get mxge to build, stage 29/many
[dragonfly.git] / sys / kern / uipc_syscalls.c
blobb45981fffb4df2b15e891d2fe93c453c040a5b06
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * sendfile(2) and related extensions:
6 * Copyright (c) 1998, David Greenman. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
37 * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38 * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.92 2008/11/26 13:10:56 sephe Exp $
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 #include <sys/socketvar2.h>
82 #include <net/netmsg2.h>
84 #ifdef SCTP
85 #include <netinet/sctp_peeloff.h>
86 #endif /* SCTP */
88 struct sfbuf_mref {
89 struct sf_buf *sf;
90 int mref_count;
93 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
96 * System call interface to the socket abstraction.
99 extern struct fileops socketops;
102 * socket_args(int domain, int type, int protocol)
105 kern_socket(int domain, int type, int protocol, int *res)
107 struct thread *td = curthread;
108 struct proc *p = td->td_proc;
109 struct socket *so;
110 struct file *fp;
111 int fd, error;
113 KKASSERT(p);
115 error = falloc(p, &fp, &fd);
116 if (error)
117 return (error);
118 error = socreate(domain, &so, type, protocol, td);
119 if (error) {
120 fsetfd(p, NULL, fd);
121 } else {
122 fp->f_type = DTYPE_SOCKET;
123 fp->f_flag = FREAD | FWRITE;
124 fp->f_ops = &socketops;
125 fp->f_data = so;
126 *res = fd;
127 fsetfd(p, fp, fd);
129 fdrop(fp);
130 return (error);
134 sys_socket(struct socket_args *uap)
136 int error;
138 error = kern_socket(uap->domain, uap->type, uap->protocol,
139 &uap->sysmsg_result);
141 return (error);
145 kern_bind(int s, struct sockaddr *sa)
147 struct thread *td = curthread;
148 struct proc *p = td->td_proc;
149 struct file *fp;
150 int error;
152 KKASSERT(p);
153 error = holdsock(p->p_fd, s, &fp);
154 if (error)
155 return (error);
156 error = sobind((struct socket *)fp->f_data, sa, td);
157 fdrop(fp);
158 return (error);
162 * bind_args(int s, caddr_t name, int namelen)
165 sys_bind(struct bind_args *uap)
167 struct sockaddr *sa;
168 int error;
170 error = getsockaddr(&sa, uap->name, uap->namelen);
171 if (error)
172 return (error);
173 error = kern_bind(uap->s, sa);
174 FREE(sa, M_SONAME);
176 return (error);
180 kern_listen(int s, int backlog)
182 struct thread *td = curthread;
183 struct proc *p = td->td_proc;
184 struct file *fp;
185 int error;
187 KKASSERT(p);
188 error = holdsock(p->p_fd, s, &fp);
189 if (error)
190 return (error);
191 error = solisten((struct socket *)fp->f_data, backlog, td);
192 fdrop(fp);
193 return(error);
197 * listen_args(int s, int backlog)
200 sys_listen(struct listen_args *uap)
202 int error;
204 error = kern_listen(uap->s, uap->backlog);
205 return (error);
209 * Returns the accepted socket as well.
211 static boolean_t
212 soaccept_predicate(struct netmsg *msg0)
214 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
215 struct socket *head = msg->nm_so;
217 if (head->so_error != 0) {
218 msg->nm_netmsg.nm_lmsg.ms_error = head->so_error;
219 return (TRUE);
221 if (!TAILQ_EMPTY(&head->so_comp)) {
222 /* Abuse nm_so field as copy in/copy out parameter. XXX JH */
223 msg->nm_so = TAILQ_FIRST(&head->so_comp);
224 TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
225 head->so_qlen--;
227 msg->nm_netmsg.nm_lmsg.ms_error = 0;
228 return (TRUE);
230 if (head->so_state & SS_CANTRCVMORE) {
231 msg->nm_netmsg.nm_lmsg.ms_error = ECONNABORTED;
232 return (TRUE);
234 if (msg->nm_fflags & FNONBLOCK) {
235 msg->nm_netmsg.nm_lmsg.ms_error = EWOULDBLOCK;
236 return (TRUE);
239 return (FALSE);
243 * The second argument to kern_accept() is a handle to a struct sockaddr.
244 * This allows kern_accept() to return a pointer to an allocated struct
245 * sockaddr which must be freed later with FREE(). The caller must
246 * initialize *name to NULL.
249 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
251 struct thread *td = curthread;
252 struct proc *p = td->td_proc;
253 struct file *lfp = NULL;
254 struct file *nfp = NULL;
255 struct sockaddr *sa;
256 struct socket *head, *so;
257 struct netmsg_so_notify msg;
258 lwkt_port_t port;
259 int fd;
260 u_int fflag; /* type must match fp->f_flag */
261 int error, tmp;
263 *res = -1;
264 if (name && namelen && *namelen < 0)
265 return (EINVAL);
267 error = holdsock(p->p_fd, s, &lfp);
268 if (error)
269 return (error);
271 error = falloc(p, &nfp, &fd);
272 if (error) { /* Probably ran out of file descriptors. */
273 fdrop(lfp);
274 return (error);
276 head = (struct socket *)lfp->f_data;
277 if ((head->so_options & SO_ACCEPTCONN) == 0) {
278 error = EINVAL;
279 goto done;
282 if (fflags & O_FBLOCKING)
283 fflags |= lfp->f_flag & ~FNONBLOCK;
284 else if (fflags & O_FNONBLOCKING)
285 fflags |= lfp->f_flag | FNONBLOCK;
286 else
287 fflags = lfp->f_flag;
289 /* optimize for uniprocessor case later XXX JH */
290 port = head->so_proto->pr_mport(head, NULL, NULL, PRU_PRED);
291 netmsg_init_abortable(&msg.nm_netmsg, &curthread->td_msgport,
293 netmsg_so_notify,
294 netmsg_so_notify_doabort);
295 msg.nm_predicate = soaccept_predicate;
296 msg.nm_fflags = fflags;
297 msg.nm_so = head;
298 msg.nm_etype = NM_REVENT;
299 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
300 if (error)
301 goto done;
304 * At this point we have the connection that's ready to be accepted.
306 so = msg.nm_so;
308 fflag = lfp->f_flag;
310 /* connection has been removed from the listen queue */
311 KNOTE(&head->so_rcv.ssb_sel.si_note, 0);
313 so->so_state &= ~SS_COMP;
314 so->so_head = NULL;
315 if (head->so_sigio != NULL)
316 fsetown(fgetown(head->so_sigio), &so->so_sigio);
318 nfp->f_type = DTYPE_SOCKET;
319 nfp->f_flag = fflag;
320 nfp->f_ops = &socketops;
321 nfp->f_data = so;
322 /* Sync socket nonblocking/async state with file flags */
323 tmp = fflag & FNONBLOCK;
324 (void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred);
325 tmp = fflag & FASYNC;
326 (void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred);
328 sa = NULL;
329 error = soaccept(so, &sa);
332 * Set the returned name and namelen as applicable. Set the returned
333 * namelen to 0 for older code which might ignore the return value
334 * from accept.
336 if (error == 0) {
337 if (sa && name && namelen) {
338 if (*namelen > sa->sa_len)
339 *namelen = sa->sa_len;
340 *name = sa;
341 } else {
342 if (sa)
343 FREE(sa, M_SONAME);
347 done:
349 * If an error occured clear the reserved descriptor, else associate
350 * nfp with it.
352 * Note that *res is normally ignored if an error is returned but
353 * a syscall message will still have access to the result code.
355 if (error) {
356 fsetfd(p, NULL, fd);
357 } else {
358 *res = fd;
359 fsetfd(p, nfp, fd);
361 fdrop(nfp);
362 fdrop(lfp);
363 return (error);
367 * accept(int s, caddr_t name, int *anamelen)
370 sys_accept(struct accept_args *uap)
372 struct sockaddr *sa = NULL;
373 int sa_len;
374 int error;
376 if (uap->name) {
377 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
378 if (error)
379 return (error);
381 error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result);
383 if (error == 0)
384 error = copyout(sa, uap->name, sa_len);
385 if (error == 0) {
386 error = copyout(&sa_len, uap->anamelen,
387 sizeof(*uap->anamelen));
389 if (sa)
390 FREE(sa, M_SONAME);
391 } else {
392 error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result);
394 return (error);
398 * extaccept(int s, int fflags, caddr_t name, int *anamelen)
401 sys_extaccept(struct extaccept_args *uap)
403 struct sockaddr *sa = NULL;
404 int sa_len;
405 int error;
406 int fflags = uap->flags & O_FMASK;
408 if (uap->name) {
409 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
410 if (error)
411 return (error);
413 error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result);
415 if (error == 0)
416 error = copyout(sa, uap->name, sa_len);
417 if (error == 0) {
418 error = copyout(&sa_len, uap->anamelen,
419 sizeof(*uap->anamelen));
421 if (sa)
422 FREE(sa, M_SONAME);
423 } else {
424 error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result);
426 return (error);
431 * Returns TRUE if predicate satisfied.
433 static boolean_t
434 soconnected_predicate(struct netmsg *msg0)
436 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
437 struct socket *so = msg->nm_so;
439 /* check predicate */
440 if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
441 msg->nm_netmsg.nm_lmsg.ms_error = so->so_error;
442 return (TRUE);
445 return (FALSE);
449 kern_connect(int s, int fflags, struct sockaddr *sa)
451 struct thread *td = curthread;
452 struct proc *p = td->td_proc;
453 struct file *fp;
454 struct socket *so;
455 int error, interrupted = 0;
457 error = holdsock(p->p_fd, s, &fp);
458 if (error)
459 return (error);
460 so = (struct socket *)fp->f_data;
462 if (fflags & O_FBLOCKING)
463 /* fflags &= ~FNONBLOCK; */;
464 else if (fflags & O_FNONBLOCKING)
465 fflags |= FNONBLOCK;
466 else
467 fflags = fp->f_flag;
469 if (so->so_state & SS_ISCONNECTING) {
470 error = EALREADY;
471 goto done;
473 error = soconnect(so, sa, td);
474 if (error)
475 goto bad;
476 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
477 error = EINPROGRESS;
478 goto done;
480 if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
481 struct netmsg_so_notify msg;
482 lwkt_port_t port;
484 port = so->so_proto->pr_mport(so, sa, NULL, PRU_PRED);
485 netmsg_init_abortable(&msg.nm_netmsg,
486 &curthread->td_msgport,
488 netmsg_so_notify,
489 netmsg_so_notify_doabort);
490 msg.nm_predicate = soconnected_predicate;
491 msg.nm_so = so;
492 msg.nm_etype = NM_REVENT;
493 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
494 if (error == EINTR || error == ERESTART)
495 interrupted = 1;
497 if (error == 0) {
498 error = so->so_error;
499 so->so_error = 0;
501 bad:
502 if (!interrupted)
503 so->so_state &= ~SS_ISCONNECTING;
504 if (error == ERESTART)
505 error = EINTR;
506 done:
507 fdrop(fp);
508 return (error);
512 * connect_args(int s, caddr_t name, int namelen)
515 sys_connect(struct connect_args *uap)
517 struct sockaddr *sa;
518 int error;
520 error = getsockaddr(&sa, uap->name, uap->namelen);
521 if (error)
522 return (error);
523 error = kern_connect(uap->s, 0, sa);
524 FREE(sa, M_SONAME);
526 return (error);
530 * connect_args(int s, int fflags, caddr_t name, int namelen)
533 sys_extconnect(struct extconnect_args *uap)
535 struct sockaddr *sa;
536 int error;
537 int fflags = uap->flags & O_FMASK;
539 error = getsockaddr(&sa, uap->name, uap->namelen);
540 if (error)
541 return (error);
542 error = kern_connect(uap->s, fflags, sa);
543 FREE(sa, M_SONAME);
545 return (error);
549 kern_socketpair(int domain, int type, int protocol, int *sv)
551 struct thread *td = curthread;
552 struct proc *p = td->td_proc;
553 struct file *fp1, *fp2;
554 struct socket *so1, *so2;
555 int fd1, fd2, error;
557 KKASSERT(p);
558 error = socreate(domain, &so1, type, protocol, td);
559 if (error)
560 return (error);
561 error = socreate(domain, &so2, type, protocol, td);
562 if (error)
563 goto free1;
564 error = falloc(p, &fp1, &fd1);
565 if (error)
566 goto free2;
567 sv[0] = fd1;
568 fp1->f_data = so1;
569 error = falloc(p, &fp2, &fd2);
570 if (error)
571 goto free3;
572 fp2->f_data = so2;
573 sv[1] = fd2;
574 error = soconnect2(so1, so2);
575 if (error)
576 goto free4;
577 if (type == SOCK_DGRAM) {
579 * Datagram socket connection is asymmetric.
581 error = soconnect2(so2, so1);
582 if (error)
583 goto free4;
585 fp1->f_type = fp2->f_type = DTYPE_SOCKET;
586 fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
587 fp1->f_ops = fp2->f_ops = &socketops;
588 fsetfd(p, fp1, fd1);
589 fsetfd(p, fp2, fd2);
590 fdrop(fp1);
591 fdrop(fp2);
592 return (error);
593 free4:
594 fsetfd(p, NULL, fd2);
595 fdrop(fp2);
596 free3:
597 fsetfd(p, NULL, fd1);
598 fdrop(fp1);
599 free2:
600 (void)soclose(so2, 0);
601 free1:
602 (void)soclose(so1, 0);
603 return (error);
607 * socketpair(int domain, int type, int protocol, int *rsv)
610 sys_socketpair(struct socketpair_args *uap)
612 int error, sockv[2];
614 error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
616 if (error == 0)
617 error = copyout(sockv, uap->rsv, sizeof(sockv));
618 return (error);
622 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
623 struct mbuf *control, int flags, int *res)
625 struct thread *td = curthread;
626 struct lwp *lp = td->td_lwp;
627 struct proc *p = td->td_proc;
628 struct file *fp;
629 int len, error;
630 struct socket *so;
631 #ifdef KTRACE
632 struct iovec *ktriov = NULL;
633 struct uio ktruio;
634 #endif
636 error = holdsock(p->p_fd, s, &fp);
637 if (error)
638 return (error);
639 if (auio->uio_resid < 0) {
640 error = EINVAL;
641 goto done;
643 #ifdef KTRACE
644 if (KTRPOINT(td, KTR_GENIO)) {
645 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
647 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
648 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
649 ktruio = *auio;
651 #endif
652 len = auio->uio_resid;
653 so = (struct socket *)fp->f_data;
654 if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
655 if (fp->f_flag & FNONBLOCK)
656 flags |= MSG_FNONBLOCKING;
658 error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
659 if (error) {
660 if (auio->uio_resid != len && (error == ERESTART ||
661 error == EINTR || error == EWOULDBLOCK))
662 error = 0;
663 if (error == EPIPE)
664 lwpsignal(p, lp, SIGPIPE);
666 #ifdef KTRACE
667 if (ktriov != NULL) {
668 if (error == 0) {
669 ktruio.uio_iov = ktriov;
670 ktruio.uio_resid = len - auio->uio_resid;
671 ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
673 FREE(ktriov, M_TEMP);
675 #endif
676 if (error == 0)
677 *res = len - auio->uio_resid;
678 done:
679 fdrop(fp);
680 return (error);
684 * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
687 sys_sendto(struct sendto_args *uap)
689 struct thread *td = curthread;
690 struct uio auio;
691 struct iovec aiov;
692 struct sockaddr *sa = NULL;
693 int error;
695 if (uap->to) {
696 error = getsockaddr(&sa, uap->to, uap->tolen);
697 if (error)
698 return (error);
700 aiov.iov_base = uap->buf;
701 aiov.iov_len = uap->len;
702 auio.uio_iov = &aiov;
703 auio.uio_iovcnt = 1;
704 auio.uio_offset = 0;
705 auio.uio_resid = uap->len;
706 auio.uio_segflg = UIO_USERSPACE;
707 auio.uio_rw = UIO_WRITE;
708 auio.uio_td = td;
710 error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
711 &uap->sysmsg_result);
713 if (sa)
714 FREE(sa, M_SONAME);
715 return (error);
719 * sendmsg_args(int s, caddr_t msg, int flags)
722 sys_sendmsg(struct sendmsg_args *uap)
724 struct thread *td = curthread;
725 struct msghdr msg;
726 struct uio auio;
727 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
728 struct sockaddr *sa = NULL;
729 struct mbuf *control = NULL;
730 int error;
732 error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
733 if (error)
734 return (error);
737 * Conditionally copyin msg.msg_name.
739 if (msg.msg_name) {
740 error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
741 if (error)
742 return (error);
746 * Populate auio.
748 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
749 &auio.uio_resid);
750 if (error)
751 goto cleanup2;
752 auio.uio_iov = iov;
753 auio.uio_iovcnt = msg.msg_iovlen;
754 auio.uio_offset = 0;
755 auio.uio_segflg = UIO_USERSPACE;
756 auio.uio_rw = UIO_WRITE;
757 auio.uio_td = td;
760 * Conditionally copyin msg.msg_control.
762 if (msg.msg_control) {
763 if (msg.msg_controllen < sizeof(struct cmsghdr) ||
764 msg.msg_controllen > MLEN) {
765 error = EINVAL;
766 goto cleanup;
768 control = m_get(MB_WAIT, MT_CONTROL);
769 if (control == NULL) {
770 error = ENOBUFS;
771 goto cleanup;
773 control->m_len = msg.msg_controllen;
774 error = copyin(msg.msg_control, mtod(control, caddr_t),
775 msg.msg_controllen);
776 if (error) {
777 m_free(control);
778 goto cleanup;
782 error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
783 &uap->sysmsg_result);
785 cleanup:
786 iovec_free(&iov, aiov);
787 cleanup2:
788 if (sa)
789 FREE(sa, M_SONAME);
790 return (error);
794 * kern_recvmsg() takes a handle to sa and control. If the handle is non-
795 * null, it returns a dynamically allocated struct sockaddr and an mbuf.
796 * Don't forget to FREE() and m_free() these if they are returned.
799 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
800 struct mbuf **control, int *flags, int *res)
802 struct thread *td = curthread;
803 struct proc *p = td->td_proc;
804 struct file *fp;
805 int len, error;
806 int lflags;
807 struct socket *so;
808 #ifdef KTRACE
809 struct iovec *ktriov = NULL;
810 struct uio ktruio;
811 #endif
813 error = holdsock(p->p_fd, s, &fp);
814 if (error)
815 return (error);
816 if (auio->uio_resid < 0) {
817 error = EINVAL;
818 goto done;
820 #ifdef KTRACE
821 if (KTRPOINT(td, KTR_GENIO)) {
822 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
824 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
825 bcopy(auio->uio_iov, ktriov, iovlen);
826 ktruio = *auio;
828 #endif
829 len = auio->uio_resid;
830 so = (struct socket *)fp->f_data;
832 if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
833 if (fp->f_flag & FNONBLOCK) {
834 if (flags) {
835 *flags |= MSG_FNONBLOCKING;
836 } else {
837 lflags = MSG_FNONBLOCKING;
838 flags = &lflags;
843 error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
844 if (error) {
845 if (auio->uio_resid != len && (error == ERESTART ||
846 error == EINTR || error == EWOULDBLOCK))
847 error = 0;
849 #ifdef KTRACE
850 if (ktriov != NULL) {
851 if (error == 0) {
852 ktruio.uio_iov = ktriov;
853 ktruio.uio_resid = len - auio->uio_resid;
854 ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
856 FREE(ktriov, M_TEMP);
858 #endif
859 if (error == 0)
860 *res = len - auio->uio_resid;
861 done:
862 fdrop(fp);
863 return (error);
867 * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
868 * caddr_t from, int *fromlenaddr)
871 sys_recvfrom(struct recvfrom_args *uap)
873 struct thread *td = curthread;
874 struct uio auio;
875 struct iovec aiov;
876 struct sockaddr *sa = NULL;
877 int error, fromlen;
879 if (uap->from && uap->fromlenaddr) {
880 error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
881 if (error)
882 return (error);
883 if (fromlen < 0)
884 return (EINVAL);
885 } else {
886 fromlen = 0;
888 aiov.iov_base = uap->buf;
889 aiov.iov_len = uap->len;
890 auio.uio_iov = &aiov;
891 auio.uio_iovcnt = 1;
892 auio.uio_offset = 0;
893 auio.uio_resid = uap->len;
894 auio.uio_segflg = UIO_USERSPACE;
895 auio.uio_rw = UIO_READ;
896 auio.uio_td = td;
898 error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
899 &uap->flags, &uap->sysmsg_result);
901 if (error == 0 && uap->from) {
902 /* note: sa may still be NULL */
903 if (sa) {
904 fromlen = MIN(fromlen, sa->sa_len);
905 error = copyout(sa, uap->from, fromlen);
906 } else {
907 fromlen = 0;
909 if (error == 0) {
910 error = copyout(&fromlen, uap->fromlenaddr,
911 sizeof(fromlen));
914 if (sa)
915 FREE(sa, M_SONAME);
917 return (error);
921 * recvmsg_args(int s, struct msghdr *msg, int flags)
924 sys_recvmsg(struct recvmsg_args *uap)
926 struct thread *td = curthread;
927 struct msghdr msg;
928 struct uio auio;
929 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
930 struct mbuf *m, *control = NULL;
931 struct sockaddr *sa = NULL;
932 caddr_t ctlbuf;
933 socklen_t *ufromlenp, *ucontrollenp;
934 int error, fromlen, controllen, len, flags, *uflagsp;
937 * This copyin handles everything except the iovec.
939 error = copyin(uap->msg, &msg, sizeof(msg));
940 if (error)
941 return (error);
943 if (msg.msg_name && msg.msg_namelen < 0)
944 return (EINVAL);
945 if (msg.msg_control && msg.msg_controllen < 0)
946 return (EINVAL);
948 ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
949 msg_namelen));
950 ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
951 msg_controllen));
952 uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
953 msg_flags));
956 * Populate auio.
958 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
959 &auio.uio_resid);
960 if (error)
961 return (error);
962 auio.uio_iov = iov;
963 auio.uio_iovcnt = msg.msg_iovlen;
964 auio.uio_offset = 0;
965 auio.uio_segflg = UIO_USERSPACE;
966 auio.uio_rw = UIO_READ;
967 auio.uio_td = td;
969 flags = uap->flags;
971 error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
972 msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
975 * Conditionally copyout the name and populate the namelen field.
977 if (error == 0 && msg.msg_name) {
978 /* note: sa may still be NULL */
979 if (sa != NULL) {
980 fromlen = MIN(msg.msg_namelen, sa->sa_len);
981 error = copyout(sa, msg.msg_name, fromlen);
982 } else {
983 fromlen = 0;
985 if (error == 0)
986 error = copyout(&fromlen, ufromlenp,
987 sizeof(*ufromlenp));
991 * Copyout msg.msg_control and msg.msg_controllen.
993 if (error == 0 && msg.msg_control) {
994 len = msg.msg_controllen;
995 m = control;
996 ctlbuf = (caddr_t)msg.msg_control;
998 while(m && len > 0) {
999 unsigned int tocopy;
1001 if (len >= m->m_len) {
1002 tocopy = m->m_len;
1003 } else {
1004 msg.msg_flags |= MSG_CTRUNC;
1005 tocopy = len;
1008 error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1009 if (error)
1010 goto cleanup;
1012 ctlbuf += tocopy;
1013 len -= tocopy;
1014 m = m->m_next;
1016 controllen = ctlbuf - (caddr_t)msg.msg_control;
1017 error = copyout(&controllen, ucontrollenp,
1018 sizeof(*ucontrollenp));
1021 if (error == 0)
1022 error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1024 cleanup:
1025 if (sa)
1026 FREE(sa, M_SONAME);
1027 iovec_free(&iov, aiov);
1028 if (control)
1029 m_freem(control);
1030 return (error);
1034 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1035 * in kernel pointer instead of a userland pointer. This allows us
1036 * to manipulate socket options in the emulation code.
1039 kern_setsockopt(int s, struct sockopt *sopt)
1041 struct thread *td = curthread;
1042 struct proc *p = td->td_proc;
1043 struct file *fp;
1044 int error;
1046 if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1047 return (EFAULT);
1048 if (sopt->sopt_valsize < 0)
1049 return (EINVAL);
1051 error = holdsock(p->p_fd, s, &fp);
1052 if (error)
1053 return (error);
1055 error = sosetopt((struct socket *)fp->f_data, sopt);
1056 fdrop(fp);
1057 return (error);
1061 * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1064 sys_setsockopt(struct setsockopt_args *uap)
1066 struct thread *td = curthread;
1067 struct sockopt sopt;
1068 int error;
1070 sopt.sopt_level = uap->level;
1071 sopt.sopt_name = uap->name;
1072 sopt.sopt_valsize = uap->valsize;
1073 sopt.sopt_td = td;
1074 sopt.sopt_val = NULL;
1076 if (sopt.sopt_valsize < 0 || sopt.sopt_valsize > SOMAXOPT_SIZE)
1077 return (EINVAL);
1078 if (uap->val) {
1079 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1080 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1081 if (error)
1082 goto out;
1085 error = kern_setsockopt(uap->s, &sopt);
1086 out:
1087 if (uap->val)
1088 kfree(sopt.sopt_val, M_TEMP);
1089 return(error);
1093 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1094 * in kernel pointer instead of a userland pointer. This allows us
1095 * to manipulate socket options in the emulation code.
1098 kern_getsockopt(int s, struct sockopt *sopt)
1100 struct thread *td = curthread;
1101 struct proc *p = td->td_proc;
1102 struct file *fp;
1103 int error;
1105 if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1106 return (EFAULT);
1107 if (sopt->sopt_valsize < 0 || sopt->sopt_valsize > SOMAXOPT_SIZE)
1108 return (EINVAL);
1110 error = holdsock(p->p_fd, s, &fp);
1111 if (error)
1112 return (error);
1114 error = sogetopt((struct socket *)fp->f_data, sopt);
1115 fdrop(fp);
1116 return (error);
1120 * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1123 sys_getsockopt(struct getsockopt_args *uap)
1125 struct thread *td = curthread;
1126 struct sockopt sopt;
1127 int error, valsize;
1129 if (uap->val) {
1130 error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1131 if (error)
1132 return (error);
1133 } else {
1134 valsize = 0;
1137 sopt.sopt_level = uap->level;
1138 sopt.sopt_name = uap->name;
1139 sopt.sopt_valsize = valsize;
1140 sopt.sopt_td = td;
1141 sopt.sopt_val = NULL;
1143 if (sopt.sopt_valsize < 0 || sopt.sopt_valsize > SOMAXOPT_SIZE)
1144 return (EINVAL);
1145 if (uap->val) {
1146 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1147 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1148 if (error)
1149 goto out;
1152 error = kern_getsockopt(uap->s, &sopt);
1153 if (error)
1154 goto out;
1155 valsize = sopt.sopt_valsize;
1156 error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1157 if (error)
1158 goto out;
1159 if (uap->val)
1160 error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1161 out:
1162 if (uap->val)
1163 kfree(sopt.sopt_val, M_TEMP);
1164 return (error);
1168 * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1169 * This allows kern_getsockname() to return a pointer to an allocated struct
1170 * sockaddr which must be freed later with FREE(). The caller must
1171 * initialize *name to NULL.
1174 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1176 struct thread *td = curthread;
1177 struct proc *p = td->td_proc;
1178 struct file *fp;
1179 struct socket *so;
1180 struct sockaddr *sa = NULL;
1181 int error;
1183 error = holdsock(p->p_fd, s, &fp);
1184 if (error)
1185 return (error);
1186 if (*namelen < 0) {
1187 fdrop(fp);
1188 return (EINVAL);
1190 so = (struct socket *)fp->f_data;
1191 error = so_pru_sockaddr(so, &sa);
1192 if (error == 0) {
1193 if (sa == NULL) {
1194 *namelen = 0;
1195 } else {
1196 *namelen = MIN(*namelen, sa->sa_len);
1197 *name = sa;
1201 fdrop(fp);
1202 return (error);
1206 * getsockname_args(int fdes, caddr_t asa, int *alen)
1208 * Get socket name.
1211 sys_getsockname(struct getsockname_args *uap)
1213 struct sockaddr *sa = NULL;
1214 int error, sa_len;
1216 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1217 if (error)
1218 return (error);
1220 error = kern_getsockname(uap->fdes, &sa, &sa_len);
1222 if (error == 0)
1223 error = copyout(sa, uap->asa, sa_len);
1224 if (error == 0)
1225 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1226 if (sa)
1227 FREE(sa, M_SONAME);
1228 return (error);
1232 * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1233 * This allows kern_getpeername() to return a pointer to an allocated struct
1234 * sockaddr which must be freed later with FREE(). The caller must
1235 * initialize *name to NULL.
1238 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1240 struct thread *td = curthread;
1241 struct proc *p = td->td_proc;
1242 struct file *fp;
1243 struct socket *so;
1244 struct sockaddr *sa = NULL;
1245 int error;
1247 error = holdsock(p->p_fd, s, &fp);
1248 if (error)
1249 return (error);
1250 if (*namelen < 0) {
1251 fdrop(fp);
1252 return (EINVAL);
1254 so = (struct socket *)fp->f_data;
1255 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1256 fdrop(fp);
1257 return (ENOTCONN);
1259 error = so_pru_peeraddr(so, &sa);
1260 if (error == 0) {
1261 if (sa == NULL) {
1262 *namelen = 0;
1263 } else {
1264 *namelen = MIN(*namelen, sa->sa_len);
1265 *name = sa;
1269 fdrop(fp);
1270 return (error);
1274 * getpeername_args(int fdes, caddr_t asa, int *alen)
1276 * Get name of peer for connected socket.
1279 sys_getpeername(struct getpeername_args *uap)
1281 struct sockaddr *sa = NULL;
1282 int error, sa_len;
1284 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1285 if (error)
1286 return (error);
1288 error = kern_getpeername(uap->fdes, &sa, &sa_len);
1290 if (error == 0)
1291 error = copyout(sa, uap->asa, sa_len);
1292 if (error == 0)
1293 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1294 if (sa)
1295 FREE(sa, M_SONAME);
1296 return (error);
1300 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1302 struct sockaddr *sa;
1303 int error;
1305 *namp = NULL;
1306 if (len > SOCK_MAXADDRLEN)
1307 return ENAMETOOLONG;
1308 if (len < offsetof(struct sockaddr, sa_data[0]))
1309 return EDOM;
1310 MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1311 error = copyin(uaddr, sa, len);
1312 if (error) {
1313 FREE(sa, M_SONAME);
1314 } else {
1315 #if BYTE_ORDER != BIG_ENDIAN
1317 * The bind(), connect(), and sendto() syscalls were not
1318 * versioned for COMPAT_43. Thus, this check must stay.
1320 if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1321 sa->sa_family = sa->sa_len;
1322 #endif
1323 sa->sa_len = len;
1324 *namp = sa;
1326 return error;
1330 * Detach a mapped page and release resources back to the system.
1331 * We must release our wiring and if the object is ripped out
1332 * from under the vm_page we become responsible for freeing the
1333 * page. These routines must be MPSAFE.
1335 * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1337 * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1339 static void
1340 sf_buf_mref(void *arg)
1342 struct sfbuf_mref *sfm = arg;
1345 * We must already hold a ref so there is no race to 0, just
1346 * atomically increment the count.
1348 atomic_add_int(&sfm->mref_count, 1);
1351 static void
1352 sf_buf_mfree(void *arg)
1354 struct sfbuf_mref *sfm = arg;
1355 vm_page_t m;
1357 KKASSERT(sfm->mref_count > 0);
1358 if (atomic_fetchadd_int(&sfm->mref_count, -1) == 1) {
1360 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1362 get_mplock();
1363 crit_enter();
1364 m = sf_buf_page(sfm->sf);
1365 sf_buf_free(sfm->sf);
1366 vm_page_unwire(m, 0);
1367 if (m->wire_count == 0 && m->object == NULL)
1368 vm_page_try_to_free(m);
1369 crit_exit();
1370 rel_mplock();
1371 kfree(sfm, M_SENDFILE);
1376 * sendfile(2).
1377 * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1378 * struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1380 * Send a file specified by 'fd' and starting at 'offset' to a socket
1381 * specified by 's'. Send only 'nbytes' of the file or until EOF if
1382 * nbytes == 0. Optionally add a header and/or trailer to the socket
1383 * output. If specified, write the total number of bytes sent into *sbytes.
1385 * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1386 * the headers to count against the remaining bytes to be sent from
1387 * the file descriptor. We may wish to implement a compatibility syscall
1388 * in the future.
1391 sys_sendfile(struct sendfile_args *uap)
1393 struct thread *td = curthread;
1394 struct proc *p = td->td_proc;
1395 struct file *fp;
1396 struct vnode *vp = NULL;
1397 struct sf_hdtr hdtr;
1398 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1399 struct uio auio;
1400 struct mbuf *mheader = NULL;
1401 off_t hdtr_size = 0, sbytes;
1402 int error, hbytes = 0, tbytes;
1404 KKASSERT(p);
1407 * Do argument checking. Must be a regular file in, stream
1408 * type and connected socket out, positive offset.
1410 fp = holdfp(p->p_fd, uap->fd, FREAD);
1411 if (fp == NULL) {
1412 return (EBADF);
1414 if (fp->f_type != DTYPE_VNODE) {
1415 fdrop(fp);
1416 return (EINVAL);
1418 vp = (struct vnode *)fp->f_data;
1419 vref(vp);
1420 fdrop(fp);
1423 * If specified, get the pointer to the sf_hdtr struct for
1424 * any headers/trailers.
1426 if (uap->hdtr) {
1427 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1428 if (error)
1429 goto done;
1431 * Send any headers.
1433 if (hdtr.headers) {
1434 error = iovec_copyin(hdtr.headers, &iov, aiov,
1435 hdtr.hdr_cnt, &hbytes);
1436 if (error)
1437 goto done;
1438 auio.uio_iov = iov;
1439 auio.uio_iovcnt = hdtr.hdr_cnt;
1440 auio.uio_offset = 0;
1441 auio.uio_segflg = UIO_USERSPACE;
1442 auio.uio_rw = UIO_WRITE;
1443 auio.uio_td = td;
1444 auio.uio_resid = hbytes;
1446 mheader = m_uiomove(&auio);
1448 iovec_free(&iov, aiov);
1449 if (mheader == NULL)
1450 goto done;
1454 error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1455 &sbytes, uap->flags);
1456 if (error)
1457 goto done;
1460 * Send trailers. Wimp out and use writev(2).
1462 if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1463 error = iovec_copyin(hdtr.trailers, &iov, aiov,
1464 hdtr.trl_cnt, &auio.uio_resid);
1465 if (error)
1466 goto done;
1467 auio.uio_iov = iov;
1468 auio.uio_iovcnt = hdtr.trl_cnt;
1469 auio.uio_offset = 0;
1470 auio.uio_segflg = UIO_USERSPACE;
1471 auio.uio_rw = UIO_WRITE;
1472 auio.uio_td = td;
1474 error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1476 iovec_free(&iov, aiov);
1477 if (error)
1478 goto done;
1479 hdtr_size += tbytes; /* trailer bytes successfully sent */
1482 done:
1483 if (uap->sbytes != NULL) {
1484 sbytes += hdtr_size;
1485 copyout(&sbytes, uap->sbytes, sizeof(off_t));
1487 if (vp)
1488 vrele(vp);
1489 return (error);
1493 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1494 struct mbuf *mheader, off_t *sbytes, int flags)
1496 struct thread *td = curthread;
1497 struct proc *p = td->td_proc;
1498 struct vm_object *obj;
1499 struct socket *so;
1500 struct file *fp;
1501 struct mbuf *m;
1502 struct sf_buf *sf;
1503 struct sfbuf_mref *sfm;
1504 struct vm_page *pg;
1505 off_t off, xfsize;
1506 off_t hbytes = 0;
1507 int error = 0;
1509 if (vp->v_type != VREG) {
1510 error = EINVAL;
1511 goto done0;
1513 if ((obj = vp->v_object) == NULL) {
1514 error = EINVAL;
1515 goto done0;
1517 error = holdsock(p->p_fd, sfd, &fp);
1518 if (error)
1519 goto done0;
1520 so = (struct socket *)fp->f_data;
1521 if (so->so_type != SOCK_STREAM) {
1522 error = EINVAL;
1523 goto done;
1525 if ((so->so_state & SS_ISCONNECTED) == 0) {
1526 error = ENOTCONN;
1527 goto done;
1529 if (offset < 0) {
1530 error = EINVAL;
1531 goto done;
1534 *sbytes = 0;
1536 * Protect against multiple writers to the socket.
1538 ssb_lock(&so->so_snd, M_WAITOK);
1541 * Loop through the pages in the file, starting with the requested
1542 * offset. Get a file page (do I/O if necessary), map the file page
1543 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1544 * it on the socket.
1546 for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1547 vm_pindex_t pindex;
1548 vm_offset_t pgoff;
1550 pindex = OFF_TO_IDX(off);
1551 retry_lookup:
1553 * Calculate the amount to transfer. Not to exceed a page,
1554 * the EOF, or the passed in nbytes.
1556 xfsize = vp->v_filesize - off;
1557 if (xfsize > PAGE_SIZE)
1558 xfsize = PAGE_SIZE;
1559 pgoff = (vm_offset_t)(off & PAGE_MASK);
1560 if (PAGE_SIZE - pgoff < xfsize)
1561 xfsize = PAGE_SIZE - pgoff;
1562 if (nbytes && xfsize > (nbytes - *sbytes))
1563 xfsize = nbytes - *sbytes;
1564 if (xfsize <= 0)
1565 break;
1567 * Optimize the non-blocking case by looking at the socket space
1568 * before going to the extra work of constituting the sf_buf.
1570 if ((fp->f_flag & FNONBLOCK) && ssb_space(&so->so_snd) <= 0) {
1571 if (so->so_state & SS_CANTSENDMORE)
1572 error = EPIPE;
1573 else
1574 error = EAGAIN;
1575 ssb_unlock(&so->so_snd);
1576 goto done;
1579 * Attempt to look up the page.
1581 * Allocate if not found, wait and loop if busy, then
1582 * wire the page. critical section protection is
1583 * required to maintain the object association (an
1584 * interrupt can free the page) through to the
1585 * vm_page_wire() call.
1587 crit_enter();
1588 pg = vm_page_lookup(obj, pindex);
1589 if (pg == NULL) {
1590 pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1591 if (pg == NULL) {
1592 vm_wait(0);
1593 crit_exit();
1594 goto retry_lookup;
1596 vm_page_wakeup(pg);
1597 } else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1598 crit_exit();
1599 goto retry_lookup;
1601 vm_page_wire(pg);
1602 crit_exit();
1605 * If page is not valid for what we need, initiate I/O
1608 if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1609 struct uio auio;
1610 struct iovec aiov;
1611 int bsize;
1614 * Ensure that our page is still around when the I/O
1615 * completes.
1617 vm_page_io_start(pg);
1620 * Get the page from backing store.
1622 bsize = vp->v_mount->mnt_stat.f_iosize;
1623 auio.uio_iov = &aiov;
1624 auio.uio_iovcnt = 1;
1625 aiov.iov_base = 0;
1626 aiov.iov_len = MAXBSIZE;
1627 auio.uio_resid = MAXBSIZE;
1628 auio.uio_offset = trunc_page(off);
1629 auio.uio_segflg = UIO_NOCOPY;
1630 auio.uio_rw = UIO_READ;
1631 auio.uio_td = td;
1632 vn_lock(vp, LK_SHARED | LK_RETRY);
1633 error = VOP_READ(vp, &auio,
1634 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1635 p->p_ucred);
1636 vn_unlock(vp);
1637 vm_page_flag_clear(pg, PG_ZERO);
1638 vm_page_io_finish(pg);
1639 if (error) {
1640 crit_enter();
1641 vm_page_unwire(pg, 0);
1642 vm_page_try_to_free(pg);
1643 crit_exit();
1644 ssb_unlock(&so->so_snd);
1645 goto done;
1651 * Get a sendfile buf. We usually wait as long as necessary,
1652 * but this wait can be interrupted.
1654 if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1655 crit_enter();
1656 vm_page_unwire(pg, 0);
1657 vm_page_try_to_free(pg);
1658 crit_exit();
1659 ssb_unlock(&so->so_snd);
1660 error = EINTR;
1661 goto done;
1665 * Get an mbuf header and set it up as having external storage.
1667 MGETHDR(m, MB_WAIT, MT_DATA);
1668 if (m == NULL) {
1669 error = ENOBUFS;
1670 sf_buf_free(sf);
1671 ssb_unlock(&so->so_snd);
1672 goto done;
1676 * sfm is a temporary hack, use a per-cpu cache for this.
1678 sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1679 sfm->sf = sf;
1680 sfm->mref_count = 1;
1682 m->m_ext.ext_free = sf_buf_mfree;
1683 m->m_ext.ext_ref = sf_buf_mref;
1684 m->m_ext.ext_arg = sfm;
1685 m->m_ext.ext_buf = (void *)sf->kva;
1686 m->m_ext.ext_size = PAGE_SIZE;
1687 m->m_data = (char *) sf->kva + pgoff;
1688 m->m_flags |= M_EXT;
1689 m->m_pkthdr.len = m->m_len = xfsize;
1690 KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1692 if (mheader != NULL) {
1693 hbytes = mheader->m_pkthdr.len;
1694 mheader->m_pkthdr.len += m->m_pkthdr.len;
1695 m_cat(mheader, m);
1696 m = mheader;
1697 mheader = NULL;
1698 } else
1699 hbytes = 0;
1702 * Add the buffer to the socket buffer chain.
1704 crit_enter();
1705 retry_space:
1707 * Make sure that the socket is still able to take more data.
1708 * CANTSENDMORE being true usually means that the connection
1709 * was closed. so_error is true when an error was sensed after
1710 * a previous send.
1711 * The state is checked after the page mapping and buffer
1712 * allocation above since those operations may block and make
1713 * any socket checks stale. From this point forward, nothing
1714 * blocks before the pru_send (or more accurately, any blocking
1715 * results in a loop back to here to re-check).
1717 if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1718 if (so->so_state & SS_CANTSENDMORE) {
1719 error = EPIPE;
1720 } else {
1721 error = so->so_error;
1722 so->so_error = 0;
1724 m_freem(m);
1725 ssb_unlock(&so->so_snd);
1726 crit_exit();
1727 goto done;
1730 * Wait for socket space to become available. We do this just
1731 * after checking the connection state above in order to avoid
1732 * a race condition with ssb_wait().
1734 if (ssb_space(&so->so_snd) < so->so_snd.ssb_lowat) {
1735 if (fp->f_flag & FNONBLOCK) {
1736 m_freem(m);
1737 ssb_unlock(&so->so_snd);
1738 crit_exit();
1739 error = EAGAIN;
1740 goto done;
1742 error = ssb_wait(&so->so_snd);
1744 * An error from ssb_wait usually indicates that we've
1745 * been interrupted by a signal. If we've sent anything
1746 * then return bytes sent, otherwise return the error.
1748 if (error) {
1749 m_freem(m);
1750 ssb_unlock(&so->so_snd);
1751 crit_exit();
1752 goto done;
1754 goto retry_space;
1756 error = so_pru_send(so, 0, m, NULL, NULL, td);
1757 crit_exit();
1758 if (error) {
1759 ssb_unlock(&so->so_snd);
1760 goto done;
1763 if (mheader != NULL) {
1764 *sbytes += mheader->m_pkthdr.len;
1765 error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1766 mheader = NULL;
1768 ssb_unlock(&so->so_snd);
1770 done:
1771 fdrop(fp);
1772 done0:
1773 if (mheader != NULL)
1774 m_freem(mheader);
1775 return (error);
1779 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1781 #ifdef SCTP
1782 struct thread *td = curthread;
1783 struct proc *p = td->td_proc;
1784 struct file *lfp = NULL;
1785 struct file *nfp = NULL;
1786 int error;
1787 struct socket *head, *so;
1788 caddr_t assoc_id;
1789 int fd;
1790 short fflag; /* type must match fp->f_flag */
1792 assoc_id = uap->name;
1793 error = holdsock(p->p_fd, uap->sd, &lfp);
1794 if (error) {
1795 return (error);
1797 crit_enter();
1798 head = (struct socket *)lfp->f_data;
1799 error = sctp_can_peel_off(head, assoc_id);
1800 if (error) {
1801 crit_exit();
1802 goto done;
1805 * At this point we know we do have a assoc to pull
1806 * we proceed to get the fd setup. This may block
1807 * but that is ok.
1810 fflag = lfp->f_flag;
1811 error = falloc(p, &nfp, &fd);
1812 if (error) {
1814 * Probably ran out of file descriptors. Put the
1815 * unaccepted connection back onto the queue and
1816 * do another wakeup so some other process might
1817 * have a chance at it.
1819 crit_exit();
1820 goto done;
1822 uap->sysmsg_result = fd;
1824 so = sctp_get_peeloff(head, assoc_id, &error);
1825 if (so == NULL) {
1827 * Either someone else peeled it off OR
1828 * we can't get a socket.
1830 goto noconnection;
1832 so->so_state &= ~SS_COMP;
1833 so->so_state &= ~SS_NOFDREF;
1834 so->so_head = NULL;
1835 if (head->so_sigio != NULL)
1836 fsetown(fgetown(head->so_sigio), &so->so_sigio);
1838 nfp->f_type = DTYPE_SOCKET;
1839 nfp->f_flag = fflag;
1840 nfp->f_ops = &socketops;
1841 nfp->f_data = so;
1843 noconnection:
1845 * Assign the file pointer to the reserved descriptor, or clear
1846 * the reserved descriptor if an error occured.
1848 if (error)
1849 fsetfd(p, NULL, fd);
1850 else
1851 fsetfd(p, nfp, fd);
1852 crit_exit();
1854 * Release explicitly held references before returning.
1856 done:
1857 if (nfp != NULL)
1858 fdrop(nfp);
1859 fdrop(lfp);
1860 return (error);
1861 #else /* SCTP */
1862 return(EOPNOTSUPP);
1863 #endif /* SCTP */