installer: Re-add the TEST_DEV command which was removed accidentally.
[dragonfly.git] / sys / kern / vfs_cache.c
blobdc9ba6d187cc458c3d5c75d90d197ee2e813c15f
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * Copyright (c) 1989, 1993, 1995
35 * The Regents of the University of California. All rights reserved.
37 * This code is derived from software contributed to Berkeley by
38 * Poul-Henning Kamp of the FreeBSD Project.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the University of
51 * California, Berkeley and its contributors.
52 * 4. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
68 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
69 * $FreeBSD: src/sys/kern/vfs_cache.c,v 1.42.2.6 2001/10/05 20:07:03 dillon Exp $
70 * $DragonFly: src/sys/kern/vfs_cache.c,v 1.91 2008/06/14 05:34:06 dillon Exp $
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mount.h>
78 #include <sys/vnode.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/proc.h>
82 #include <sys/namei.h>
83 #include <sys/nlookup.h>
84 #include <sys/filedesc.h>
85 #include <sys/fnv_hash.h>
86 #include <sys/globaldata.h>
87 #include <sys/kern_syscall.h>
88 #include <sys/dirent.h>
89 #include <ddb/ddb.h>
91 #include <sys/sysref2.h>
93 #define MAX_RECURSION_DEPTH 64
96 * Random lookups in the cache are accomplished with a hash table using
97 * a hash key of (nc_src_vp, name).
99 * Negative entries may exist and correspond to structures where nc_vp
100 * is NULL. In a negative entry, NCF_WHITEOUT will be set if the entry
101 * corresponds to a whited-out directory entry (verses simply not finding the
102 * entry at all).
104 * Upon reaching the last segment of a path, if the reference is for DELETE,
105 * or NOCACHE is set (rewrite), and the name is located in the cache, it
106 * will be dropped.
110 * Structures associated with name cacheing.
112 #define NCHHASH(hash) (&nchashtbl[(hash) & nchash])
113 #define MINNEG 1024
115 MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
117 static LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
118 static struct namecache_list ncneglist; /* instead of vnode */
121 * ncvp_debug - debug cache_fromvp(). This is used by the NFS server
122 * to create the namecache infrastructure leading to a dangling vnode.
124 * 0 Only errors are reported
125 * 1 Successes are reported
126 * 2 Successes + the whole directory scan is reported
127 * 3 Force the directory scan code run as if the parent vnode did not
128 * have a namecache record, even if it does have one.
130 static int ncvp_debug;
131 SYSCTL_INT(_debug, OID_AUTO, ncvp_debug, CTLFLAG_RW, &ncvp_debug, 0, "");
133 static u_long nchash; /* size of hash table */
134 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0, "");
136 static u_long ncnegfactor = 16; /* ratio of negative entries */
137 SYSCTL_ULONG(_debug, OID_AUTO, ncnegfactor, CTLFLAG_RW, &ncnegfactor, 0, "");
139 static int nclockwarn; /* warn on locked entries in ticks */
140 SYSCTL_INT(_debug, OID_AUTO, nclockwarn, CTLFLAG_RW, &nclockwarn, 0, "");
142 static u_long numneg; /* number of cache entries allocated */
143 SYSCTL_ULONG(_debug, OID_AUTO, numneg, CTLFLAG_RD, &numneg, 0, "");
145 static u_long numcache; /* number of cache entries allocated */
146 SYSCTL_ULONG(_debug, OID_AUTO, numcache, CTLFLAG_RD, &numcache, 0, "");
148 static u_long numunres; /* number of unresolved entries */
149 SYSCTL_ULONG(_debug, OID_AUTO, numunres, CTLFLAG_RD, &numunres, 0, "");
151 SYSCTL_INT(_debug, OID_AUTO, vnsize, CTLFLAG_RD, 0, sizeof(struct vnode), "");
152 SYSCTL_INT(_debug, OID_AUTO, ncsize, CTLFLAG_RD, 0, sizeof(struct namecache), "");
154 static int cache_resolve_mp(struct mount *mp);
155 static struct vnode *cache_dvpref(struct namecache *ncp);
156 static void _cache_rehash(struct namecache *ncp);
157 static void _cache_lock(struct namecache *ncp);
158 static void _cache_setunresolved(struct namecache *ncp);
161 * The new name cache statistics
163 SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW, 0, "Name cache statistics");
164 #define STATNODE(mode, name, var) \
165 SYSCTL_ULONG(_vfs_cache, OID_AUTO, name, mode, var, 0, "");
166 STATNODE(CTLFLAG_RD, numneg, &numneg);
167 STATNODE(CTLFLAG_RD, numcache, &numcache);
168 static u_long numcalls; STATNODE(CTLFLAG_RD, numcalls, &numcalls);
169 static u_long dothits; STATNODE(CTLFLAG_RD, dothits, &dothits);
170 static u_long dotdothits; STATNODE(CTLFLAG_RD, dotdothits, &dotdothits);
171 static u_long numchecks; STATNODE(CTLFLAG_RD, numchecks, &numchecks);
172 static u_long nummiss; STATNODE(CTLFLAG_RD, nummiss, &nummiss);
173 static u_long nummisszap; STATNODE(CTLFLAG_RD, nummisszap, &nummisszap);
174 static u_long numposzaps; STATNODE(CTLFLAG_RD, numposzaps, &numposzaps);
175 static u_long numposhits; STATNODE(CTLFLAG_RD, numposhits, &numposhits);
176 static u_long numnegzaps; STATNODE(CTLFLAG_RD, numnegzaps, &numnegzaps);
177 static u_long numneghits; STATNODE(CTLFLAG_RD, numneghits, &numneghits);
179 struct nchstats nchstats[SMP_MAXCPU];
181 * Export VFS cache effectiveness statistics to user-land.
183 * The statistics are left for aggregation to user-land so
184 * neat things can be achieved, like observing per-CPU cache
185 * distribution.
187 static int
188 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
190 struct globaldata *gd;
191 int i, error;
193 error = 0;
194 for (i = 0; i < ncpus; ++i) {
195 gd = globaldata_find(i);
196 if ((error = SYSCTL_OUT(req, (void *)&(*gd->gd_nchstats),
197 sizeof(struct nchstats))))
198 break;
201 return (error);
203 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE|CTLFLAG_RD,
204 0, 0, sysctl_nchstats, "S,nchstats", "VFS cache effectiveness statistics");
206 static void cache_zap(struct namecache *ncp);
209 * cache_hold() and cache_drop() prevent the premature deletion of a
210 * namecache entry but do not prevent operations (such as zapping) on
211 * that namecache entry.
213 * This routine may only be called from outside this source module if
214 * nc_refs is already at least 1.
216 * This is a rare case where callers are allowed to hold a spinlock,
217 * so we can't ourselves.
219 static __inline
220 struct namecache *
221 _cache_hold(struct namecache *ncp)
223 atomic_add_int(&ncp->nc_refs, 1);
224 return(ncp);
228 * When dropping an entry, if only one ref remains and the entry has not
229 * been resolved, zap it. Since the one reference is being dropped the
230 * entry had better not be locked.
232 static __inline
233 void
234 _cache_drop(struct namecache *ncp)
236 KKASSERT(ncp->nc_refs > 0);
237 if (ncp->nc_refs == 1 &&
238 (ncp->nc_flag & NCF_UNRESOLVED) &&
239 TAILQ_EMPTY(&ncp->nc_list)
241 KKASSERT(ncp->nc_exlocks == 0);
242 _cache_lock(ncp);
243 cache_zap(ncp);
244 } else {
245 atomic_subtract_int(&ncp->nc_refs, 1);
250 * Link a new namecache entry to its parent. Be careful to avoid races
251 * if vhold() blocks in the future.
253 static void
254 cache_link_parent(struct namecache *ncp, struct namecache *par)
256 KKASSERT(ncp->nc_parent == NULL);
257 ncp->nc_parent = par;
258 if (TAILQ_EMPTY(&par->nc_list)) {
259 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
261 * Any vp associated with an ncp which has children must
262 * be held to prevent it from being recycled.
264 if (par->nc_vp)
265 vhold(par->nc_vp);
266 } else {
267 TAILQ_INSERT_HEAD(&par->nc_list, ncp, nc_entry);
272 * Remove the parent association from a namecache structure. If this is
273 * the last child of the parent the cache_drop(par) will attempt to
274 * recursively zap the parent.
276 static void
277 cache_unlink_parent(struct namecache *ncp)
279 struct namecache *par;
281 if ((par = ncp->nc_parent) != NULL) {
282 ncp->nc_parent = NULL;
283 par = _cache_hold(par);
284 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
285 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
286 vdrop(par->nc_vp);
287 _cache_drop(par);
292 * Allocate a new namecache structure. Most of the code does not require
293 * zero-termination of the string but it makes vop_compat_ncreate() easier.
295 static struct namecache *
296 cache_alloc(int nlen)
298 struct namecache *ncp;
300 ncp = kmalloc(sizeof(*ncp), M_VFSCACHE, M_WAITOK|M_ZERO);
301 if (nlen)
302 ncp->nc_name = kmalloc(nlen + 1, M_VFSCACHE, M_WAITOK);
303 ncp->nc_nlen = nlen;
304 ncp->nc_flag = NCF_UNRESOLVED;
305 ncp->nc_error = ENOTCONN; /* needs to be resolved */
306 ncp->nc_refs = 1;
309 * Construct a fake FSMID based on the time of day and a 32 bit
310 * roller for uniqueness. This is used to generate a useful
311 * FSMID for filesystems which do not support it.
313 ncp->nc_fsmid = cache_getnewfsmid();
314 TAILQ_INIT(&ncp->nc_list);
315 _cache_lock(ncp);
316 return(ncp);
319 static void
320 _cache_free(struct namecache *ncp)
322 KKASSERT(ncp->nc_refs == 1 && ncp->nc_exlocks == 1);
323 if (ncp->nc_name)
324 kfree(ncp->nc_name, M_VFSCACHE);
325 kfree(ncp, M_VFSCACHE);
328 void
329 cache_zero(struct nchandle *nch)
331 nch->ncp = NULL;
332 nch->mount = NULL;
336 * Ref and deref a namecache structure.
338 * Warning: caller may hold an unrelated read spinlock, which means we can't
339 * use read spinlocks here.
341 struct nchandle *
342 cache_hold(struct nchandle *nch)
344 _cache_hold(nch->ncp);
345 ++nch->mount->mnt_refs;
346 return(nch);
349 void
350 cache_copy(struct nchandle *nch, struct nchandle *target)
352 *target = *nch;
353 _cache_hold(target->ncp);
354 ++nch->mount->mnt_refs;
357 void
358 cache_changemount(struct nchandle *nch, struct mount *mp)
360 --nch->mount->mnt_refs;
361 nch->mount = mp;
362 ++nch->mount->mnt_refs;
365 void
366 cache_drop(struct nchandle *nch)
368 --nch->mount->mnt_refs;
369 _cache_drop(nch->ncp);
370 nch->ncp = NULL;
371 nch->mount = NULL;
375 * Namespace locking. The caller must already hold a reference to the
376 * namecache structure in order to lock/unlock it. This function prevents
377 * the namespace from being created or destroyed by accessors other then
378 * the lock holder.
380 * Note that holding a locked namecache structure prevents other threads
381 * from making namespace changes (e.g. deleting or creating), prevents
382 * vnode association state changes by other threads, and prevents the
383 * namecache entry from being resolved or unresolved by other threads.
385 * The lock owner has full authority to associate/disassociate vnodes
386 * and resolve/unresolve the locked ncp.
388 * WARNING! Holding a locked ncp will prevent a vnode from being destroyed
389 * or recycled, but it does NOT help you if the vnode had already initiated
390 * a recyclement. If this is important, use cache_get() rather then
391 * cache_lock() (and deal with the differences in the way the refs counter
392 * is handled). Or, alternatively, make an unconditional call to
393 * cache_validate() or cache_resolve() after cache_lock() returns.
395 static
396 void
397 _cache_lock(struct namecache *ncp)
399 thread_t td;
400 int didwarn;
402 KKASSERT(ncp->nc_refs != 0);
403 didwarn = 0;
404 td = curthread;
406 for (;;) {
407 if (ncp->nc_exlocks == 0) {
408 ncp->nc_exlocks = 1;
409 ncp->nc_locktd = td;
411 * The vp associated with a locked ncp must be held
412 * to prevent it from being recycled (which would
413 * cause the ncp to become unresolved).
415 * WARNING! If VRECLAIMED is set the vnode could
416 * already be in the middle of a recycle. Callers
417 * should not assume that nc_vp is usable when
418 * not NULL. cache_vref() or cache_vget() must be
419 * called.
421 * XXX loop on race for later MPSAFE work.
423 if (ncp->nc_vp)
424 vhold(ncp->nc_vp);
425 break;
427 if (ncp->nc_locktd == td) {
428 ++ncp->nc_exlocks;
429 break;
431 ncp->nc_flag |= NCF_LOCKREQ;
432 if (tsleep(ncp, 0, "clock", nclockwarn) == EWOULDBLOCK) {
433 if (didwarn)
434 continue;
435 didwarn = 1;
436 kprintf("[diagnostic] cache_lock: blocked on %p", ncp);
437 kprintf(" \"%*.*s\"\n",
438 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
442 if (didwarn == 1) {
443 kprintf("[diagnostic] cache_lock: unblocked %*.*s\n",
444 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
448 void
449 cache_lock(struct nchandle *nch)
451 _cache_lock(nch->ncp);
454 static
456 _cache_lock_nonblock(struct namecache *ncp)
458 thread_t td;
460 KKASSERT(ncp->nc_refs != 0);
461 td = curthread;
462 if (ncp->nc_exlocks == 0) {
463 ncp->nc_exlocks = 1;
464 ncp->nc_locktd = td;
466 * The vp associated with a locked ncp must be held
467 * to prevent it from being recycled (which would
468 * cause the ncp to become unresolved).
470 * WARNING! If VRECLAIMED is set the vnode could
471 * already be in the middle of a recycle. Callers
472 * should not assume that nc_vp is usable when
473 * not NULL. cache_vref() or cache_vget() must be
474 * called.
476 * XXX loop on race for later MPSAFE work.
478 if (ncp->nc_vp)
479 vhold(ncp->nc_vp);
480 return(0);
481 } else {
482 return(EWOULDBLOCK);
487 cache_lock_nonblock(struct nchandle *nch)
489 return(_cache_lock_nonblock(nch->ncp));
492 static
493 void
494 _cache_unlock(struct namecache *ncp)
496 thread_t td = curthread;
498 KKASSERT(ncp->nc_refs > 0);
499 KKASSERT(ncp->nc_exlocks > 0);
500 KKASSERT(ncp->nc_locktd == td);
501 if (--ncp->nc_exlocks == 0) {
502 if (ncp->nc_vp)
503 vdrop(ncp->nc_vp);
504 ncp->nc_locktd = NULL;
505 if (ncp->nc_flag & NCF_LOCKREQ) {
506 ncp->nc_flag &= ~NCF_LOCKREQ;
507 wakeup(ncp);
512 void
513 cache_unlock(struct nchandle *nch)
515 _cache_unlock(nch->ncp);
519 * ref-and-lock, unlock-and-deref functions.
521 * This function is primarily used by nlookup. Even though cache_lock
522 * holds the vnode, it is possible that the vnode may have already
523 * initiated a recyclement. We want cache_get() to return a definitively
524 * usable vnode or a definitively unresolved ncp.
526 static
527 struct namecache *
528 _cache_get(struct namecache *ncp)
530 _cache_hold(ncp);
531 _cache_lock(ncp);
532 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
533 _cache_setunresolved(ncp);
534 return(ncp);
538 * note: the same nchandle can be passed for both arguments.
540 void
541 cache_get(struct nchandle *nch, struct nchandle *target)
543 target->mount = nch->mount;
544 target->ncp = _cache_get(nch->ncp);
545 ++target->mount->mnt_refs;
548 static int
549 _cache_get_nonblock(struct namecache *ncp)
551 /* XXX MP */
552 if (ncp->nc_exlocks == 0 || ncp->nc_locktd == curthread) {
553 _cache_hold(ncp);
554 _cache_lock(ncp);
555 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
556 _cache_setunresolved(ncp);
557 return(0);
559 return(EWOULDBLOCK);
563 cache_get_nonblock(struct nchandle *nch)
565 int error;
567 if ((error = _cache_get_nonblock(nch->ncp)) == 0)
568 ++nch->mount->mnt_refs;
569 return (error);
572 static __inline
573 void
574 _cache_put(struct namecache *ncp)
576 _cache_unlock(ncp);
577 _cache_drop(ncp);
580 void
581 cache_put(struct nchandle *nch)
583 --nch->mount->mnt_refs;
584 _cache_put(nch->ncp);
585 nch->ncp = NULL;
586 nch->mount = NULL;
590 * Resolve an unresolved ncp by associating a vnode with it. If the
591 * vnode is NULL, a negative cache entry is created.
593 * The ncp should be locked on entry and will remain locked on return.
595 static
596 void
597 _cache_setvp(struct namecache *ncp, struct vnode *vp)
599 KKASSERT(ncp->nc_flag & NCF_UNRESOLVED);
600 ncp->nc_vp = vp;
601 if (vp != NULL) {
603 * Any vp associated with an ncp which has children must
604 * be held. Any vp associated with a locked ncp must be held.
606 if (!TAILQ_EMPTY(&ncp->nc_list))
607 vhold(vp);
608 TAILQ_INSERT_HEAD(&vp->v_namecache, ncp, nc_vnode);
609 if (ncp->nc_exlocks)
610 vhold(vp);
613 * Set auxiliary flags
615 switch(vp->v_type) {
616 case VDIR:
617 ncp->nc_flag |= NCF_ISDIR;
618 break;
619 case VLNK:
620 ncp->nc_flag |= NCF_ISSYMLINK;
621 /* XXX cache the contents of the symlink */
622 break;
623 default:
624 break;
626 ++numcache;
627 ncp->nc_error = 0;
628 } else {
629 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
630 ++numneg;
631 ncp->nc_error = ENOENT;
633 ncp->nc_flag &= ~NCF_UNRESOLVED;
636 void
637 cache_setvp(struct nchandle *nch, struct vnode *vp)
639 _cache_setvp(nch->ncp, vp);
642 void
643 cache_settimeout(struct nchandle *nch, int nticks)
645 struct namecache *ncp = nch->ncp;
647 if ((ncp->nc_timeout = ticks + nticks) == 0)
648 ncp->nc_timeout = 1;
652 * Disassociate the vnode or negative-cache association and mark a
653 * namecache entry as unresolved again. Note that the ncp is still
654 * left in the hash table and still linked to its parent.
656 * The ncp should be locked and refd on entry and will remain locked and refd
657 * on return.
659 * This routine is normally never called on a directory containing children.
660 * However, NFS often does just that in its rename() code as a cop-out to
661 * avoid complex namespace operations. This disconnects a directory vnode
662 * from its namecache and can cause the OLDAPI and NEWAPI to get out of
663 * sync.
665 * NOTE: NCF_FSMID must be cleared so a refurbishment of the ncp, such as
666 * in a create, properly propogates flag up the chain.
668 static
669 void
670 _cache_setunresolved(struct namecache *ncp)
672 struct vnode *vp;
674 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
675 ncp->nc_flag |= NCF_UNRESOLVED;
676 ncp->nc_timeout = 0;
677 ncp->nc_error = ENOTCONN;
678 ++numunres;
679 if ((vp = ncp->nc_vp) != NULL) {
680 --numcache;
681 ncp->nc_vp = NULL;
682 TAILQ_REMOVE(&vp->v_namecache, ncp, nc_vnode);
685 * Any vp associated with an ncp with children is
686 * held by that ncp. Any vp associated with a locked
687 * ncp is held by that ncp. These conditions must be
688 * undone when the vp is cleared out from the ncp.
690 if (ncp->nc_flag & NCF_FSMID)
691 vupdatefsmid(vp);
692 if (!TAILQ_EMPTY(&ncp->nc_list))
693 vdrop(vp);
694 if (ncp->nc_exlocks)
695 vdrop(vp);
696 } else {
697 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
698 --numneg;
700 ncp->nc_flag &= ~(NCF_WHITEOUT|NCF_ISDIR|NCF_ISSYMLINK|
701 NCF_FSMID);
705 void
706 cache_setunresolved(struct nchandle *nch)
708 _cache_setunresolved(nch->ncp);
712 * Determine if we can clear NCF_ISMOUNTPT by scanning the mountlist
713 * looking for matches. This flag tells the lookup code when it must
714 * check for a mount linkage and also prevents the directories in question
715 * from being deleted or renamed.
717 static
719 cache_clrmountpt_callback(struct mount *mp, void *data)
721 struct nchandle *nch = data;
723 if (mp->mnt_ncmounton.ncp == nch->ncp)
724 return(1);
725 if (mp->mnt_ncmountpt.ncp == nch->ncp)
726 return(1);
727 return(0);
730 void
731 cache_clrmountpt(struct nchandle *nch)
733 int count;
735 count = mountlist_scan(cache_clrmountpt_callback, nch,
736 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
737 if (count == 0)
738 nch->ncp->nc_flag &= ~NCF_ISMOUNTPT;
742 * Invalidate portions of the namecache topology given a starting entry.
743 * The passed ncp is set to an unresolved state and:
745 * The passed ncp must be locked.
747 * CINV_DESTROY - Set a flag in the passed ncp entry indicating
748 * that the physical underlying nodes have been
749 * destroyed... as in deleted. For example, when
750 * a directory is removed. This will cause record
751 * lookups on the name to no longer be able to find
752 * the record and tells the resolver to return failure
753 * rather then trying to resolve through the parent.
755 * The topology itself, including ncp->nc_name,
756 * remains intact.
758 * This only applies to the passed ncp, if CINV_CHILDREN
759 * is specified the children are not flagged.
761 * CINV_CHILDREN - Set all children (recursively) to an unresolved
762 * state as well.
764 * Note that this will also have the side effect of
765 * cleaning out any unreferenced nodes in the topology
766 * from the leaves up as the recursion backs out.
768 * Note that the topology for any referenced nodes remains intact.
770 * It is possible for cache_inval() to race a cache_resolve(), meaning that
771 * the namecache entry may not actually be invalidated on return if it was
772 * revalidated while recursing down into its children. This code guarentees
773 * that the node(s) will go through an invalidation cycle, but does not
774 * guarentee that they will remain in an invalidated state.
776 * Returns non-zero if a revalidation was detected during the invalidation
777 * recursion, zero otherwise. Note that since only the original ncp is
778 * locked the revalidation ultimately can only indicate that the original ncp
779 * *MIGHT* no have been reresolved.
781 * DEEP RECURSION HANDLING - If a recursive invalidation recurses deeply we
782 * have to avoid blowing out the kernel stack. We do this by saving the
783 * deep namecache node and aborting the recursion, then re-recursing at that
784 * node using a depth-first algorithm in order to allow multiple deep
785 * recursions to chain through each other, then we restart the invalidation
786 * from scratch.
789 struct cinvtrack {
790 struct namecache *resume_ncp;
791 int depth;
794 static int _cache_inval_internal(struct namecache *, int, struct cinvtrack *);
796 static
798 _cache_inval(struct namecache *ncp, int flags)
800 struct cinvtrack track;
801 struct namecache *ncp2;
802 int r;
804 track.depth = 0;
805 track.resume_ncp = NULL;
807 for (;;) {
808 r = _cache_inval_internal(ncp, flags, &track);
809 if (track.resume_ncp == NULL)
810 break;
811 kprintf("Warning: deep namecache recursion at %s\n",
812 ncp->nc_name);
813 _cache_unlock(ncp);
814 while ((ncp2 = track.resume_ncp) != NULL) {
815 track.resume_ncp = NULL;
816 _cache_lock(ncp2);
817 _cache_inval_internal(ncp2, flags & ~CINV_DESTROY,
818 &track);
819 _cache_put(ncp2);
821 _cache_lock(ncp);
823 return(r);
827 cache_inval(struct nchandle *nch, int flags)
829 return(_cache_inval(nch->ncp, flags));
832 static int
833 _cache_inval_internal(struct namecache *ncp, int flags, struct cinvtrack *track)
835 struct namecache *kid;
836 struct namecache *nextkid;
837 int rcnt = 0;
839 KKASSERT(ncp->nc_exlocks);
841 _cache_setunresolved(ncp);
842 if (flags & CINV_DESTROY)
843 ncp->nc_flag |= NCF_DESTROYED;
845 if ((flags & CINV_CHILDREN) &&
846 (kid = TAILQ_FIRST(&ncp->nc_list)) != NULL
848 if (++track->depth > MAX_RECURSION_DEPTH) {
849 track->resume_ncp = ncp;
850 _cache_hold(ncp);
851 ++rcnt;
853 _cache_hold(kid);
854 _cache_unlock(ncp);
855 while (kid) {
856 if (track->resume_ncp) {
857 _cache_drop(kid);
858 break;
860 if ((nextkid = TAILQ_NEXT(kid, nc_entry)) != NULL)
861 _cache_hold(nextkid);
862 if ((kid->nc_flag & NCF_UNRESOLVED) == 0 ||
863 TAILQ_FIRST(&kid->nc_list)
865 _cache_lock(kid);
866 rcnt += _cache_inval_internal(kid, flags & ~CINV_DESTROY, track);
867 _cache_unlock(kid);
869 _cache_drop(kid);
870 kid = nextkid;
872 --track->depth;
873 _cache_lock(ncp);
877 * Someone could have gotten in there while ncp was unlocked,
878 * retry if so.
880 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
881 ++rcnt;
882 return (rcnt);
886 * Invalidate a vnode's namecache associations. To avoid races against
887 * the resolver we do not invalidate a node which we previously invalidated
888 * but which was then re-resolved while we were in the invalidation loop.
890 * Returns non-zero if any namecache entries remain after the invalidation
891 * loop completed.
893 * NOTE: unlike the namecache topology which guarentees that ncp's will not
894 * be ripped out of the topology while held, the vnode's v_namecache list
895 * has no such restriction. NCP's can be ripped out of the list at virtually
896 * any time if not locked, even if held.
899 cache_inval_vp(struct vnode *vp, int flags)
901 struct namecache *ncp;
902 struct namecache *next;
904 restart:
905 ncp = TAILQ_FIRST(&vp->v_namecache);
906 if (ncp)
907 _cache_hold(ncp);
908 while (ncp) {
909 /* loop entered with ncp held */
910 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
911 _cache_hold(next);
912 _cache_lock(ncp);
913 if (ncp->nc_vp != vp) {
914 kprintf("Warning: cache_inval_vp: race-A detected on "
915 "%s\n", ncp->nc_name);
916 _cache_put(ncp);
917 if (next)
918 _cache_drop(next);
919 goto restart;
921 _cache_inval(ncp, flags);
922 _cache_put(ncp); /* also releases reference */
923 ncp = next;
924 if (ncp && ncp->nc_vp != vp) {
925 kprintf("Warning: cache_inval_vp: race-B detected on "
926 "%s\n", ncp->nc_name);
927 _cache_drop(ncp);
928 goto restart;
931 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
935 * This routine is used instead of the normal cache_inval_vp() when we
936 * are trying to recycle otherwise good vnodes.
938 * Return 0 on success, non-zero if not all namecache records could be
939 * disassociated from the vnode (for various reasons).
942 cache_inval_vp_nonblock(struct vnode *vp)
944 struct namecache *ncp;
945 struct namecache *next;
947 ncp = TAILQ_FIRST(&vp->v_namecache);
948 if (ncp)
949 _cache_hold(ncp);
950 while (ncp) {
951 /* loop entered with ncp held */
952 if ((next = TAILQ_NEXT(ncp, nc_vnode)) != NULL)
953 _cache_hold(next);
954 if (_cache_lock_nonblock(ncp)) {
955 _cache_drop(ncp);
956 if (next)
957 _cache_drop(next);
958 break;
960 if (ncp->nc_vp != vp) {
961 kprintf("Warning: cache_inval_vp: race-A detected on "
962 "%s\n", ncp->nc_name);
963 _cache_put(ncp);
964 if (next)
965 _cache_drop(next);
966 break;
968 _cache_inval(ncp, 0);
969 _cache_put(ncp); /* also releases reference */
970 ncp = next;
971 if (ncp && ncp->nc_vp != vp) {
972 kprintf("Warning: cache_inval_vp: race-B detected on "
973 "%s\n", ncp->nc_name);
974 _cache_drop(ncp);
975 break;
978 return(TAILQ_FIRST(&vp->v_namecache) != NULL);
982 * The source ncp has been renamed to the target ncp. Both fncp and tncp
983 * must be locked. The target ncp is destroyed (as a normal rename-over
984 * would destroy the target file or directory).
986 * Because there may be references to the source ncp we cannot copy its
987 * contents to the target. Instead the source ncp is relinked as the target
988 * and the target ncp is removed from the namecache topology.
990 void
991 cache_rename(struct nchandle *fnch, struct nchandle *tnch)
993 struct namecache *fncp = fnch->ncp;
994 struct namecache *tncp = tnch->ncp;
995 char *oname;
997 _cache_setunresolved(tncp);
998 cache_unlink_parent(fncp);
999 cache_link_parent(fncp, tncp->nc_parent);
1000 cache_unlink_parent(tncp);
1001 oname = fncp->nc_name;
1002 fncp->nc_name = tncp->nc_name;
1003 fncp->nc_nlen = tncp->nc_nlen;
1004 tncp->nc_name = NULL;
1005 tncp->nc_nlen = 0;
1006 if (fncp->nc_flag & NCF_HASHED)
1007 _cache_rehash(fncp);
1008 if (tncp->nc_flag & NCF_HASHED)
1009 _cache_rehash(tncp);
1010 if (oname)
1011 kfree(oname, M_VFSCACHE);
1015 * vget the vnode associated with the namecache entry. Resolve the namecache
1016 * entry if necessary and deal with namecache/vp races. The passed ncp must
1017 * be referenced and may be locked. The ncp's ref/locking state is not
1018 * effected by this call.
1020 * lk_type may be LK_SHARED, LK_EXCLUSIVE. A ref'd, possibly locked
1021 * (depending on the passed lk_type) will be returned in *vpp with an error
1022 * of 0, or NULL will be returned in *vpp with a non-0 error code. The
1023 * most typical error is ENOENT, meaning that the ncp represents a negative
1024 * cache hit and there is no vnode to retrieve, but other errors can occur
1025 * too.
1027 * The main race we have to deal with are namecache zaps. The ncp itself
1028 * will not disappear since it is referenced, and it turns out that the
1029 * validity of the vp pointer can be checked simply by rechecking the
1030 * contents of ncp->nc_vp.
1033 cache_vget(struct nchandle *nch, struct ucred *cred,
1034 int lk_type, struct vnode **vpp)
1036 struct namecache *ncp;
1037 struct vnode *vp;
1038 int error;
1040 ncp = nch->ncp;
1041 again:
1042 vp = NULL;
1043 if (ncp->nc_flag & NCF_UNRESOLVED) {
1044 _cache_lock(ncp);
1045 error = cache_resolve(nch, cred);
1046 _cache_unlock(ncp);
1047 } else {
1048 error = 0;
1050 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1052 * Accessing the vnode from the namecache is a bit
1053 * dangerous. Because there are no refs on the vnode, it
1054 * could be in the middle of a reclaim.
1056 if (vp->v_flag & VRECLAIMED) {
1057 kprintf("Warning: vnode reclaim race detected in cache_vget on %p (%s)\n", vp, ncp->nc_name);
1058 _cache_lock(ncp);
1059 _cache_setunresolved(ncp);
1060 _cache_unlock(ncp);
1061 goto again;
1063 error = vget(vp, lk_type);
1064 if (error) {
1065 if (vp != ncp->nc_vp)
1066 goto again;
1067 vp = NULL;
1068 } else if (vp != ncp->nc_vp) {
1069 vput(vp);
1070 goto again;
1071 } else if (vp->v_flag & VRECLAIMED) {
1072 panic("vget succeeded on a VRECLAIMED node! vp %p", vp);
1075 if (error == 0 && vp == NULL)
1076 error = ENOENT;
1077 *vpp = vp;
1078 return(error);
1082 cache_vref(struct nchandle *nch, struct ucred *cred, struct vnode **vpp)
1084 struct namecache *ncp;
1085 struct vnode *vp;
1086 int error;
1088 ncp = nch->ncp;
1090 again:
1091 vp = NULL;
1092 if (ncp->nc_flag & NCF_UNRESOLVED) {
1093 _cache_lock(ncp);
1094 error = cache_resolve(nch, cred);
1095 _cache_unlock(ncp);
1096 } else {
1097 error = 0;
1099 if (error == 0 && (vp = ncp->nc_vp) != NULL) {
1101 * Since we did not obtain any locks, a cache zap
1102 * race can occur here if the vnode is in the middle
1103 * of being reclaimed and has not yet been able to
1104 * clean out its cache node. If that case occurs,
1105 * we must lock and unresolve the cache, then loop
1106 * to retry.
1108 if ((error = vget(vp, LK_SHARED)) != 0) {
1109 if (error == ENOENT) {
1110 kprintf("Warning: vnode reclaim race detected on cache_vref %p (%s)\n", vp, ncp->nc_name);
1111 _cache_lock(ncp);
1112 _cache_setunresolved(ncp);
1113 _cache_unlock(ncp);
1114 goto again;
1116 /* fatal error */
1117 } else {
1118 /* caller does not want a lock */
1119 vn_unlock(vp);
1122 if (error == 0 && vp == NULL)
1123 error = ENOENT;
1124 *vpp = vp;
1125 return(error);
1129 * Return a referenced vnode representing the parent directory of
1130 * ncp. Because the caller has locked the ncp it should not be possible for
1131 * the parent ncp to go away.
1133 * However, we might race against the parent dvp and not be able to
1134 * reference it. If we race, return NULL.
1136 static struct vnode *
1137 cache_dvpref(struct namecache *ncp)
1139 struct namecache *par;
1140 struct vnode *dvp;
1142 dvp = NULL;
1143 if ((par = ncp->nc_parent) != NULL) {
1144 if ((par->nc_flag & NCF_UNRESOLVED) == 0) {
1145 if ((dvp = par->nc_vp) != NULL) {
1146 if (vget(dvp, LK_SHARED) == 0) {
1147 vn_unlock(dvp);
1148 /* return referenced, unlocked dvp */
1149 } else {
1150 dvp = NULL;
1155 return(dvp);
1159 * Recursively set the FSMID update flag for namecache nodes leading
1160 * to root. This will cause the next getattr or reclaim to increment the
1161 * fsmid and mark the inode for lazy updating.
1163 * Stop recursing when we hit a node whos NCF_FSMID flag is already set.
1164 * This makes FSMIDs work in an Einsteinian fashion - where the observation
1165 * effects the result. In this case a program monitoring a higher level
1166 * node will have detected some prior change and started its scan (clearing
1167 * NCF_FSMID in higher level nodes), but since it has not yet observed the
1168 * node where we find NCF_FSMID still set, we can safely make the related
1169 * modification without interfering with the theorized program.
1171 * This also means that FSMIDs cannot represent time-domain quantities
1172 * in a hierarchical sense. But the main reason for doing it this way
1173 * is to reduce the amount of recursion that occurs in the critical path
1174 * when e.g. a program is writing to a file that sits deep in a directory
1175 * hierarchy.
1177 void
1178 cache_update_fsmid(struct nchandle *nch)
1180 struct namecache *ncp;
1181 struct namecache *scan;
1182 struct vnode *vp;
1184 ncp = nch->ncp;
1187 * Warning: even if we get a non-NULL vp it could still be in the
1188 * middle of a recyclement. Don't do anything fancy, just set
1189 * NCF_FSMID.
1191 if ((vp = ncp->nc_vp) != NULL) {
1192 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1193 for (scan = ncp; scan; scan = scan->nc_parent) {
1194 if (scan->nc_flag & NCF_FSMID)
1195 break;
1196 scan->nc_flag |= NCF_FSMID;
1199 } else {
1200 while (ncp && (ncp->nc_flag & NCF_FSMID) == 0) {
1201 ncp->nc_flag |= NCF_FSMID;
1202 ncp = ncp->nc_parent;
1207 void
1208 cache_update_fsmid_vp(struct vnode *vp)
1210 struct namecache *ncp;
1211 struct namecache *scan;
1213 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1214 for (scan = ncp; scan; scan = scan->nc_parent) {
1215 if (scan->nc_flag & NCF_FSMID)
1216 break;
1217 scan->nc_flag |= NCF_FSMID;
1223 * If getattr is called on a vnode (e.g. a stat call), the filesystem
1224 * may call this routine to determine if the namecache has the hierarchical
1225 * change flag set, requiring the fsmid to be updated.
1227 * Since 0 indicates no support, make sure the filesystem fsmid is at least
1228 * 1.
1231 cache_check_fsmid_vp(struct vnode *vp, int64_t *fsmid)
1233 struct namecache *ncp;
1234 int changed = 0;
1236 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1237 if (ncp->nc_flag & NCF_FSMID) {
1238 ncp->nc_flag &= ~NCF_FSMID;
1239 changed = 1;
1242 if (*fsmid == 0)
1243 ++*fsmid;
1244 if (changed)
1245 ++*fsmid;
1246 return(changed);
1250 * Obtain the FSMID for a vnode for filesystems which do not support
1251 * a built-in FSMID.
1253 int64_t
1254 cache_sync_fsmid_vp(struct vnode *vp)
1256 struct namecache *ncp;
1258 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL) {
1259 if (ncp->nc_flag & NCF_FSMID) {
1260 ncp->nc_flag &= ~NCF_FSMID;
1261 ++ncp->nc_fsmid;
1263 return(ncp->nc_fsmid);
1265 return(VNOVAL);
1269 * Convert a directory vnode to a namecache record without any other
1270 * knowledge of the topology. This ONLY works with directory vnodes and
1271 * is ONLY used by the NFS server. dvp must be refd but unlocked, and the
1272 * returned ncp (if not NULL) will be held and unlocked.
1274 * If 'makeit' is 0 and dvp has no existing namecache record, NULL is returned.
1275 * If 'makeit' is 1 we attempt to track-down and create the namecache topology
1276 * for dvp. This will fail only if the directory has been deleted out from
1277 * under the caller.
1279 * Callers must always check for a NULL return no matter the value of 'makeit'.
1281 * To avoid underflowing the kernel stack each recursive call increments
1282 * the makeit variable.
1285 static int cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1286 struct vnode *dvp, char *fakename);
1287 static int cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1288 struct vnode **saved_dvp);
1291 cache_fromdvp(struct vnode *dvp, struct ucred *cred, int makeit,
1292 struct nchandle *nch)
1294 struct vnode *saved_dvp;
1295 struct vnode *pvp;
1296 char *fakename;
1297 int error;
1299 nch->ncp = NULL;
1300 nch->mount = dvp->v_mount;
1301 saved_dvp = NULL;
1302 fakename = NULL;
1305 * Temporary debugging code to force the directory scanning code
1306 * to be exercised.
1308 if (ncvp_debug >= 3 && makeit && TAILQ_FIRST(&dvp->v_namecache)) {
1309 nch->ncp = TAILQ_FIRST(&dvp->v_namecache);
1310 kprintf("cache_fromdvp: forcing %s\n", nch->ncp->nc_name);
1311 goto force;
1315 * Loop until resolution, inside code will break out on error.
1317 while ((nch->ncp = TAILQ_FIRST(&dvp->v_namecache)) == NULL && makeit) {
1318 force:
1320 * If dvp is the root of its filesystem it should already
1321 * have a namecache pointer associated with it as a side
1322 * effect of the mount, but it may have been disassociated.
1324 if (dvp->v_flag & VROOT) {
1325 nch->ncp = _cache_get(nch->mount->mnt_ncmountpt.ncp);
1326 error = cache_resolve_mp(nch->mount);
1327 _cache_put(nch->ncp);
1328 if (ncvp_debug) {
1329 kprintf("cache_fromdvp: resolve root of mount %p error %d",
1330 dvp->v_mount, error);
1332 if (error) {
1333 if (ncvp_debug)
1334 kprintf(" failed\n");
1335 nch->ncp = NULL;
1336 break;
1338 if (ncvp_debug)
1339 kprintf(" succeeded\n");
1340 continue;
1344 * If we are recursed too deeply resort to an O(n^2)
1345 * algorithm to resolve the namecache topology. The
1346 * resolved pvp is left referenced in saved_dvp to
1347 * prevent the tree from being destroyed while we loop.
1349 if (makeit > 20) {
1350 error = cache_fromdvp_try(dvp, cred, &saved_dvp);
1351 if (error) {
1352 kprintf("lookupdotdot(longpath) failed %d "
1353 "dvp %p\n", error, dvp);
1354 nch->ncp = NULL;
1355 break;
1357 continue;
1361 * Get the parent directory and resolve its ncp.
1363 if (fakename) {
1364 kfree(fakename, M_TEMP);
1365 fakename = NULL;
1367 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1368 &fakename);
1369 if (error) {
1370 kprintf("lookupdotdot failed %d dvp %p\n", error, dvp);
1371 break;
1373 vn_unlock(pvp);
1376 * Reuse makeit as a recursion depth counter. On success
1377 * nch will be fully referenced.
1379 cache_fromdvp(pvp, cred, makeit + 1, nch);
1380 vrele(pvp);
1381 if (nch->ncp == NULL)
1382 break;
1385 * Do an inefficient scan of pvp (embodied by ncp) to look
1386 * for dvp. This will create a namecache record for dvp on
1387 * success. We loop up to recheck on success.
1389 * ncp and dvp are both held but not locked.
1391 error = cache_inefficient_scan(nch, cred, dvp, fakename);
1392 if (error) {
1393 kprintf("cache_fromdvp: scan %p (%s) failed on dvp=%p\n",
1394 pvp, nch->ncp->nc_name, dvp);
1395 cache_drop(nch);
1396 /* nch was NULLed out, reload mount */
1397 nch->mount = dvp->v_mount;
1398 break;
1400 if (ncvp_debug) {
1401 kprintf("cache_fromdvp: scan %p (%s) succeeded\n",
1402 pvp, nch->ncp->nc_name);
1404 cache_drop(nch);
1405 /* nch was NULLed out, reload mount */
1406 nch->mount = dvp->v_mount;
1409 if (fakename)
1410 kfree(fakename, M_TEMP);
1413 * hold it for real so the mount gets a ref
1415 if (nch->ncp)
1416 cache_hold(nch);
1417 if (saved_dvp)
1418 vrele(saved_dvp);
1419 if (nch->ncp)
1420 return (0);
1421 return (EINVAL);
1425 * Go up the chain of parent directories until we find something
1426 * we can resolve into the namecache. This is very inefficient.
1428 static
1430 cache_fromdvp_try(struct vnode *dvp, struct ucred *cred,
1431 struct vnode **saved_dvp)
1433 struct nchandle nch;
1434 struct vnode *pvp;
1435 int error;
1436 static time_t last_fromdvp_report;
1437 char *fakename;
1440 * Loop getting the parent directory vnode until we get something we
1441 * can resolve in the namecache.
1443 vref(dvp);
1444 nch.mount = dvp->v_mount;
1445 nch.ncp = NULL;
1446 fakename = NULL;
1448 for (;;) {
1449 if (fakename) {
1450 kfree(fakename, M_TEMP);
1451 fakename = NULL;
1453 error = vop_nlookupdotdot(*dvp->v_ops, dvp, &pvp, cred,
1454 &fakename);
1455 if (error) {
1456 vrele(dvp);
1457 break;
1459 vn_unlock(pvp);
1460 if ((nch.ncp = TAILQ_FIRST(&pvp->v_namecache)) != NULL) {
1461 _cache_hold(nch.ncp);
1462 vrele(pvp);
1463 break;
1465 if (pvp->v_flag & VROOT) {
1466 nch.ncp = _cache_get(pvp->v_mount->mnt_ncmountpt.ncp);
1467 error = cache_resolve_mp(nch.mount);
1468 _cache_unlock(nch.ncp);
1469 vrele(pvp);
1470 if (error) {
1471 _cache_drop(nch.ncp);
1472 nch.ncp = NULL;
1473 vrele(dvp);
1475 break;
1477 vrele(dvp);
1478 dvp = pvp;
1480 if (error == 0) {
1481 if (last_fromdvp_report != time_second) {
1482 last_fromdvp_report = time_second;
1483 kprintf("Warning: extremely inefficient path "
1484 "resolution on %s\n",
1485 nch.ncp->nc_name);
1487 error = cache_inefficient_scan(&nch, cred, dvp, fakename);
1490 * Hopefully dvp now has a namecache record associated with
1491 * it. Leave it referenced to prevent the kernel from
1492 * recycling the vnode. Otherwise extremely long directory
1493 * paths could result in endless recycling.
1495 if (*saved_dvp)
1496 vrele(*saved_dvp);
1497 *saved_dvp = dvp;
1498 _cache_drop(nch.ncp);
1500 if (fakename)
1501 kfree(fakename, M_TEMP);
1502 return (error);
1506 * Do an inefficient scan of the directory represented by ncp looking for
1507 * the directory vnode dvp. ncp must be held but not locked on entry and
1508 * will be held on return. dvp must be refd but not locked on entry and
1509 * will remain refd on return.
1511 * Why do this at all? Well, due to its stateless nature the NFS server
1512 * converts file handles directly to vnodes without necessarily going through
1513 * the namecache ops that would otherwise create the namecache topology
1514 * leading to the vnode. We could either (1) Change the namecache algorithms
1515 * to allow disconnect namecache records that are re-merged opportunistically,
1516 * or (2) Make the NFS server backtrack and scan to recover a connected
1517 * namecache topology in order to then be able to issue new API lookups.
1519 * It turns out that (1) is a huge mess. It takes a nice clean set of
1520 * namecache algorithms and introduces a lot of complication in every subsystem
1521 * that calls into the namecache to deal with the re-merge case, especially
1522 * since we are using the namecache to placehold negative lookups and the
1523 * vnode might not be immediately assigned. (2) is certainly far less
1524 * efficient then (1), but since we are only talking about directories here
1525 * (which are likely to remain cached), the case does not actually run all
1526 * that often and has the supreme advantage of not polluting the namecache
1527 * algorithms.
1529 * If a fakename is supplied just construct a namecache entry using the
1530 * fake name.
1532 static int
1533 cache_inefficient_scan(struct nchandle *nch, struct ucred *cred,
1534 struct vnode *dvp, char *fakename)
1536 struct nlcomponent nlc;
1537 struct nchandle rncp;
1538 struct dirent *den;
1539 struct vnode *pvp;
1540 struct vattr vat;
1541 struct iovec iov;
1542 struct uio uio;
1543 int blksize;
1544 int eofflag;
1545 int bytes;
1546 char *rbuf;
1547 int error;
1549 vat.va_blocksize = 0;
1550 if ((error = VOP_GETATTR(dvp, &vat)) != 0)
1551 return (error);
1552 if ((error = cache_vref(nch, cred, &pvp)) != 0)
1553 return (error);
1554 if (ncvp_debug)
1555 kprintf("inefficient_scan: directory iosize %ld vattr fileid = %lld\n", vat.va_blocksize, vat.va_fileid);
1558 * Use the supplied fakename if not NULL. Fake names are typically
1559 * not in the actual filesystem hierarchy. This is used by HAMMER
1560 * to glue @@timestamp recursions together.
1562 if (fakename) {
1563 nlc.nlc_nameptr = fakename;
1564 nlc.nlc_namelen = strlen(fakename);
1565 rncp = cache_nlookup(nch, &nlc);
1566 goto done;
1569 if ((blksize = vat.va_blocksize) == 0)
1570 blksize = DEV_BSIZE;
1571 rbuf = kmalloc(blksize, M_TEMP, M_WAITOK);
1572 rncp.ncp = NULL;
1574 eofflag = 0;
1575 uio.uio_offset = 0;
1576 again:
1577 iov.iov_base = rbuf;
1578 iov.iov_len = blksize;
1579 uio.uio_iov = &iov;
1580 uio.uio_iovcnt = 1;
1581 uio.uio_resid = blksize;
1582 uio.uio_segflg = UIO_SYSSPACE;
1583 uio.uio_rw = UIO_READ;
1584 uio.uio_td = curthread;
1586 if (ncvp_debug >= 2)
1587 kprintf("cache_inefficient_scan: readdir @ %08x\n", (int)uio.uio_offset);
1588 error = VOP_READDIR(pvp, &uio, cred, &eofflag, NULL, NULL);
1589 if (error == 0) {
1590 den = (struct dirent *)rbuf;
1591 bytes = blksize - uio.uio_resid;
1593 while (bytes > 0) {
1594 if (ncvp_debug >= 2) {
1595 kprintf("cache_inefficient_scan: %*.*s\n",
1596 den->d_namlen, den->d_namlen,
1597 den->d_name);
1599 if (den->d_type != DT_WHT &&
1600 den->d_ino == vat.va_fileid) {
1601 if (ncvp_debug) {
1602 kprintf("cache_inefficient_scan: "
1603 "MATCHED inode %lld path %s/%*.*s\n",
1604 vat.va_fileid, nch->ncp->nc_name,
1605 den->d_namlen, den->d_namlen,
1606 den->d_name);
1608 nlc.nlc_nameptr = den->d_name;
1609 nlc.nlc_namelen = den->d_namlen;
1610 rncp = cache_nlookup(nch, &nlc);
1611 KKASSERT(rncp.ncp != NULL);
1612 break;
1614 bytes -= _DIRENT_DIRSIZ(den);
1615 den = _DIRENT_NEXT(den);
1617 if (rncp.ncp == NULL && eofflag == 0 && uio.uio_resid != blksize)
1618 goto again;
1620 kfree(rbuf, M_TEMP);
1621 done:
1622 vrele(pvp);
1623 if (rncp.ncp) {
1624 if (rncp.ncp->nc_flag & NCF_UNRESOLVED) {
1625 _cache_setvp(rncp.ncp, dvp);
1626 if (ncvp_debug >= 2) {
1627 kprintf("cache_inefficient_scan: setvp %s/%s = %p\n",
1628 nch->ncp->nc_name, rncp.ncp->nc_name, dvp);
1630 } else {
1631 if (ncvp_debug >= 2) {
1632 kprintf("cache_inefficient_scan: setvp %s/%s already set %p/%p\n",
1633 nch->ncp->nc_name, rncp.ncp->nc_name, dvp,
1634 rncp.ncp->nc_vp);
1637 if (rncp.ncp->nc_vp == NULL)
1638 error = rncp.ncp->nc_error;
1640 * Release rncp after a successful nlookup. rncp was fully
1641 * referenced.
1643 cache_put(&rncp);
1644 } else {
1645 kprintf("cache_inefficient_scan: dvp %p NOT FOUND in %s\n",
1646 dvp, nch->ncp->nc_name);
1647 error = ENOENT;
1649 return (error);
1653 * Zap a namecache entry. The ncp is unconditionally set to an unresolved
1654 * state, which disassociates it from its vnode or ncneglist.
1656 * Then, if there are no additional references to the ncp and no children,
1657 * the ncp is removed from the topology and destroyed. This function will
1658 * also run through the nc_parent chain and destroy parent ncps if possible.
1659 * As a side benefit, it turns out the only conditions that allow running
1660 * up the chain are also the conditions to ensure no deadlock will occur.
1662 * References and/or children may exist if the ncp is in the middle of the
1663 * topology, preventing the ncp from being destroyed.
1665 * This function must be called with the ncp held and locked and will unlock
1666 * and drop it during zapping.
1668 static void
1669 cache_zap(struct namecache *ncp)
1671 struct namecache *par;
1674 * Disassociate the vnode or negative cache ref and set NCF_UNRESOLVED.
1676 _cache_setunresolved(ncp);
1679 * Try to scrap the entry and possibly tail-recurse on its parent.
1680 * We only scrap unref'd (other then our ref) unresolved entries,
1681 * we do not scrap 'live' entries.
1683 while (ncp->nc_flag & NCF_UNRESOLVED) {
1685 * Someone other then us has a ref, stop.
1687 if (ncp->nc_refs > 1)
1688 goto done;
1691 * We have children, stop.
1693 if (!TAILQ_EMPTY(&ncp->nc_list))
1694 goto done;
1697 * Remove ncp from the topology: hash table and parent linkage.
1699 if (ncp->nc_flag & NCF_HASHED) {
1700 ncp->nc_flag &= ~NCF_HASHED;
1701 LIST_REMOVE(ncp, nc_hash);
1703 if ((par = ncp->nc_parent) != NULL) {
1704 par = _cache_hold(par);
1705 TAILQ_REMOVE(&par->nc_list, ncp, nc_entry);
1706 ncp->nc_parent = NULL;
1707 if (par->nc_vp && TAILQ_EMPTY(&par->nc_list))
1708 vdrop(par->nc_vp);
1712 * ncp should not have picked up any refs. Physically
1713 * destroy the ncp.
1715 KKASSERT(ncp->nc_refs == 1);
1716 --numunres;
1717 /* _cache_unlock(ncp) not required */
1718 ncp->nc_refs = -1; /* safety */
1719 if (ncp->nc_name)
1720 kfree(ncp->nc_name, M_VFSCACHE);
1721 kfree(ncp, M_VFSCACHE);
1724 * Loop on the parent (it may be NULL). Only bother looping
1725 * if the parent has a single ref (ours), which also means
1726 * we can lock it trivially.
1728 ncp = par;
1729 if (ncp == NULL)
1730 return;
1731 if (ncp->nc_refs != 1) {
1732 _cache_drop(ncp);
1733 return;
1735 KKASSERT(par->nc_exlocks == 0);
1736 _cache_lock(ncp);
1738 done:
1739 _cache_unlock(ncp);
1740 atomic_subtract_int(&ncp->nc_refs, 1);
1743 static enum { CHI_LOW, CHI_HIGH } cache_hysteresis_state = CHI_LOW;
1745 static __inline
1746 void
1747 cache_hysteresis(void)
1750 * Don't cache too many negative hits. We use hysteresis to reduce
1751 * the impact on the critical path.
1753 switch(cache_hysteresis_state) {
1754 case CHI_LOW:
1755 if (numneg > MINNEG && numneg * ncnegfactor > numcache) {
1756 cache_cleanneg(10);
1757 cache_hysteresis_state = CHI_HIGH;
1759 break;
1760 case CHI_HIGH:
1761 if (numneg > MINNEG * 9 / 10 &&
1762 numneg * ncnegfactor * 9 / 10 > numcache
1764 cache_cleanneg(10);
1765 } else {
1766 cache_hysteresis_state = CHI_LOW;
1768 break;
1773 * NEW NAMECACHE LOOKUP API
1775 * Lookup an entry in the cache. A locked, referenced, non-NULL
1776 * entry is *always* returned, even if the supplied component is illegal.
1777 * The resulting namecache entry should be returned to the system with
1778 * cache_put() or _cache_unlock() + cache_drop().
1780 * namecache locks are recursive but care must be taken to avoid lock order
1781 * reversals.
1783 * Nobody else will be able to manipulate the associated namespace (e.g.
1784 * create, delete, rename, rename-target) until the caller unlocks the
1785 * entry.
1787 * The returned entry will be in one of three states: positive hit (non-null
1788 * vnode), negative hit (null vnode), or unresolved (NCF_UNRESOLVED is set).
1789 * Unresolved entries must be resolved through the filesystem to associate the
1790 * vnode and/or determine whether a positive or negative hit has occured.
1792 * It is not necessary to lock a directory in order to lock namespace under
1793 * that directory. In fact, it is explicitly not allowed to do that. A
1794 * directory is typically only locked when being created, renamed, or
1795 * destroyed.
1797 * The directory (par) may be unresolved, in which case any returned child
1798 * will likely also be marked unresolved. Likely but not guarenteed. Since
1799 * the filesystem lookup requires a resolved directory vnode the caller is
1800 * responsible for resolving the namecache chain top-down. This API
1801 * specifically allows whole chains to be created in an unresolved state.
1803 struct nchandle
1804 cache_nlookup(struct nchandle *par_nch, struct nlcomponent *nlc)
1806 struct nchandle nch;
1807 struct namecache *ncp;
1808 struct namecache *new_ncp;
1809 struct nchashhead *nchpp;
1810 u_int32_t hash;
1811 globaldata_t gd;
1813 numcalls++;
1814 gd = mycpu;
1817 * Try to locate an existing entry
1819 hash = fnv_32_buf(nlc->nlc_nameptr, nlc->nlc_namelen, FNV1_32_INIT);
1820 hash = fnv_32_buf(&par_nch->ncp, sizeof(par_nch->ncp), hash);
1821 new_ncp = NULL;
1822 restart:
1823 LIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1824 numchecks++;
1827 * Try to zap entries that have timed out. We have
1828 * to be careful here because locked leafs may depend
1829 * on the vnode remaining intact in a parent, so only
1830 * do this under very specific conditions.
1832 if (ncp->nc_timeout &&
1833 (int)(ncp->nc_timeout - ticks) < 0 &&
1834 (ncp->nc_flag & NCF_UNRESOLVED) == 0 &&
1835 ncp->nc_exlocks == 0 &&
1836 TAILQ_EMPTY(&ncp->nc_list)
1838 cache_zap(_cache_get(ncp));
1839 goto restart;
1843 * Break out if we find a matching entry. Note that
1844 * UNRESOLVED entries may match, but DESTROYED entries
1845 * do not.
1847 if (ncp->nc_parent == par_nch->ncp &&
1848 ncp->nc_nlen == nlc->nlc_namelen &&
1849 bcmp(ncp->nc_name, nlc->nlc_nameptr, ncp->nc_nlen) == 0 &&
1850 (ncp->nc_flag & NCF_DESTROYED) == 0
1852 if (_cache_get_nonblock(ncp) == 0) {
1853 if (new_ncp)
1854 _cache_free(new_ncp);
1855 goto found;
1857 _cache_get(ncp);
1858 _cache_put(ncp);
1859 goto restart;
1864 * We failed to locate an entry, create a new entry and add it to
1865 * the cache. We have to relookup after possibly blocking in
1866 * malloc.
1868 if (new_ncp == NULL) {
1869 new_ncp = cache_alloc(nlc->nlc_namelen);
1870 goto restart;
1873 ncp = new_ncp;
1876 * Initialize as a new UNRESOLVED entry, lock (non-blocking),
1877 * and link to the parent. The mount point is usually inherited
1878 * from the parent unless this is a special case such as a mount
1879 * point where nlc_namelen is 0. If nlc_namelen is 0 nc_name will
1880 * be NULL.
1882 if (nlc->nlc_namelen) {
1883 bcopy(nlc->nlc_nameptr, ncp->nc_name, nlc->nlc_namelen);
1884 ncp->nc_name[nlc->nlc_namelen] = 0;
1886 nchpp = NCHHASH(hash);
1887 LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
1888 ncp->nc_flag |= NCF_HASHED;
1889 cache_link_parent(ncp, par_nch->ncp);
1890 found:
1892 * stats and namecache size management
1894 if (ncp->nc_flag & NCF_UNRESOLVED)
1895 ++gd->gd_nchstats->ncs_miss;
1896 else if (ncp->nc_vp)
1897 ++gd->gd_nchstats->ncs_goodhits;
1898 else
1899 ++gd->gd_nchstats->ncs_neghits;
1900 cache_hysteresis();
1901 nch.mount = par_nch->mount;
1902 nch.ncp = ncp;
1903 ++nch.mount->mnt_refs;
1904 return(nch);
1908 * The namecache entry is marked as being used as a mount point.
1909 * Locate the mount if it is visible to the caller.
1911 struct findmount_info {
1912 struct mount *result;
1913 struct mount *nch_mount;
1914 struct namecache *nch_ncp;
1917 static
1919 cache_findmount_callback(struct mount *mp, void *data)
1921 struct findmount_info *info = data;
1924 * Check the mount's mounted-on point against the passed nch.
1926 if (mp->mnt_ncmounton.mount == info->nch_mount &&
1927 mp->mnt_ncmounton.ncp == info->nch_ncp
1929 info->result = mp;
1930 return(-1);
1932 return(0);
1935 struct mount *
1936 cache_findmount(struct nchandle *nch)
1938 struct findmount_info info;
1940 info.result = NULL;
1941 info.nch_mount = nch->mount;
1942 info.nch_ncp = nch->ncp;
1943 mountlist_scan(cache_findmount_callback, &info,
1944 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1945 return(info.result);
1949 * Resolve an unresolved namecache entry, generally by looking it up.
1950 * The passed ncp must be locked and refd.
1952 * Theoretically since a vnode cannot be recycled while held, and since
1953 * the nc_parent chain holds its vnode as long as children exist, the
1954 * direct parent of the cache entry we are trying to resolve should
1955 * have a valid vnode. If not then generate an error that we can
1956 * determine is related to a resolver bug.
1958 * However, if a vnode was in the middle of a recyclement when the NCP
1959 * got locked, ncp->nc_vp might point to a vnode that is about to become
1960 * invalid. cache_resolve() handles this case by unresolving the entry
1961 * and then re-resolving it.
1963 * Note that successful resolution does not necessarily return an error
1964 * code of 0. If the ncp resolves to a negative cache hit then ENOENT
1965 * will be returned.
1968 cache_resolve(struct nchandle *nch, struct ucred *cred)
1970 struct namecache *par;
1971 struct namecache *ncp;
1972 struct nchandle nctmp;
1973 struct mount *mp;
1974 struct vnode *dvp;
1975 int error;
1977 ncp = nch->ncp;
1978 mp = nch->mount;
1979 restart:
1981 * If the ncp is already resolved we have nothing to do. However,
1982 * we do want to guarentee that a usable vnode is returned when
1983 * a vnode is present, so make sure it hasn't been reclaimed.
1985 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
1986 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
1987 _cache_setunresolved(ncp);
1988 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0)
1989 return (ncp->nc_error);
1993 * Mount points need special handling because the parent does not
1994 * belong to the same filesystem as the ncp.
1996 if (ncp == mp->mnt_ncmountpt.ncp)
1997 return (cache_resolve_mp(mp));
2000 * We expect an unbroken chain of ncps to at least the mount point,
2001 * and even all the way to root (but this code doesn't have to go
2002 * past the mount point).
2004 if (ncp->nc_parent == NULL) {
2005 kprintf("EXDEV case 1 %p %*.*s\n", ncp,
2006 ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2007 ncp->nc_error = EXDEV;
2008 return(ncp->nc_error);
2012 * The vp's of the parent directories in the chain are held via vhold()
2013 * due to the existance of the child, and should not disappear.
2014 * However, there are cases where they can disappear:
2016 * - due to filesystem I/O errors.
2017 * - due to NFS being stupid about tracking the namespace and
2018 * destroys the namespace for entire directories quite often.
2019 * - due to forced unmounts.
2020 * - due to an rmdir (parent will be marked DESTROYED)
2022 * When this occurs we have to track the chain backwards and resolve
2023 * it, looping until the resolver catches up to the current node. We
2024 * could recurse here but we might run ourselves out of kernel stack
2025 * so we do it in a more painful manner. This situation really should
2026 * not occur all that often, or if it does not have to go back too
2027 * many nodes to resolve the ncp.
2029 while ((dvp = cache_dvpref(ncp)) == NULL) {
2031 * This case can occur if a process is CD'd into a
2032 * directory which is then rmdir'd. If the parent is marked
2033 * destroyed there is no point trying to resolve it.
2035 if (ncp->nc_parent->nc_flag & NCF_DESTROYED)
2036 return(ENOENT);
2038 par = ncp->nc_parent;
2039 while (par->nc_parent && par->nc_parent->nc_vp == NULL)
2040 par = par->nc_parent;
2041 if (par->nc_parent == NULL) {
2042 kprintf("EXDEV case 2 %*.*s\n",
2043 par->nc_nlen, par->nc_nlen, par->nc_name);
2044 return (EXDEV);
2046 kprintf("[diagnostic] cache_resolve: had to recurse on %*.*s\n",
2047 par->nc_nlen, par->nc_nlen, par->nc_name);
2049 * The parent is not set in stone, ref and lock it to prevent
2050 * it from disappearing. Also note that due to renames it
2051 * is possible for our ncp to move and for par to no longer
2052 * be one of its parents. We resolve it anyway, the loop
2053 * will handle any moves.
2055 _cache_get(par);
2056 if (par == nch->mount->mnt_ncmountpt.ncp) {
2057 cache_resolve_mp(nch->mount);
2058 } else if ((dvp = cache_dvpref(par)) == NULL) {
2059 kprintf("[diagnostic] cache_resolve: raced on %*.*s\n", par->nc_nlen, par->nc_nlen, par->nc_name);
2060 _cache_put(par);
2061 continue;
2062 } else {
2063 if (par->nc_flag & NCF_UNRESOLVED) {
2064 nctmp.mount = mp;
2065 nctmp.ncp = par;
2066 par->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2068 vrele(dvp);
2070 if ((error = par->nc_error) != 0) {
2071 if (par->nc_error != EAGAIN) {
2072 kprintf("EXDEV case 3 %*.*s error %d\n",
2073 par->nc_nlen, par->nc_nlen, par->nc_name,
2074 par->nc_error);
2075 _cache_put(par);
2076 return(error);
2078 kprintf("[diagnostic] cache_resolve: EAGAIN par %p %*.*s\n",
2079 par, par->nc_nlen, par->nc_nlen, par->nc_name);
2081 _cache_put(par);
2082 /* loop */
2086 * Call VOP_NRESOLVE() to get the vp, then scan for any disconnected
2087 * ncp's and reattach them. If this occurs the original ncp is marked
2088 * EAGAIN to force a relookup.
2090 * NOTE: in order to call VOP_NRESOLVE(), the parent of the passed
2091 * ncp must already be resolved.
2093 if (dvp) {
2094 nctmp.mount = mp;
2095 nctmp.ncp = ncp;
2096 ncp->nc_error = VOP_NRESOLVE(&nctmp, dvp, cred);
2097 vrele(dvp);
2098 } else {
2099 ncp->nc_error = EPERM;
2101 if (ncp->nc_error == EAGAIN) {
2102 kprintf("[diagnostic] cache_resolve: EAGAIN ncp %p %*.*s\n",
2103 ncp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name);
2104 goto restart;
2106 return(ncp->nc_error);
2110 * Resolve the ncp associated with a mount point. Such ncp's almost always
2111 * remain resolved and this routine is rarely called. NFS MPs tends to force
2112 * re-resolution more often due to its mac-truck-smash-the-namecache
2113 * method of tracking namespace changes.
2115 * The semantics for this call is that the passed ncp must be locked on
2116 * entry and will be locked on return. However, if we actually have to
2117 * resolve the mount point we temporarily unlock the entry in order to
2118 * avoid race-to-root deadlocks due to e.g. dead NFS mounts. Because of
2119 * the unlock we have to recheck the flags after we relock.
2121 static int
2122 cache_resolve_mp(struct mount *mp)
2124 struct namecache *ncp = mp->mnt_ncmountpt.ncp;
2125 struct vnode *vp;
2126 int error;
2128 KKASSERT(mp != NULL);
2131 * If the ncp is already resolved we have nothing to do. However,
2132 * we do want to guarentee that a usable vnode is returned when
2133 * a vnode is present, so make sure it hasn't been reclaimed.
2135 if ((ncp->nc_flag & NCF_UNRESOLVED) == 0) {
2136 if (ncp->nc_vp && (ncp->nc_vp->v_flag & VRECLAIMED))
2137 _cache_setunresolved(ncp);
2140 if (ncp->nc_flag & NCF_UNRESOLVED) {
2141 _cache_unlock(ncp);
2142 while (vfs_busy(mp, 0))
2144 error = VFS_ROOT(mp, &vp);
2145 _cache_lock(ncp);
2148 * recheck the ncp state after relocking.
2150 if (ncp->nc_flag & NCF_UNRESOLVED) {
2151 ncp->nc_error = error;
2152 if (error == 0) {
2153 _cache_setvp(ncp, vp);
2154 vput(vp);
2155 } else {
2156 kprintf("[diagnostic] cache_resolve_mp: failed"
2157 " to resolve mount %p err=%d ncp=%p\n",
2158 mp, error, ncp);
2159 _cache_setvp(ncp, NULL);
2161 } else if (error == 0) {
2162 vput(vp);
2164 vfs_unbusy(mp);
2166 return(ncp->nc_error);
2169 void
2170 cache_cleanneg(int count)
2172 struct namecache *ncp;
2175 * Automode from the vnlru proc - clean out 10% of the negative cache
2176 * entries.
2178 if (count == 0)
2179 count = numneg / 10 + 1;
2182 * Attempt to clean out the specified number of negative cache
2183 * entries.
2185 while (count) {
2186 ncp = TAILQ_FIRST(&ncneglist);
2187 if (ncp == NULL) {
2188 KKASSERT(numneg == 0);
2189 break;
2191 TAILQ_REMOVE(&ncneglist, ncp, nc_vnode);
2192 TAILQ_INSERT_TAIL(&ncneglist, ncp, nc_vnode);
2193 if (_cache_get_nonblock(ncp) == 0)
2194 cache_zap(ncp);
2195 --count;
2200 * Rehash a ncp. Rehashing is typically required if the name changes (should
2201 * not generally occur) or the parent link changes. This function will
2202 * unhash the ncp if the ncp is no longer hashable.
2204 static void
2205 _cache_rehash(struct namecache *ncp)
2207 struct nchashhead *nchpp;
2208 u_int32_t hash;
2210 if (ncp->nc_flag & NCF_HASHED) {
2211 ncp->nc_flag &= ~NCF_HASHED;
2212 LIST_REMOVE(ncp, nc_hash);
2214 if (ncp->nc_nlen && ncp->nc_parent) {
2215 hash = fnv_32_buf(ncp->nc_name, ncp->nc_nlen, FNV1_32_INIT);
2216 hash = fnv_32_buf(&ncp->nc_parent,
2217 sizeof(ncp->nc_parent), hash);
2218 nchpp = NCHHASH(hash);
2219 LIST_INSERT_HEAD(nchpp, ncp, nc_hash);
2220 ncp->nc_flag |= NCF_HASHED;
2225 * Name cache initialization, from vfsinit() when we are booting
2227 void
2228 nchinit(void)
2230 int i;
2231 globaldata_t gd;
2233 /* initialise per-cpu namecache effectiveness statistics. */
2234 for (i = 0; i < ncpus; ++i) {
2235 gd = globaldata_find(i);
2236 gd->gd_nchstats = &nchstats[i];
2238 TAILQ_INIT(&ncneglist);
2239 nchashtbl = hashinit(desiredvnodes*2, M_VFSCACHE, &nchash);
2240 nclockwarn = 5 * hz;
2244 * Called from start_init() to bootstrap the root filesystem. Returns
2245 * a referenced, unlocked namecache record.
2247 void
2248 cache_allocroot(struct nchandle *nch, struct mount *mp, struct vnode *vp)
2250 nch->ncp = cache_alloc(0);
2251 nch->mount = mp;
2252 ++mp->mnt_refs;
2253 if (vp)
2254 _cache_setvp(nch->ncp, vp);
2258 * vfs_cache_setroot()
2260 * Create an association between the root of our namecache and
2261 * the root vnode. This routine may be called several times during
2262 * booting.
2264 * If the caller intends to save the returned namecache pointer somewhere
2265 * it must cache_hold() it.
2267 void
2268 vfs_cache_setroot(struct vnode *nvp, struct nchandle *nch)
2270 struct vnode *ovp;
2271 struct nchandle onch;
2273 ovp = rootvnode;
2274 onch = rootnch;
2275 rootvnode = nvp;
2276 if (nch)
2277 rootnch = *nch;
2278 else
2279 cache_zero(&rootnch);
2280 if (ovp)
2281 vrele(ovp);
2282 if (onch.ncp)
2283 cache_drop(&onch);
2287 * XXX OLD API COMPAT FUNCTION. This really messes up the new namecache
2288 * topology and is being removed as quickly as possible. The new VOP_N*()
2289 * API calls are required to make specific adjustments using the supplied
2290 * ncp pointers rather then just bogusly purging random vnodes.
2292 * Invalidate all namecache entries to a particular vnode as well as
2293 * any direct children of that vnode in the namecache. This is a
2294 * 'catch all' purge used by filesystems that do not know any better.
2296 * Note that the linkage between the vnode and its namecache entries will
2297 * be removed, but the namecache entries themselves might stay put due to
2298 * active references from elsewhere in the system or due to the existance of
2299 * the children. The namecache topology is left intact even if we do not
2300 * know what the vnode association is. Such entries will be marked
2301 * NCF_UNRESOLVED.
2303 void
2304 cache_purge(struct vnode *vp)
2306 cache_inval_vp(vp, CINV_DESTROY | CINV_CHILDREN);
2310 * Flush all entries referencing a particular filesystem.
2312 * Since we need to check it anyway, we will flush all the invalid
2313 * entries at the same time.
2315 #if 0
2317 void
2318 cache_purgevfs(struct mount *mp)
2320 struct nchashhead *nchpp;
2321 struct namecache *ncp, *nnp;
2324 * Scan hash tables for applicable entries.
2326 for (nchpp = &nchashtbl[nchash]; nchpp >= nchashtbl; nchpp--) {
2327 ncp = LIST_FIRST(nchpp);
2328 if (ncp)
2329 _cache_hold(ncp);
2330 while (ncp) {
2331 nnp = LIST_NEXT(ncp, nc_hash);
2332 if (nnp)
2333 _cache_hold(nnp);
2334 if (ncp->nc_mount == mp) {
2335 _cache_lock(ncp);
2336 cache_zap(ncp);
2337 } else {
2338 _cache_drop(ncp);
2340 ncp = nnp;
2345 #endif
2348 * Create a new (theoretically) unique fsmid
2350 int64_t
2351 cache_getnewfsmid(void)
2353 static int fsmid_roller;
2354 int64_t fsmid;
2356 ++fsmid_roller;
2357 fsmid = ((int64_t)time_second << 32) |
2358 (fsmid_roller & 0x7FFFFFFF);
2359 return (fsmid);
2363 static int disablecwd;
2364 SYSCTL_INT(_debug, OID_AUTO, disablecwd, CTLFLAG_RW, &disablecwd, 0, "");
2366 static u_long numcwdcalls; STATNODE(CTLFLAG_RD, numcwdcalls, &numcwdcalls);
2367 static u_long numcwdfail1; STATNODE(CTLFLAG_RD, numcwdfail1, &numcwdfail1);
2368 static u_long numcwdfail2; STATNODE(CTLFLAG_RD, numcwdfail2, &numcwdfail2);
2369 static u_long numcwdfail3; STATNODE(CTLFLAG_RD, numcwdfail3, &numcwdfail3);
2370 static u_long numcwdfail4; STATNODE(CTLFLAG_RD, numcwdfail4, &numcwdfail4);
2371 static u_long numcwdfound; STATNODE(CTLFLAG_RD, numcwdfound, &numcwdfound);
2374 sys___getcwd(struct __getcwd_args *uap)
2376 int buflen;
2377 int error;
2378 char *buf;
2379 char *bp;
2381 if (disablecwd)
2382 return (ENODEV);
2384 buflen = uap->buflen;
2385 if (buflen < 2)
2386 return (EINVAL);
2387 if (buflen > MAXPATHLEN)
2388 buflen = MAXPATHLEN;
2390 buf = kmalloc(buflen, M_TEMP, M_WAITOK);
2391 bp = kern_getcwd(buf, buflen, &error);
2392 if (error == 0)
2393 error = copyout(bp, uap->buf, strlen(bp) + 1);
2394 kfree(buf, M_TEMP);
2395 return (error);
2398 char *
2399 kern_getcwd(char *buf, size_t buflen, int *error)
2401 struct proc *p = curproc;
2402 char *bp;
2403 int i, slash_prefixed;
2404 struct filedesc *fdp;
2405 struct nchandle nch;
2407 numcwdcalls++;
2408 bp = buf;
2409 bp += buflen - 1;
2410 *bp = '\0';
2411 fdp = p->p_fd;
2412 slash_prefixed = 0;
2414 nch = fdp->fd_ncdir;
2415 while (nch.ncp && (nch.ncp != fdp->fd_nrdir.ncp ||
2416 nch.mount != fdp->fd_nrdir.mount)
2419 * While traversing upwards if we encounter the root
2420 * of the current mount we have to skip to the mount point
2421 * in the underlying filesystem.
2423 if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2424 nch = nch.mount->mnt_ncmounton;
2425 continue;
2429 * Prepend the path segment
2431 for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2432 if (bp == buf) {
2433 numcwdfail4++;
2434 *error = ENOMEM;
2435 return(NULL);
2437 *--bp = nch.ncp->nc_name[i];
2439 if (bp == buf) {
2440 numcwdfail4++;
2441 *error = ENOMEM;
2442 return(NULL);
2444 *--bp = '/';
2445 slash_prefixed = 1;
2448 * Go up a directory. This isn't a mount point so we don't
2449 * have to check again.
2451 nch.ncp = nch.ncp->nc_parent;
2453 if (nch.ncp == NULL) {
2454 numcwdfail2++;
2455 *error = ENOENT;
2456 return(NULL);
2458 if (!slash_prefixed) {
2459 if (bp == buf) {
2460 numcwdfail4++;
2461 *error = ENOMEM;
2462 return(NULL);
2464 *--bp = '/';
2466 numcwdfound++;
2467 *error = 0;
2468 return (bp);
2472 * Thus begins the fullpath magic.
2475 #undef STATNODE
2476 #define STATNODE(name) \
2477 static u_int name; \
2478 SYSCTL_UINT(_vfs_cache, OID_AUTO, name, CTLFLAG_RD, &name, 0, "")
2480 static int disablefullpath;
2481 SYSCTL_INT(_debug, OID_AUTO, disablefullpath, CTLFLAG_RW,
2482 &disablefullpath, 0, "");
2484 STATNODE(numfullpathcalls);
2485 STATNODE(numfullpathfail1);
2486 STATNODE(numfullpathfail2);
2487 STATNODE(numfullpathfail3);
2488 STATNODE(numfullpathfail4);
2489 STATNODE(numfullpathfound);
2492 cache_fullpath(struct proc *p, struct nchandle *nchp, char **retbuf, char **freebuf)
2494 char *bp, *buf;
2495 int i, slash_prefixed;
2496 struct nchandle fd_nrdir;
2497 struct nchandle nch;
2499 numfullpathcalls--;
2501 *retbuf = NULL;
2502 *freebuf = NULL;
2504 buf = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2505 bp = buf + MAXPATHLEN - 1;
2506 *bp = '\0';
2507 if (p != NULL)
2508 fd_nrdir = p->p_fd->fd_nrdir;
2509 else
2510 fd_nrdir = rootnch;
2511 slash_prefixed = 0;
2512 nch = *nchp;
2514 while (nch.ncp &&
2515 (nch.ncp != fd_nrdir.ncp || nch.mount != fd_nrdir.mount)
2518 * While traversing upwards if we encounter the root
2519 * of the current mount we have to skip to the mount point.
2521 if (nch.ncp == nch.mount->mnt_ncmountpt.ncp) {
2522 nch = nch.mount->mnt_ncmounton;
2523 continue;
2527 * Prepend the path segment
2529 for (i = nch.ncp->nc_nlen - 1; i >= 0; i--) {
2530 if (bp == buf) {
2531 numfullpathfail4++;
2532 kfree(buf, M_TEMP);
2533 return(ENOMEM);
2535 *--bp = nch.ncp->nc_name[i];
2537 if (bp == buf) {
2538 numfullpathfail4++;
2539 kfree(buf, M_TEMP);
2540 return(ENOMEM);
2542 *--bp = '/';
2543 slash_prefixed = 1;
2546 * Go up a directory. This isn't a mount point so we don't
2547 * have to check again.
2549 nch.ncp = nch.ncp->nc_parent;
2551 if (nch.ncp == NULL) {
2552 numfullpathfail2++;
2553 kfree(buf, M_TEMP);
2554 return(ENOENT);
2557 if (!slash_prefixed) {
2558 if (bp == buf) {
2559 numfullpathfail4++;
2560 kfree(buf, M_TEMP);
2561 return(ENOMEM);
2563 *--bp = '/';
2565 numfullpathfound++;
2566 *retbuf = bp;
2567 *freebuf = buf;
2569 return(0);
2573 vn_fullpath(struct proc *p, struct vnode *vn, char **retbuf, char **freebuf)
2575 struct namecache *ncp;
2576 struct nchandle nch;
2578 numfullpathcalls++;
2579 if (disablefullpath)
2580 return (ENODEV);
2582 if (p == NULL)
2583 return (EINVAL);
2585 /* vn is NULL, client wants us to use p->p_textvp */
2586 if (vn == NULL) {
2587 if ((vn = p->p_textvp) == NULL)
2588 return (EINVAL);
2590 TAILQ_FOREACH(ncp, &vn->v_namecache, nc_vnode) {
2591 if (ncp->nc_nlen)
2592 break;
2594 if (ncp == NULL)
2595 return (EINVAL);
2597 numfullpathcalls--;
2598 nch.ncp = ncp;;
2599 nch.mount = vn->v_mount;
2600 return(cache_fullpath(p, &nch, retbuf, freebuf));