get mxge to build, stage 29/many
[dragonfly.git] / sys / kern / vfs_aio.c
blob48a2a6f0ba07b6c13c97089810da2f4b25db0b69
1 /*
2 * Copyright (c) 1997 John S. Dyson. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. John S. Dyson's name may not be used to endorse or promote products
10 * derived from this software without specific prior written permission.
12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
13 * bad that happens because of using this software isn't the responsibility
14 * of the author. This software is distributed AS-IS.
16 * $FreeBSD: src/sys/kern/vfs_aio.c,v 1.70.2.28 2003/05/29 06:15:35 alc Exp $
17 * $DragonFly: src/sys/kern/vfs_aio.c,v 1.42 2007/07/20 17:21:52 dillon Exp $
21 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/buf.h>
27 #include <sys/sysproto.h>
28 #include <sys/filedesc.h>
29 #include <sys/kernel.h>
30 #include <sys/fcntl.h>
31 #include <sys/file.h>
32 #include <sys/lock.h>
33 #include <sys/unistd.h>
34 #include <sys/proc.h>
35 #include <sys/resourcevar.h>
36 #include <sys/signalvar.h>
37 #include <sys/protosw.h>
38 #include <sys/socketvar.h>
39 #include <sys/sysctl.h>
40 #include <sys/vnode.h>
41 #include <sys/conf.h>
42 #include <sys/event.h>
44 #include <vm/vm.h>
45 #include <vm/vm_extern.h>
46 #include <vm/pmap.h>
47 #include <vm/vm_map.h>
48 #include <vm/vm_zone.h>
49 #include <sys/aio.h>
50 #include <sys/file2.h>
51 #include <sys/buf2.h>
52 #include <sys/sysref2.h>
53 #include <sys/thread2.h>
55 #include <machine/limits.h>
56 #include "opt_vfs_aio.h"
58 #ifdef VFS_AIO
61 * Counter for allocating reference ids to new jobs. Wrapped to 1 on
62 * overflow.
64 static long jobrefid;
66 #define JOBST_NULL 0x0
67 #define JOBST_JOBQGLOBAL 0x2
68 #define JOBST_JOBRUNNING 0x3
69 #define JOBST_JOBFINISHED 0x4
70 #define JOBST_JOBQBUF 0x5
71 #define JOBST_JOBBFINISHED 0x6
73 #ifndef MAX_AIO_PER_PROC
74 #define MAX_AIO_PER_PROC 32
75 #endif
77 #ifndef MAX_AIO_QUEUE_PER_PROC
78 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */
79 #endif
81 #ifndef MAX_AIO_PROCS
82 #define MAX_AIO_PROCS 32
83 #endif
85 #ifndef MAX_AIO_QUEUE
86 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */
87 #endif
89 #ifndef TARGET_AIO_PROCS
90 #define TARGET_AIO_PROCS 4
91 #endif
93 #ifndef MAX_BUF_AIO
94 #define MAX_BUF_AIO 16
95 #endif
97 #ifndef AIOD_TIMEOUT_DEFAULT
98 #define AIOD_TIMEOUT_DEFAULT (10 * hz)
99 #endif
101 #ifndef AIOD_LIFETIME_DEFAULT
102 #define AIOD_LIFETIME_DEFAULT (30 * hz)
103 #endif
105 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
107 static int max_aio_procs = MAX_AIO_PROCS;
108 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
109 CTLFLAG_RW, &max_aio_procs, 0,
110 "Maximum number of kernel threads to use for handling async IO");
112 static int num_aio_procs = 0;
113 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
114 CTLFLAG_RD, &num_aio_procs, 0,
115 "Number of presently active kernel threads for async IO");
118 * The code will adjust the actual number of AIO processes towards this
119 * number when it gets a chance.
121 static int target_aio_procs = TARGET_AIO_PROCS;
122 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
123 0, "Preferred number of ready kernel threads for async IO");
125 static int max_queue_count = MAX_AIO_QUEUE;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
127 "Maximum number of aio requests to queue, globally");
129 static int num_queue_count = 0;
130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
131 "Number of queued aio requests");
133 static int num_buf_aio = 0;
134 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
135 "Number of aio requests presently handled by the buf subsystem");
137 /* Number of async I/O thread in the process of being started */
138 /* XXX This should be local to _aio_aqueue() */
139 static int num_aio_resv_start = 0;
141 static int aiod_timeout;
142 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
143 "Timeout value for synchronous aio operations");
145 static int aiod_lifetime;
146 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
147 "Maximum lifetime for idle aiod");
149 static int max_aio_per_proc = MAX_AIO_PER_PROC;
150 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
151 0, "Maximum active aio requests per process (stored in the process)");
153 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
154 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
155 &max_aio_queue_per_proc, 0,
156 "Maximum queued aio requests per process (stored in the process)");
158 static int max_buf_aio = MAX_BUF_AIO;
159 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
160 "Maximum buf aio requests per process (stored in the process)");
163 * AIO process info
165 #define AIOP_FREE 0x1 /* proc on free queue */
166 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */
168 struct aioproclist {
169 int aioprocflags; /* AIO proc flags */
170 TAILQ_ENTRY(aioproclist) list; /* List of processes */
171 struct proc *aioproc; /* The AIO thread */
175 * data-structure for lio signal management
177 struct aio_liojob {
178 int lioj_flags;
179 int lioj_buffer_count;
180 int lioj_buffer_finished_count;
181 int lioj_queue_count;
182 int lioj_queue_finished_count;
183 struct sigevent lioj_signal; /* signal on all I/O done */
184 TAILQ_ENTRY(aio_liojob) lioj_list;
185 struct kaioinfo *lioj_ki;
187 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
188 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
191 * per process aio data structure
193 struct kaioinfo {
194 int kaio_flags; /* per process kaio flags */
195 int kaio_maxactive_count; /* maximum number of AIOs */
196 int kaio_active_count; /* number of currently used AIOs */
197 int kaio_qallowed_count; /* maxiumu size of AIO queue */
198 int kaio_queue_count; /* size of AIO queue */
199 int kaio_ballowed_count; /* maximum number of buffers */
200 int kaio_queue_finished_count; /* number of daemon jobs finished */
201 int kaio_buffer_count; /* number of physio buffers */
202 int kaio_buffer_finished_count; /* count of I/O done */
203 struct proc *kaio_p; /* process that uses this kaio block */
204 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */
205 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */
206 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */
207 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */
208 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */
209 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */
212 #define KAIO_RUNDOWN 0x1 /* process is being run down */
213 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */
215 static TAILQ_HEAD(,aioproclist) aio_freeproc, aio_activeproc;
216 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */
217 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */
218 static TAILQ_HEAD(,aiocblist) aio_freejobs; /* Pool of free jobs */
220 static void aio_init_aioinfo(struct proc *p);
221 static void aio_onceonly(void *);
222 static int aio_free_entry(struct aiocblist *aiocbe);
223 static void aio_process(struct aiocblist *aiocbe);
224 static int aio_newproc(void);
225 static int aio_aqueue(struct aiocb *job, int type);
226 static void aio_physwakeup(struct bio *bio);
227 static int aio_fphysio(struct aiocblist *aiocbe);
228 static int aio_qphysio(struct proc *p, struct aiocblist *iocb);
229 static void aio_daemon(void *uproc, struct trapframe *frame);
230 static void process_signal(void *aioj);
232 SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
235 * Zones for:
236 * kaio Per process async io info
237 * aiop async io thread data
238 * aiocb async io jobs
239 * aiol list io job pointer - internal to aio_suspend XXX
240 * aiolio list io jobs
242 static vm_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
245 * Startup initialization
247 static void
248 aio_onceonly(void *na)
250 TAILQ_INIT(&aio_freeproc);
251 TAILQ_INIT(&aio_activeproc);
252 TAILQ_INIT(&aio_jobs);
253 TAILQ_INIT(&aio_bufjobs);
254 TAILQ_INIT(&aio_freejobs);
255 kaio_zone = zinit("AIO", sizeof(struct kaioinfo), 0, 0, 1);
256 aiop_zone = zinit("AIOP", sizeof(struct aioproclist), 0, 0, 1);
257 aiocb_zone = zinit("AIOCB", sizeof(struct aiocblist), 0, 0, 1);
258 aiol_zone = zinit("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t), 0, 0, 1);
259 aiolio_zone = zinit("AIOLIO", sizeof(struct aio_liojob), 0, 0, 1);
260 aiod_timeout = AIOD_TIMEOUT_DEFAULT;
261 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
262 jobrefid = 1;
266 * Init the per-process aioinfo structure. The aioinfo limits are set
267 * per-process for user limit (resource) management.
269 static void
270 aio_init_aioinfo(struct proc *p)
272 struct kaioinfo *ki;
273 if (p->p_aioinfo == NULL) {
274 ki = zalloc(kaio_zone);
275 p->p_aioinfo = ki;
276 ki->kaio_flags = 0;
277 ki->kaio_maxactive_count = max_aio_per_proc;
278 ki->kaio_active_count = 0;
279 ki->kaio_qallowed_count = max_aio_queue_per_proc;
280 ki->kaio_queue_count = 0;
281 ki->kaio_ballowed_count = max_buf_aio;
282 ki->kaio_buffer_count = 0;
283 ki->kaio_buffer_finished_count = 0;
284 ki->kaio_p = p;
285 TAILQ_INIT(&ki->kaio_jobdone);
286 TAILQ_INIT(&ki->kaio_jobqueue);
287 TAILQ_INIT(&ki->kaio_bufdone);
288 TAILQ_INIT(&ki->kaio_bufqueue);
289 TAILQ_INIT(&ki->kaio_liojoblist);
290 TAILQ_INIT(&ki->kaio_sockqueue);
293 while (num_aio_procs < target_aio_procs)
294 aio_newproc();
298 * Free a job entry. Wait for completion if it is currently active, but don't
299 * delay forever. If we delay, we return a flag that says that we have to
300 * restart the queue scan.
302 static int
303 aio_free_entry(struct aiocblist *aiocbe)
305 struct kaioinfo *ki;
306 struct aio_liojob *lj;
307 struct proc *p;
308 int error;
310 if (aiocbe->jobstate == JOBST_NULL)
311 panic("aio_free_entry: freeing already free job");
313 p = aiocbe->userproc;
314 ki = p->p_aioinfo;
315 lj = aiocbe->lio;
316 if (ki == NULL)
317 panic("aio_free_entry: missing p->p_aioinfo");
319 while (aiocbe->jobstate == JOBST_JOBRUNNING) {
320 aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
321 tsleep(aiocbe, 0, "jobwai", 0);
323 if (aiocbe->bp == NULL) {
324 if (ki->kaio_queue_count <= 0)
325 panic("aio_free_entry: process queue size <= 0");
326 if (num_queue_count <= 0)
327 panic("aio_free_entry: system wide queue size <= 0");
329 if (lj) {
330 lj->lioj_queue_count--;
331 if (aiocbe->jobflags & AIOCBLIST_DONE)
332 lj->lioj_queue_finished_count--;
334 ki->kaio_queue_count--;
335 if (aiocbe->jobflags & AIOCBLIST_DONE)
336 ki->kaio_queue_finished_count--;
337 num_queue_count--;
338 } else {
339 if (lj) {
340 lj->lioj_buffer_count--;
341 if (aiocbe->jobflags & AIOCBLIST_DONE)
342 lj->lioj_buffer_finished_count--;
344 if (aiocbe->jobflags & AIOCBLIST_DONE)
345 ki->kaio_buffer_finished_count--;
346 ki->kaio_buffer_count--;
347 num_buf_aio--;
350 /* aiocbe is going away, we need to destroy any knotes */
351 /* XXX lwp knote wants a thread, but only cares about the process */
352 knote_remove(FIRST_LWP_IN_PROC(p)->lwp_thread, &aiocbe->klist);
354 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN)
355 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) {
356 ki->kaio_flags &= ~KAIO_WAKEUP;
357 wakeup(p);
360 if (aiocbe->jobstate == JOBST_JOBQBUF) {
361 if ((error = aio_fphysio(aiocbe)) != 0)
362 return error;
363 if (aiocbe->jobstate != JOBST_JOBBFINISHED)
364 panic("aio_free_entry: invalid physio finish-up state");
365 crit_enter();
366 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
367 crit_exit();
368 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) {
369 crit_enter();
370 TAILQ_REMOVE(&aio_jobs, aiocbe, list);
371 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
372 crit_exit();
373 } else if (aiocbe->jobstate == JOBST_JOBFINISHED)
374 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
375 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) {
376 crit_enter();
377 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
378 crit_exit();
379 if (aiocbe->bp) {
380 vunmapbuf(aiocbe->bp);
381 relpbuf(aiocbe->bp, NULL);
382 aiocbe->bp = NULL;
385 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
386 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
387 zfree(aiolio_zone, lj);
389 aiocbe->jobstate = JOBST_NULL;
390 callout_stop(&aiocbe->timeout);
391 fdrop(aiocbe->fd_file);
392 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
393 return 0;
395 #endif /* VFS_AIO */
398 * Rundown the jobs for a given process.
400 void
401 aio_proc_rundown(struct proc *p)
403 #ifndef VFS_AIO
404 return;
405 #else
406 struct kaioinfo *ki;
407 struct aio_liojob *lj, *ljn;
408 struct aiocblist *aiocbe, *aiocbn;
409 struct file *fp;
410 struct socket *so;
412 ki = p->p_aioinfo;
413 if (ki == NULL)
414 return;
416 ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
417 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count >
418 ki->kaio_buffer_finished_count)) {
419 ki->kaio_flags |= KAIO_RUNDOWN;
420 if (tsleep(p, 0, "kaiowt", aiod_timeout))
421 break;
425 * Move any aio ops that are waiting on socket I/O to the normal job
426 * queues so they are cleaned up with any others.
428 crit_enter();
429 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe =
430 aiocbn) {
431 aiocbn = TAILQ_NEXT(aiocbe, plist);
432 fp = aiocbe->fd_file;
433 if (fp != NULL) {
434 so = (struct socket *)fp->f_data;
435 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list);
436 if (TAILQ_EMPTY(&so->so_aiojobq)) {
437 so->so_snd.ssb_flags &= ~SSB_AIO;
438 so->so_rcv.ssb_flags &= ~SSB_AIO;
441 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist);
442 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list);
443 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist);
445 crit_exit();
447 restart1:
448 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) {
449 aiocbn = TAILQ_NEXT(aiocbe, plist);
450 if (aio_free_entry(aiocbe))
451 goto restart1;
454 restart2:
455 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe =
456 aiocbn) {
457 aiocbn = TAILQ_NEXT(aiocbe, plist);
458 if (aio_free_entry(aiocbe))
459 goto restart2;
462 restart3:
463 crit_enter();
464 while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
465 ki->kaio_flags |= KAIO_WAKEUP;
466 tsleep(p, 0, "aioprn", 0);
467 crit_exit();
468 goto restart3;
470 crit_exit();
472 restart4:
473 crit_enter();
474 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) {
475 aiocbn = TAILQ_NEXT(aiocbe, plist);
476 if (aio_free_entry(aiocbe)) {
477 crit_exit();
478 goto restart4;
481 crit_exit();
484 * If we've slept, jobs might have moved from one queue to another.
485 * Retry rundown if we didn't manage to empty the queues.
487 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL ||
488 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL ||
489 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL ||
490 TAILQ_FIRST(&ki->kaio_bufdone) != NULL)
491 goto restart1;
493 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) {
494 ljn = TAILQ_NEXT(lj, lioj_list);
495 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count ==
496 0)) {
497 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
498 zfree(aiolio_zone, lj);
499 } else {
500 #ifdef DIAGNOSTIC
501 kprintf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, "
502 "QF:%d\n", lj->lioj_buffer_count,
503 lj->lioj_buffer_finished_count,
504 lj->lioj_queue_count,
505 lj->lioj_queue_finished_count);
506 #endif
510 zfree(kaio_zone, ki);
511 p->p_aioinfo = NULL;
512 #endif /* VFS_AIO */
515 #ifdef VFS_AIO
517 * Select a job to run (called by an AIO daemon).
519 static struct aiocblist *
520 aio_selectjob(struct aioproclist *aiop)
522 struct aiocblist *aiocbe;
523 struct kaioinfo *ki;
524 struct proc *userp;
526 crit_enter();
527 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe =
528 TAILQ_NEXT(aiocbe, list)) {
529 userp = aiocbe->userproc;
530 ki = userp->p_aioinfo;
532 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
533 TAILQ_REMOVE(&aio_jobs, aiocbe, list);
534 crit_exit();
535 return aiocbe;
538 crit_exit();
540 return NULL;
544 * The AIO processing activity. This is the code that does the I/O request for
545 * the non-physio version of the operations. The normal vn operations are used,
546 * and this code should work in all instances for every type of file, including
547 * pipes, sockets, fifos, and regular files.
549 static void
550 aio_process(struct aiocblist *aiocbe)
552 struct thread *mytd;
553 struct aiocb *cb;
554 struct file *fp;
555 struct uio auio;
556 struct iovec aiov;
557 int cnt;
558 int error;
559 int oublock_st, oublock_end;
560 int inblock_st, inblock_end;
562 mytd = curthread;
563 cb = &aiocbe->uaiocb;
564 fp = aiocbe->fd_file;
566 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
567 aiov.iov_len = cb->aio_nbytes;
569 auio.uio_iov = &aiov;
570 auio.uio_iovcnt = 1;
571 auio.uio_offset = cb->aio_offset;
572 auio.uio_resid = cb->aio_nbytes;
573 cnt = cb->aio_nbytes;
574 auio.uio_segflg = UIO_USERSPACE;
575 auio.uio_td = mytd;
577 inblock_st = mytd->td_lwp->lwp_ru.ru_inblock;
578 oublock_st = mytd->td_lwp->lwp_ru.ru_oublock;
580 * _aio_aqueue() acquires a reference to the file that is
581 * released in aio_free_entry().
583 if (cb->aio_lio_opcode == LIO_READ) {
584 auio.uio_rw = UIO_READ;
585 error = fo_read(fp, &auio, fp->f_cred, O_FOFFSET);
586 } else {
587 auio.uio_rw = UIO_WRITE;
588 error = fo_write(fp, &auio, fp->f_cred, O_FOFFSET);
590 inblock_end = mytd->td_lwp->lwp_ru.ru_inblock;
591 oublock_end = mytd->td_lwp->lwp_ru.ru_oublock;
593 aiocbe->inputcharge = inblock_end - inblock_st;
594 aiocbe->outputcharge = oublock_end - oublock_st;
596 if ((error) && (auio.uio_resid != cnt)) {
597 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
598 error = 0;
599 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
600 ksignal(aiocbe->userproc, SIGPIPE);
603 cnt -= auio.uio_resid;
604 cb->_aiocb_private.error = error;
605 cb->_aiocb_private.status = cnt;
609 * The AIO daemon, most of the actual work is done in aio_process,
610 * but the setup (and address space mgmt) is done in this routine.
612 * The MP lock is held on entry.
614 static void
615 aio_daemon(void *uproc, struct trapframe *frame)
617 struct aio_liojob *lj;
618 struct aiocb *cb;
619 struct aiocblist *aiocbe;
620 struct aioproclist *aiop;
621 struct kaioinfo *ki;
622 struct proc *mycp, *userp;
623 struct vmspace *curvm;
624 struct lwp *mylwp;
625 struct ucred *cr;
627 mylwp = curthread->td_lwp;
628 mycp = mylwp->lwp_proc;
630 if (mycp->p_textvp) {
631 vrele(mycp->p_textvp);
632 mycp->p_textvp = NULL;
636 * Allocate and ready the aio control info. There is one aiop structure
637 * per daemon.
639 aiop = zalloc(aiop_zone);
640 aiop->aioproc = mycp;
641 aiop->aioprocflags |= AIOP_FREE;
643 crit_enter();
646 * Place thread (lightweight process) onto the AIO free thread list.
648 if (TAILQ_EMPTY(&aio_freeproc))
649 wakeup(&aio_freeproc);
650 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
652 crit_exit();
654 /* Make up a name for the daemon. */
655 strcpy(mycp->p_comm, "aiod");
658 * Get rid of our current filedescriptors. AIOD's don't need any
659 * filedescriptors, except as temporarily inherited from the client.
660 * Credentials are also cloned, and made equivalent to "root".
662 fdfree(mycp, NULL);
663 cr = cratom(&mycp->p_ucred);
664 cr->cr_uid = 0;
665 uireplace(&cr->cr_uidinfo, uifind(0));
666 cr->cr_ngroups = 1;
667 cr->cr_groups[0] = 1;
669 /* The daemon resides in its own pgrp. */
670 enterpgrp(mycp, mycp->p_pid, 1);
672 /* Mark special process type. */
673 mycp->p_flag |= P_SYSTEM | P_KTHREADP;
676 * Wakeup parent process. (Parent sleeps to keep from blasting away
677 * and creating too many daemons.)
679 wakeup(mycp);
680 curvm = NULL;
682 for (;;) {
684 * Take daemon off of free queue
686 if (aiop->aioprocflags & AIOP_FREE) {
687 crit_enter();
688 TAILQ_REMOVE(&aio_freeproc, aiop, list);
689 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
690 aiop->aioprocflags &= ~AIOP_FREE;
691 crit_exit();
693 aiop->aioprocflags &= ~AIOP_SCHED;
696 * Check for jobs.
698 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
699 cb = &aiocbe->uaiocb;
700 userp = aiocbe->userproc;
702 aiocbe->jobstate = JOBST_JOBRUNNING;
705 * Connect to process address space for user program.
707 if (curvm != userp->p_vmspace) {
708 pmap_setlwpvm(mylwp, userp->p_vmspace);
709 if (curvm)
710 sysref_put(&curvm->vm_sysref);
711 curvm = userp->p_vmspace;
712 sysref_get(&curvm->vm_sysref);
715 ki = userp->p_aioinfo;
716 lj = aiocbe->lio;
718 /* Account for currently active jobs. */
719 ki->kaio_active_count++;
721 /* Do the I/O function. */
722 aio_process(aiocbe);
724 /* Decrement the active job count. */
725 ki->kaio_active_count--;
728 * Increment the completion count for wakeup/signal
729 * comparisons.
731 aiocbe->jobflags |= AIOCBLIST_DONE;
732 ki->kaio_queue_finished_count++;
733 if (lj)
734 lj->lioj_queue_finished_count++;
735 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags
736 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) {
737 ki->kaio_flags &= ~KAIO_WAKEUP;
738 wakeup(userp);
741 crit_enter();
742 if (lj && (lj->lioj_flags &
743 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) {
744 if ((lj->lioj_queue_finished_count ==
745 lj->lioj_queue_count) &&
746 (lj->lioj_buffer_finished_count ==
747 lj->lioj_buffer_count)) {
748 ksignal(userp,
749 lj->lioj_signal.sigev_signo);
750 lj->lioj_flags |=
751 LIOJ_SIGNAL_POSTED;
754 crit_exit();
756 aiocbe->jobstate = JOBST_JOBFINISHED;
758 crit_enter();
759 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
760 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist);
761 crit_exit();
762 KNOTE(&aiocbe->klist, 0);
764 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
765 wakeup(aiocbe);
766 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
769 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
770 ksignal(userp, cb->aio_sigevent.sigev_signo);
775 * Disconnect from user address space.
777 if (curvm) {
778 /* swap our original address space back in */
779 pmap_setlwpvm(mylwp, mycp->p_vmspace);
780 sysref_put(&curvm->vm_sysref);
781 curvm = NULL;
785 * If we are the first to be put onto the free queue, wakeup
786 * anyone waiting for a daemon.
788 crit_enter();
789 TAILQ_REMOVE(&aio_activeproc, aiop, list);
790 if (TAILQ_EMPTY(&aio_freeproc))
791 wakeup(&aio_freeproc);
792 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
793 aiop->aioprocflags |= AIOP_FREE;
794 crit_exit();
797 * If daemon is inactive for a long time, allow it to exit,
798 * thereby freeing resources.
800 if (((aiop->aioprocflags & AIOP_SCHED) == 0) && tsleep(mycp,
801 0, "aiordy", aiod_lifetime)) {
802 crit_enter();
803 if (TAILQ_EMPTY(&aio_jobs)) {
804 if ((aiop->aioprocflags & AIOP_FREE) &&
805 (num_aio_procs > target_aio_procs)) {
806 TAILQ_REMOVE(&aio_freeproc, aiop, list);
807 crit_exit();
808 zfree(aiop_zone, aiop);
809 num_aio_procs--;
810 #ifdef DIAGNOSTIC
811 if (mycp->p_vmspace->vm_sysref.refcnt <= 1) {
812 kprintf("AIOD: bad vm refcnt for"
813 " exiting daemon: %d\n",
814 mycp->p_vmspace->vm_sysref.refcnt);
816 #endif
817 exit1(0);
820 crit_exit();
826 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
827 * AIO daemon modifies its environment itself.
829 static int
830 aio_newproc(void)
832 int error;
833 struct lwp *lp, *nlp;
834 struct proc *np;
836 lp = &lwp0;
837 error = fork1(lp, RFPROC|RFMEM|RFNOWAIT, &np);
838 if (error)
839 return error;
840 nlp = ONLY_LWP_IN_PROC(np);
841 cpu_set_fork_handler(nlp, aio_daemon, curproc);
842 start_forked_proc(lp, np);
845 * Wait until daemon is started, but continue on just in case to
846 * handle error conditions.
848 error = tsleep(np, 0, "aiosta", aiod_timeout);
849 num_aio_procs++;
851 return error;
855 * Try the high-performance, low-overhead physio method for eligible
856 * VCHR devices. This method doesn't use an aio helper thread, and
857 * thus has very low overhead.
859 * Assumes that the caller, _aio_aqueue(), has incremented the file
860 * structure's reference count, preventing its deallocation for the
861 * duration of this call.
863 static int
864 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
866 int error;
867 struct aiocb *cb;
868 struct file *fp;
869 struct buf *bp;
870 struct vnode *vp;
871 struct kaioinfo *ki;
872 struct aio_liojob *lj;
873 int notify;
875 cb = &aiocbe->uaiocb;
876 fp = aiocbe->fd_file;
878 if (fp->f_type != DTYPE_VNODE)
879 return (-1);
881 vp = (struct vnode *)fp->f_data;
884 * If its not a disk, we don't want to return a positive error.
885 * It causes the aio code to not fall through to try the thread
886 * way when you're talking to a regular file.
888 if (!vn_isdisk(vp, &error)) {
889 if (error == ENOTBLK)
890 return (-1);
891 else
892 return (error);
895 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys)
896 return (-1);
898 if (cb->aio_nbytes >
899 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
900 return (-1);
902 ki = p->p_aioinfo;
903 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
904 return (-1);
906 ki->kaio_buffer_count++;
908 lj = aiocbe->lio;
909 if (lj)
910 lj->lioj_buffer_count++;
912 /* Create and build a buffer header for a transfer. */
913 bp = getpbuf(NULL);
914 BUF_KERNPROC(bp);
917 * Get a copy of the kva from the physical buffer.
919 bp->b_bio1.bio_caller_info1.ptr = p;
920 error = 0;
922 bp->b_cmd = (cb->aio_lio_opcode == LIO_WRITE) ?
923 BUF_CMD_WRITE : BUF_CMD_READ;
924 bp->b_bio1.bio_done = aio_physwakeup;
925 bp->b_bio1.bio_offset = cb->aio_offset;
927 /* Bring buffer into kernel space. */
928 if (vmapbuf(bp, __DEVOLATILE(char *, cb->aio_buf), cb->aio_nbytes) < 0) {
929 error = EFAULT;
930 goto doerror;
933 crit_enter();
935 aiocbe->bp = bp;
936 bp->b_bio1.bio_caller_info2.ptr = aiocbe;
937 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
938 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
939 aiocbe->jobstate = JOBST_JOBQBUF;
940 cb->_aiocb_private.status = cb->aio_nbytes;
941 num_buf_aio++;
942 bp->b_error = 0;
944 crit_exit();
947 * Perform the transfer. vn_strategy must be used even though we
948 * know we have a device in order to deal with requests which exceed
949 * device DMA limitations.
951 vn_strategy(vp, &bp->b_bio1);
953 notify = 0;
954 crit_enter();
957 * If we had an error invoking the request, or an error in processing
958 * the request before we have returned, we process it as an error in
959 * transfer. Note that such an I/O error is not indicated immediately,
960 * but is returned using the aio_error mechanism. In this case,
961 * aio_suspend will return immediately.
963 if (bp->b_error || (bp->b_flags & B_ERROR)) {
964 struct aiocb *job = aiocbe->uuaiocb;
966 aiocbe->uaiocb._aiocb_private.status = 0;
967 suword(&job->_aiocb_private.status, 0);
968 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
969 suword(&job->_aiocb_private.error, bp->b_error);
971 ki->kaio_buffer_finished_count++;
973 if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
974 aiocbe->jobstate = JOBST_JOBBFINISHED;
975 aiocbe->jobflags |= AIOCBLIST_DONE;
976 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
977 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
978 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
979 notify = 1;
982 crit_exit();
983 if (notify)
984 KNOTE(&aiocbe->klist, 0);
985 return 0;
987 doerror:
988 ki->kaio_buffer_count--;
989 if (lj)
990 lj->lioj_buffer_count--;
991 aiocbe->bp = NULL;
992 relpbuf(bp, NULL);
993 return error;
997 * This waits/tests physio completion.
999 static int
1000 aio_fphysio(struct aiocblist *iocb)
1002 struct buf *bp;
1003 int error;
1005 bp = iocb->bp;
1007 crit_enter();
1008 while (bp->b_cmd != BUF_CMD_DONE) {
1009 if (tsleep(bp, 0, "physstr", aiod_timeout)) {
1010 if (bp->b_cmd != BUF_CMD_DONE) {
1011 crit_exit();
1012 return EINPROGRESS;
1013 } else {
1014 break;
1018 crit_exit();
1020 /* Release mapping into kernel space. */
1021 vunmapbuf(bp);
1022 iocb->bp = 0;
1024 error = 0;
1026 /* Check for an error. */
1027 if (bp->b_flags & B_ERROR)
1028 error = bp->b_error;
1030 relpbuf(bp, NULL);
1031 return (error);
1033 #endif /* VFS_AIO */
1036 * Wake up aio requests that may be serviceable now.
1038 void
1039 aio_swake(struct socket *so, struct signalsockbuf *ssb)
1041 #ifndef VFS_AIO
1042 return;
1043 #else
1044 struct aiocblist *cb,*cbn;
1045 struct proc *p;
1046 struct kaioinfo *ki = NULL;
1047 int opcode, wakecount = 0;
1048 struct aioproclist *aiop;
1050 if (ssb == &so->so_snd) {
1051 opcode = LIO_WRITE;
1052 so->so_snd.ssb_flags &= ~SSB_AIO;
1053 } else {
1054 opcode = LIO_READ;
1055 so->so_rcv.ssb_flags &= ~SSB_AIO;
1058 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) {
1059 cbn = TAILQ_NEXT(cb, list);
1060 if (opcode == cb->uaiocb.aio_lio_opcode) {
1061 p = cb->userproc;
1062 ki = p->p_aioinfo;
1063 TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1064 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist);
1065 TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1066 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist);
1067 wakecount++;
1068 if (cb->jobstate != JOBST_JOBQGLOBAL)
1069 panic("invalid queue value");
1073 while (wakecount--) {
1074 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) {
1075 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1076 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1077 aiop->aioprocflags &= ~AIOP_FREE;
1078 wakeup(aiop->aioproc);
1081 #endif /* VFS_AIO */
1084 #ifdef VFS_AIO
1086 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR
1087 * technique is done in this code.
1089 static int
1090 _aio_aqueue(struct aiocb *job, struct aio_liojob *lj, int type)
1092 struct proc *p = curproc;
1093 struct filedesc *fdp;
1094 struct file *fp;
1095 unsigned int fd;
1096 struct socket *so;
1097 int error;
1098 int opcode, user_opcode;
1099 struct aiocblist *aiocbe;
1100 struct aioproclist *aiop;
1101 struct kaioinfo *ki;
1102 struct kevent kev;
1103 struct kqueue *kq;
1104 struct file *kq_fp;
1106 if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL)
1107 TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
1108 else
1109 aiocbe = zalloc (aiocb_zone);
1111 aiocbe->inputcharge = 0;
1112 aiocbe->outputcharge = 0;
1113 callout_init(&aiocbe->timeout);
1114 SLIST_INIT(&aiocbe->klist);
1116 suword(&job->_aiocb_private.status, -1);
1117 suword(&job->_aiocb_private.error, 0);
1118 suword(&job->_aiocb_private.kernelinfo, -1);
1120 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb));
1121 if (error) {
1122 suword(&job->_aiocb_private.error, error);
1123 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1124 return error;
1126 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
1127 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1128 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1129 return EINVAL;
1132 /* Save userspace address of the job info. */
1133 aiocbe->uuaiocb = job;
1135 /* Get the opcode. */
1136 user_opcode = aiocbe->uaiocb.aio_lio_opcode;
1137 if (type != LIO_NOP)
1138 aiocbe->uaiocb.aio_lio_opcode = type;
1139 opcode = aiocbe->uaiocb.aio_lio_opcode;
1141 /* Get the fd info for process. */
1142 fdp = p->p_fd;
1145 * Range check file descriptor.
1147 fd = aiocbe->uaiocb.aio_fildes;
1148 if (fd >= fdp->fd_nfiles) {
1149 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1150 if (type == 0)
1151 suword(&job->_aiocb_private.error, EBADF);
1152 return EBADF;
1155 fp = aiocbe->fd_file = fdp->fd_files[fd].fp;
1156 if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) ==
1157 0))) {
1158 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1159 if (type == 0)
1160 suword(&job->_aiocb_private.error, EBADF);
1161 return EBADF;
1163 fhold(fp);
1165 if (aiocbe->uaiocb.aio_offset == -1LL) {
1166 error = EINVAL;
1167 goto aqueue_fail;
1169 error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
1170 if (error) {
1171 error = EINVAL;
1172 goto aqueue_fail;
1174 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
1175 if (jobrefid == LONG_MAX)
1176 jobrefid = 1;
1177 else
1178 jobrefid++;
1180 if (opcode == LIO_NOP) {
1181 fdrop(fp);
1182 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1183 if (type == 0) {
1184 suword(&job->_aiocb_private.error, 0);
1185 suword(&job->_aiocb_private.status, 0);
1186 suword(&job->_aiocb_private.kernelinfo, 0);
1188 return 0;
1190 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
1191 if (type == 0)
1192 suword(&job->_aiocb_private.status, 0);
1193 error = EINVAL;
1194 goto aqueue_fail;
1197 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) {
1198 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1199 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr;
1201 else {
1203 * This method for requesting kevent-based notification won't
1204 * work on the alpha, since we're passing in a pointer
1205 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT-
1206 * based method instead.
1208 if (user_opcode == LIO_NOP || user_opcode == LIO_READ ||
1209 user_opcode == LIO_WRITE)
1210 goto no_kqueue;
1212 error = copyin((struct kevent *)(uintptr_t)user_opcode,
1213 &kev, sizeof(kev));
1214 if (error)
1215 goto aqueue_fail;
1217 if ((u_int)kev.ident >= fdp->fd_nfiles ||
1218 (kq_fp = fdp->fd_files[kev.ident].fp) == NULL ||
1219 (kq_fp->f_type != DTYPE_KQUEUE)) {
1220 error = EBADF;
1221 goto aqueue_fail;
1223 kq = (struct kqueue *)kq_fp->f_data;
1224 kev.ident = (uintptr_t)aiocbe->uuaiocb;
1225 kev.filter = EVFILT_AIO;
1226 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
1227 kev.data = (intptr_t)aiocbe;
1228 /* XXX lwp kqueue_register takes a thread, but only uses its proc */
1229 error = kqueue_register(kq, &kev, FIRST_LWP_IN_PROC(p)->lwp_thread);
1230 aqueue_fail:
1231 if (error) {
1232 fdrop(fp);
1233 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1234 if (type == 0)
1235 suword(&job->_aiocb_private.error, error);
1236 goto done;
1238 no_kqueue:
1240 suword(&job->_aiocb_private.error, EINPROGRESS);
1241 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1242 aiocbe->userproc = p;
1243 aiocbe->jobflags = 0;
1244 aiocbe->lio = lj;
1245 ki = p->p_aioinfo;
1247 if (fp->f_type == DTYPE_SOCKET) {
1249 * Alternate queueing for socket ops: Reach down into the
1250 * descriptor to get the socket data. Then check to see if the
1251 * socket is ready to be read or written (based on the requested
1252 * operation).
1254 * If it is not ready for io, then queue the aiocbe on the
1255 * socket, and set the flags so we get a call when ssb_notify()
1256 * happens.
1258 so = (struct socket *)fp->f_data;
1259 crit_enter();
1260 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1261 LIO_WRITE) && (!sowriteable(so)))) {
1262 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1263 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist);
1264 if (opcode == LIO_READ)
1265 so->so_rcv.ssb_flags |= SSB_AIO;
1266 else
1267 so->so_snd.ssb_flags |= SSB_AIO;
1268 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */
1269 ki->kaio_queue_count++;
1270 num_queue_count++;
1271 crit_exit();
1272 error = 0;
1273 goto done;
1275 crit_exit();
1278 if ((error = aio_qphysio(p, aiocbe)) == 0)
1279 goto done;
1280 if (error > 0) {
1281 suword(&job->_aiocb_private.status, 0);
1282 aiocbe->uaiocb._aiocb_private.error = error;
1283 suword(&job->_aiocb_private.error, error);
1284 goto done;
1287 /* No buffer for daemon I/O. */
1288 aiocbe->bp = NULL;
1290 ki->kaio_queue_count++;
1291 if (lj)
1292 lj->lioj_queue_count++;
1293 crit_enter();
1294 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1295 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1296 crit_exit();
1297 aiocbe->jobstate = JOBST_JOBQGLOBAL;
1299 num_queue_count++;
1300 error = 0;
1303 * If we don't have a free AIO process, and we are below our quota, then
1304 * start one. Otherwise, depend on the subsequent I/O completions to
1305 * pick-up this job. If we don't successfully create the new process
1306 * (thread) due to resource issues, we return an error for now (EAGAIN),
1307 * which is likely not the correct thing to do.
1309 crit_enter();
1310 retryproc:
1311 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1312 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1313 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1314 aiop->aioprocflags &= ~AIOP_FREE;
1315 wakeup(aiop->aioproc);
1316 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1317 ((ki->kaio_active_count + num_aio_resv_start) <
1318 ki->kaio_maxactive_count)) {
1319 num_aio_resv_start++;
1320 if ((error = aio_newproc()) == 0) {
1321 num_aio_resv_start--;
1322 goto retryproc;
1324 num_aio_resv_start--;
1326 crit_exit();
1327 done:
1328 return error;
1332 * This routine queues an AIO request, checking for quotas.
1334 static int
1335 aio_aqueue(struct aiocb *job, int type)
1337 struct proc *p = curproc;
1338 struct kaioinfo *ki;
1340 if (p->p_aioinfo == NULL)
1341 aio_init_aioinfo(p);
1343 if (num_queue_count >= max_queue_count)
1344 return EAGAIN;
1346 ki = p->p_aioinfo;
1347 if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
1348 return EAGAIN;
1350 return _aio_aqueue(job, NULL, type);
1352 #endif /* VFS_AIO */
1355 * Support the aio_return system call, as a side-effect, kernel resources are
1356 * released.
1359 sys_aio_return(struct aio_return_args *uap)
1361 #ifndef VFS_AIO
1362 return ENOSYS;
1363 #else
1364 struct proc *p = curproc;
1365 struct lwp *lp = curthread->td_lwp;
1366 long jobref;
1367 struct aiocblist *cb, *ncb;
1368 struct aiocb *ujob;
1369 struct kaioinfo *ki;
1371 ki = p->p_aioinfo;
1372 if (ki == NULL)
1373 return EINVAL;
1375 ujob = uap->aiocbp;
1377 jobref = fuword(&ujob->_aiocb_private.kernelinfo);
1378 if (jobref == -1 || jobref == 0)
1379 return EINVAL;
1381 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1382 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1383 jobref) {
1384 if (ujob == cb->uuaiocb) {
1385 uap->sysmsg_result =
1386 cb->uaiocb._aiocb_private.status;
1387 } else
1388 uap->sysmsg_result = EFAULT;
1389 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1390 lp->lwp_ru.ru_oublock += cb->outputcharge;
1391 cb->outputcharge = 0;
1392 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1393 lp->lwp_ru.ru_inblock += cb->inputcharge;
1394 cb->inputcharge = 0;
1396 aio_free_entry(cb);
1397 return 0;
1400 crit_enter();
1401 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) {
1402 ncb = TAILQ_NEXT(cb, plist);
1403 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo)
1404 == jobref) {
1405 crit_exit();
1406 if (ujob == cb->uuaiocb) {
1407 uap->sysmsg_result =
1408 cb->uaiocb._aiocb_private.status;
1409 } else
1410 uap->sysmsg_result = EFAULT;
1411 aio_free_entry(cb);
1412 return 0;
1415 crit_exit();
1417 return (EINVAL);
1418 #endif /* VFS_AIO */
1422 * Allow a process to wakeup when any of the I/O requests are completed.
1425 sys_aio_suspend(struct aio_suspend_args *uap)
1427 #ifndef VFS_AIO
1428 return ENOSYS;
1429 #else
1430 struct proc *p = curproc;
1431 struct timeval atv;
1432 struct timespec ts;
1433 struct aiocb *const *cbptr, *cbp;
1434 struct kaioinfo *ki;
1435 struct aiocblist *cb;
1436 int i;
1437 int njoblist;
1438 int error, timo;
1439 long *ijoblist;
1440 struct aiocb **ujoblist;
1442 if (uap->nent > AIO_LISTIO_MAX)
1443 return EINVAL;
1445 timo = 0;
1446 if (uap->timeout) {
1447 /* Get timespec struct. */
1448 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1449 return error;
1451 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1452 return (EINVAL);
1454 TIMESPEC_TO_TIMEVAL(&atv, &ts);
1455 if (itimerfix(&atv))
1456 return (EINVAL);
1457 timo = tvtohz_high(&atv);
1460 ki = p->p_aioinfo;
1461 if (ki == NULL)
1462 return EAGAIN;
1464 njoblist = 0;
1465 ijoblist = zalloc(aiol_zone);
1466 ujoblist = zalloc(aiol_zone);
1467 cbptr = uap->aiocbp;
1469 for (i = 0; i < uap->nent; i++) {
1470 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1471 if (cbp == 0)
1472 continue;
1473 ujoblist[njoblist] = cbp;
1474 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
1475 njoblist++;
1478 if (njoblist == 0) {
1479 zfree(aiol_zone, ijoblist);
1480 zfree(aiol_zone, ujoblist);
1481 return 0;
1484 error = 0;
1485 for (;;) {
1486 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1487 for (i = 0; i < njoblist; i++) {
1488 if (((intptr_t)
1489 cb->uaiocb._aiocb_private.kernelinfo) ==
1490 ijoblist[i]) {
1491 if (ujoblist[i] != cb->uuaiocb)
1492 error = EINVAL;
1493 zfree(aiol_zone, ijoblist);
1494 zfree(aiol_zone, ujoblist);
1495 return error;
1500 crit_enter();
1501 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb =
1502 TAILQ_NEXT(cb, plist)) {
1503 for (i = 0; i < njoblist; i++) {
1504 if (((intptr_t)
1505 cb->uaiocb._aiocb_private.kernelinfo) ==
1506 ijoblist[i]) {
1507 crit_exit();
1508 if (ujoblist[i] != cb->uuaiocb)
1509 error = EINVAL;
1510 zfree(aiol_zone, ijoblist);
1511 zfree(aiol_zone, ujoblist);
1512 return error;
1517 ki->kaio_flags |= KAIO_WAKEUP;
1518 error = tsleep(p, PCATCH, "aiospn", timo);
1519 crit_exit();
1521 if (error == ERESTART || error == EINTR) {
1522 zfree(aiol_zone, ijoblist);
1523 zfree(aiol_zone, ujoblist);
1524 return EINTR;
1525 } else if (error == EWOULDBLOCK) {
1526 zfree(aiol_zone, ijoblist);
1527 zfree(aiol_zone, ujoblist);
1528 return EAGAIN;
1532 /* NOTREACHED */
1533 return EINVAL;
1534 #endif /* VFS_AIO */
1538 * aio_cancel cancels any non-physio aio operations not currently in
1539 * progress.
1542 sys_aio_cancel(struct aio_cancel_args *uap)
1544 #ifndef VFS_AIO
1545 return ENOSYS;
1546 #else
1547 struct proc *p = curproc;
1548 struct kaioinfo *ki;
1549 struct aiocblist *cbe, *cbn;
1550 struct file *fp;
1551 struct filedesc *fdp;
1552 struct socket *so;
1553 struct proc *po;
1554 int error;
1555 int cancelled=0;
1556 int notcancelled=0;
1557 struct vnode *vp;
1559 fdp = p->p_fd;
1560 if ((u_int)uap->fd >= fdp->fd_nfiles ||
1561 (fp = fdp->fd_files[uap->fd].fp) == NULL)
1562 return (EBADF);
1564 if (fp->f_type == DTYPE_VNODE) {
1565 vp = (struct vnode *)fp->f_data;
1567 if (vn_isdisk(vp,&error)) {
1568 uap->sysmsg_result = AIO_NOTCANCELED;
1569 return 0;
1571 } else if (fp->f_type == DTYPE_SOCKET) {
1572 so = (struct socket *)fp->f_data;
1574 crit_enter();
1576 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) {
1577 cbn = TAILQ_NEXT(cbe, list);
1578 if ((uap->aiocbp == NULL) ||
1579 (uap->aiocbp == cbe->uuaiocb) ) {
1580 po = cbe->userproc;
1581 ki = po->p_aioinfo;
1582 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
1583 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist);
1584 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist);
1585 if (ki->kaio_flags & KAIO_WAKEUP) {
1586 wakeup(po);
1588 cbe->jobstate = JOBST_JOBFINISHED;
1589 cbe->uaiocb._aiocb_private.status=-1;
1590 cbe->uaiocb._aiocb_private.error=ECANCELED;
1591 cancelled++;
1592 /* XXX cancelled, knote? */
1593 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1594 SIGEV_SIGNAL)
1595 ksignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1596 if (uap->aiocbp)
1597 break;
1600 crit_exit();
1602 if ((cancelled) && (uap->aiocbp)) {
1603 uap->sysmsg_result = AIO_CANCELED;
1604 return 0;
1607 ki=p->p_aioinfo;
1608 if (ki == NULL)
1609 goto done;
1610 crit_enter();
1612 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) {
1613 cbn = TAILQ_NEXT(cbe, plist);
1615 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
1616 ((uap->aiocbp == NULL ) ||
1617 (uap->aiocbp == cbe->uuaiocb))) {
1619 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
1620 TAILQ_REMOVE(&aio_jobs, cbe, list);
1621 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
1622 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe,
1623 plist);
1624 cancelled++;
1625 ki->kaio_queue_finished_count++;
1626 cbe->jobstate = JOBST_JOBFINISHED;
1627 cbe->uaiocb._aiocb_private.status = -1;
1628 cbe->uaiocb._aiocb_private.error = ECANCELED;
1629 /* XXX cancelled, knote? */
1630 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1631 SIGEV_SIGNAL)
1632 ksignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1633 } else {
1634 notcancelled++;
1638 crit_exit();
1639 done:
1640 if (notcancelled) {
1641 uap->sysmsg_result = AIO_NOTCANCELED;
1642 return 0;
1644 if (cancelled) {
1645 uap->sysmsg_result = AIO_CANCELED;
1646 return 0;
1648 uap->sysmsg_result = AIO_ALLDONE;
1650 return 0;
1651 #endif /* VFS_AIO */
1655 * aio_error is implemented in the kernel level for compatibility purposes only.
1656 * For a user mode async implementation, it would be best to do it in a userland
1657 * subroutine.
1660 sys_aio_error(struct aio_error_args *uap)
1662 #ifndef VFS_AIO
1663 return ENOSYS;
1664 #else
1665 struct proc *p = curproc;
1666 struct aiocblist *cb;
1667 struct kaioinfo *ki;
1668 long jobref;
1670 ki = p->p_aioinfo;
1671 if (ki == NULL)
1672 return EINVAL;
1674 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
1675 if ((jobref == -1) || (jobref == 0))
1676 return EINVAL;
1678 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1679 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1680 jobref) {
1681 uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1682 return 0;
1686 crit_enter();
1688 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb,
1689 plist)) {
1690 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1691 jobref) {
1692 uap->sysmsg_result = EINPROGRESS;
1693 crit_exit();
1694 return 0;
1698 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb,
1699 plist)) {
1700 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1701 jobref) {
1702 uap->sysmsg_result = EINPROGRESS;
1703 crit_exit();
1704 return 0;
1707 crit_exit();
1709 crit_enter();
1710 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb,
1711 plist)) {
1712 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1713 jobref) {
1714 uap->sysmsg_result = cb->uaiocb._aiocb_private.error;
1715 crit_exit();
1716 return 0;
1720 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb,
1721 plist)) {
1722 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1723 jobref) {
1724 uap->sysmsg_result = EINPROGRESS;
1725 crit_exit();
1726 return 0;
1729 crit_exit();
1731 #if (0)
1733 * Hack for lio.
1735 status = fuword(&uap->aiocbp->_aiocb_private.status);
1736 if (status == -1)
1737 return fuword(&uap->aiocbp->_aiocb_private.error);
1738 #endif
1739 return EINVAL;
1740 #endif /* VFS_AIO */
1743 /* syscall - asynchronous read from a file (REALTIME) */
1745 sys_aio_read(struct aio_read_args *uap)
1747 #ifndef VFS_AIO
1748 return ENOSYS;
1749 #else
1750 return aio_aqueue(uap->aiocbp, LIO_READ);
1751 #endif /* VFS_AIO */
1754 /* syscall - asynchronous write to a file (REALTIME) */
1756 sys_aio_write(struct aio_write_args *uap)
1758 #ifndef VFS_AIO
1759 return ENOSYS;
1760 #else
1761 return aio_aqueue(uap->aiocbp, LIO_WRITE);
1762 #endif /* VFS_AIO */
1765 /* syscall - XXX undocumented */
1767 sys_lio_listio(struct lio_listio_args *uap)
1769 #ifndef VFS_AIO
1770 return ENOSYS;
1771 #else
1772 struct proc *p = curproc;
1773 struct lwp *lp = curthread->td_lwp;
1774 int nent, nentqueued;
1775 struct aiocb *iocb, * const *cbptr;
1776 struct aiocblist *cb;
1777 struct kaioinfo *ki;
1778 struct aio_liojob *lj;
1779 int error, runningcode;
1780 int nerror;
1781 int i;
1783 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
1784 return EINVAL;
1786 nent = uap->nent;
1787 if (nent > AIO_LISTIO_MAX)
1788 return EINVAL;
1790 if (p->p_aioinfo == NULL)
1791 aio_init_aioinfo(p);
1793 if ((nent + num_queue_count) > max_queue_count)
1794 return EAGAIN;
1796 ki = p->p_aioinfo;
1797 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count)
1798 return EAGAIN;
1800 lj = zalloc(aiolio_zone);
1801 if (!lj)
1802 return EAGAIN;
1804 lj->lioj_flags = 0;
1805 lj->lioj_buffer_count = 0;
1806 lj->lioj_buffer_finished_count = 0;
1807 lj->lioj_queue_count = 0;
1808 lj->lioj_queue_finished_count = 0;
1809 lj->lioj_ki = ki;
1812 * Setup signal.
1814 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
1815 error = copyin(uap->sig, &lj->lioj_signal,
1816 sizeof(lj->lioj_signal));
1817 if (error) {
1818 zfree(aiolio_zone, lj);
1819 return error;
1821 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
1822 zfree(aiolio_zone, lj);
1823 return EINVAL;
1825 lj->lioj_flags |= LIOJ_SIGNAL;
1826 lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
1827 } else
1828 lj->lioj_flags &= ~LIOJ_SIGNAL;
1830 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
1832 * Get pointers to the list of I/O requests.
1834 nerror = 0;
1835 nentqueued = 0;
1836 cbptr = uap->acb_list;
1837 for (i = 0; i < uap->nent; i++) {
1838 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1839 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
1840 error = _aio_aqueue(iocb, lj, 0);
1841 if (error == 0)
1842 nentqueued++;
1843 else
1844 nerror++;
1849 * If we haven't queued any, then just return error.
1851 if (nentqueued == 0)
1852 return 0;
1855 * Calculate the appropriate error return.
1857 runningcode = 0;
1858 if (nerror)
1859 runningcode = EIO;
1861 if (uap->mode == LIO_WAIT) {
1862 int command, found, jobref;
1864 for (;;) {
1865 found = 0;
1866 for (i = 0; i < uap->nent; i++) {
1868 * Fetch address of the control buf pointer in
1869 * user space.
1871 iocb = (struct aiocb *)
1872 (intptr_t)fuword(&cbptr[i]);
1873 if (((intptr_t)iocb == -1) || ((intptr_t)iocb
1874 == 0))
1875 continue;
1878 * Fetch the associated command from user space.
1880 command = fuword(&iocb->aio_lio_opcode);
1881 if (command == LIO_NOP) {
1882 found++;
1883 continue;
1886 jobref = fuword(&iocb->_aiocb_private.kernelinfo);
1888 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1889 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1890 == jobref) {
1891 if (cb->uaiocb.aio_lio_opcode
1892 == LIO_WRITE) {
1893 lp->lwp_ru.ru_oublock +=
1894 cb->outputcharge;
1895 cb->outputcharge = 0;
1896 } else if (cb->uaiocb.aio_lio_opcode
1897 == LIO_READ) {
1898 lp->lwp_ru.ru_inblock +=
1899 cb->inputcharge;
1900 cb->inputcharge = 0;
1902 found++;
1903 break;
1907 crit_enter();
1908 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) {
1909 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1910 == jobref) {
1911 found++;
1912 break;
1915 crit_exit();
1919 * If all I/Os have been disposed of, then we can
1920 * return.
1922 if (found == nentqueued)
1923 return runningcode;
1925 ki->kaio_flags |= KAIO_WAKEUP;
1926 error = tsleep(p, PCATCH, "aiospn", 0);
1928 if (error == EINTR)
1929 return EINTR;
1930 else if (error == EWOULDBLOCK)
1931 return EAGAIN;
1935 return runningcode;
1936 #endif /* VFS_AIO */
1939 #ifdef VFS_AIO
1941 * This is a weird hack so that we can post a signal. It is safe to do so from
1942 * a timeout routine, but *not* from an interrupt routine.
1944 static void
1945 process_signal(void *aioj)
1947 struct aiocblist *aiocbe = aioj;
1948 struct aio_liojob *lj = aiocbe->lio;
1949 struct aiocb *cb = &aiocbe->uaiocb;
1951 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) &&
1952 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) {
1953 ksignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
1954 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1957 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL)
1958 ksignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo);
1962 * Interrupt handler for physio, performs the necessary process wakeups, and
1963 * signals.
1965 static void
1966 aio_physwakeup(struct bio *bio)
1968 struct buf *bp = bio->bio_buf;
1969 struct aiocblist *aiocbe;
1970 struct proc *p;
1971 struct kaioinfo *ki;
1972 struct aio_liojob *lj;
1974 aiocbe = bio->bio_caller_info2.ptr;
1976 if (aiocbe) {
1977 p = bio->bio_caller_info1.ptr;
1979 aiocbe->jobstate = JOBST_JOBBFINISHED;
1980 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
1981 aiocbe->uaiocb._aiocb_private.error = 0;
1982 aiocbe->jobflags |= AIOCBLIST_DONE;
1984 if (bp->b_flags & B_ERROR)
1985 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
1987 lj = aiocbe->lio;
1988 if (lj) {
1989 lj->lioj_buffer_finished_count++;
1992 * wakeup/signal if all of the interrupt jobs are done.
1994 if (lj->lioj_buffer_finished_count ==
1995 lj->lioj_buffer_count) {
1997 * Post a signal if it is called for.
1999 if ((lj->lioj_flags &
2000 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
2001 LIOJ_SIGNAL) {
2002 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2003 callout_reset(&aiocbe->timeout, 0,
2004 process_signal, aiocbe);
2009 ki = p->p_aioinfo;
2010 if (ki) {
2011 ki->kaio_buffer_finished_count++;
2012 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
2013 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
2014 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
2016 KNOTE(&aiocbe->klist, 0);
2017 /* Do the wakeup. */
2018 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
2019 ki->kaio_flags &= ~KAIO_WAKEUP;
2020 wakeup(p);
2024 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
2025 callout_reset(&aiocbe->timeout, 0,
2026 process_signal, aiocbe);
2029 bp->b_cmd = BUF_CMD_DONE;
2030 wakeup(bp);
2032 #endif /* VFS_AIO */
2034 /* syscall - wait for the next completion of an aio request */
2036 sys_aio_waitcomplete(struct aio_waitcomplete_args *uap)
2038 #ifndef VFS_AIO
2039 return ENOSYS;
2040 #else
2041 struct proc *p = curproc;
2042 struct lwp *lp = curthread->td_lwp;
2043 struct timeval atv;
2044 struct timespec ts;
2045 struct kaioinfo *ki;
2046 struct aiocblist *cb = NULL;
2047 int error, timo;
2049 suword(uap->aiocbp, (int)NULL);
2051 timo = 0;
2052 if (uap->timeout) {
2053 /* Get timespec struct. */
2054 error = copyin(uap->timeout, &ts, sizeof(ts));
2055 if (error)
2056 return error;
2058 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
2059 return (EINVAL);
2061 TIMESPEC_TO_TIMEVAL(&atv, &ts);
2062 if (itimerfix(&atv))
2063 return (EINVAL);
2064 timo = tvtohz_high(&atv);
2067 ki = p->p_aioinfo;
2068 if (ki == NULL)
2069 return EAGAIN;
2071 for (;;) {
2072 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) {
2073 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2074 uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2075 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2076 lp->lwp_ru.ru_oublock +=
2077 cb->outputcharge;
2078 cb->outputcharge = 0;
2079 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2080 lp->lwp_ru.ru_inblock += cb->inputcharge;
2081 cb->inputcharge = 0;
2083 aio_free_entry(cb);
2084 return cb->uaiocb._aiocb_private.error;
2087 crit_enter();
2088 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) {
2089 crit_exit();
2090 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2091 uap->sysmsg_result = cb->uaiocb._aiocb_private.status;
2092 aio_free_entry(cb);
2093 return cb->uaiocb._aiocb_private.error;
2096 ki->kaio_flags |= KAIO_WAKEUP;
2097 error = tsleep(p, PCATCH, "aiowc", timo);
2098 crit_exit();
2100 if (error == ERESTART)
2101 return EINTR;
2102 else if (error < 0)
2103 return error;
2104 else if (error == EINTR)
2105 return EINTR;
2106 else if (error == EWOULDBLOCK)
2107 return EAGAIN;
2109 #endif /* VFS_AIO */
2112 #ifndef VFS_AIO
2113 static int
2114 filt_aioattach(struct knote *kn)
2117 return (ENXIO);
2120 struct filterops aio_filtops =
2121 { 0, filt_aioattach, NULL, NULL };
2123 #else
2124 /* kqueue attach function */
2125 static int
2126 filt_aioattach(struct knote *kn)
2128 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2131 * The aiocbe pointer must be validated before using it, so
2132 * registration is restricted to the kernel; the user cannot
2133 * set EV_FLAG1.
2135 if ((kn->kn_flags & EV_FLAG1) == 0)
2136 return (EPERM);
2137 kn->kn_flags &= ~EV_FLAG1;
2139 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext);
2141 return (0);
2144 /* kqueue detach function */
2145 static void
2146 filt_aiodetach(struct knote *kn)
2148 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2150 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext);
2153 /* kqueue filter function */
2154 /*ARGSUSED*/
2155 static int
2156 filt_aio(struct knote *kn, long hint)
2158 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2160 kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2161 if (aiocbe->jobstate != JOBST_JOBFINISHED &&
2162 aiocbe->jobstate != JOBST_JOBBFINISHED)
2163 return (0);
2164 kn->kn_flags |= EV_EOF;
2165 return (1);
2168 struct filterops aio_filtops =
2169 { 0, filt_aioattach, filt_aiodetach, filt_aio };
2170 #endif /* VFS_AIO */