installer: Re-add the TEST_DEV command which was removed accidentally.
[dragonfly.git] / sys / kern / uipc_mbuf.c
blob02129a69ffcceb124b9d841e21cb8c9db71e18b8
1 /*
2 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
68 * $DragonFly: src/sys/kern/uipc_mbuf.c,v 1.70 2008/11/20 14:21:01 sephe Exp $
71 #include "opt_param.h"
72 #include "opt_mbuf_stress_test.h"
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/kernel.h>
78 #include <sys/sysctl.h>
79 #include <sys/domain.h>
80 #include <sys/objcache.h>
81 #include <sys/tree.h>
82 #include <sys/protosw.h>
83 #include <sys/uio.h>
84 #include <sys/thread.h>
85 #include <sys/globaldata.h>
86 #include <sys/thread2.h>
88 #include <machine/atomic.h>
90 #include <vm/vm.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
94 #ifdef INVARIANTS
95 #include <machine/cpu.h>
96 #endif
99 * mbuf cluster meta-data
101 struct mbcluster {
102 int32_t mcl_refs;
103 void *mcl_data;
107 * mbuf tracking for debugging purposes
109 #ifdef MBUF_DEBUG
111 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
113 struct mbctrack;
114 RB_HEAD(mbuf_rb_tree, mbtrack);
115 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
117 struct mbtrack {
118 RB_ENTRY(mbtrack) rb_node;
119 int trackid;
120 struct mbuf *m;
123 static int
124 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
126 if (mb1->m < mb2->m)
127 return(-1);
128 if (mb1->m > mb2->m)
129 return(1);
130 return(0);
133 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
135 struct mbuf_rb_tree mbuf_track_root;
137 static void
138 mbuftrack(struct mbuf *m)
140 struct mbtrack *mbt;
142 crit_enter();
143 mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
144 mbt->m = m;
145 if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt))
146 panic("mbuftrack: mbuf %p already being tracked\n", m);
147 crit_exit();
150 static void
151 mbufuntrack(struct mbuf *m)
153 struct mbtrack *mbt;
155 crit_enter();
156 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
157 if (mbt == NULL) {
158 kprintf("mbufuntrack: mbuf %p was not tracked\n", m);
159 } else {
160 mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
161 kfree(mbt, M_MTRACK);
163 crit_exit();
166 void
167 mbuftrackid(struct mbuf *m, int trackid)
169 struct mbtrack *mbt;
170 struct mbuf *n;
172 crit_enter();
173 while (m) {
174 n = m->m_nextpkt;
175 while (m) {
176 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
177 if (mbt)
178 mbt->trackid = trackid;
179 m = m->m_next;
181 m = n;
183 crit_exit();
186 static int
187 mbuftrack_callback(struct mbtrack *mbt, void *arg)
189 struct sysctl_req *req = arg;
190 char buf[64];
191 int error;
193 ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
195 error = SYSCTL_OUT(req, buf, strlen(buf));
196 if (error)
197 return(-error);
198 return(0);
201 static int
202 mbuftrack_show(SYSCTL_HANDLER_ARGS)
204 int error;
206 crit_enter();
207 error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
208 mbuftrack_callback, req);
209 crit_exit();
210 return (-error);
212 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
213 0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
215 #else
217 #define mbuftrack(m)
218 #define mbufuntrack(m)
220 #endif
222 static void mbinit(void *);
223 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL)
225 static u_long mbtypes[SMP_MAXCPU][MT_NTYPES];
227 static struct mbstat mbstat[SMP_MAXCPU];
228 int max_linkhdr;
229 int max_protohdr;
230 int max_hdr;
231 int max_datalen;
232 int m_defragpackets;
233 int m_defragbytes;
234 int m_defraguseless;
235 int m_defragfailure;
236 #ifdef MBUF_STRESS_TEST
237 int m_defragrandomfailures;
238 #endif
240 struct objcache *mbuf_cache, *mbufphdr_cache;
241 struct objcache *mclmeta_cache;
242 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
244 int nmbclusters;
245 int nmbufs;
247 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
248 &max_linkhdr, 0, "");
249 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
250 &max_protohdr, 0, "");
251 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0, "");
252 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
253 &max_datalen, 0, "");
254 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
255 &mbuf_wait, 0, "");
256 static int do_mbstat(SYSCTL_HANDLER_ARGS);
258 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
259 0, 0, do_mbstat, "S,mbstat", "");
261 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
263 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
264 0, 0, do_mbtypes, "LU", "");
266 static int
267 do_mbstat(SYSCTL_HANDLER_ARGS)
269 struct mbstat mbstat_total;
270 struct mbstat *mbstat_totalp;
271 int i;
273 bzero(&mbstat_total, sizeof(mbstat_total));
274 mbstat_totalp = &mbstat_total;
276 for (i = 0; i < ncpus; i++)
278 mbstat_total.m_mbufs += mbstat[i].m_mbufs;
279 mbstat_total.m_clusters += mbstat[i].m_clusters;
280 mbstat_total.m_spare += mbstat[i].m_spare;
281 mbstat_total.m_clfree += mbstat[i].m_clfree;
282 mbstat_total.m_drops += mbstat[i].m_drops;
283 mbstat_total.m_wait += mbstat[i].m_wait;
284 mbstat_total.m_drain += mbstat[i].m_drain;
285 mbstat_total.m_mcfail += mbstat[i].m_mcfail;
286 mbstat_total.m_mpfail += mbstat[i].m_mpfail;
290 * The following fields are not cumulative fields so just
291 * get their values once.
293 mbstat_total.m_msize = mbstat[0].m_msize;
294 mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
295 mbstat_total.m_minclsize = mbstat[0].m_minclsize;
296 mbstat_total.m_mlen = mbstat[0].m_mlen;
297 mbstat_total.m_mhlen = mbstat[0].m_mhlen;
299 return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
302 static int
303 do_mbtypes(SYSCTL_HANDLER_ARGS)
305 u_long totals[MT_NTYPES];
306 int i, j;
308 for (i = 0; i < MT_NTYPES; i++)
309 totals[i] = 0;
311 for (i = 0; i < ncpus; i++)
313 for (j = 0; j < MT_NTYPES; j++)
314 totals[j] += mbtypes[i][j];
317 return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
321 * These are read-only because we do not currently have any code
322 * to adjust the objcache limits after the fact. The variables
323 * may only be set as boot-time tunables.
325 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD,
326 &nmbclusters, 0, "Maximum number of mbuf clusters available");
327 SYSCTL_INT(_kern_ipc, OID_AUTO, nmbufs, CTLFLAG_RD, &nmbufs, 0,
328 "Maximum number of mbufs available");
330 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
331 &m_defragpackets, 0, "");
332 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
333 &m_defragbytes, 0, "");
334 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
335 &m_defraguseless, 0, "");
336 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
337 &m_defragfailure, 0, "");
338 #ifdef MBUF_STRESS_TEST
339 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
340 &m_defragrandomfailures, 0, "");
341 #endif
343 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
344 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
345 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
347 static void m_reclaim (void);
348 static void m_mclref(void *arg);
349 static void m_mclfree(void *arg);
351 #ifndef NMBCLUSTERS
352 #define NMBCLUSTERS (512 + maxusers * 16)
353 #endif
354 #ifndef NMBUFS
355 #define NMBUFS (nmbclusters * 2)
356 #endif
359 * Perform sanity checks of tunables declared above.
361 static void
362 tunable_mbinit(void *dummy)
365 * This has to be done before VM init.
367 nmbclusters = NMBCLUSTERS;
368 TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
369 nmbufs = NMBUFS;
370 TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
371 /* Sanity checks */
372 if (nmbufs < nmbclusters * 2)
373 nmbufs = nmbclusters * 2;
375 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
376 tunable_mbinit, NULL);
378 /* "number of clusters of pages" */
379 #define NCL_INIT 1
381 #define NMB_INIT 16
384 * The mbuf object cache only guarantees that m_next and m_nextpkt are
385 * NULL and that m_data points to the beginning of the data area. In
386 * particular, m_len and m_pkthdr.len are uninitialized. It is the
387 * responsibility of the caller to initialize those fields before use.
390 static boolean_t __inline
391 mbuf_ctor(void *obj, void *private, int ocflags)
393 struct mbuf *m = obj;
395 m->m_next = NULL;
396 m->m_nextpkt = NULL;
397 m->m_data = m->m_dat;
398 m->m_flags = 0;
400 return (TRUE);
404 * Initialize the mbuf and the packet header fields.
406 static boolean_t
407 mbufphdr_ctor(void *obj, void *private, int ocflags)
409 struct mbuf *m = obj;
411 m->m_next = NULL;
412 m->m_nextpkt = NULL;
413 m->m_data = m->m_pktdat;
414 m->m_flags = M_PKTHDR | M_PHCACHE;
416 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
417 SLIST_INIT(&m->m_pkthdr.tags);
418 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
419 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
421 return (TRUE);
425 * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
427 static boolean_t
428 mclmeta_ctor(void *obj, void *private, int ocflags)
430 struct mbcluster *cl = obj;
431 void *buf;
433 if (ocflags & M_NOWAIT)
434 buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
435 else
436 buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
437 if (buf == NULL)
438 return (FALSE);
439 cl->mcl_refs = 0;
440 cl->mcl_data = buf;
441 return (TRUE);
444 static void
445 mclmeta_dtor(void *obj, void *private)
447 struct mbcluster *mcl = obj;
449 KKASSERT(mcl->mcl_refs == 0);
450 kfree(mcl->mcl_data, M_MBUFCL);
453 static void
454 linkcluster(struct mbuf *m, struct mbcluster *cl)
457 * Add the cluster to the mbuf. The caller will detect that the
458 * mbuf now has an attached cluster.
460 m->m_ext.ext_arg = cl;
461 m->m_ext.ext_buf = cl->mcl_data;
462 m->m_ext.ext_ref = m_mclref;
463 m->m_ext.ext_free = m_mclfree;
464 m->m_ext.ext_size = MCLBYTES;
465 atomic_add_int(&cl->mcl_refs, 1);
467 m->m_data = m->m_ext.ext_buf;
468 m->m_flags |= M_EXT | M_EXT_CLUSTER;
471 static boolean_t
472 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
474 struct mbuf *m = obj;
475 struct mbcluster *cl;
477 mbufphdr_ctor(obj, private, ocflags);
478 cl = objcache_get(mclmeta_cache, ocflags);
479 if (cl == NULL)
480 return (FALSE);
481 m->m_flags |= M_CLCACHE;
482 linkcluster(m, cl);
483 return (TRUE);
486 static boolean_t
487 mbufcluster_ctor(void *obj, void *private, int ocflags)
489 struct mbuf *m = obj;
490 struct mbcluster *cl;
492 mbuf_ctor(obj, private, ocflags);
493 cl = objcache_get(mclmeta_cache, ocflags);
494 if (cl == NULL)
495 return (FALSE);
496 m->m_flags |= M_CLCACHE;
497 linkcluster(m, cl);
498 return (TRUE);
502 * Used for both the cluster and cluster PHDR caches.
504 * The mbuf may have lost its cluster due to sharing, deal
505 * with the situation by checking M_EXT.
507 static void
508 mbufcluster_dtor(void *obj, void *private)
510 struct mbuf *m = obj;
511 struct mbcluster *mcl;
513 if (m->m_flags & M_EXT) {
514 KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
515 mcl = m->m_ext.ext_arg;
516 KKASSERT(mcl->mcl_refs == 1);
517 mcl->mcl_refs = 0;
518 objcache_put(mclmeta_cache, mcl);
522 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
523 struct objcache_malloc_args mclmeta_malloc_args =
524 { sizeof(struct mbcluster), M_MCLMETA };
526 /* ARGSUSED*/
527 static void
528 mbinit(void *dummy)
530 int mb_limit, cl_limit, mbcl_limit;
531 int limit;
532 int i;
535 * Initialize statistics
537 for (i = 0; i < ncpus; i++) {
538 atomic_set_long_nonlocked(&mbstat[i].m_msize, MSIZE);
539 atomic_set_long_nonlocked(&mbstat[i].m_mclbytes, MCLBYTES);
540 atomic_set_long_nonlocked(&mbstat[i].m_minclsize, MINCLSIZE);
541 atomic_set_long_nonlocked(&mbstat[i].m_mlen, MLEN);
542 atomic_set_long_nonlocked(&mbstat[i].m_mhlen, MHLEN);
546 * Create objtect caches and save cluster limits, which will
547 * be used to adjust backing kmalloc pools' limit later.
550 mb_limit = cl_limit = mbcl_limit = 0;
552 limit = nmbufs;
553 mbuf_cache = objcache_create("mbuf", &limit, 0,
554 mbuf_ctor, NULL, NULL,
555 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
556 if (limit > mb_limit)
557 mb_limit = limit;
559 limit = nmbufs;
560 mbufphdr_cache = objcache_create("mbuf pkt hdr", &limit, 64,
561 mbufphdr_ctor, NULL, NULL,
562 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
563 if (limit > mb_limit)
564 mb_limit = limit;
566 cl_limit = nmbclusters;
567 mclmeta_cache = objcache_create("cluster mbuf", &cl_limit, 0,
568 mclmeta_ctor, mclmeta_dtor, NULL,
569 objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
571 limit = nmbclusters;
572 mbufcluster_cache = objcache_create("mbuf + cluster", &limit, 0,
573 mbufcluster_ctor, mbufcluster_dtor, NULL,
574 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
575 if (limit > mbcl_limit)
576 mbcl_limit = limit;
578 limit = nmbclusters;
579 mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
580 &limit, 64, mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
581 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
582 if (limit > mbcl_limit)
583 mbcl_limit = limit;
586 * Adjust backing kmalloc pools' limit
588 * NOTE: We raise the limit by another 1/8 to take the effect
589 * of loosememuse into account.
591 cl_limit += cl_limit / 8;
592 kmalloc_raise_limit(mclmeta_malloc_args.mtype,
593 mclmeta_malloc_args.objsize * cl_limit);
594 kmalloc_raise_limit(M_MBUFCL, MCLBYTES * cl_limit);
596 mb_limit += mbcl_limit;
597 mb_limit += mb_limit / 4; /* save some space for non-pkthdr mbufs */
598 mb_limit += mb_limit / 8;
599 kmalloc_raise_limit(mbuf_malloc_args.mtype,
600 mbuf_malloc_args.objsize * mb_limit);
604 * Return the number of references to this mbuf's data. 0 is returned
605 * if the mbuf is not M_EXT, a reference count is returned if it is
606 * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
609 m_sharecount(struct mbuf *m)
611 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
612 case 0:
613 return (0);
614 case M_EXT:
615 return (99);
616 case M_EXT | M_EXT_CLUSTER:
617 return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
619 /* NOTREACHED */
620 return (0); /* to shut up compiler */
624 * change mbuf to new type
626 void
627 m_chtype(struct mbuf *m, int type)
629 struct globaldata *gd = mycpu;
631 atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
632 atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
633 atomic_set_short_nonlocked(&m->m_type, type);
636 static void
637 m_reclaim(void)
639 struct domain *dp;
640 struct protosw *pr;
642 crit_enter();
643 SLIST_FOREACH(dp, &domains, dom_next) {
644 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
645 if (pr->pr_drain)
646 (*pr->pr_drain)();
649 crit_exit();
650 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_drain, 1);
653 static void __inline
654 updatestats(struct mbuf *m, int type)
656 struct globaldata *gd = mycpu;
657 m->m_type = type;
659 mbuftrack(m);
661 atomic_add_long_nonlocked(&mbtypes[gd->gd_cpuid][type], 1);
662 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
667 * Allocate an mbuf.
669 struct mbuf *
670 m_get(int how, int type)
672 struct mbuf *m;
673 int ntries = 0;
674 int ocf = MBTOM(how);
676 retryonce:
678 m = objcache_get(mbuf_cache, ocf);
680 if (m == NULL) {
681 if ((how & MB_TRYWAIT) && ntries++ == 0) {
682 struct objcache *reclaimlist[] = {
683 mbufphdr_cache,
684 mbufcluster_cache, mbufphdrcluster_cache
686 const int nreclaims = __arysize(reclaimlist);
688 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
689 m_reclaim();
690 goto retryonce;
692 return (NULL);
695 updatestats(m, type);
696 return (m);
699 struct mbuf *
700 m_gethdr(int how, int type)
702 struct mbuf *m;
703 int ocf = MBTOM(how);
704 int ntries = 0;
706 retryonce:
708 m = objcache_get(mbufphdr_cache, ocf);
710 if (m == NULL) {
711 if ((how & MB_TRYWAIT) && ntries++ == 0) {
712 struct objcache *reclaimlist[] = {
713 mbuf_cache,
714 mbufcluster_cache, mbufphdrcluster_cache
716 const int nreclaims = __arysize(reclaimlist);
718 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
719 m_reclaim();
720 goto retryonce;
722 return (NULL);
725 updatestats(m, type);
726 return (m);
730 * Get a mbuf (not a mbuf cluster!) and zero it.
731 * Deprecated.
733 struct mbuf *
734 m_getclr(int how, int type)
736 struct mbuf *m;
738 m = m_get(how, type);
739 if (m != NULL)
740 bzero(m->m_data, MLEN);
741 return (m);
745 * Returns an mbuf with an attached cluster.
746 * Because many network drivers use this kind of buffers a lot, it is
747 * convenient to keep a small pool of free buffers of this kind.
748 * Even a small size such as 10 gives about 10% improvement in the
749 * forwarding rate in a bridge or router.
751 struct mbuf *
752 m_getcl(int how, short type, int flags)
754 struct mbuf *m;
755 int ocflags = MBTOM(how);
756 int ntries = 0;
758 retryonce:
760 if (flags & M_PKTHDR)
761 m = objcache_get(mbufphdrcluster_cache, ocflags);
762 else
763 m = objcache_get(mbufcluster_cache, ocflags);
765 if (m == NULL) {
766 if ((how & MB_TRYWAIT) && ntries++ == 0) {
767 struct objcache *reclaimlist[1];
769 if (flags & M_PKTHDR)
770 reclaimlist[0] = mbufcluster_cache;
771 else
772 reclaimlist[0] = mbufphdrcluster_cache;
773 if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
774 m_reclaim();
775 goto retryonce;
777 return (NULL);
780 m->m_type = type;
782 mbuftrack(m);
784 atomic_add_long_nonlocked(&mbtypes[mycpu->gd_cpuid][type], 1);
785 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
786 return (m);
790 * Allocate chain of requested length.
792 struct mbuf *
793 m_getc(int len, int how, int type)
795 struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
796 int nsize;
798 while (len > 0) {
799 n = m_getl(len, how, type, 0, &nsize);
800 if (n == NULL)
801 goto failed;
802 n->m_len = 0;
803 *ntail = n;
804 ntail = &n->m_next;
805 len -= nsize;
807 return (nfirst);
809 failed:
810 m_freem(nfirst);
811 return (NULL);
815 * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
816 * and return a pointer to the head of the allocated chain. If m0 is
817 * non-null, then we assume that it is a single mbuf or an mbuf chain to
818 * which we want len bytes worth of mbufs and/or clusters attached, and so
819 * if we succeed in allocating it, we will just return a pointer to m0.
821 * If we happen to fail at any point during the allocation, we will free
822 * up everything we have already allocated and return NULL.
824 * Deprecated. Use m_getc() and m_cat() instead.
826 struct mbuf *
827 m_getm(struct mbuf *m0, int len, int type, int how)
829 struct mbuf *nfirst;
831 nfirst = m_getc(len, how, type);
833 if (m0 != NULL) {
834 m_last(m0)->m_next = nfirst;
835 return (m0);
838 return (nfirst);
842 * Adds a cluster to a normal mbuf, M_EXT is set on success.
843 * Deprecated. Use m_getcl() instead.
845 void
846 m_mclget(struct mbuf *m, int how)
848 struct mbcluster *mcl;
850 KKASSERT((m->m_flags & M_EXT) == 0);
851 mcl = objcache_get(mclmeta_cache, MBTOM(how));
852 if (mcl != NULL) {
853 linkcluster(m, mcl);
854 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
859 * Updates to mbcluster must be MPSAFE. Only an entity which already has
860 * a reference to the cluster can ref it, so we are in no danger of
861 * racing an add with a subtract. But the operation must still be atomic
862 * since multiple entities may have a reference on the cluster.
864 * m_mclfree() is almost the same but it must contend with two entities
865 * freeing the cluster at the same time. If there is only one reference
866 * count we are the only entity referencing the cluster and no further
867 * locking is required. Otherwise we must protect against a race to 0
868 * with the serializer.
870 static void
871 m_mclref(void *arg)
873 struct mbcluster *mcl = arg;
875 atomic_add_int(&mcl->mcl_refs, 1);
879 * When dereferencing a cluster we have to deal with a N->0 race, where
880 * N entities free their references simultaniously. To do this we use
881 * atomic_fetchadd_int().
883 static void
884 m_mclfree(void *arg)
886 struct mbcluster *mcl = arg;
888 if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1)
889 objcache_put(mclmeta_cache, mcl);
893 * Free a single mbuf and any associated external storage. The successor,
894 * if any, is returned.
896 * We do need to check non-first mbuf for m_aux, since some of existing
897 * code does not call M_PREPEND properly.
898 * (example: call to bpf_mtap from drivers)
900 struct mbuf *
901 m_free(struct mbuf *m)
903 struct mbuf *n;
904 struct globaldata *gd = mycpu;
906 KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
907 atomic_subtract_long_nonlocked(&mbtypes[gd->gd_cpuid][m->m_type], 1);
909 n = m->m_next;
912 * Make sure the mbuf is in constructed state before returning it
913 * to the objcache.
915 m->m_next = NULL;
916 mbufuntrack(m);
917 #ifdef notyet
918 KKASSERT(m->m_nextpkt == NULL);
919 #else
920 if (m->m_nextpkt != NULL) {
921 static int afewtimes = 10;
923 if (afewtimes-- > 0) {
924 kprintf("mfree: m->m_nextpkt != NULL\n");
925 print_backtrace();
927 m->m_nextpkt = NULL;
929 #endif
930 if (m->m_flags & M_PKTHDR) {
931 m_tag_delete_chain(m); /* eliminate XXX JH */
934 m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
937 * Clean the M_PKTHDR state so we can return the mbuf to its original
938 * cache. This is based on the PHCACHE flag which tells us whether
939 * the mbuf was originally allocated out of a packet-header cache
940 * or a non-packet-header cache.
942 if (m->m_flags & M_PHCACHE) {
943 m->m_flags |= M_PKTHDR;
944 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
945 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
946 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
947 SLIST_INIT(&m->m_pkthdr.tags);
951 * Handle remaining flags combinations. M_CLCACHE tells us whether
952 * the mbuf was originally allocated from a cluster cache or not,
953 * and is totally separate from whether the mbuf is currently
954 * associated with a cluster.
956 crit_enter();
957 switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
958 case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
960 * mbuf+cluster cache case. The mbuf was allocated from the
961 * combined mbuf_cluster cache and can be returned to the
962 * cache if the cluster hasn't been shared.
964 if (m_sharecount(m) == 1) {
966 * The cluster has not been shared, we can just
967 * reset the data pointer and return the mbuf
968 * to the cluster cache. Note that the reference
969 * count is left intact (it is still associated with
970 * an mbuf).
972 m->m_data = m->m_ext.ext_buf;
973 if (m->m_flags & M_PHCACHE)
974 objcache_put(mbufphdrcluster_cache, m);
975 else
976 objcache_put(mbufcluster_cache, m);
977 atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
978 } else {
980 * Hell. Someone else has a ref on this cluster,
981 * we have to disconnect it which means we can't
982 * put it back into the mbufcluster_cache, we
983 * have to destroy the mbuf.
985 * Other mbuf references to the cluster will typically
986 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
988 * XXX we could try to connect another cluster to
989 * it.
991 m->m_ext.ext_free(m->m_ext.ext_arg);
992 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
993 if (m->m_flags & M_PHCACHE)
994 objcache_dtor(mbufphdrcluster_cache, m);
995 else
996 objcache_dtor(mbufcluster_cache, m);
998 break;
999 case M_EXT | M_EXT_CLUSTER:
1001 * Normal cluster associated with an mbuf that was allocated
1002 * from the normal mbuf pool rather then the cluster pool.
1003 * The cluster has to be independantly disassociated from the
1004 * mbuf.
1006 if (m_sharecount(m) == 1)
1007 atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_clusters, 1);
1008 /* fall through */
1009 case M_EXT:
1011 * Normal cluster association case, disconnect the cluster from
1012 * the mbuf. The cluster may or may not be custom.
1014 m->m_ext.ext_free(m->m_ext.ext_arg);
1015 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1016 /* fall through */
1017 case 0:
1019 * return the mbuf to the mbuf cache.
1021 if (m->m_flags & M_PHCACHE) {
1022 m->m_data = m->m_pktdat;
1023 objcache_put(mbufphdr_cache, m);
1024 } else {
1025 m->m_data = m->m_dat;
1026 objcache_put(mbuf_cache, m);
1028 atomic_subtract_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mbufs, 1);
1029 break;
1030 default:
1031 if (!panicstr)
1032 panic("bad mbuf flags %p %08x\n", m, m->m_flags);
1033 break;
1035 crit_exit();
1036 return (n);
1039 void
1040 m_freem(struct mbuf *m)
1042 crit_enter();
1043 while (m)
1044 m = m_free(m);
1045 crit_exit();
1049 * mbuf utility routines
1053 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1054 * copy junk along.
1056 struct mbuf *
1057 m_prepend(struct mbuf *m, int len, int how)
1059 struct mbuf *mn;
1061 if (m->m_flags & M_PKTHDR)
1062 mn = m_gethdr(how, m->m_type);
1063 else
1064 mn = m_get(how, m->m_type);
1065 if (mn == NULL) {
1066 m_freem(m);
1067 return (NULL);
1069 if (m->m_flags & M_PKTHDR)
1070 M_MOVE_PKTHDR(mn, m);
1071 mn->m_next = m;
1072 m = mn;
1073 if (len < MHLEN)
1074 MH_ALIGN(m, len);
1075 m->m_len = len;
1076 return (m);
1080 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1081 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
1082 * The wait parameter is a choice of MB_WAIT/MB_DONTWAIT from caller.
1083 * Note that the copy is read-only, because clusters are not copied,
1084 * only their reference counts are incremented.
1086 struct mbuf *
1087 m_copym(const struct mbuf *m, int off0, int len, int wait)
1089 struct mbuf *n, **np;
1090 int off = off0;
1091 struct mbuf *top;
1092 int copyhdr = 0;
1094 KASSERT(off >= 0, ("m_copym, negative off %d", off));
1095 KASSERT(len >= 0, ("m_copym, negative len %d", len));
1096 if (off == 0 && m->m_flags & M_PKTHDR)
1097 copyhdr = 1;
1098 while (off > 0) {
1099 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1100 if (off < m->m_len)
1101 break;
1102 off -= m->m_len;
1103 m = m->m_next;
1105 np = &top;
1106 top = 0;
1107 while (len > 0) {
1108 if (m == NULL) {
1109 KASSERT(len == M_COPYALL,
1110 ("m_copym, length > size of mbuf chain"));
1111 break;
1114 * Because we are sharing any cluster attachment below,
1115 * be sure to get an mbuf that does not have a cluster
1116 * associated with it.
1118 if (copyhdr)
1119 n = m_gethdr(wait, m->m_type);
1120 else
1121 n = m_get(wait, m->m_type);
1122 *np = n;
1123 if (n == NULL)
1124 goto nospace;
1125 if (copyhdr) {
1126 if (!m_dup_pkthdr(n, m, wait))
1127 goto nospace;
1128 if (len == M_COPYALL)
1129 n->m_pkthdr.len -= off0;
1130 else
1131 n->m_pkthdr.len = len;
1132 copyhdr = 0;
1134 n->m_len = min(len, m->m_len - off);
1135 if (m->m_flags & M_EXT) {
1136 KKASSERT((n->m_flags & M_EXT) == 0);
1137 n->m_data = m->m_data + off;
1138 m->m_ext.ext_ref(m->m_ext.ext_arg);
1139 n->m_ext = m->m_ext;
1140 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1141 } else {
1142 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1143 (unsigned)n->m_len);
1145 if (len != M_COPYALL)
1146 len -= n->m_len;
1147 off = 0;
1148 m = m->m_next;
1149 np = &n->m_next;
1151 if (top == NULL)
1152 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1153 return (top);
1154 nospace:
1155 m_freem(top);
1156 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1157 return (NULL);
1161 * Copy an entire packet, including header (which must be present).
1162 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1163 * Note that the copy is read-only, because clusters are not copied,
1164 * only their reference counts are incremented.
1165 * Preserve alignment of the first mbuf so if the creator has left
1166 * some room at the beginning (e.g. for inserting protocol headers)
1167 * the copies also have the room available.
1169 struct mbuf *
1170 m_copypacket(struct mbuf *m, int how)
1172 struct mbuf *top, *n, *o;
1174 n = m_gethdr(how, m->m_type);
1175 top = n;
1176 if (!n)
1177 goto nospace;
1179 if (!m_dup_pkthdr(n, m, how))
1180 goto nospace;
1181 n->m_len = m->m_len;
1182 if (m->m_flags & M_EXT) {
1183 KKASSERT((n->m_flags & M_EXT) == 0);
1184 n->m_data = m->m_data;
1185 m->m_ext.ext_ref(m->m_ext.ext_arg);
1186 n->m_ext = m->m_ext;
1187 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1188 } else {
1189 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1190 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1193 m = m->m_next;
1194 while (m) {
1195 o = m_get(how, m->m_type);
1196 if (!o)
1197 goto nospace;
1199 n->m_next = o;
1200 n = n->m_next;
1202 n->m_len = m->m_len;
1203 if (m->m_flags & M_EXT) {
1204 KKASSERT((n->m_flags & M_EXT) == 0);
1205 n->m_data = m->m_data;
1206 m->m_ext.ext_ref(m->m_ext.ext_arg);
1207 n->m_ext = m->m_ext;
1208 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1209 } else {
1210 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1213 m = m->m_next;
1215 return top;
1216 nospace:
1217 m_freem(top);
1218 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1219 return (NULL);
1223 * Copy data from an mbuf chain starting "off" bytes from the beginning,
1224 * continuing for "len" bytes, into the indicated buffer.
1226 void
1227 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1229 unsigned count;
1231 KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1232 KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1233 while (off > 0) {
1234 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1235 if (off < m->m_len)
1236 break;
1237 off -= m->m_len;
1238 m = m->m_next;
1240 while (len > 0) {
1241 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1242 count = min(m->m_len - off, len);
1243 bcopy(mtod(m, caddr_t) + off, cp, count);
1244 len -= count;
1245 cp += count;
1246 off = 0;
1247 m = m->m_next;
1252 * Copy a packet header mbuf chain into a completely new chain, including
1253 * copying any mbuf clusters. Use this instead of m_copypacket() when
1254 * you need a writable copy of an mbuf chain.
1256 struct mbuf *
1257 m_dup(struct mbuf *m, int how)
1259 struct mbuf **p, *top = NULL;
1260 int remain, moff, nsize;
1262 /* Sanity check */
1263 if (m == NULL)
1264 return (NULL);
1265 KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1267 /* While there's more data, get a new mbuf, tack it on, and fill it */
1268 remain = m->m_pkthdr.len;
1269 moff = 0;
1270 p = &top;
1271 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
1272 struct mbuf *n;
1274 /* Get the next new mbuf */
1275 n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1276 &nsize);
1277 if (n == NULL)
1278 goto nospace;
1279 if (top == NULL)
1280 if (!m_dup_pkthdr(n, m, how))
1281 goto nospace0;
1283 /* Link it into the new chain */
1284 *p = n;
1285 p = &n->m_next;
1287 /* Copy data from original mbuf(s) into new mbuf */
1288 n->m_len = 0;
1289 while (n->m_len < nsize && m != NULL) {
1290 int chunk = min(nsize - n->m_len, m->m_len - moff);
1292 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1293 moff += chunk;
1294 n->m_len += chunk;
1295 remain -= chunk;
1296 if (moff == m->m_len) {
1297 m = m->m_next;
1298 moff = 0;
1302 /* Check correct total mbuf length */
1303 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1304 ("%s: bogus m_pkthdr.len", __func__));
1306 return (top);
1308 nospace:
1309 m_freem(top);
1310 nospace0:
1311 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1312 return (NULL);
1316 * Concatenate mbuf chain n to m.
1317 * Both chains must be of the same type (e.g. MT_DATA).
1318 * Any m_pkthdr is not updated.
1320 void
1321 m_cat(struct mbuf *m, struct mbuf *n)
1323 m = m_last(m);
1324 while (n) {
1325 if (m->m_flags & M_EXT ||
1326 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1327 /* just join the two chains */
1328 m->m_next = n;
1329 return;
1331 /* splat the data from one into the other */
1332 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1333 (u_int)n->m_len);
1334 m->m_len += n->m_len;
1335 n = m_free(n);
1339 void
1340 m_adj(struct mbuf *mp, int req_len)
1342 int len = req_len;
1343 struct mbuf *m;
1344 int count;
1346 if ((m = mp) == NULL)
1347 return;
1348 if (len >= 0) {
1350 * Trim from head.
1352 while (m != NULL && len > 0) {
1353 if (m->m_len <= len) {
1354 len -= m->m_len;
1355 m->m_len = 0;
1356 m = m->m_next;
1357 } else {
1358 m->m_len -= len;
1359 m->m_data += len;
1360 len = 0;
1363 m = mp;
1364 if (mp->m_flags & M_PKTHDR)
1365 m->m_pkthdr.len -= (req_len - len);
1366 } else {
1368 * Trim from tail. Scan the mbuf chain,
1369 * calculating its length and finding the last mbuf.
1370 * If the adjustment only affects this mbuf, then just
1371 * adjust and return. Otherwise, rescan and truncate
1372 * after the remaining size.
1374 len = -len;
1375 count = 0;
1376 for (;;) {
1377 count += m->m_len;
1378 if (m->m_next == (struct mbuf *)0)
1379 break;
1380 m = m->m_next;
1382 if (m->m_len >= len) {
1383 m->m_len -= len;
1384 if (mp->m_flags & M_PKTHDR)
1385 mp->m_pkthdr.len -= len;
1386 return;
1388 count -= len;
1389 if (count < 0)
1390 count = 0;
1392 * Correct length for chain is "count".
1393 * Find the mbuf with last data, adjust its length,
1394 * and toss data from remaining mbufs on chain.
1396 m = mp;
1397 if (m->m_flags & M_PKTHDR)
1398 m->m_pkthdr.len = count;
1399 for (; m; m = m->m_next) {
1400 if (m->m_len >= count) {
1401 m->m_len = count;
1402 break;
1404 count -= m->m_len;
1406 while (m->m_next)
1407 (m = m->m_next) ->m_len = 0;
1412 * Rearrange an mbuf chain so that len bytes are contiguous
1413 * and in the data area of an mbuf (so that mtod will work for a structure
1414 * of size len). Returns the resulting mbuf chain on success, frees it and
1415 * returns null on failure. If there is room, it will add up to
1416 * max_protohdr-len extra bytes to the contiguous region in an attempt to
1417 * avoid being called next time.
1419 struct mbuf *
1420 m_pullup(struct mbuf *n, int len)
1422 struct mbuf *m;
1423 int count;
1424 int space;
1427 * If first mbuf has no cluster, and has room for len bytes
1428 * without shifting current data, pullup into it,
1429 * otherwise allocate a new mbuf to prepend to the chain.
1431 if (!(n->m_flags & M_EXT) &&
1432 n->m_data + len < &n->m_dat[MLEN] &&
1433 n->m_next) {
1434 if (n->m_len >= len)
1435 return (n);
1436 m = n;
1437 n = n->m_next;
1438 len -= m->m_len;
1439 } else {
1440 if (len > MHLEN)
1441 goto bad;
1442 if (n->m_flags & M_PKTHDR)
1443 m = m_gethdr(MB_DONTWAIT, n->m_type);
1444 else
1445 m = m_get(MB_DONTWAIT, n->m_type);
1446 if (m == NULL)
1447 goto bad;
1448 m->m_len = 0;
1449 if (n->m_flags & M_PKTHDR)
1450 M_MOVE_PKTHDR(m, n);
1452 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1453 do {
1454 count = min(min(max(len, max_protohdr), space), n->m_len);
1455 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1456 (unsigned)count);
1457 len -= count;
1458 m->m_len += count;
1459 n->m_len -= count;
1460 space -= count;
1461 if (n->m_len)
1462 n->m_data += count;
1463 else
1464 n = m_free(n);
1465 } while (len > 0 && n);
1466 if (len > 0) {
1467 m_free(m);
1468 goto bad;
1470 m->m_next = n;
1471 return (m);
1472 bad:
1473 m_freem(n);
1474 atomic_add_long_nonlocked(&mbstat[mycpu->gd_cpuid].m_mcfail, 1);
1475 return (NULL);
1479 * Partition an mbuf chain in two pieces, returning the tail --
1480 * all but the first len0 bytes. In case of failure, it returns NULL and
1481 * attempts to restore the chain to its original state.
1483 * Note that the resulting mbufs might be read-only, because the new
1484 * mbuf can end up sharing an mbuf cluster with the original mbuf if
1485 * the "breaking point" happens to lie within a cluster mbuf. Use the
1486 * M_WRITABLE() macro to check for this case.
1488 struct mbuf *
1489 m_split(struct mbuf *m0, int len0, int wait)
1491 struct mbuf *m, *n;
1492 unsigned len = len0, remain;
1494 for (m = m0; m && len > m->m_len; m = m->m_next)
1495 len -= m->m_len;
1496 if (m == NULL)
1497 return (NULL);
1498 remain = m->m_len - len;
1499 if (m0->m_flags & M_PKTHDR) {
1500 n = m_gethdr(wait, m0->m_type);
1501 if (n == NULL)
1502 return (NULL);
1503 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1504 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1505 m0->m_pkthdr.len = len0;
1506 if (m->m_flags & M_EXT)
1507 goto extpacket;
1508 if (remain > MHLEN) {
1509 /* m can't be the lead packet */
1510 MH_ALIGN(n, 0);
1511 n->m_next = m_split(m, len, wait);
1512 if (n->m_next == NULL) {
1513 m_free(n);
1514 return (NULL);
1515 } else {
1516 n->m_len = 0;
1517 return (n);
1519 } else
1520 MH_ALIGN(n, remain);
1521 } else if (remain == 0) {
1522 n = m->m_next;
1523 m->m_next = 0;
1524 return (n);
1525 } else {
1526 n = m_get(wait, m->m_type);
1527 if (n == NULL)
1528 return (NULL);
1529 M_ALIGN(n, remain);
1531 extpacket:
1532 if (m->m_flags & M_EXT) {
1533 KKASSERT((n->m_flags & M_EXT) == 0);
1534 n->m_data = m->m_data + len;
1535 m->m_ext.ext_ref(m->m_ext.ext_arg);
1536 n->m_ext = m->m_ext;
1537 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1538 } else {
1539 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1541 n->m_len = remain;
1542 m->m_len = len;
1543 n->m_next = m->m_next;
1544 m->m_next = 0;
1545 return (n);
1549 * Routine to copy from device local memory into mbufs.
1550 * Note: "offset" is ill-defined and always called as 0, so ignore it.
1552 struct mbuf *
1553 m_devget(char *buf, int len, int offset, struct ifnet *ifp,
1554 void (*copy)(volatile const void *from, volatile void *to, size_t length))
1556 struct mbuf *m, *mfirst = NULL, **mtail;
1557 int nsize, flags;
1559 if (copy == NULL)
1560 copy = bcopy;
1561 mtail = &mfirst;
1562 flags = M_PKTHDR;
1564 while (len > 0) {
1565 m = m_getl(len, MB_DONTWAIT, MT_DATA, flags, &nsize);
1566 if (m == NULL) {
1567 m_freem(mfirst);
1568 return (NULL);
1570 m->m_len = min(len, nsize);
1572 if (flags & M_PKTHDR) {
1573 if (len + max_linkhdr <= nsize)
1574 m->m_data += max_linkhdr;
1575 m->m_pkthdr.rcvif = ifp;
1576 m->m_pkthdr.len = len;
1577 flags = 0;
1580 copy(buf, m->m_data, (unsigned)m->m_len);
1581 buf += m->m_len;
1582 len -= m->m_len;
1583 *mtail = m;
1584 mtail = &m->m_next;
1587 return (mfirst);
1591 * Routine to pad mbuf to the specified length 'padto'.
1594 m_devpad(struct mbuf *m, int padto)
1596 struct mbuf *last = NULL;
1597 int padlen;
1599 if (padto <= m->m_pkthdr.len)
1600 return 0;
1602 padlen = padto - m->m_pkthdr.len;
1604 /* if there's only the packet-header and we can pad there, use it. */
1605 if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
1606 last = m;
1607 } else {
1609 * Walk packet chain to find last mbuf. We will either
1610 * pad there, or append a new mbuf and pad it
1612 for (last = m; last->m_next != NULL; last = last->m_next)
1613 ; /* EMPTY */
1615 /* `last' now points to last in chain. */
1616 if (M_TRAILINGSPACE(last) < padlen) {
1617 struct mbuf *n;
1619 /* Allocate new empty mbuf, pad it. Compact later. */
1620 MGET(n, MB_DONTWAIT, MT_DATA);
1621 if (n == NULL)
1622 return ENOBUFS;
1623 n->m_len = 0;
1624 last->m_next = n;
1625 last = n;
1628 KKASSERT(M_TRAILINGSPACE(last) >= padlen);
1629 KKASSERT(M_WRITABLE(last));
1631 /* Now zero the pad area */
1632 bzero(mtod(last, char *) + last->m_len, padlen);
1633 last->m_len += padlen;
1634 m->m_pkthdr.len += padlen;
1635 return 0;
1639 * Copy data from a buffer back into the indicated mbuf chain,
1640 * starting "off" bytes from the beginning, extending the mbuf
1641 * chain if necessary.
1643 void
1644 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
1646 int mlen;
1647 struct mbuf *m = m0, *n;
1648 int totlen = 0;
1650 if (m0 == NULL)
1651 return;
1652 while (off > (mlen = m->m_len)) {
1653 off -= mlen;
1654 totlen += mlen;
1655 if (m->m_next == NULL) {
1656 n = m_getclr(MB_DONTWAIT, m->m_type);
1657 if (n == NULL)
1658 goto out;
1659 n->m_len = min(MLEN, len + off);
1660 m->m_next = n;
1662 m = m->m_next;
1664 while (len > 0) {
1665 mlen = min (m->m_len - off, len);
1666 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
1667 cp += mlen;
1668 len -= mlen;
1669 mlen += off;
1670 off = 0;
1671 totlen += mlen;
1672 if (len == 0)
1673 break;
1674 if (m->m_next == NULL) {
1675 n = m_get(MB_DONTWAIT, m->m_type);
1676 if (n == NULL)
1677 break;
1678 n->m_len = min(MLEN, len);
1679 m->m_next = n;
1681 m = m->m_next;
1683 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1684 m->m_pkthdr.len = totlen;
1687 void
1688 m_print(const struct mbuf *m)
1690 int len;
1691 const struct mbuf *m2;
1693 len = m->m_pkthdr.len;
1694 m2 = m;
1695 while (len) {
1696 kprintf("%p %*D\n", m2, m2->m_len, (u_char *)m2->m_data, "-");
1697 len -= m2->m_len;
1698 m2 = m2->m_next;
1700 return;
1704 * "Move" mbuf pkthdr from "from" to "to".
1705 * "from" must have M_PKTHDR set, and "to" must be empty.
1707 void
1708 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1710 KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
1712 to->m_flags |= from->m_flags & M_COPYFLAGS;
1713 to->m_pkthdr = from->m_pkthdr; /* especially tags */
1714 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */
1718 * Duplicate "from"'s mbuf pkthdr in "to".
1719 * "from" must have M_PKTHDR set, and "to" must be empty.
1720 * In particular, this does a deep copy of the packet tags.
1723 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
1725 KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
1727 to->m_flags = (from->m_flags & M_COPYFLAGS) |
1728 (to->m_flags & ~M_COPYFLAGS);
1729 to->m_pkthdr = from->m_pkthdr;
1730 SLIST_INIT(&to->m_pkthdr.tags);
1731 return (m_tag_copy_chain(to, from, how));
1735 * Defragment a mbuf chain, returning the shortest possible
1736 * chain of mbufs and clusters. If allocation fails and
1737 * this cannot be completed, NULL will be returned, but
1738 * the passed in chain will be unchanged. Upon success,
1739 * the original chain will be freed, and the new chain
1740 * will be returned.
1742 * If a non-packet header is passed in, the original
1743 * mbuf (chain?) will be returned unharmed.
1745 * m_defrag_nofree doesn't free the passed in mbuf.
1747 struct mbuf *
1748 m_defrag(struct mbuf *m0, int how)
1750 struct mbuf *m_new;
1752 if ((m_new = m_defrag_nofree(m0, how)) == NULL)
1753 return (NULL);
1754 if (m_new != m0)
1755 m_freem(m0);
1756 return (m_new);
1759 struct mbuf *
1760 m_defrag_nofree(struct mbuf *m0, int how)
1762 struct mbuf *m_new = NULL, *m_final = NULL;
1763 int progress = 0, length, nsize;
1765 if (!(m0->m_flags & M_PKTHDR))
1766 return (m0);
1768 #ifdef MBUF_STRESS_TEST
1769 if (m_defragrandomfailures) {
1770 int temp = karc4random() & 0xff;
1771 if (temp == 0xba)
1772 goto nospace;
1774 #endif
1776 m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
1777 if (m_final == NULL)
1778 goto nospace;
1779 m_final->m_len = 0; /* in case m0->m_pkthdr.len is zero */
1781 if (m_dup_pkthdr(m_final, m0, how) == 0)
1782 goto nospace;
1784 m_new = m_final;
1786 while (progress < m0->m_pkthdr.len) {
1787 length = m0->m_pkthdr.len - progress;
1788 if (length > MCLBYTES)
1789 length = MCLBYTES;
1791 if (m_new == NULL) {
1792 m_new = m_getl(length, how, MT_DATA, 0, &nsize);
1793 if (m_new == NULL)
1794 goto nospace;
1797 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1798 progress += length;
1799 m_new->m_len = length;
1800 if (m_new != m_final)
1801 m_cat(m_final, m_new);
1802 m_new = NULL;
1804 if (m0->m_next == NULL)
1805 m_defraguseless++;
1806 m_defragpackets++;
1807 m_defragbytes += m_final->m_pkthdr.len;
1808 return (m_final);
1809 nospace:
1810 m_defragfailure++;
1811 if (m_new)
1812 m_free(m_new);
1813 m_freem(m_final);
1814 return (NULL);
1818 * Move data from uio into mbufs.
1820 struct mbuf *
1821 m_uiomove(struct uio *uio)
1823 struct mbuf *m; /* current working mbuf */
1824 struct mbuf *head = NULL; /* result mbuf chain */
1825 struct mbuf **mp = &head;
1826 int resid = uio->uio_resid, nsize, flags = M_PKTHDR, error;
1828 do {
1829 m = m_getl(resid, MB_WAIT, MT_DATA, flags, &nsize);
1830 if (flags) {
1831 m->m_pkthdr.len = 0;
1832 /* Leave room for protocol headers. */
1833 if (resid < MHLEN)
1834 MH_ALIGN(m, resid);
1835 flags = 0;
1837 m->m_len = min(nsize, resid);
1838 error = uiomove(mtod(m, caddr_t), m->m_len, uio);
1839 if (error) {
1840 m_free(m);
1841 goto failed;
1843 *mp = m;
1844 mp = &m->m_next;
1845 head->m_pkthdr.len += m->m_len;
1846 resid -= m->m_len;
1847 } while (resid > 0);
1849 return (head);
1851 failed:
1852 m_freem(head);
1853 return (NULL);
1856 struct mbuf *
1857 m_last(struct mbuf *m)
1859 while (m->m_next)
1860 m = m->m_next;
1861 return (m);
1865 * Return the number of bytes in an mbuf chain.
1866 * If lastm is not NULL, also return the last mbuf.
1868 u_int
1869 m_lengthm(struct mbuf *m, struct mbuf **lastm)
1871 u_int len = 0;
1872 struct mbuf *prev = m;
1874 while (m) {
1875 len += m->m_len;
1876 prev = m;
1877 m = m->m_next;
1879 if (lastm != NULL)
1880 *lastm = prev;
1881 return (len);
1885 * Like m_lengthm(), except also keep track of mbuf usage.
1887 u_int
1888 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
1890 u_int len = 0, mbcnt = 0;
1891 struct mbuf *prev = m;
1893 while (m) {
1894 len += m->m_len;
1895 mbcnt += MSIZE;
1896 if (m->m_flags & M_EXT)
1897 mbcnt += m->m_ext.ext_size;
1898 prev = m;
1899 m = m->m_next;
1901 if (lastm != NULL)
1902 *lastm = prev;
1903 *pmbcnt = mbcnt;
1904 return (len);