on the current cpu. It should only be used under carefully controlled
1610 * conditions.
1612 void
1613 pmap_qremove_quick(vm_offset_t beg_va, int count)
1615 vm_offset_t end_va;
1616 vm_offset_t va;
1618 end_va = beg_va + count * PAGE_SIZE;
1620 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1621 pt_entry_t *pte;
1623 pte = vtopte(va);
1624 (void)pte_load_clear(pte);
1625 cpu_invlpg((void *)va);
1630 * This routine removes temporary kernel mappings *without* invalidating
1631 * the TLB. It can only be used on permanent kva reservations such as those
1632 * found in buffer cache buffers, under carefully controlled circumstances.
1634 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1635 * (pmap_qenter() does unconditional invalidation).
1637 void
1638 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1640 vm_offset_t end_va;
1641 vm_offset_t va;
1643 end_va = beg_va + count * PAGE_SIZE;
1645 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1646 pt_entry_t *pte;
1648 pte = vtopte(va);
1649 (void)pte_load_clear(pte);
1654 * Create a new thread and optionally associate it with a (new) process.
1655 * NOTE! the new thread's cpu may not equal the current cpu.
1657 void
1658 pmap_init_thread(thread_t td)
1660 /* enforce pcb placement & alignment */
1661 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1662 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1663 td->td_savefpu = &td->td_pcb->pcb_save;
1664 td->td_sp = (char *)td->td_pcb; /* no -16 */
1668 * This routine directly affects the fork perf for a process.
1670 void
1671 pmap_init_proc(struct proc *p)
1675 static void
1676 pmap_pinit_defaults(struct pmap *pmap)
1678 bcopy(pmap_bits_default, pmap->pmap_bits,
1679 sizeof(pmap_bits_default));
1680 bcopy(protection_codes, pmap->protection_codes,
1681 sizeof(protection_codes));
1682 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1683 sizeof(pat_pte_index));
1684 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1685 pmap->copyinstr = std_copyinstr;
1686 pmap->copyin = std_copyin;
1687 pmap->copyout = std_copyout;
1688 pmap->fubyte = std_fubyte;
1689 pmap->subyte = std_subyte;
1690 pmap->fuword = std_fuword;
1691 pmap->suword = std_suword;
1692 pmap->suword32 = std_suword32;
1695 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1696 * it, and IdlePTD, represents the template used to update all other pmaps.
1698 * On architectures where the kernel pmap is not integrated into the user
1699 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1700 * kernel_pmap should be used to directly access the kernel_pmap.
1702 void
1703 pmap_pinit0(struct pmap *pmap)
1705 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1706 pmap->pm_count = 1;
1707 CPUMASK_ASSZERO(pmap->pm_active);
1708 pmap->pm_pvhint = NULL;
1709 RB_INIT(&pmap->pm_pvroot);
1710 spin_init(&pmap->pm_spin, "pmapinit0");
1711 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1712 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1713 pmap_pinit_defaults(pmap);
1717 * Initialize a preallocated and zeroed pmap structure,
1718 * such as one in a vmspace structure.
1720 static void
1721 pmap_pinit_simple(struct pmap *pmap)
1724 * Misc initialization
1726 pmap->pm_count = 1;
1727 CPUMASK_ASSZERO(pmap->pm_active);
1728 pmap->pm_pvhint = NULL;
1729 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1731 pmap_pinit_defaults(pmap);
1734 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1735 * for this).
1737 if (pmap->pm_pmlpv == NULL) {
1738 RB_INIT(&pmap->pm_pvroot);
1739 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1740 spin_init(&pmap->pm_spin, "pmapinitsimple");
1741 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1745 void
1746 pmap_pinit(struct pmap *pmap)
1748 pv_entry_t pv;
1749 int j;
1751 if (pmap->pm_pmlpv) {
1752 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1753 pmap_puninit(pmap);
1757 pmap_pinit_simple(pmap);
1758 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1761 * No need to allocate page table space yet but we do need a valid
1762 * page directory table.
1764 if (pmap->pm_pml4 == NULL) {
1765 pmap->pm_pml4 =
1766 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1767 PAGE_SIZE,
1768 VM_SUBSYS_PML4);
1772 * Allocate the page directory page, which wires it even though
1773 * it isn't being entered into some higher level page table (it
1774 * being the highest level). If one is already cached we don't
1775 * have to do anything.
1777 if ((pv = pmap->pm_pmlpv) == NULL) {
1778 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1779 pmap->pm_pmlpv = pv;
1780 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1781 VM_PAGE_TO_PHYS(pv->pv_m));
1782 pv_put(pv);
1785 * Install DMAP and KMAP.
1787 for (j = 0; j < NDMPML4E; ++j) {
1788 pmap->pm_pml4[DMPML4I + j] =
1789 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1790 pmap->pmap_bits[PG_RW_IDX] |
1791 pmap->pmap_bits[PG_V_IDX] |
1792 pmap->pmap_bits[PG_U_IDX];
1794 pmap->pm_pml4[KPML4I] = KPDPphys |
1795 pmap->pmap_bits[PG_RW_IDX] |
1796 pmap->pmap_bits[PG_V_IDX] |
1797 pmap->pmap_bits[PG_U_IDX];
1800 * install self-referential address mapping entry
1802 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1803 pmap->pmap_bits[PG_V_IDX] |
1804 pmap->pmap_bits[PG_RW_IDX] |
1805 pmap->pmap_bits[PG_A_IDX] |
1806 pmap->pmap_bits[PG_M_IDX];
1807 } else {
1808 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1809 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1811 KKASSERT(pmap->pm_pml4[255] == 0);
1812 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1813 KKASSERT(pv->pv_entry.rbe_left == NULL);
1814 KKASSERT(pv->pv_entry.rbe_right == NULL);
1818 * Clean up a pmap structure so it can be physically freed. This routine
1819 * is called by the vmspace dtor function. A great deal of pmap data is
1820 * left passively mapped to improve vmspace management so we have a bit
1821 * of cleanup work to do here.
1823 void
1824 pmap_puninit(pmap_t pmap)
1826 pv_entry_t pv;
1827 vm_page_t p;
1829 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1830 if ((pv = pmap->pm_pmlpv) != NULL) {
1831 if (pv_hold_try(pv) == 0)
1832 pv_lock(pv);
1833 KKASSERT(pv == pmap->pm_pmlpv);
1834 p = pmap_remove_pv_page(pv);
1835 pv_free(pv, NULL, 1);
1836 pv = NULL; /* safety */
1837 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1838 vm_page_busy_wait(p, FALSE, "pgpun");
1839 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1840 vm_page_unwire(p, 0);
1841 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1844 * XXX eventually clean out PML4 static entries and
1845 * use vm_page_free_zero()
1847 vm_page_free(p);
1848 pmap->pm_pmlpv = NULL;
1850 if (pmap->pm_pml4) {
1851 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1852 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1853 pmap->pm_pml4 = NULL;
1855 KKASSERT(pmap->pm_stats.resident_count == 0);
1856 KKASSERT(pmap->pm_stats.wired_count == 0);
1860 * Wire in kernel global address entries. To avoid a race condition
1861 * between pmap initialization and pmap_growkernel, this procedure
1862 * adds the pmap to the master list (which growkernel scans to update),
1863 * then copies the template.
1865 void
1866 pmap_pinit2(struct pmap *pmap)
1868 spin_lock(&pmap_spin);
1869 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1870 spin_unlock(&pmap_spin);
1874 * This routine is called when various levels in the page table need to
1875 * be populated. This routine cannot fail.
1877 * This function returns two locked pv_entry's, one representing the
1878 * requested pv and one representing the requested pv's parent pv. If
1879 * an intermediate page table does not exist it will be created, mapped,
1880 * wired, and the parent page table will be given an additional hold
1881 * count representing the presence of the child pv_entry.
1883 static
1884 pv_entry_t
1885 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1887 pt_entry_t *ptep;
1888 pv_entry_t pv;
1889 pv_entry_t pvp;
1890 vm_pindex_t pt_pindex;
1891 vm_page_t m;
1892 int isnew;
1893 int ispt;
1896 * If the pv already exists and we aren't being asked for the
1897 * parent page table page we can just return it. A locked+held pv
1898 * is returned. The pv will also have a second hold related to the
1899 * pmap association that we don't have to worry about.
1901 ispt = 0;
1902 pv = pv_alloc(pmap, ptepindex, &isnew);
1903 if (isnew == 0 && pvpp == NULL)
1904 return(pv);
1907 * Special case terminal PVs. These are not page table pages so
1908 * no vm_page is allocated (the caller supplied the vm_page). If
1909 * pvpp is non-NULL we are being asked to also removed the pt_pv
1910 * for this pv.
1912 * Note that pt_pv's are only returned for user VAs. We assert that
1913 * a pt_pv is not being requested for kernel VAs. The kernel
1914 * pre-wires all higher-level page tables so don't overload managed
1915 * higher-level page tables on top of it!
1917 if (ptepindex < pmap_pt_pindex(0)) {
1918 if (ptepindex >= NUPTE_USER) {
1919 /* kernel manages this manually for KVM */
1920 KKASSERT(pvpp == NULL);
1921 } else {
1922 KKASSERT(pvpp != NULL);
1923 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1924 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1925 if (isnew) {
1926 vm_page_wire_quick(pvp->pv_m);
1927 if (pvpp)
1928 *pvpp = pvp;
1929 else
1930 pv_put(pvp);
1931 } else {
1932 *pvpp = pvp;
1935 return(pv);
1939 * Non-terminal PVs allocate a VM page to represent the page table,
1940 * so we have to resolve pvp and calculate ptepindex for the pvp
1941 * and then for the page table entry index in the pvp for
1942 * fall-through.
1944 if (ptepindex < pmap_pd_pindex(0)) {
1946 * pv is PT, pvp is PD
1948 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1949 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1950 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1951 if (!isnew)
1952 goto notnew;
1955 * PT index in PD
1957 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1958 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1959 ispt = 1;
1960 } else if (ptepindex < pmap_pdp_pindex(0)) {
1962 * pv is PD, pvp is PDP
1964 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1965 * the PD.
1967 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1968 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1970 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1971 KKASSERT(pvpp == NULL);
1972 pvp = NULL;
1973 } else {
1974 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1976 if (!isnew)
1977 goto notnew;
1980 * PD index in PDP
1982 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1983 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1984 } else if (ptepindex < pmap_pml4_pindex()) {
1986 * pv is PDP, pvp is the root pml4 table
1988 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1989 if (!isnew)
1990 goto notnew;
1993 * PDP index in PML4
1995 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1996 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1997 } else {
1999 * pv represents the top-level PML4, there is no parent.
2001 pvp = NULL;
2002 if (!isnew)
2003 goto notnew;
2007 * (isnew) is TRUE, pv is not terminal.
2009 * (1) Add a wire count to the parent page table (pvp).
2010 * (2) Allocate a VM page for the page table.
2011 * (3) Enter the VM page into the parent page table.
2013 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2015 if (pvp)
2016 vm_page_wire_quick(pvp->pv_m);
2018 for (;;) {
2019 m = vm_page_alloc(NULL, pv->pv_pindex,
2020 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2021 VM_ALLOC_INTERRUPT);
2022 if (m)
2023 break;
2024 vm_wait(0);
2026 vm_page_spin_lock(m);
2027 pmap_page_stats_adding(m);
2028 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2029 pv->pv_m = m;
2030 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2031 vm_page_spin_unlock(m);
2032 vm_page_unmanage(m); /* m must be spinunlocked */
2034 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2035 m->valid = VM_PAGE_BITS_ALL;
2036 vm_page_wire(m); /* wire for mapping in parent */
2039 * Wire the page into pvp. Bump the resident_count for the pmap.
2040 * There is no pvp for the top level, address the pm_pml4[] array
2041 * directly.
2043 * If the caller wants the parent we return it, otherwise
2044 * we just put it away.
2046 * No interlock is needed for pte 0 -> non-zero.
2048 * In the situation where *ptep is valid we might have an unmanaged
2049 * page table page shared from another page table which we need to
2050 * unshare before installing our private page table page.
2052 if (pvp) {
2053 ptep = pv_pte_lookup(pvp, ptepindex);
2054 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2055 pt_entry_t pte;
2057 if (ispt == 0) {
2058 panic("pmap_allocpte: unexpected pte %p/%d",
2059 pvp, (int)ptepindex);
2061 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
2062 if (vm_page_unwire_quick(
2063 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2064 panic("pmap_allocpte: shared pgtable "
2065 "pg bad wirecount");
2067 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2069 *ptep = VM_PAGE_TO_PHYS(m) |
2070 (pmap->pmap_bits[PG_U_IDX] |
2071 pmap->pmap_bits[PG_RW_IDX] |
2072 pmap->pmap_bits[PG_V_IDX] |
2073 pmap->pmap_bits[PG_A_IDX] |
2074 pmap->pmap_bits[PG_M_IDX]);
2076 vm_page_wakeup(m);
2077 notnew:
2078 if (pvpp)
2079 *pvpp = pvp;
2080 else if (pvp)
2081 pv_put(pvp);
2082 return (pv);
2086 * This version of pmap_allocpte() checks for possible segment optimizations
2087 * that would allow page-table sharing. It can be called for terminal
2088 * page or page table page ptepindex's.
2090 * The function is called with page table page ptepindex's for fictitious
2091 * and unmanaged terminal pages. That is, we don't want to allocate a
2092 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2093 * for this case.
2095 * This function can return a pv and *pvpp associated with the passed in pmap
2096 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2097 * an unmanaged page table page will be entered into the pass in pmap.
2099 static
2100 pv_entry_t
2101 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2102 vm_map_entry_t entry, vm_offset_t va)
2104 vm_object_t object;
2105 pmap_t obpmap;
2106 pmap_t *obpmapp;
2107 vm_offset_t b;
2108 pv_entry_t pte_pv; /* in original or shared pmap */
2109 pv_entry_t pt_pv; /* in original or shared pmap */
2110 pv_entry_t proc_pd_pv; /* in original pmap */
2111 pv_entry_t proc_pt_pv; /* in original pmap */
2112 pv_entry_t xpv; /* PT in shared pmap */
2113 pd_entry_t *pt; /* PT entry in PD of original pmap */
2114 pd_entry_t opte; /* contents of *pt */
2115 pd_entry_t npte; /* contents of *pt */
2116 vm_page_t m;
2118 retry:
2120 * Basic tests, require a non-NULL vm_map_entry, require proper
2121 * alignment and type for the vm_map_entry, require that the
2122 * underlying object already be allocated.
2124 * We allow almost any type of object to use this optimization.
2125 * The object itself does NOT have to be sized to a multiple of the
2126 * segment size, but the memory mapping does.
2128 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2129 * won't work as expected.
2131 if (entry == NULL ||
2132 pmap_mmu_optimize == 0 || /* not enabled */
2133 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2134 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2135 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2136 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2137 entry->object.vm_object == NULL || /* needs VM object */
2138 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2139 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2140 (entry->offset & SEG_MASK) || /* must be aligned */
2141 (entry->start & SEG_MASK)) {
2142 return(pmap_allocpte(pmap, ptepindex, pvpp));
2146 * Make sure the full segment can be represented.
2148 b = va & ~(vm_offset_t)SEG_MASK;
2149 if (b < entry->start || b + SEG_SIZE > entry->end)
2150 return(pmap_allocpte(pmap, ptepindex, pvpp));
2153 * If the full segment can be represented dive the VM object's
2154 * shared pmap, allocating as required.
2156 object = entry->object.vm_object;
2158 if (entry->protection & VM_PROT_WRITE)
2159 obpmapp = &object->md.pmap_rw;
2160 else
2161 obpmapp = &object->md.pmap_ro;
2163 #ifdef PMAP_DEBUG2
2164 if (pmap_enter_debug > 0) {
2165 --pmap_enter_debug;
2166 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2167 "obpmapp %p %p\n",
2168 va, entry->protection, object,
2169 obpmapp, *obpmapp);
2170 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2171 entry, entry->start, entry->end);
2173 #endif
2176 * We allocate what appears to be a normal pmap but because portions
2177 * of this pmap are shared with other unrelated pmaps we have to
2178 * set pm_active to point to all cpus.
2180 * XXX Currently using pmap_spin to interlock the update, can't use
2181 * vm_object_hold/drop because the token might already be held
2182 * shared OR exclusive and we don't know.
2184 while ((obpmap = *obpmapp) == NULL) {
2185 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2186 pmap_pinit_simple(obpmap);
2187 pmap_pinit2(obpmap);
2188 spin_lock(&pmap_spin);
2189 if (*obpmapp != NULL) {
2191 * Handle race
2193 spin_unlock(&pmap_spin);
2194 pmap_release(obpmap);
2195 pmap_puninit(obpmap);
2196 kfree(obpmap, M_OBJPMAP);
2197 obpmap = *obpmapp; /* safety */
2198 } else {
2199 obpmap->pm_active = smp_active_mask;
2200 obpmap->pm_flags |= PMAP_SEGSHARED;
2201 *obpmapp = obpmap;
2202 spin_unlock(&pmap_spin);
2207 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2208 * pte/pt using the shared pmap from the object but also adjust
2209 * the process pmap's page table page as a side effect.
2213 * Resolve the terminal PTE and PT in the shared pmap. This is what
2214 * we will return. This is true if ptepindex represents a terminal
2215 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2216 * the PD.
2218 pt_pv = NULL;
2219 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2220 if (ptepindex >= pmap_pt_pindex(0))
2221 xpv = pte_pv;
2222 else
2223 xpv = pt_pv;
2226 * Resolve the PD in the process pmap so we can properly share the
2227 * page table page. Lock order is bottom-up (leaf first)!
2229 * NOTE: proc_pt_pv can be NULL.
2231 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2232 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2233 #ifdef PMAP_DEBUG2
2234 if (pmap_enter_debug > 0) {
2235 --pmap_enter_debug;
2236 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2237 proc_pt_pv,
2238 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2239 proc_pd_pv,
2240 va);
2242 #endif
2245 * xpv is the page table page pv from the shared object
2246 * (for convenience), from above.
2248 * Calculate the pte value for the PT to load into the process PD.
2249 * If we have to change it we must properly dispose of the previous
2250 * entry.
2252 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2253 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2254 (pmap->pmap_bits[PG_U_IDX] |
2255 pmap->pmap_bits[PG_RW_IDX] |
2256 pmap->pmap_bits[PG_V_IDX] |
2257 pmap->pmap_bits[PG_A_IDX] |
2258 pmap->pmap_bits[PG_M_IDX]);
2261 * Dispose of previous page table page if it was local to the
2262 * process pmap. If the old pt is not empty we cannot dispose of it
2263 * until we clean it out. This case should not arise very often so
2264 * it is not optimized.
2266 if (proc_pt_pv) {
2267 pmap_inval_bulk_t bulk;
2269 if (proc_pt_pv->pv_m->wire_count != 1) {
2270 pv_put(proc_pd_pv);
2271 pv_put(proc_pt_pv);
2272 pv_put(pt_pv);
2273 pv_put(pte_pv);
2274 pmap_remove(pmap,
2275 va & ~(vm_offset_t)SEG_MASK,
2276 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2277 goto retry;
2281 * The release call will indirectly clean out *pt
2283 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2284 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2285 pmap_inval_bulk_flush(&bulk);
2286 proc_pt_pv = NULL;
2287 /* relookup */
2288 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2292 * Handle remaining cases.
2294 if (*pt == 0) {
2295 *pt = npte;
2296 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2297 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2298 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2299 } else if (*pt != npte) {
2300 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2302 #if 0
2303 opte = pte_load_clear(pt);
2304 KKASSERT(opte && opte != npte);
2306 *pt = npte;
2307 #endif
2308 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2311 * Clean up opte, bump the wire_count for the process
2312 * PD page representing the new entry if it was
2313 * previously empty.
2315 * If the entry was not previously empty and we have
2316 * a PT in the proc pmap then opte must match that
2317 * pt. The proc pt must be retired (this is done
2318 * later on in this procedure).
2320 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2321 * stays the same.
2323 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2324 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2325 if (vm_page_unwire_quick(m)) {
2326 panic("pmap_allocpte_seg: "
2327 "bad wire count %p",
2333 * The existing process page table was replaced and must be destroyed
2334 * here.
2336 if (proc_pd_pv)
2337 pv_put(proc_pd_pv);
2338 if (pvpp)
2339 *pvpp = pt_pv;
2340 else
2341 pv_put(pt_pv);
2343 return (pte_pv);
2347 * Release any resources held by the given physical map.
2349 * Called when a pmap initialized by pmap_pinit is being released. Should
2350 * only be called if the map contains no valid mappings.
2352 * Caller must hold pmap->pm_token
2354 struct pmap_release_info {
2355 pmap_t pmap;
2356 int retry;
2357 pv_entry_t pvp;
2360 static int pmap_release_callback(pv_entry_t pv, void *data);
2362 void
2363 pmap_release(struct pmap *pmap)
2365 struct pmap_release_info info;
2367 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2368 ("pmap still active! %016jx",
2369 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2371 spin_lock(&pmap_spin);
2372 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2373 spin_unlock(&pmap_spin);
2376 * Pull pv's off the RB tree in order from low to high and release
2377 * each page.
2379 info.pmap = pmap;
2380 do {
2381 info.retry = 0;
2382 info.pvp = NULL;
2384 spin_lock(&pmap->pm_spin);
2385 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2386 pmap_release_callback, &info);
2387 spin_unlock(&pmap->pm_spin);
2389 if (info.pvp)
2390 pv_put(info.pvp);
2391 } while (info.retry);
2395 * One resident page (the pml4 page) should remain.
2396 * No wired pages should remain.
2398 KKASSERT(pmap->pm_stats.resident_count ==
2399 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2401 KKASSERT(pmap->pm_stats.wired_count == 0);
2405 * Called from low to high. We must cache the proper parent pv so we
2406 * can adjust its wired count.
2408 static int
2409 pmap_release_callback(pv_entry_t pv, void *data)
2411 struct pmap_release_info *info = data;
2412 pmap_t pmap = info->pmap;
2413 vm_pindex_t pindex;
2414 int r;
2416 if (info->pvp == pv) {
2417 spin_unlock(&pmap->pm_spin);
2418 info->pvp = NULL;
2419 } else if (pv_hold_try(pv)) {
2420 spin_unlock(&pmap->pm_spin);
2421 } else {
2422 spin_unlock(&pmap->pm_spin);
2423 pv_lock(pv);
2425 if (pv->pv_pmap != pmap) {
2426 pv_put(pv);
2427 spin_lock(&pmap->pm_spin);
2428 info->retry = 1;
2429 return(-1);
2432 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2434 * parent is PT
2436 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2437 pindex += NUPTE_TOTAL;
2438 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2440 * parent is PD
2442 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2443 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2444 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2446 * parent is PDP
2448 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2449 NPDPEPGSHIFT;
2450 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2451 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2453 * parent is PML4 (there's only one)
2455 #if 0
2456 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2457 NUPD_TOTAL) >> NPML4EPGSHIFT;
2458 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2459 #endif
2460 pindex = pmap_pml4_pindex();
2461 } else {
2463 * parent is NULL
2465 if (info->pvp) {
2466 pv_put(info->pvp);
2467 info->pvp = NULL;
2469 pindex = 0;
2471 if (pindex) {
2472 if (info->pvp && info->pvp->pv_pindex != pindex) {
2473 pv_put(info->pvp);
2474 info->pvp = NULL;
2476 if (info->pvp == NULL)
2477 info->pvp = pv_get(pmap, pindex);
2478 } else {
2479 if (info->pvp) {
2480 pv_put(info->pvp);
2481 info->pvp = NULL;
2484 r = pmap_release_pv(pv, info->pvp, NULL);
2485 spin_lock(&pmap->pm_spin);
2486 return(r);
2490 * Called with held (i.e. also locked) pv. This function will dispose of
2491 * the lock along with the pv.
2493 * If the caller already holds the locked parent page table for pv it
2494 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2495 * pass NULL for pvp.
2497 static int
2498 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2500 vm_page_t p;
2503 * The pmap is currently not spinlocked, pv is held+locked.
2504 * Remove the pv's page from its parent's page table. The
2505 * parent's page table page's wire_count will be decremented.
2507 * This will clean out the pte at any level of the page table.
2508 * If smp != 0 all cpus are affected.
2510 * Do not tear-down recursively, its faster to just let the
2511 * release run its course.
2513 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2516 * Terminal pvs are unhooked from their vm_pages. Because
2517 * terminal pages aren't page table pages they aren't wired
2518 * by us, so we have to be sure not to unwire them either.
2520 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2521 pmap_remove_pv_page(pv);
2522 goto skip;
2526 * We leave the top-level page table page cached, wired, and
2527 * mapped in the pmap until the dtor function (pmap_puninit())
2528 * gets called.
2530 * Since we are leaving the top-level pv intact we need
2531 * to break out of what would otherwise be an infinite loop.
2533 if (pv->pv_pindex == pmap_pml4_pindex()) {
2534 pv_put(pv);
2535 return(-1);
2539 * For page table pages (other than the top-level page),
2540 * remove and free the vm_page. The representitive mapping
2541 * removed above by pmap_remove_pv_pte() did not undo the
2542 * last wire_count so we have to do that as well.
2544 p = pmap_remove_pv_page(pv);
2545 vm_page_busy_wait(p, FALSE, "pmaprl");
2546 if (p->wire_count != 1) {
2547 kprintf("p->wire_count was %016lx %d\n",
2548 pv->pv_pindex, p->wire_count);
2550 KKASSERT(p->wire_count == 1);
2551 KKASSERT(p->flags & PG_UNMANAGED);
2553 vm_page_unwire(p, 0);
2554 KKASSERT(p->wire_count == 0);
2556 vm_page_free(p);
2557 skip:
2558 pv_free(pv, pvp, 1);
2560 return 0;
2564 * This function will remove the pte associated with a pv from its parent.
2565 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2566 * invalidated.
2568 * The wire count will be dropped on the parent page table. The wire
2569 * count on the page being removed (pv->pv_m) from the parent page table
2570 * is NOT touched. Note that terminal pages will not have any additional
2571 * wire counts while page table pages will have at least one representing
2572 * the mapping, plus others representing sub-mappings.
2574 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2575 * pages and user page table and terminal pages.
2577 * The pv must be locked. The pvp, if supplied, must be locked. All
2578 * supplied pv's will remain locked on return.
2580 * XXX must lock parent pv's if they exist to remove pte XXX
2582 static
2583 void
2584 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2585 int destroy)
2587 vm_pindex_t ptepindex = pv->pv_pindex;
2588 pmap_t pmap = pv->pv_pmap;
2589 vm_page_t p;
2590 int gotpvp = 0;
2592 KKASSERT(pmap);
2594 if (ptepindex == pmap_pml4_pindex()) {
2596 * We are the top level pml4 table, there is no parent.
2598 p = pmap->pm_pmlpv->pv_m;
2599 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2601 * Remove a PDP page from the pml4e. This can only occur
2602 * with user page tables. We do not have to lock the
2603 * pml4 PV so just ignore pvp.
2605 vm_pindex_t pml4_pindex;
2606 vm_pindex_t pdp_index;
2607 pml4_entry_t *pdp;
2609 pdp_index = ptepindex - pmap_pdp_pindex(0);
2610 if (pvp == NULL) {
2611 pml4_pindex = pmap_pml4_pindex();
2612 pvp = pv_get(pv->pv_pmap, pml4_pindex);
2613 KKASSERT(pvp);
2614 gotpvp = 1;
2616 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2617 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2618 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2619 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2620 } else if (ptepindex >= pmap_pd_pindex(0)) {
2622 * Remove a PD page from the pdp
2624 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2625 * of a simple pmap because it stops at
2626 * the PD page.
2628 vm_pindex_t pdp_pindex;
2629 vm_pindex_t pd_index;
2630 pdp_entry_t *pd;
2632 pd_index = ptepindex - pmap_pd_pindex(0);
2634 if (pvp == NULL) {
2635 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2636 (pd_index >> NPML4EPGSHIFT);
2637 pvp = pv_get(pv->pv_pmap, pdp_pindex);
2638 gotpvp = 1;
2640 if (pvp) {
2641 pd = pv_pte_lookup(pvp, pd_index &
2642 ((1ul << NPDPEPGSHIFT) - 1));
2643 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2644 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2645 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2646 } else {
2647 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2648 p = pv->pv_m; /* degenerate test later */
2650 } else if (ptepindex >= pmap_pt_pindex(0)) {
2652 * Remove a PT page from the pd
2654 vm_pindex_t pd_pindex;
2655 vm_pindex_t pt_index;
2656 pd_entry_t *pt;
2658 pt_index = ptepindex - pmap_pt_pindex(0);
2660 if (pvp == NULL) {
2661 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2662 (pt_index >> NPDPEPGSHIFT);
2663 pvp = pv_get(pv->pv_pmap, pd_pindex);
2664 KKASSERT(pvp);
2665 gotpvp = 1;
2667 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2668 KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2669 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2670 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2671 } else {
2673 * Remove a PTE from the PT page
2675 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2676 * pv is a pte_pv so we can safely lock pt_pv.
2678 * NOTE: FICTITIOUS pages may have multiple physical mappings
2679 * so PHYS_TO_VM_PAGE() will not necessarily work for
2680 * terminal ptes.
2682 vm_pindex_t pt_pindex;
2683 pt_entry_t *ptep;
2684 pt_entry_t pte;
2685 vm_offset_t va;
2687 pt_pindex = ptepindex >> NPTEPGSHIFT;
2688 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2690 if (ptepindex >= NUPTE_USER) {
2691 ptep = vtopte(ptepindex << PAGE_SHIFT);
2692 KKASSERT(pvp == NULL);
2693 } else {
2694 if (pvp == NULL) {
2695 pt_pindex = NUPTE_TOTAL +
2696 (ptepindex >> NPDPEPGSHIFT);
2697 pvp = pv_get(pv->pv_pmap, pt_pindex);
2698 KKASSERT(pvp);
2699 gotpvp = 1;
2701 ptep = pv_pte_lookup(pvp, ptepindex &
2702 ((1ul << NPDPEPGSHIFT) - 1));
2704 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2705 if (bulk == NULL) /* XXX */
2706 cpu_invlpg((void *)va); /* XXX */
2709 * Now update the vm_page_t
2711 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2712 (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2713 kprintf("remove_pte badpte %016lx %016lx %d\n",
2714 pte, pv->pv_pindex,
2715 pv->pv_pindex < pmap_pt_pindex(0));
2717 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2718 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2719 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2720 p = pv->pv_m;
2721 else
2722 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2723 /* p = pv->pv_m; */
2725 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2726 if (pmap_track_modified(ptepindex))
2727 vm_page_dirty(p);
2729 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2730 vm_page_flag_set(p, PG_REFERENCED);
2732 if (pte & pmap->pmap_bits[PG_W_IDX])
2733 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2734 if (pte & pmap->pmap_bits[PG_G_IDX])
2735 cpu_invlpg((void *)va);
2737 KKASSERT(pv->pv_m == p); /* XXX remove me later */
2740 * If requested, scrap the underlying pv->pv_m and the underlying
2741 * pv. If this is a page-table-page we must also free the page.
2743 * pvp must be returned locked.
2745 if (destroy == 1) {
2747 * page table page (PT, PD, PDP, PML4), caller was responsible
2748 * for testing wired_count.
2750 vm_page_t p;
2752 KKASSERT(pv->pv_m->wire_count == 1);
2753 p = pmap_remove_pv_page(pv);
2754 pv_free(pv, pvp, 1);
2755 pv = NULL;
2757 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2758 vm_page_busy_wait(p, FALSE, "pgpun");
2759 vm_page_unwire(p, 0);
2760 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2761 vm_page_free(p);
2762 } else if (destroy == 2) {
2764 * Normal page (leave page untouched)
2766 pmap_remove_pv_page(pv);
2767 pv_free(pv, pvp, 1);
2768 pv = NULL; /* safety */
2772 * If we acquired pvp ourselves then we are responsible for
2773 * recursively deleting it.
2775 if (pvp && gotpvp) {
2777 * Recursively destroy higher-level page tables.
2779 * This is optional. If we do not, they will still
2780 * be destroyed when the process exits.
2782 if (pvp->pv_m &&
2783 pvp->pv_m->wire_count == 1 &&
2784 pvp->pv_pindex != pmap_pml4_pindex()) {
2785 if (pmap != &kernel_pmap) {
2786 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2787 pvp = NULL; /* safety */
2788 } else {
2789 kprintf("Attempt to remove kernel_pmap pindex "
2790 "%jd\n", pvp->pv_pindex);
2791 pv_put(pvp);
2793 } else {
2794 pv_put(pvp);
2800 * Remove the vm_page association to a pv. The pv must be locked.
2802 static
2803 vm_page_t
2804 pmap_remove_pv_page(pv_entry_t pv)
2806 vm_page_t m;
2808 m = pv->pv_m;
2809 KKASSERT(m);
2810 vm_page_spin_lock(m);
2811 pv->pv_m = NULL;
2812 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2813 pmap_page_stats_deleting(m);
2815 if (m->object)
2816 atomic_add_int(&m->object->agg_pv_list_count, -1);
2818 if (TAILQ_EMPTY(&m->md.pv_list))
2819 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2820 vm_page_spin_unlock(m);
2822 return(m);
2826 * Grow the number of kernel page table entries, if needed.
2828 * This routine is always called to validate any address space
2829 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
2830 * space below KERNBASE.
2832 void
2833 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2835 vm_paddr_t paddr;
2836 vm_offset_t ptppaddr;
2837 vm_page_t nkpg;
2838 pd_entry_t *pt, newpt;
2839 pdp_entry_t newpd;
2840 int update_kernel_vm_end;
2843 * bootstrap kernel_vm_end on first real VM use
2845 if (kernel_vm_end == 0) {
2846 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2847 nkpt = 0;
2848 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2849 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2850 ~(PAGE_SIZE * NPTEPG - 1);
2851 nkpt++;
2852 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2853 kernel_vm_end = kernel_map.max_offset;
2854 break;
2860 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
2861 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
2862 * do not want to force-fill 128G worth of page tables.
2864 if (kstart < KERNBASE) {
2865 if (kstart > kernel_vm_end)
2866 kstart = kernel_vm_end;
2867 KKASSERT(kend <= KERNBASE);
2868 update_kernel_vm_end = 1;
2869 } else {
2870 update_kernel_vm_end = 0;
2873 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2874 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2876 if (kend - 1 >= kernel_map.max_offset)
2877 kend = kernel_map.max_offset;
2879 while (kstart < kend) {
2880 pt = pmap_pt(&kernel_pmap, kstart);
2881 if (pt == NULL) {
2882 /* We need a new PD entry */
2883 nkpg = vm_page_alloc(NULL, nkpt,
2884 VM_ALLOC_NORMAL |
2885 VM_ALLOC_SYSTEM |
2886 VM_ALLOC_INTERRUPT);
2887 if (nkpg == NULL) {
2888 panic("pmap_growkernel: no memory to grow "
2889 "kernel");
2891 paddr = VM_PAGE_TO_PHYS(nkpg);
2892 pmap_zero_page(paddr);
2893 newpd = (pdp_entry_t)
2894 (paddr |
2895 kernel_pmap.pmap_bits[PG_V_IDX] |
2896 kernel_pmap.pmap_bits[PG_RW_IDX] |
2897 kernel_pmap.pmap_bits[PG_A_IDX] |
2898 kernel_pmap.pmap_bits[PG_M_IDX]);
2899 *pmap_pd(&kernel_pmap, kstart) = newpd;
2900 nkpt++;
2901 continue; /* try again */
2903 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2904 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2905 ~(PAGE_SIZE * NPTEPG - 1);
2906 if (kstart - 1 >= kernel_map.max_offset) {
2907 kstart = kernel_map.max_offset;
2908 break;
2910 continue;
2914 * We need a new PT
2916 * This index is bogus, but out of the way
2918 nkpg = vm_page_alloc(NULL, nkpt,
2919 VM_ALLOC_NORMAL |
2920 VM_ALLOC_SYSTEM |
2921 VM_ALLOC_INTERRUPT);
2922 if (nkpg == NULL)
2923 panic("pmap_growkernel: no memory to grow kernel");
2925 vm_page_wire(nkpg);
2926 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2927 pmap_zero_page(ptppaddr);
2928 newpt = (pd_entry_t) (ptppaddr |
2929 kernel_pmap.pmap_bits[PG_V_IDX] |
2930 kernel_pmap.pmap_bits[PG_RW_IDX] |
2931 kernel_pmap.pmap_bits[PG_A_IDX] |
2932 kernel_pmap.pmap_bits[PG_M_IDX]);
2933 *pmap_pt(&kernel_pmap, kstart) = newpt;
2934 nkpt++;
2936 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2937 ~(PAGE_SIZE * NPTEPG - 1);
2939 if (kstart - 1 >= kernel_map.max_offset) {
2940 kstart = kernel_map.max_offset;
2941 break;
2946 * Only update kernel_vm_end for areas below KERNBASE.
2948 if (update_kernel_vm_end && kernel_vm_end < kstart)
2949 kernel_vm_end = kstart;
2953 * Add a reference to the specified pmap.
2955 void
2956 pmap_reference(pmap_t pmap)
2958 if (pmap != NULL) {
2959 lwkt_gettoken(&pmap->pm_token);
2960 ++pmap->pm_count;
2961 lwkt_reltoken(&pmap->pm_token);
2965 /***************************************************
2966 * page management routines.
2967 ***************************************************/
2970 * Hold a pv without locking it
2972 static void
2973 pv_hold(pv_entry_t pv)
2975 atomic_add_int(&pv->pv_hold, 1);
2979 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2980 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2981 * the pv properly.
2983 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2984 * pv list via its page) must be held by the caller.
2986 static int
2987 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2989 u_int count;
2992 * Critical path shortcut expects pv to already have one ref
2993 * (for the pv->pv_pmap).
2995 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2996 #ifdef PMAP_DEBUG
2997 pv->pv_func = func;
2998 pv->pv_line = lineno;
2999 #endif
3000 return TRUE;
3003 for (;;) {
3004 count = pv->pv_hold;
3005 cpu_ccfence();
3006 if ((count & PV_HOLD_LOCKED) == 0) {
3007 if (atomic_cmpset_int(&pv->pv_hold, count,
3008 (count + 1) | PV_HOLD_LOCKED)) {
3009 #ifdef PMAP_DEBUG
3010 pv->pv_func = func;
3011 pv->pv_line = lineno;
3012 #endif
3013 return TRUE;
3015 } else {
3016 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3017 return FALSE;
3019 /* retry */
3024 * Drop a previously held pv_entry which could not be locked, allowing its
3025 * destruction.
3027 * Must not be called with a spinlock held as we might zfree() the pv if it
3028 * is no longer associated with a pmap and this was the last hold count.
3030 static void
3031 pv_drop(pv_entry_t pv)
3033 u_int count;
3035 for (;;) {
3036 count = pv->pv_hold;
3037 cpu_ccfence();
3038 KKASSERT((count & PV_HOLD_MASK) > 0);
3039 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3040 (PV_HOLD_LOCKED | 1));
3041 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3042 if ((count & PV_HOLD_MASK) == 1) {
3043 #ifdef PMAP_DEBUG2
3044 if (pmap_enter_debug > 0) {
3045 --pmap_enter_debug;
3046 kprintf("pv_drop: free pv %p\n", pv);
3048 #endif
3049 KKASSERT(count == 1);
3050 KKASSERT(pv->pv_pmap == NULL);
3051 zfree(pvzone, pv);
3053 return;
3055 /* retry */
3060 * Find or allocate the requested PV entry, returning a locked, held pv.
3062 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3063 * for the caller and one representing the pmap and vm_page association.
3065 * If (*isnew) is zero, the returned pv will have only one hold count.
3067 * Since both associations can only be adjusted while the pv is locked,
3068 * together they represent just one additional hold.
3070 static
3071 pv_entry_t
3072 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3074 pv_entry_t pv;
3075 pv_entry_t pnew = NULL;
3077 spin_lock(&pmap->pm_spin);
3078 for (;;) {
3079 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3080 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3081 pindex);
3083 if (pv == NULL) {
3084 if (pnew == NULL) {
3085 spin_unlock(&pmap->pm_spin);
3086 pnew = zalloc(pvzone);
3087 spin_lock(&pmap->pm_spin);
3088 continue;
3090 pnew->pv_pmap = pmap;
3091 pnew->pv_pindex = pindex;
3092 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3093 #ifdef PMAP_DEBUG
3094 pnew->pv_func = func;
3095 pnew->pv_line = lineno;
3096 #endif
3097 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3098 ++pmap->pm_generation;
3099 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3100 spin_unlock(&pmap->pm_spin);
3101 *isnew = 1;
3102 return(pnew);
3104 if (pnew) {
3105 spin_unlock(&pmap->pm_spin);
3106 zfree(pvzone, pnew);
3107 pnew = NULL;
3108 spin_lock(&pmap->pm_spin);
3109 continue;
3111 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3112 spin_unlock(&pmap->pm_spin);
3113 } else {
3114 spin_unlock(&pmap->pm_spin);
3115 _pv_lock(pv PMAP_DEBUG_COPY);
3117 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3118 *isnew = 0;
3119 return(pv);
3121 pv_put(pv);
3122 spin_lock(&pmap->pm_spin);
3127 * Find the requested PV entry, returning a locked+held pv or NULL
3129 static
3130 pv_entry_t
3131 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
3133 pv_entry_t pv;
3135 spin_lock(&pmap->pm_spin);
3136 for (;;) {
3138 * Shortcut cache
3140 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
3141 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3142 pindex);
3144 if (pv == NULL) {
3145 spin_unlock(&pmap->pm_spin);
3146 return NULL;
3148 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3149 spin_unlock(&pmap->pm_spin);
3150 } else {
3151 spin_unlock(&pmap->pm_spin);
3152 _pv_lock(pv PMAP_DEBUG_COPY);
3154 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
3155 pv_cache(pv, pindex);
3156 return(pv);
3158 pv_put(pv);
3159 spin_lock(&pmap->pm_spin);
3164 * Lookup, hold, and attempt to lock (pmap,pindex).
3166 * If the entry does not exist NULL is returned and *errorp is set to 0
3168 * If the entry exists and could be successfully locked it is returned and
3169 * errorp is set to 0.
3171 * If the entry exists but could NOT be successfully locked it is returned
3172 * held and *errorp is set to 1.
3174 static
3175 pv_entry_t
3176 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
3178 pv_entry_t pv;
3180 spin_lock_shared(&pmap->pm_spin);
3181 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3182 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3183 if (pv == NULL) {
3184 spin_unlock_shared(&pmap->pm_spin);
3185 *errorp = 0;
3186 return NULL;
3188 if (pv_hold_try(pv)) {
3189 pv_cache(pv, pindex);
3190 spin_unlock_shared(&pmap->pm_spin);
3191 *errorp = 0;
3192 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3193 return(pv); /* lock succeeded */
3195 spin_unlock_shared(&pmap->pm_spin);
3196 *errorp = 1;
3197 return (pv); /* lock failed */
3201 * Find the requested PV entry, returning a held pv or NULL
3203 static
3204 pv_entry_t
3205 pv_find(pmap_t pmap, vm_pindex_t pindex)
3207 pv_entry_t pv;
3209 spin_lock_shared(&pmap->pm_spin);
3211 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3212 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3213 if (pv == NULL) {
3214 spin_unlock_shared(&pmap->pm_spin);
3215 return NULL;
3217 pv_hold(pv);
3218 pv_cache(pv, pindex);
3219 spin_unlock_shared(&pmap->pm_spin);
3220 return(pv);
3224 * Lock a held pv, keeping the hold count
3226 static
3227 void
3228 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3230 u_int count;
3232 for (;;) {
3233 count = pv->pv_hold;
3234 cpu_ccfence();
3235 if ((count & PV_HOLD_LOCKED) == 0) {
3236 if (atomic_cmpset_int(&pv->pv_hold, count,
3237 count | PV_HOLD_LOCKED)) {
3238 #ifdef PMAP_DEBUG
3239 pv->pv_func = func;
3240 pv->pv_line = lineno;
3241 #endif
3242 return;
3244 continue;
3246 tsleep_interlock(pv, 0);
3247 if (atomic_cmpset_int(&pv->pv_hold, count,
3248 count | PV_HOLD_WAITING)) {
3249 #ifdef PMAP_DEBUG
3250 kprintf("pv waiting on %s:%d\n",
3251 pv->pv_func, pv->pv_line);
3252 #endif
3253 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3255 /* retry */
3260 * Unlock a held and locked pv, keeping the hold count.
3262 static
3263 void
3264 pv_unlock(pv_entry_t pv)
3266 u_int count;
3268 for (;;) {
3269 count = pv->pv_hold;
3270 cpu_ccfence();
3271 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3272 (PV_HOLD_LOCKED | 1));
3273 if (atomic_cmpset_int(&pv->pv_hold, count,
3274 count &
3275 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3276 if (count & PV_HOLD_WAITING)
3277 wakeup(pv);
3278 break;
3284 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3285 * and the hold count drops to zero we will free it.
3287 * Caller should not hold any spin locks. We are protected from hold races
3288 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3289 * lock held. A pv cannot be located otherwise.
3291 static
3292 void
3293 pv_put(pv_entry_t pv)
3295 #ifdef PMAP_DEBUG2
3296 if (pmap_enter_debug > 0) {
3297 --pmap_enter_debug;
3298 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3300 #endif
3303 * Fast - shortcut most common condition
3305 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3306 return;
3309 * Slow
3311 pv_unlock(pv);
3312 pv_drop(pv);
3316 * Remove the pmap association from a pv, require that pv_m already be removed,
3317 * then unlock and drop the pv. Any pte operations must have already been
3318 * completed. This call may result in a last-drop which will physically free
3319 * the pv.
3321 * Removing the pmap association entails an additional drop.
3323 * pv must be exclusively locked on call and will be disposed of on return.
3325 static
3326 void
3327 pv_free(pv_entry_t pv, pv_entry_t pvp, int putaway)
3329 pmap_t pmap;
3331 KKASSERT(pv->pv_m == NULL);
3332 KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3333 if ((pmap = pv->pv_pmap) != NULL) {
3334 spin_lock(&pmap->pm_spin);
3335 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3336 ++pmap->pm_generation;
3337 if (pmap->pm_pvhint == pv)
3338 pmap->pm_pvhint = NULL;
3339 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3340 pv->pv_pmap = NULL;
3341 pv->pv_pindex = 0;
3342 spin_unlock(&pmap->pm_spin);
3345 * Try to shortcut three atomic ops, otherwise fall through
3346 * and do it normally. Drop two refs and the lock all in
3347 * one go.
3349 if (putaway &&
3350 atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3351 #ifdef PMAP_DEBUG2
3352 if (pmap_enter_debug > 0) {
3353 --pmap_enter_debug;
3354 kprintf("pv_free: free pv %p\n", pv);
3356 #endif
3357 zfree(pvzone, pv);
3358 if (pvp)
3359 vm_page_unwire_quick(pvp->pv_m);
3360 return;
3362 pv_drop(pv); /* ref for pv_pmap */
3364 if (putaway)
3365 pv_put(pv);
3366 if (pvp)
3367 vm_page_unwire_quick(pvp->pv_m);
3371 * This routine is very drastic, but can save the system
3372 * in a pinch.
3374 void
3375 pmap_collect(void)
3377 int i;
3378 vm_page_t m;
3379 static int warningdone=0;
3381 if (pmap_pagedaemon_waken == 0)
3382 return;
3383 pmap_pagedaemon_waken = 0;
3384 if (warningdone < 5) {
3385 kprintf("pmap_collect: collecting pv entries -- "
3386 "suggest increasing PMAP_SHPGPERPROC\n");
3387 warningdone++;
3390 for (i = 0; i < vm_page_array_size; i++) {
3391 m = &vm_page_array[i];
3392 if (m->wire_count || m->hold_count)
3393 continue;
3394 if (vm_page_busy_try(m, TRUE) == 0) {
3395 if (m->wire_count == 0 && m->hold_count == 0) {
3396 pmap_remove_all(m);
3398 vm_page_wakeup(m);
3404 * Scan the pmap for active page table entries and issue a callback.
3405 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3406 * its parent page table.
3408 * pte_pv will be NULL if the page or page table is unmanaged.
3409 * pt_pv will point to the page table page containing the pte for the page.
3411 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3412 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3413 * process pmap's PD and page to the callback function. This can be
3414 * confusing because the pt_pv is really a pd_pv, and the target page
3415 * table page is simply aliased by the pmap and not owned by it.
3417 * It is assumed that the start and end are properly rounded to the page size.
3419 * It is assumed that PD pages and above are managed and thus in the RB tree,
3420 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3422 struct pmap_scan_info {
3423 struct pmap *pmap;
3424 vm_offset_t sva;
3425 vm_offset_t eva;
3426 vm_pindex_t sva_pd_pindex;
3427 vm_pindex_t eva_pd_pindex;
3428 void (*func)(pmap_t, struct pmap_scan_info *,
3429 pv_entry_t, pv_entry_t, int, vm_offset_t,
3430 pt_entry_t *, void *);
3431 void *arg;
3432 pmap_inval_bulk_t bulk_core;
3433 pmap_inval_bulk_t *bulk;
3434 int count;
3435 int stop;
3438 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3439 static int pmap_scan_callback(pv_entry_t pv, void *data);
3441 static void
3442 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3444 struct pmap *pmap = info->pmap;
3445 pv_entry_t pd_pv; /* A page directory PV */
3446 pv_entry_t pt_pv; /* A page table PV */
3447 pv_entry_t pte_pv; /* A page table entry PV */
3448 pt_entry_t *ptep;
3449 pt_entry_t oldpte;
3450 struct pv_entry dummy_pv;
3451 int generation;
3453 info->stop = 0;
3454 if (pmap == NULL)
3455 return;
3456 if (smp_inval) {
3457 info->bulk = &info->bulk_core;
3458 pmap_inval_bulk_init(&info->bulk_core, pmap);
3459 } else {
3460 info->bulk = NULL;
3464 * Hold the token for stability; if the pmap is empty we have nothing
3465 * to do.
3467 lwkt_gettoken(&pmap->pm_token);
3468 #if 0
3469 if (pmap->pm_stats.resident_count == 0) {
3470 lwkt_reltoken(&pmap->pm_token);
3471 return;
3473 #endif
3475 info->count = 0;
3477 again:
3479 * Special handling for scanning one page, which is a very common
3480 * operation (it is?).
3482 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3484 if (info->sva + PAGE_SIZE == info->eva) {
3485 generation = pmap->pm_generation;
3486 if (info->sva >= VM_MAX_USER_ADDRESS) {
3488 * Kernel mappings do not track wire counts on
3489 * page table pages and only maintain pd_pv and
3490 * pte_pv levels so pmap_scan() works.
3492 pt_pv = NULL;
3493 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3494 ptep = vtopte(info->sva);
3495 } else {
3497 * User pages which are unmanaged will not have a
3498 * pte_pv. User page table pages which are unmanaged
3499 * (shared from elsewhere) will also not have a pt_pv.
3500 * The func() callback will pass both pte_pv and pt_pv
3501 * as NULL in that case.
3503 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3504 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3505 if (pt_pv == NULL) {
3506 KKASSERT(pte_pv == NULL);
3507 pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3508 if (pd_pv) {
3509 ptep = pv_pte_lookup(pd_pv,
3510 pmap_pt_index(info->sva));
3511 if (*ptep) {
3512 info->func(pmap, info,
3513 NULL, pd_pv, 1,
3514 info->sva, ptep,
3515 info->arg);
3517 pv_put(pd_pv);
3519 goto fast_skip;
3521 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3525 * NOTE: *ptep can't be ripped out from under us if we hold
3526 * pte_pv locked, but bits can change. However, there is
3527 * a race where another thread may be inserting pte_pv
3528 * and setting *ptep just after our pte_pv lookup fails.
3530 * In this situation we can end up with a NULL pte_pv
3531 * but find that we have a managed *ptep. We explicitly
3532 * check for this race.
3534 oldpte = *ptep;
3535 cpu_ccfence();
3536 if (oldpte == 0) {
3538 * Unlike the pv_find() case below we actually
3539 * acquired a locked pv in this case so any
3540 * race should have been resolved. It is expected
3541 * to not exist.
3543 KKASSERT(pte_pv == NULL);
3544 } else if (pte_pv) {
3545 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3546 pmap->pmap_bits[PG_V_IDX])) ==
3547 (pmap->pmap_bits[PG_MANAGED_IDX] |
3548 pmap->pmap_bits[PG_V_IDX]),
3549 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3550 "generation %d/%d",
3551 *ptep, oldpte, info->sva, pte_pv,
3552 generation, pmap->pm_generation));
3553 info->func(pmap, info, pte_pv, pt_pv, 0,
3554 info->sva, ptep, info->arg);
3555 } else {
3557 * Check for insertion race
3559 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3560 pt_pv) {
3561 pte_pv = pv_find(pmap,
3562 pmap_pte_pindex(info->sva));
3563 if (pte_pv) {
3564 pv_drop(pte_pv);
3565 pv_put(pt_pv);
3566 kprintf("pmap_scan: RACE1 "
3567 "%016jx, %016lx\n",
3568 info->sva, oldpte);
3569 goto again;
3574 * Didn't race
3576 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3577 pmap->pmap_bits[PG_V_IDX])) ==
3578 pmap->pmap_bits[PG_V_IDX],
3579 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3580 "generation %d/%d",
3581 *ptep, oldpte, info->sva,
3582 generation, pmap->pm_generation));
3583 info->func(pmap, info, NULL, pt_pv, 0,
3584 info->sva, ptep, info->arg);
3586 if (pt_pv)
3587 pv_put(pt_pv);
3588 fast_skip:
3589 pmap_inval_bulk_flush(info->bulk);
3590 lwkt_reltoken(&pmap->pm_token);
3591 return;
3595 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3596 * there.
3598 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3599 info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3601 if (info->sva >= VM_MAX_USER_ADDRESS) {
3603 * The kernel does not currently maintain any pv_entry's for
3604 * higher-level page tables.
3606 bzero(&dummy_pv, sizeof(dummy_pv));
3607 dummy_pv.pv_pindex = info->sva_pd_pindex;
3608 spin_lock(&pmap->pm_spin);
3609 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3610 pmap_scan_callback(&dummy_pv, info);
3611 ++dummy_pv.pv_pindex;
3613 spin_unlock(&pmap->pm_spin);
3614 } else {
3616 * User page tables maintain local PML4, PDP, and PD
3617 * pv_entry's at the very least. PT pv's might be
3618 * unmanaged and thus not exist. PTE pv's might be
3619 * unmanaged and thus not exist.
3621 spin_lock(&pmap->pm_spin);
3622 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3623 pmap_scan_cmp, pmap_scan_callback, info);
3624 spin_unlock(&pmap->pm_spin);
3626 pmap_inval_bulk_flush(info->bulk);
3627 lwkt_reltoken(&pmap->pm_token);
3631 * WARNING! pmap->pm_spin held
3633 static int
3634 pmap_scan_cmp(pv_entry_t pv, void *data)
3636 struct pmap_scan_info *info = data;
3637 if (pv->pv_pindex < info->sva_pd_pindex)
3638 return(-1);
3639 if (pv->pv_pindex >= info->eva_pd_pindex)
3640 return(1);
3641 return(0);
3645 * WARNING! pmap->pm_spin held
3647 static int
3648 pmap_scan_callback(pv_entry_t pv, void *data)
3650 struct pmap_scan_info *info = data;
3651 struct pmap *pmap = info->pmap;
3652 pv_entry_t pd_pv; /* A page directory PV */
3653 pv_entry_t pt_pv; /* A page table PV */
3654 pv_entry_t pte_pv; /* A page table entry PV */
3655 pt_entry_t *ptep;
3656 pt_entry_t oldpte;
3657 vm_offset_t sva;
3658 vm_offset_t eva;
3659 vm_offset_t va_next;
3660 vm_pindex_t pd_pindex;
3661 int error;
3662 int generation;
3665 * Stop if requested
3667 if (info->stop)
3668 return -1;
3671 * Pull the PD pindex from the pv before releasing the spinlock.
3673 * WARNING: pv is faked for kernel pmap scans.
3675 pd_pindex = pv->pv_pindex;
3676 spin_unlock(&pmap->pm_spin);
3677 pv = NULL; /* invalid after spinlock unlocked */
3680 * Calculate the page range within the PD. SIMPLE pmaps are
3681 * direct-mapped for the entire 2^64 address space. Normal pmaps
3682 * reflect the user and kernel address space which requires
3683 * cannonicalization w/regards to converting pd_pindex's back
3684 * into addresses.
3686 sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3687 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3688 (sva & PML4_SIGNMASK)) {
3689 sva |= PML4_SIGNMASK;
3691 eva = sva + NBPDP; /* can overflow */
3692 if (sva < info->sva)
3693 sva = info->sva;
3694 if (eva < info->sva || eva > info->eva)
3695 eva = info->eva;
3698 * NOTE: kernel mappings do not track page table pages, only
3699 * terminal pages.
3701 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3702 * However, for the scan to be efficient we try to
3703 * cache items top-down.
3705 pd_pv = NULL;
3706 pt_pv = NULL;
3708 for (; sva < eva; sva = va_next) {
3709 if (info->stop)
3710 break;
3711 if (sva >= VM_MAX_USER_ADDRESS) {
3712 if (pt_pv) {
3713 pv_put(pt_pv);
3714 pt_pv = NULL;
3716 goto kernel_skip;
3720 * PD cache (degenerate case if we skip). It is possible
3721 * for the PD to not exist due to races. This is ok.
3723 if (pd_pv == NULL) {
3724 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3725 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3726 pv_put(pd_pv);
3727 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3729 if (pd_pv == NULL) {
3730 va_next = (sva + NBPDP) & ~PDPMASK;
3731 if (va_next < sva)
3732 va_next = eva;
3733 continue;
3737 * PT cache
3739 if (pt_pv == NULL) {
3740 vm_page_wire_quick(pd_pv->pv_m);
3741 pv_unlock(pd_pv);
3742 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3743 pv_lock(pd_pv);
3744 vm_page_unwire_quick(pd_pv->pv_m);
3745 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3746 vm_page_wire_quick(pd_pv->pv_m);
3747 pv_unlock(pd_pv);
3748 pv_put(pt_pv);
3749 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3750 pv_lock(pd_pv);
3751 vm_page_unwire_quick(pd_pv->pv_m);
3755 * If pt_pv is NULL we either have an shared page table
3756 * page and must issue a callback specific to that case,
3757 * or there is no page table page.
3759 * Either way we can skip the page table page.
3761 if (pt_pv == NULL) {
3763 * Possible unmanaged (shared from another pmap)
3764 * page table page.
3766 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3767 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3768 info->func(pmap, info, NULL, pd_pv, 1,
3769 sva, ptep, info->arg);
3773 * Done, move to next page table page.
3775 va_next = (sva + NBPDR) & ~PDRMASK;
3776 if (va_next < sva)
3777 va_next = eva;
3778 continue;
3782 * From this point in the loop testing pt_pv for non-NULL
3783 * means we are in UVM, else if it is NULL we are in KVM.
3785 * Limit our scan to either the end of the va represented
3786 * by the current page table page, or to the end of the
3787 * range being removed.
3789 kernel_skip:
3790 va_next = (sva + NBPDR) & ~PDRMASK;
3791 if (va_next < sva)
3792 va_next = eva;
3793 if (va_next > eva)
3794 va_next = eva;
3797 * Scan the page table for pages. Some pages may not be
3798 * managed (might not have a pv_entry).
3800 * There is no page table management for kernel pages so
3801 * pt_pv will be NULL in that case, but otherwise pt_pv
3802 * is non-NULL, locked, and referenced.
3806 * At this point a non-NULL pt_pv means a UVA, and a NULL
3807 * pt_pv means a KVA.
3809 if (pt_pv)
3810 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3811 else
3812 ptep = vtopte(sva);
3814 while (sva < va_next) {
3816 * Yield every 64 pages, stop if requested.
3818 if ((++info->count & 63) == 0)
3819 lwkt_user_yield();
3820 if (info->stop)
3821 break;
3824 * Check if pt_pv has been lost (probably due to
3825 * a remove of the underlying pages).
3827 if (pt_pv && pt_pv->pv_pmap == NULL)
3828 break;
3831 * Acquire the related pte_pv, if any. If *ptep == 0
3832 * the related pte_pv should not exist, but if *ptep
3833 * is not zero the pte_pv may or may not exist (e.g.
3834 * will not exist for an unmanaged page).
3836 * However a multitude of races are possible here.
3838 * In addition, the (pt_pv, pte_pv) lock order is
3839 * backwards, so we have to be careful in aquiring
3840 * a properly locked pte_pv.
3842 generation = pmap->pm_generation;
3843 if (pt_pv) {
3844 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3845 &error);
3846 if (error) {
3847 if (pd_pv) {
3848 vm_page_wire_quick(pd_pv->pv_m);
3849 pv_unlock(pd_pv);
3851 vm_page_wire_quick(pt_pv->pv_m);
3852 pv_unlock(pt_pv);/* must be non-NULL */
3853 pv_lock(pte_pv); /* safe to block now */
3854 pv_put(pte_pv);
3855 pte_pv = NULL;
3856 pv_lock(pt_pv);
3857 vm_page_unwire_quick(pt_pv->pv_m);
3860 * pt_pv reloaded, need new ptep
3862 KKASSERT(pt_pv != NULL);
3863 ptep = pv_pte_lookup(pt_pv,
3864 pmap_pte_index(sva));
3865 if (pd_pv) {
3866 pv_lock(pd_pv);
3867 vm_page_unwire_quick(pd_pv->pv_m);
3869 continue;
3871 } else {
3872 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3876 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3878 oldpte = *ptep;
3879 if (oldpte == 0) {
3880 if (pte_pv) {
3881 kprintf("Unexpected non-NULL pte_pv "
3882 "%p pt_pv %p "
3883 "*ptep = %016lx/%016lx\n",
3884 pte_pv, pt_pv, *ptep, oldpte);
3885 panic("Unexpected non-NULL pte_pv");
3887 sva += PAGE_SIZE;
3888 ++ptep;
3889 continue;
3893 * Ready for the callback. The locked pte_pv (if any)
3894 * is consumed by the callback. pte_pv will exist if
3895 * the page is managed, and will not exist if it
3896 * isn't.
3898 if (pte_pv) {
3899 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3900 (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3901 ("badC *ptep %016lx/%016lx sva %016lx "
3902 "pte_pv %p pm_generation %d/%d",
3903 *ptep, oldpte, sva, pte_pv,
3904 generation, pmap->pm_generation));
3906 * We must unlock pd_pv across the callback
3907 * to avoid deadlocks on any recursive
3908 * disposal. Re-check that it still exists
3909 * after re-locking.
3911 if (pd_pv)
3912 pv_unlock(pd_pv);
3913 info->func(pmap, info, pte_pv, pt_pv, 0,
3914 sva, ptep, info->arg);
3915 if (pd_pv) {
3916 pv_lock(pd_pv);
3917 if (pd_pv->pv_pmap == NULL) {
3918 pv_put(pd_pv);
3919 pd_pv = NULL;
3922 } else {
3924 * Check for insertion race. Since there is no
3925 * pte_pv to guard us it is possible for us
3926 * to race another thread doing an insertion.
3927 * Our lookup misses the pte_pv but our *ptep
3928 * check sees the inserted pte.
3930 * XXX panic case seems to occur within a
3931 * vm_fork() of /bin/sh, which frankly
3932 * shouldn't happen since no other threads
3933 * should be inserting to our pmap in that
3934 * situation. Removing, possibly. Inserting,
3935 * shouldn't happen.
3937 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3938 pt_pv) {
3939 pte_pv = pv_find(pmap,
3940 pmap_pte_pindex(sva));
3941 if (pte_pv) {
3942 pv_drop(pte_pv);
3943 kprintf("pmap_scan: RACE2 "
3944 "%016jx, %016lx\n",
3945 sva, oldpte);
3946 continue;
3951 * Didn't race
3953 * We must unlock pd_pv across the callback
3954 * to avoid deadlocks on any recursive
3955 * disposal. Re-check that it still exists
3956 * after re-locking.
3958 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3959 pmap->pmap_bits[PG_V_IDX],
3960 ("badD *ptep %016lx/%016lx sva %016lx "
3961 "pte_pv NULL pm_generation %d/%d",
3962 *ptep, oldpte, sva,
3963 generation, pmap->pm_generation));
3964 if (pd_pv)
3965 pv_unlock(pd_pv);
3966 info->func(pmap, info, NULL, pt_pv, 0,
3967 sva, ptep, info->arg);
3968 if (pd_pv) {
3969 pv_lock(pd_pv);
3970 if (pd_pv->pv_pmap == NULL) {
3971 pv_put(pd_pv);
3972 pd_pv = NULL;
3976 pte_pv = NULL;
3977 sva += PAGE_SIZE;
3978 ++ptep;
3981 if (pd_pv) {
3982 pv_put(pd_pv);
3983 pd_pv = NULL;
3985 if (pt_pv) {
3986 pv_put(pt_pv);
3987 pt_pv = NULL;
3989 if ((++info->count & 7) == 0)
3990 lwkt_user_yield();
3993 * Relock before returning.
3995 spin_lock(&pmap->pm_spin);
3996 return (0);
3999 void
4000 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4002 struct pmap_scan_info info;
4004 info.pmap = pmap;
4005 info.sva = sva;
4006 info.eva = eva;
4007 info.func = pmap_remove_callback;
4008 info.arg = NULL;
4009 pmap_scan(&info, 1);
4012 static void
4013 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4015 struct pmap_scan_info info;
4017 info.pmap = pmap;
4018 info.sva = sva;
4019 info.eva = eva;
4020 info.func = pmap_remove_callback;
4021 info.arg = NULL;
4022 pmap_scan(&info, 0);
4025 static void
4026 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4027 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
4028 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4030 pt_entry_t pte;
4032 if (pte_pv) {
4034 * This will also drop pt_pv's wire_count. Note that
4035 * terminal pages are not wired based on mmu presence.
4037 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4039 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4040 pte_pv = NULL; /* safety */
4043 * Recursively destroy higher-level page tables.
4045 * This is optional. If we do not, they will still
4046 * be destroyed when the process exits.
4048 if (pt_pv && pt_pv->pv_m && pt_pv->pv_m->wire_count == 1 &&
4049 pt_pv->pv_pindex != pmap_pml4_pindex()) {
4050 pv_hold(pt_pv);
4051 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4052 pv_lock(pt_pv);
4054 } else if (sharept == 0) {
4056 * Unmanaged page table (pt, pd, or pdp. Not pte).
4058 * pt_pv's wire_count is still bumped by unmanaged pages
4059 * so we must decrement it manually.
4061 * We have to unwire the target page table page.
4063 * It is unclear how we can invalidate a segment so we
4064 * invalidate -1 which invlidates the tlb.
4066 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4067 if (pte & pmap->pmap_bits[PG_W_IDX])
4068 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4069 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4070 if (vm_page_unwire_quick(pt_pv->pv_m))
4071 panic("pmap_remove: insufficient wirecount");
4072 } else {
4074 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4075 * a shared page table.
4077 * pt_pv is actually the pd_pv for our pmap (not the shared
4078 * object pmap).
4080 * We have to unwire the target page table page and we
4081 * have to unwire our page directory page.
4083 * It is unclear how we can invalidate a segment so we
4084 * invalidate -1 which invlidates the tlb.
4086 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4087 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4088 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4089 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4090 panic("pmap_remove: shared pgtable1 bad wirecount");
4091 if (vm_page_unwire_quick(pt_pv->pv_m))
4092 panic("pmap_remove: shared pgtable2 bad wirecount");
4097 * Removes this physical page from all physical maps in which it resides.
4098 * Reflects back modify bits to the pager.
4100 * This routine may not be called from an interrupt.
4102 static
4103 void
4104 pmap_remove_all(vm_page_t m)
4106 pv_entry_t pv;
4107 pmap_inval_bulk_t bulk;
4109 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4110 return;
4112 vm_page_spin_lock(m);
4113 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4114 KKASSERT(pv->pv_m == m);
4115 if (pv_hold_try(pv)) {
4116 vm_page_spin_unlock(m);
4117 } else {
4118 vm_page_spin_unlock(m);
4119 pv_lock(pv);
4121 if (pv->pv_m != m) {
4122 pv_put(pv);
4123 vm_page_spin_lock(m);
4124 continue;
4128 * Holding no spinlocks, pv is locked.
4130 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4131 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4132 pv = NULL; /* safety */
4133 pmap_inval_bulk_flush(&bulk);
4134 #if 0
4135 pmap_remove_pv_page(pv);
4136 pv_free(pv, 1);
4137 #endif
4138 vm_page_spin_lock(m);
4140 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4141 vm_page_spin_unlock(m);
4145 * Removes the page from a particular pmap
4147 void
4148 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4150 pv_entry_t pv;
4151 pmap_inval_bulk_t bulk;
4153 if (!pmap_initialized)
4154 return;
4156 again:
4157 vm_page_spin_lock(m);
4158 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4159 if (pv->pv_pmap != pmap)
4160 continue;
4161 KKASSERT(pv->pv_m == m);
4162 if (pv_hold_try(pv)) {
4163 vm_page_spin_unlock(m);
4164 } else {
4165 vm_page_spin_unlock(m);
4166 pv_lock(pv);
4168 if (pv->pv_m != m) {
4169 pv_put(pv);
4170 goto again;
4174 * Holding no spinlocks, pv is locked.
4176 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4177 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4178 pv = NULL; /* safety */
4179 pmap_inval_bulk_flush(&bulk);
4180 #if 0
4181 pmap_remove_pv_page(pv);
4182 pv_free(pv, 1);
4183 #endif
4184 goto again;
4186 vm_page_spin_unlock(m);
4190 * Set the physical protection on the specified range of this map
4191 * as requested. This function is typically only used for debug watchpoints
4192 * and COW pages.
4194 * This function may not be called from an interrupt if the map is
4195 * not the kernel_pmap.
4197 * NOTE! For shared page table pages we just unmap the page.
4199 void
4200 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4202 struct pmap_scan_info info;
4203 /* JG review for NX */
4205 if (pmap == NULL)
4206 return;
4207 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
4208 pmap_remove(pmap, sva, eva);
4209 return;
4211 if (prot & VM_PROT_WRITE)
4212 return;
4213 info.pmap = pmap;
4214 info.sva = sva;
4215 info.eva = eva;
4216 info.func = pmap_protect_callback;
4217 info.arg = &prot;
4218 pmap_scan(&info, 1);
4221 static
4222 void
4223 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4224 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
4225 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4227 pt_entry_t pbits;
4228 pt_entry_t cbits;
4229 pt_entry_t pte;
4230 vm_page_t m;
4232 again:
4233 pbits = *ptep;
4234 cbits = pbits;
4235 if (pte_pv) {
4236 m = NULL;
4237 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4238 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4239 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4240 KKASSERT(m == pte_pv->pv_m);
4241 vm_page_flag_set(m, PG_REFERENCED);
4243 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4245 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4246 if (pmap_track_modified(pte_pv->pv_pindex)) {
4247 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4248 if (m == NULL) {
4249 m = PHYS_TO_VM_PAGE(pbits &
4250 PG_FRAME);
4252 vm_page_dirty(m);
4254 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4257 } else if (sharept) {
4259 * Unmanaged page table, pt_pv is actually the pd_pv
4260 * for our pmap (not the object's shared pmap).
4262 * When asked to protect something in a shared page table
4263 * page we just unmap the page table page. We have to
4264 * invalidate the tlb in this situation.
4266 * XXX Warning, shared page tables will not be used for
4267 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4268 * so PHYS_TO_VM_PAGE() should be safe here.
4270 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4271 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4272 panic("pmap_protect: pgtable1 pg bad wirecount");
4273 if (vm_page_unwire_quick(pt_pv->pv_m))
4274 panic("pmap_protect: pgtable2 pg bad wirecount");
4275 ptep = NULL;
4277 /* else unmanaged page, adjust bits, no wire changes */
4279 if (ptep) {
4280 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4281 #ifdef PMAP_DEBUG2
4282 if (pmap_enter_debug > 0) {
4283 --pmap_enter_debug;
4284 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4285 "pt_pv=%p cbits=%08lx\n",
4286 va, ptep, pte_pv,
4287 pt_pv, cbits
4290 #endif
4291 if (pbits != cbits) {
4292 if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4293 ptep, pbits, cbits)) {
4294 goto again;
4298 if (pte_pv)
4299 pv_put(pte_pv);
4303 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4304 * mapping at that address. Set protection and wiring as requested.
4306 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4307 * possible. If it is we enter the page into the appropriate shared pmap
4308 * hanging off the related VM object instead of the passed pmap, then we
4309 * share the page table page from the VM object's pmap into the current pmap.
4311 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4312 * lazy-evaluate.
4314 void
4315 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4316 boolean_t wired, vm_map_entry_t entry)
4318 pv_entry_t pt_pv; /* page table */
4319 pv_entry_t pte_pv; /* page table entry */
4320 pt_entry_t *ptep;
4321 vm_paddr_t opa;
4322 pt_entry_t origpte, newpte;
4323 vm_paddr_t pa;
4325 if (pmap == NULL)
4326 return;
4327 va = trunc_page(va);
4328 #ifdef PMAP_DIAGNOSTIC
4329 if (va >= KvaEnd)
4330 panic("pmap_enter: toobig");
4331 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4332 panic("pmap_enter: invalid to pmap_enter page table "
4333 "pages (va: 0x%lx)", va);
4334 #endif
4335 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4336 kprintf("Warning: pmap_enter called on UVA with "
4337 "kernel_pmap\n");
4338 #ifdef DDB
4339 db_print_backtrace();
4340 #endif
4342 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4343 kprintf("Warning: pmap_enter called on KVA without"
4344 "kernel_pmap\n");
4345 #ifdef DDB
4346 db_print_backtrace();
4347 #endif
4351 * Get locked PV entries for our new page table entry (pte_pv)
4352 * and for its parent page table (pt_pv). We need the parent
4353 * so we can resolve the location of the ptep.
4355 * Only hardware MMU actions can modify the ptep out from
4356 * under us.
4358 * if (m) is fictitious or unmanaged we do not create a managing
4359 * pte_pv for it. Any pre-existing page's management state must
4360 * match (avoiding code complexity).
4362 * If the pmap is still being initialized we assume existing
4363 * page tables.
4365 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4367 if (pmap_initialized == FALSE) {
4368 pte_pv = NULL;
4369 pt_pv = NULL;
4370 ptep = vtopte(va);
4371 origpte = *ptep;
4372 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4373 pte_pv = NULL;
4374 if (va >= VM_MAX_USER_ADDRESS) {
4375 pt_pv = NULL;
4376 ptep = vtopte(va);
4377 } else {
4378 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4379 NULL, entry, va);
4380 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4382 origpte = *ptep;
4383 cpu_ccfence();
4384 KASSERT(origpte == 0 ||
4385 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4386 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4387 } else {
4388 if (va >= VM_MAX_USER_ADDRESS) {
4390 * Kernel map, pv_entry-tracked.
4392 pt_pv = NULL;
4393 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4394 ptep = vtopte(va);
4395 } else {
4397 * User map
4399 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4400 &pt_pv, entry, va);
4401 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4403 origpte = *ptep;
4404 cpu_ccfence();
4405 KASSERT(origpte == 0 ||
4406 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4407 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4410 pa = VM_PAGE_TO_PHYS(m);
4411 opa = origpte & PG_FRAME;
4413 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4414 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4415 if (wired)
4416 newpte |= pmap->pmap_bits[PG_W_IDX];
4417 if (va < VM_MAX_USER_ADDRESS)
4418 newpte |= pmap->pmap_bits[PG_U_IDX];
4419 if (pte_pv)
4420 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4421 // if (pmap == &kernel_pmap)
4422 // newpte |= pgeflag;
4423 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4424 if (m->flags & PG_FICTITIOUS)
4425 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4428 * It is possible for multiple faults to occur in threaded
4429 * environments, the existing pte might be correct.
4431 if (((origpte ^ newpte) & ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4432 pmap->pmap_bits[PG_A_IDX])) == 0)
4433 goto done;
4436 * Ok, either the address changed or the protection or wiring
4437 * changed.
4439 * Clear the current entry, interlocking the removal. For managed
4440 * pte's this will also flush the modified state to the vm_page.
4441 * Atomic ops are mandatory in order to ensure that PG_M events are
4442 * not lost during any transition.
4444 * WARNING: The caller has busied the new page but not the original
4445 * vm_page which we are trying to replace. Because we hold
4446 * the pte_pv lock, but have not busied the page, PG bits
4447 * can be cleared out from under us.
4449 if (opa) {
4450 if (pte_pv) {
4452 * pt_pv won't exist for a kernel page (managed or
4453 * otherwise).
4455 if (prot & VM_PROT_NOSYNC) {
4456 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4457 } else {
4458 pmap_inval_bulk_t bulk;
4460 pmap_inval_bulk_init(&bulk, pmap);
4461 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4462 pmap_inval_bulk_flush(&bulk);
4464 if (pte_pv->pv_m)
4465 pmap_remove_pv_page(pte_pv);
4466 } else if (prot & VM_PROT_NOSYNC) {
4468 * Unmanaged page, NOSYNC (no mmu sync) requested.
4470 * Leave wire count on PT page intact.
4472 (void)pte_load_clear(ptep);
4473 cpu_invlpg((void *)va);
4474 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4475 } else {
4477 * Unmanaged page, normal enter.
4479 * Leave wire count on PT page intact.
4481 pmap_inval_smp(pmap, va, 1, ptep, 0);
4482 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4484 KKASSERT(*ptep == 0);
4487 #ifdef PMAP_DEBUG2
4488 if (pmap_enter_debug > 0) {
4489 --pmap_enter_debug;
4490 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4491 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4492 va, m,
4493 origpte, newpte, ptep,
4494 pte_pv, pt_pv, opa, prot);
4496 #endif
4498 if (pte_pv) {
4500 * Enter on the PV list if part of our managed memory.
4501 * Wiring of the PT page is already handled.
4503 KKASSERT(pte_pv->pv_m == NULL);
4504 vm_page_spin_lock(m);
4505 pte_pv->pv_m = m;
4506 pmap_page_stats_adding(m);
4507 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4508 vm_page_flag_set(m, PG_MAPPED);
4509 vm_page_spin_unlock(m);
4510 } else if (pt_pv && opa == 0) {
4512 * We have to adjust the wire count on the PT page ourselves
4513 * for unmanaged entries. If opa was non-zero we retained
4514 * the existing wire count from the removal.
4516 vm_page_wire_quick(pt_pv->pv_m);
4520 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4522 * User VMAs do not because those will be zero->non-zero, so no
4523 * stale entries to worry about at this point.
4525 * For KVM there appear to still be issues. Theoretically we
4526 * should be able to scrap the interlocks entirely but we
4527 * get crashes.
4529 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4530 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4531 } else {
4532 *(volatile pt_entry_t *)ptep = newpte;
4533 if (pt_pv == NULL)
4534 cpu_invlpg((void *)va);
4537 if (wired) {
4538 if (pte_pv) {
4539 atomic_add_long(&pte_pv->pv_pmap->pm_stats.wired_count,
4541 } else {
4542 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4545 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4546 vm_page_flag_set(m, PG_WRITEABLE);
4549 * Unmanaged pages need manual resident_count tracking.
4551 if (pte_pv == NULL && pt_pv)
4552 atomic_add_long(&pt_pv->pv_pmap->pm_stats.resident_count, 1);
4555 * Cleanup
4557 done:
4558 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4559 (m->flags & PG_MAPPED));
4562 * Cleanup the pv entry, allowing other accessors.
4564 if (pte_pv)
4565 pv_put(pte_pv);
4566 if (pt_pv)
4567 pv_put(pt_pv);
4571 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4572 * This code also assumes that the pmap has no pre-existing entry for this
4573 * VA.
4575 * This code currently may only be used on user pmaps, not kernel_pmap.
4577 void
4578 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4580 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4584 * Make a temporary mapping for a physical address. This is only intended
4585 * to be used for panic dumps.
4587 * The caller is responsible for calling smp_invltlb().
4589 void *
4590 pmap_kenter_temporary(vm_paddr_t pa, long i)
4592 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4593 return ((void *)crashdumpmap);
4596 #define MAX_INIT_PT (96)
4599 * This routine preloads the ptes for a given object into the specified pmap.
4600 * This eliminates the blast of soft faults on process startup and
4601 * immediately after an mmap.
4603 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4605 void
4606 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4607 vm_object_t object, vm_pindex_t pindex,
4608 vm_size_t size, int limit)
4610 struct rb_vm_page_scan_info info;
4611 struct lwp *lp;
4612 vm_size_t psize;
4615 * We can't preinit if read access isn't set or there is no pmap
4616 * or object.
4618 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4619 return;
4622 * We can't preinit if the pmap is not the current pmap
4624 lp = curthread->td_lwp;
4625 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4626 return;
4629 * Misc additional checks
4631 psize = x86_64_btop(size);
4633 if ((object->type != OBJT_VNODE) ||
4634 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4635 (object->resident_page_count > MAX_INIT_PT))) {
4636 return;
4639 if (pindex + psize > object->size) {
4640 if (object->size < pindex)
4641 return;
4642 psize = object->size - pindex;
4645 if (psize == 0)
4646 return;
4649 * If everything is segment-aligned do not pre-init here. Instead
4650 * allow the normal vm_fault path to pass a segment hint to
4651 * pmap_enter() which will then use an object-referenced shared
4652 * page table page.
4654 if ((addr & SEG_MASK) == 0 &&
4655 (ctob(psize) & SEG_MASK) == 0 &&
4656 (ctob(pindex) & SEG_MASK) == 0) {
4657 return;
4661 * Use a red-black scan to traverse the requested range and load
4662 * any valid pages found into the pmap.
4664 * We cannot safely scan the object's memq without holding the
4665 * object token.
4667 info.start_pindex = pindex;
4668 info.end_pindex = pindex + psize - 1;
4669 info.limit = limit;
4670 info.mpte = NULL;
4671 info.addr = addr;
4672 info.pmap = pmap;
4674 vm_object_hold_shared(object);
4675 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
4676 pmap_object_init_pt_callback, &info);
4677 vm_object_drop(object);
4680 static
4682 pmap_object_init_pt_callback(vm_page_t p, void *data)
4684 struct rb_vm_page_scan_info *info = data;
4685 vm_pindex_t rel_index;
4688 * don't allow an madvise to blow away our really
4689 * free pages allocating pv entries.
4691 if ((info->limit & MAP_PREFAULT_MADVISE) &&
4692 vmstats.v_free_count < vmstats.v_free_reserved) {
4693 return(-1);
4697 * Ignore list markers and ignore pages we cannot instantly
4698 * busy (while holding the object token).
4700 if (p->flags & PG_MARKER)
4701 return 0;
4702 if (vm_page_busy_try(p, TRUE))
4703 return 0;
4704 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
4705 (p->flags & PG_FICTITIOUS) == 0) {
4706 if ((p->queue - p->pc) == PQ_CACHE)
4707 vm_page_deactivate(p);
4708 rel_index = p->pindex - info->start_pindex;
4709 pmap_enter_quick(info->pmap,
4710 info->addr + x86_64_ptob(rel_index), p);
4712 vm_page_wakeup(p);
4713 lwkt_yield();
4714 return(0);
4718 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
4719 * address.
4721 * Returns FALSE if it would be non-trivial or if a pte is already loaded
4722 * into the slot.
4724 * XXX This is safe only because page table pages are not freed.
4727 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
4729 pt_entry_t *pte;
4731 /*spin_lock(&pmap->pm_spin);*/
4732 if ((pte = pmap_pte(pmap, addr)) != NULL) {
4733 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
4734 /*spin_unlock(&pmap->pm_spin);*/
4735 return FALSE;
4738 /*spin_unlock(&pmap->pm_spin);*/
4739 return TRUE;
4743 * Change the wiring attribute for a pmap/va pair. The mapping must already
4744 * exist in the pmap. The mapping may or may not be managed.
4746 void
4747 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
4748 vm_map_entry_t entry)
4750 pt_entry_t *ptep;
4751 pv_entry_t pv;
4753 if (pmap == NULL)
4754 return;
4755 lwkt_gettoken(&pmap->pm_token);
4756 pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va), NULL, entry, va);
4757 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
4759 if (wired && !pmap_pte_w(pmap, ptep))
4760 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, 1);
4761 else if (!wired && pmap_pte_w(pmap, ptep))
4762 atomic_add_long(&pv->pv_pmap->pm_stats.wired_count, -1);
4765 * Wiring is not a hardware characteristic so there is no need to
4766 * invalidate TLB. However, in an SMP environment we must use
4767 * a locked bus cycle to update the pte (if we are not using
4768 * the pmap_inval_*() API that is)... it's ok to do this for simple
4769 * wiring changes.
4771 if (wired)
4772 atomic_set_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4773 else
4774 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
4775 pv_put(pv);
4776 lwkt_reltoken(&pmap->pm_token);
4782 * Copy the range specified by src_addr/len from the source map to
4783 * the range dst_addr/len in the destination map.
4785 * This routine is only advisory and need not do anything.
4787 void
4788 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
4789 vm_size_t len, vm_offset_t src_addr)
4794 * pmap_zero_page:
4796 * Zero the specified physical page.
4798 * This function may be called from an interrupt and no locking is
4799 * required.
4801 void
4802 pmap_zero_page(vm_paddr_t phys)
4804 vm_offset_t va = PHYS_TO_DMAP(phys);
4806 pagezero((void *)va);
4810 * pmap_zero_page:
4812 * Zero part of a physical page by mapping it into memory and clearing
4813 * its contents with bzero.
4815 * off and size may not cover an area beyond a single hardware page.
4817 void
4818 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
4820 vm_offset_t virt = PHYS_TO_DMAP(phys);
4822 bzero((char *)virt + off, size);
4826 * pmap_copy_page:
4828 * Copy the physical page from the source PA to the target PA.
4829 * This function may be called from an interrupt. No locking
4830 * is required.
4832 void
4833 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
4835 vm_offset_t src_virt, dst_virt;
4837 src_virt = PHYS_TO_DMAP(src);
4838 dst_virt = PHYS_TO_DMAP(dst);
4839 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
4843 * pmap_copy_page_frag:
4845 * Copy the physical page from the source PA to the target PA.
4846 * This function may be called from an interrupt. No locking
4847 * is required.
4849 void
4850 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
4852 vm_offset_t src_virt, dst_virt;
4854 src_virt = PHYS_TO_DMAP(src);
4855 dst_virt = PHYS_TO_DMAP(dst);
4857 bcopy((char *)src_virt + (src & PAGE_MASK),
4858 (char *)dst_virt + (dst & PAGE_MASK),
4859 bytes);
4863 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
4864 * this page. This count may be changed upwards or downwards in the future;
4865 * it is only necessary that true be returned for a small subset of pmaps
4866 * for proper page aging.
4868 boolean_t
4869 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4871 pv_entry_t pv;
4872 int loops = 0;
4874 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4875 return FALSE;
4877 vm_page_spin_lock(m);
4878 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4879 if (pv->pv_pmap == pmap) {
4880 vm_page_spin_unlock(m);
4881 return TRUE;
4883 loops++;
4884 if (loops >= 16)
4885 break;
4887 vm_page_spin_unlock(m);
4888 return (FALSE);
4892 * Remove all pages from specified address space this aids process exit
4893 * speeds. Also, this code may be special cased for the current process
4894 * only.
4896 void
4897 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4899 pmap_remove_noinval(pmap, sva, eva);
4900 cpu_invltlb();
4904 * pmap_testbit tests bits in pte's note that the testbit/clearbit
4905 * routines are inline, and a lot of things compile-time evaluate.
4907 static
4908 boolean_t
4909 pmap_testbit(vm_page_t m, int bit)
4911 pv_entry_t pv;
4912 pt_entry_t *pte;
4913 pmap_t pmap;
4915 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
4916 return FALSE;
4918 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
4919 return FALSE;
4920 vm_page_spin_lock(m);
4921 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
4922 vm_page_spin_unlock(m);
4923 return FALSE;
4926 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4928 #if defined(PMAP_DIAGNOSTIC)
4929 if (pv->pv_pmap == NULL) {
4930 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
4931 pv->pv_pindex);
4932 continue;
4934 #endif
4935 pmap = pv->pv_pmap;
4938 * If the bit being tested is the modified bit, then
4939 * mark clean_map and ptes as never
4940 * modified.
4942 * WARNING! Because we do not lock the pv, *pte can be in a
4943 * state of flux. Despite this the value of *pte
4944 * will still be related to the vm_page in some way
4945 * because the pv cannot be destroyed as long as we
4946 * hold the vm_page spin lock.
4948 if (bit == PG_A_IDX || bit == PG_M_IDX) {
4949 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
4950 if (!pmap_track_modified(pv->pv_pindex))
4951 continue;
4954 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
4955 if (*pte & pmap->pmap_bits[bit]) {
4956 vm_page_spin_unlock(m);
4957 return TRUE;
4960 vm_page_spin_unlock(m);
4961 return (FALSE);
4965 * This routine is used to modify bits in ptes. Only one bit should be
4966 * specified. PG_RW requires special handling.
4968 * Caller must NOT hold any spin locks
4970 static __inline
4971 void
4972 pmap_clearbit(vm_page_t m, int bit_index)
4974 pv_entry_t pv;
4975 pt_entry_t *pte;
4976 pt_entry_t pbits;
4977 pmap_t pmap;
4979 if (bit_index == PG_RW_IDX)
4980 vm_page_flag_clear(m, PG_WRITEABLE);
4981 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
4982 return;
4986 * PG_M or PG_A case
4988 * Loop over all current mappings setting/clearing as appropos If
4989 * setting RO do we need to clear the VAC?
4991 * NOTE: When clearing PG_M we could also (not implemented) drop
4992 * through to the PG_RW code and clear PG_RW too, forcing
4993 * a fault on write to redetect PG_M for virtual kernels, but
4994 * it isn't necessary since virtual kernels invalidate the
4995 * pte when they clear the VPTE_M bit in their virtual page
4996 * tables.
4998 * NOTE: Does not re-dirty the page when clearing only PG_M.
5000 * NOTE: Because we do not lock the pv, *pte can be in a state of
5001 * flux. Despite this the value of *pte is still somewhat
5002 * related while we hold the vm_page spin lock.
5004 * *pte can be zero due to this race. Since we are clearing
5005 * bits we basically do no harm when this race ccurs.
5007 if (bit_index != PG_RW_IDX) {
5008 vm_page_spin_lock(m);
5009 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5010 #if defined(PMAP_DIAGNOSTIC)
5011 if (pv->pv_pmap == NULL) {
5012 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5013 pv->pv_pindex);
5014 continue;
5016 #endif
5017 pmap = pv->pv_pmap;
5018 pte = pmap_pte_quick(pv->pv_pmap,
5019 pv->pv_pindex << PAGE_SHIFT);
5020 pbits = *pte;
5021 if (pbits & pmap->pmap_bits[bit_index])
5022 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5024 vm_page_spin_unlock(m);
5025 return;
5029 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5030 * was set.
5032 restart:
5033 vm_page_spin_lock(m);
5034 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5036 * don't write protect pager mappings
5038 if (!pmap_track_modified(pv->pv_pindex))
5039 continue;
5041 #if defined(PMAP_DIAGNOSTIC)
5042 if (pv->pv_pmap == NULL) {
5043 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5044 pv->pv_pindex);
5045 continue;
5047 #endif
5048 pmap = pv->pv_pmap;
5050 * Skip pages which do not have PG_RW set.
5052 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5053 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5054 continue;
5057 * Lock the PV
5059 if (pv_hold_try(pv)) {
5060 vm_page_spin_unlock(m);
5061 } else {
5062 vm_page_spin_unlock(m);
5063 pv_lock(pv); /* held, now do a blocking lock */
5065 if (pv->pv_pmap != pmap || pv->pv_m != m) {
5066 pv_put(pv); /* and release */
5067 goto restart; /* anything could have happened */
5069 KKASSERT(pv->pv_pmap == pmap);
5070 for (;;) {
5071 pt_entry_t nbits;
5073 pbits = *pte;
5074 cpu_ccfence();
5075 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5076 pmap->pmap_bits[PG_M_IDX]);
5077 if (pmap_inval_smp_cmpset(pmap,
5078 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5079 pte, pbits, nbits)) {
5080 break;
5082 cpu_pause();
5084 vm_page_spin_lock(m);
5087 * If PG_M was found to be set while we were clearing PG_RW
5088 * we also clear PG_M (done above) and mark the page dirty.
5089 * Callers expect this behavior.
5091 if (pbits & pmap->pmap_bits[PG_M_IDX])
5092 vm_page_dirty(m);
5093 pv_put(pv);
5095 vm_page_spin_unlock(m);
5099 * Lower the permission for all mappings to a given page.
5101 * Page must be busied by caller. Because page is busied by caller this
5102 * should not be able to race a pmap_enter().
5104 void
5105 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5107 /* JG NX support? */
5108 if ((prot & VM_PROT_WRITE) == 0) {
5109 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5111 * NOTE: pmap_clearbit(.. PG_RW) also clears
5112 * the PG_WRITEABLE flag in (m).
5114 pmap_clearbit(m, PG_RW_IDX);
5115 } else {
5116 pmap_remove_all(m);
5121 vm_paddr_t
5122 pmap_phys_address(vm_pindex_t ppn)
5124 return (x86_64_ptob(ppn));
5128 * Return a count of reference bits for a page, clearing those bits.
5129 * It is not necessary for every reference bit to be cleared, but it
5130 * is necessary that 0 only be returned when there are truly no
5131 * reference bits set.
5133 * XXX: The exact number of bits to check and clear is a matter that
5134 * should be tested and standardized at some point in the future for
5135 * optimal aging of shared pages.
5137 * This routine may not block.
5140 pmap_ts_referenced(vm_page_t m)
5142 pv_entry_t pv;
5143 pt_entry_t *pte;
5144 pmap_t pmap;
5145 int rtval = 0;
5147 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5148 return (rtval);
5150 vm_page_spin_lock(m);
5151 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5152 if (!pmap_track_modified(pv->pv_pindex))
5153 continue;
5154 pmap = pv->pv_pmap;
5155 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5156 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5157 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5158 rtval++;
5159 if (rtval > 4)
5160 break;
5163 vm_page_spin_unlock(m);
5164 return (rtval);
5168 * pmap_is_modified:
5170 * Return whether or not the specified physical page was modified
5171 * in any physical maps.
5173 boolean_t
5174 pmap_is_modified(vm_page_t m)
5176 boolean_t res;
5178 res = pmap_testbit(m, PG_M_IDX);
5179 return (res);
5183 * Clear the modify bits on the specified physical page.
5185 void
5186 pmap_clear_modify(vm_page_t m)
5188 pmap_clearbit(m, PG_M_IDX);
5192 * pmap_clear_reference:
5194 * Clear the reference bit on the specified physical page.
5196 void
5197 pmap_clear_reference(vm_page_t m)
5199 pmap_clearbit(m, PG_A_IDX);
5203 * Miscellaneous support routines follow
5206 static
5207 void
5208 i386_protection_init(void)
5210 int *kp, prot;
5212 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
5213 kp = protection_codes;
5214 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5215 switch (prot) {
5216 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5218 * Read access is also 0. There isn't any execute bit,
5219 * so just make it readable.
5221 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5222 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5223 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5224 *kp++ = 0;
5225 break;
5226 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5227 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5228 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5229 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5230 *kp++ = pmap_bits_default[PG_RW_IDX];
5231 break;
5237 * Map a set of physical memory pages into the kernel virtual
5238 * address space. Return a pointer to where it is mapped. This
5239 * routine is intended to be used for mapping device memory,
5240 * NOT real memory.
5242 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5243 * a time.
5245 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5246 * work whether the cpu supports PAT or not. The remaining PAT
5247 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5248 * supports PAT.
5250 void *
5251 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5253 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5256 void *
5257 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5259 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5262 void *
5263 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5265 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5269 * Map a set of physical memory pages into the kernel virtual
5270 * address space. Return a pointer to where it is mapped. This
5271 * routine is intended to be used for mapping device memory,
5272 * NOT real memory.
5274 void *
5275 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5277 vm_offset_t va, tmpva, offset;
5278 pt_entry_t *pte;
5279 vm_size_t tmpsize;
5281 offset = pa & PAGE_MASK;
5282 size = roundup(offset + size, PAGE_SIZE);
5284 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5285 if (va == 0)
5286 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5288 pa = pa & ~PAGE_MASK;
5289 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5290 pte = vtopte(tmpva);
5291 *pte = pa |
5292 kernel_pmap.pmap_bits[PG_RW_IDX] |
5293 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5294 kernel_pmap.pmap_cache_bits[mode];
5295 tmpsize -= PAGE_SIZE;
5296 tmpva += PAGE_SIZE;
5297 pa += PAGE_SIZE;
5299 pmap_invalidate_range(&kernel_pmap, va, va + size);
5300 pmap_invalidate_cache_range(va, va + size);
5302 return ((void *)(va + offset));
5305 void
5306 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5308 vm_offset_t base, offset;
5310 base = va & ~PAGE_MASK;
5311 offset = va & PAGE_MASK;
5312 size = roundup(offset + size, PAGE_SIZE);
5313 pmap_qremove(va, size >> PAGE_SHIFT);
5314 kmem_free(&kernel_map, base, size);
5318 * Sets the memory attribute for the specified page.
5320 void
5321 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5324 m->pat_mode = ma;
5327 * If "m" is a normal page, update its direct mapping. This update
5328 * can be relied upon to perform any cache operations that are
5329 * required for data coherence.
5331 if ((m->flags & PG_FICTITIOUS) == 0)
5332 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5336 * Change the PAT attribute on an existing kernel memory map. Caller
5337 * must ensure that the virtual memory in question is not accessed
5338 * during the adjustment.
5340 void
5341 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5343 pt_entry_t *pte;
5344 vm_offset_t base;
5345 int changed = 0;
5347 if (va == 0)
5348 panic("pmap_change_attr: va is NULL");
5349 base = trunc_page(va);
5351 while (count) {
5352 pte = vtopte(va);
5353 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5354 kernel_pmap.pmap_cache_bits[mode];
5355 --count;
5356 va += PAGE_SIZE;
5359 changed = 1; /* XXX: not optimal */
5362 * Flush CPU caches if required to make sure any data isn't cached that
5363 * shouldn't be, etc.
5365 if (changed) {
5366 pmap_invalidate_range(&kernel_pmap, base, va);
5367 pmap_invalidate_cache_range(base, va);
5372 * perform the pmap work for mincore
5375 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5377 pt_entry_t *ptep, pte;
5378 vm_page_t m;
5379 int val = 0;
5381 lwkt_gettoken(&pmap->pm_token);
5382 ptep = pmap_pte(pmap, addr);
5384 if (ptep && (pte = *ptep) != 0) {
5385 vm_offset_t pa;
5387 val = MINCORE_INCORE;
5388 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5389 goto done;
5391 pa = pte & PG_FRAME;
5393 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5394 m = NULL;
5395 else
5396 m = PHYS_TO_VM_PAGE(pa);
5399 * Modified by us
5401 if (pte & pmap->pmap_bits[PG_M_IDX])
5402 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5404 * Modified by someone
5406 else if (m && (m->dirty || pmap_is_modified(m)))
5407 val |= MINCORE_MODIFIED_OTHER;
5409 * Referenced by us
5411 if (pte & pmap->pmap_bits[PG_A_IDX])
5412 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5415 * Referenced by someone
5417 else if (m && ((m->flags & PG_REFERENCED) ||
5418 pmap_ts_referenced(m))) {
5419 val |= MINCORE_REFERENCED_OTHER;
5420 vm_page_flag_set(m, PG_REFERENCED);
5423 done:
5424 lwkt_reltoken(&pmap->pm_token);
5426 return val;
5430 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
5431 * vmspace will be ref'd and the old one will be deref'd.
5433 * The vmspace for all lwps associated with the process will be adjusted
5434 * and cr3 will be reloaded if any lwp is the current lwp.
5436 * The process must hold the vmspace->vm_map.token for oldvm and newvm
5438 void
5439 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5441 struct vmspace *oldvm;
5442 struct lwp *lp;
5444 oldvm = p->p_vmspace;
5445 if (oldvm != newvm) {
5446 if (adjrefs)
5447 vmspace_ref(newvm);
5448 p->p_vmspace = newvm;
5449 KKASSERT(p->p_nthreads == 1);
5450 lp = RB_ROOT(&p->p_lwp_tree);
5451 pmap_setlwpvm(lp, newvm);
5452 if (adjrefs)
5453 vmspace_rel(oldvm);
5458 * Set the vmspace for a LWP. The vmspace is almost universally set the
5459 * same as the process vmspace, but virtual kernels need to swap out contexts
5460 * on a per-lwp basis.
5462 * Caller does not necessarily hold any vmspace tokens. Caller must control
5463 * the lwp (typically be in the context of the lwp). We use a critical
5464 * section to protect against statclock and hardclock (statistics collection).
5466 void
5467 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5469 struct vmspace *oldvm;
5470 struct pmap *pmap;
5472 oldvm = lp->lwp_vmspace;
5474 if (oldvm != newvm) {
5475 crit_enter();
5476 lp->lwp_vmspace = newvm;
5477 if (curthread->td_lwp == lp) {
5478 pmap = vmspace_pmap(newvm);
5479 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5480 if (pmap->pm_active_lock & CPULOCK_EXCL)
5481 pmap_interlock_wait(newvm);
5482 #if defined(SWTCH_OPTIM_STATS)
5483 tlb_flush_count++;
5484 #endif
5485 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5486 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5487 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5488 curthread->td_pcb->pcb_cr3 = KPML4phys;
5489 } else {
5490 panic("pmap_setlwpvm: unknown pmap type\n");
5492 load_cr3(curthread->td_pcb->pcb_cr3);
5493 pmap = vmspace_pmap(oldvm);
5494 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5495 mycpu->gd_cpuid);
5497 crit_exit();
5502 * Called when switching to a locked pmap, used to interlock against pmaps
5503 * undergoing modifications to prevent us from activating the MMU for the
5504 * target pmap until all such modifications have completed. We have to do
5505 * this because the thread making the modifications has already set up its
5506 * SMP synchronization mask.
5508 * This function cannot sleep!
5510 * No requirements.
5512 void
5513 pmap_interlock_wait(struct vmspace *vm)
5515 struct pmap *pmap = &vm->vm_pmap;
5517 if (pmap->pm_active_lock & CPULOCK_EXCL) {
5518 crit_enter();
5519 KKASSERT(curthread->td_critcount >= 2);
5520 DEBUG_PUSH_INFO("pmap_interlock_wait");
5521 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5522 cpu_ccfence();
5523 lwkt_process_ipiq();
5525 DEBUG_POP_INFO();
5526 crit_exit();
5530 vm_offset_t
5531 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5534 if ((obj == NULL) || (size < NBPDR) ||
5535 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5536 return addr;
5539 addr = roundup2(addr, NBPDR);
5540 return addr;
5544 * Used by kmalloc/kfree, page already exists at va
5546 vm_page_t
5547 pmap_kvtom(vm_offset_t va)
5549 pt_entry_t *ptep = vtopte(va);
5551 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5552 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5556 * Initialize machine-specific shared page directory support. This
5557 * is executed when a VM object is created.
5559 void
5560 pmap_object_init(vm_object_t object)
5562 object->md.pmap_rw = NULL;
5563 object->md.pmap_ro = NULL;
5567 * Clean up machine-specific shared page directory support. This
5568 * is executed when a VM object is destroyed.
5570 void
5571 pmap_object_free(vm_object_t object)
5573 pmap_t pmap;
5575 if ((pmap = object->md.pmap_rw) != NULL) {
5576 object->md.pmap_rw = NULL;
5577 pmap_remove_noinval(pmap,
5578 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5579 CPUMASK_ASSZERO(pmap->pm_active);
5580 pmap_release(pmap);
5581 pmap_puninit(pmap);
5582 kfree(pmap, M_OBJPMAP);
5584 if ((pmap = object->md.pmap_ro) != NULL) {
5585 object->md.pmap_ro = NULL;
5586 pmap_remove_noinval(pmap,
5587 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5588 CPUMASK_ASSZERO(pmap->pm_active);
5589 pmap_release(pmap);
5590 pmap_puninit(pmap);
5591 kfree(pmap, M_OBJPMAP);
5596 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
5597 * VM page and issue a pginfo->callback.
5599 * We are expected to dispose of any non-NULL pte_pv.
5601 static
5602 void
5603 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
5604 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
5605 vm_offset_t va, pt_entry_t *ptep, void *arg)
5607 struct pmap_pgscan_info *pginfo = arg;
5608 vm_page_t m;
5610 if (pte_pv) {
5612 * Try to busy the page while we hold the pte_pv locked.
5614 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
5615 if (vm_page_busy_try(m, TRUE) == 0) {
5616 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
5618 * The callback is issued with the pte_pv
5619 * unlocked and put away, and the pt_pv
5620 * unlocked.
5622 pv_put(pte_pv);
5623 if (pt_pv)
5624 pv_unlock(pt_pv);
5625 if (pginfo->callback(pginfo, va, m) < 0)
5626 info->stop = 1;
5627 if (pt_pv)
5628 pv_lock(pt_pv);
5629 } else {
5630 vm_page_wakeup(m);
5631 pv_put(pte_pv);
5633 } else {
5634 ++pginfo->busycount;
5635 pv_put(pte_pv);
5637 } else if (sharept) {
5638 /* shared page table */
5639 } else {
5640 /* else unmanaged page */
5644 void
5645 pmap_pgscan(struct pmap_pgscan_info *pginfo)
5647 struct pmap_scan_info info;
5649 pginfo->offset = pginfo->beg_addr;
5650 info.pmap = pginfo->pmap;
5651 info.sva = pginfo->beg_addr;
5652 info.eva = pginfo->end_addr;
5653 info.func = pmap_pgscan_callback;
5654 info.arg = pginfo;
5655 pmap_scan(&info, 0);
5656 if (info.stop == 0)
5657 pginfo->offset = pginfo->end_addr;