MFC r1.27:
[dragonfly.git] / sys / vm / vm_object.c
blobe71b452d7ba11f97c1d201fb34dc5b493d29f4d7
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #define EASY_SCAN_FACTOR 8
97 static void vm_object_qcollapse(vm_object_t object);
98 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99 int pagerflags);
102 * Virtual memory objects maintain the actual data
103 * associated with allocated virtual memory. A given
104 * page of memory exists within exactly one object.
106 * An object is only deallocated when all "references"
107 * are given up. Only one "reference" to a given
108 * region of an object should be writeable.
110 * Associated with each object is a list of all resident
111 * memory pages belonging to that object; this list is
112 * maintained by the "vm_page" module, and locked by the object's
113 * lock.
115 * Each object also records a "pager" routine which is
116 * used to retrieve (and store) pages to the proper backing
117 * storage. In addition, objects may be backed by other
118 * objects from which they were virtual-copied.
120 * The only items within the object structure which are
121 * modified after time of creation are:
122 * reference count locked by object's lock
123 * pager routine locked by object's lock
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
130 static long vm_object_count; /* count of all objects */
131 extern int vm_pageout_page_count;
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
145 int incr;
146 RB_INIT(&object->rb_memq);
147 LIST_INIT(&object->shadow_head);
149 object->type = type;
150 object->size = size;
151 object->ref_count = 1;
152 object->flags = 0;
153 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154 vm_object_set_flag(object, OBJ_ONEMAPPING);
155 object->paging_in_progress = 0;
156 object->resident_page_count = 0;
157 object->shadow_count = 0;
158 object->pg_color = next_index;
159 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161 else
162 incr = size;
163 next_index = (next_index + incr) & PQ_L2_MASK;
164 object->handle = NULL;
165 object->backing_object = NULL;
166 object->backing_object_offset = (vm_ooffset_t) 0;
168 * Try to generate a number that will spread objects out in the
169 * hash table. We 'wipe' new objects across the hash in 128 page
170 * increments plus 1 more to offset it a little more by the time
171 * it wraps around.
173 object->hash_rand = object_hash_rand - 129;
175 object->generation++;
177 crit_enter();
178 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179 vm_object_count++;
180 object_hash_rand = object->hash_rand;
181 crit_exit();
185 * vm_object_init:
187 * Initialize the VM objects module.
189 void
190 vm_object_init(void)
192 TAILQ_INIT(&vm_object_list);
194 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
195 &kernel_object);
197 obj_zone = &obj_zone_store;
198 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199 vm_objects_init, VM_OBJECTS_INIT);
202 void
203 vm_object_init2(void)
205 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
209 * vm_object_allocate:
211 * Returns a new object with the given size.
214 vm_object_t
215 vm_object_allocate(objtype_t type, vm_size_t size)
217 vm_object_t result;
219 result = (vm_object_t) zalloc(obj_zone);
221 _vm_object_allocate(type, size, result);
223 return (result);
228 * vm_object_reference:
230 * Gets another reference to the given object.
232 void
233 vm_object_reference(vm_object_t object)
235 if (object == NULL)
236 return;
238 object->ref_count++;
239 if (object->type == OBJT_VNODE) {
240 vref(object->handle);
241 /* XXX what if the vnode is being destroyed? */
245 static void
246 vm_object_vndeallocate(vm_object_t object)
248 struct vnode *vp = (struct vnode *) object->handle;
250 KASSERT(object->type == OBJT_VNODE,
251 ("vm_object_vndeallocate: not a vnode object"));
252 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
253 #ifdef INVARIANTS
254 if (object->ref_count == 0) {
255 vprint("vm_object_vndeallocate", vp);
256 panic("vm_object_vndeallocate: bad object reference count");
258 #endif
260 object->ref_count--;
261 if (object->ref_count == 0)
262 vp->v_flag &= ~VTEXT;
263 vrele(vp);
267 * vm_object_deallocate:
269 * Release a reference to the specified object,
270 * gained either through a vm_object_allocate
271 * or a vm_object_reference call. When all references
272 * are gone, storage associated with this object
273 * may be relinquished.
275 * No object may be locked.
277 void
278 vm_object_deallocate(vm_object_t object)
280 vm_object_t temp;
282 while (object != NULL) {
283 if (object->type == OBJT_VNODE) {
284 vm_object_vndeallocate(object);
285 return;
288 if (object->ref_count == 0) {
289 panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290 } else if (object->ref_count > 2) {
291 object->ref_count--;
292 return;
296 * Here on ref_count of one or two, which are special cases for
297 * objects.
299 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300 vm_object_set_flag(object, OBJ_ONEMAPPING);
301 object->ref_count--;
302 return;
303 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
304 object->ref_count--;
305 if ((object->handle == NULL) &&
306 (object->type == OBJT_DEFAULT ||
307 object->type == OBJT_SWAP)) {
308 vm_object_t robject;
310 robject = LIST_FIRST(&object->shadow_head);
311 KASSERT(robject != NULL,
312 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
313 object->ref_count,
314 object->shadow_count));
315 if ((robject->handle == NULL) &&
316 (robject->type == OBJT_DEFAULT ||
317 robject->type == OBJT_SWAP)) {
319 robject->ref_count++;
321 while (
322 robject->paging_in_progress ||
323 object->paging_in_progress
325 vm_object_pip_sleep(robject, "objde1");
326 vm_object_pip_sleep(object, "objde2");
329 if (robject->ref_count == 1) {
330 robject->ref_count--;
331 object = robject;
332 goto doterm;
335 object = robject;
336 vm_object_collapse(object);
337 continue;
341 return;
343 } else {
344 object->ref_count--;
345 if (object->ref_count != 0)
346 return;
349 doterm:
351 temp = object->backing_object;
352 if (temp) {
353 LIST_REMOVE(object, shadow_list);
354 temp->shadow_count--;
355 temp->generation++;
356 object->backing_object = NULL;
360 * Don't double-terminate, we could be in a termination
361 * recursion due to the terminate having to sync data
362 * to disk.
364 if ((object->flags & OBJ_DEAD) == 0)
365 vm_object_terminate(object);
366 object = temp;
371 * vm_object_terminate actually destroys the specified object, freeing
372 * up all previously used resources.
374 * The object must be locked.
375 * This routine may block.
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
379 void
380 vm_object_terminate(vm_object_t object)
383 * Make sure no one uses us.
385 vm_object_set_flag(object, OBJ_DEAD);
388 * wait for the pageout daemon to be done with the object
390 vm_object_pip_wait(object, "objtrm");
392 KASSERT(!object->paging_in_progress,
393 ("vm_object_terminate: pageout in progress"));
396 * Clean and free the pages, as appropriate. All references to the
397 * object are gone, so we don't need to lock it.
399 if (object->type == OBJT_VNODE) {
400 struct vnode *vp;
403 * Clean pages and flush buffers.
405 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
407 vp = (struct vnode *) object->handle;
408 vinvalbuf(vp, V_SAVE, 0, 0);
412 * Wait for any I/O to complete, after which there had better not
413 * be any references left on the object.
415 vm_object_pip_wait(object, "objtrm");
417 if (object->ref_count != 0)
418 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
421 * Now free any remaining pages. For internal objects, this also
422 * removes them from paging queues. Don't free wired pages, just
423 * remove them from the object.
425 crit_enter();
426 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427 vm_object_terminate_callback, NULL);
428 crit_exit();
431 * Let the pager know object is dead.
433 vm_pager_deallocate(object);
436 * Remove the object from the global object list.
438 crit_enter();
439 TAILQ_REMOVE(&vm_object_list, object, object_list);
440 vm_object_count--;
441 crit_exit();
443 vm_object_dead_wakeup(object);
444 if (object->ref_count != 0)
445 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
448 * Free the space for the object.
450 zfree(obj_zone, object);
453 static int
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
456 if (p->busy || (p->flags & PG_BUSY))
457 panic("vm_object_terminate: freeing busy page %p", p);
458 if (p->wire_count == 0) {
459 vm_page_busy(p);
460 vm_page_free(p);
461 mycpu->gd_cnt.v_pfree++;
462 } else {
463 if (p->queue != PQ_NONE)
464 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
465 vm_page_busy(p);
466 vm_page_remove(p);
467 vm_page_wakeup(p);
469 return(0);
473 * The object is dead but still has an object<->pager association. Sleep
474 * and return. The caller typically retests the association in a loop.
476 void
477 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
479 crit_enter();
480 if (object->handle) {
481 vm_object_set_flag(object, OBJ_DEADWNT);
482 tsleep(object, 0, wmesg, 0);
484 crit_exit();
488 * Wakeup anyone waiting for the object<->pager disassociation on
489 * a dead object.
491 void
492 vm_object_dead_wakeup(vm_object_t object)
494 if (object->flags & OBJ_DEADWNT) {
495 vm_object_clear_flag(object, OBJ_DEADWNT);
496 wakeup(object);
501 * vm_object_page_clean
503 * Clean all dirty pages in the specified range of object. Leaves page
504 * on whatever queue it is currently on. If NOSYNC is set then do not
505 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506 * leaving the object dirty.
508 * When stuffing pages asynchronously, allow clustering. XXX we need a
509 * synchronous clustering mode implementation.
511 * Odd semantics: if start == end, we clean everything.
513 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
514 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
516 void
517 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
518 int flags)
520 struct rb_vm_page_scan_info info;
521 struct vnode *vp;
522 int wholescan;
523 int pagerflags;
524 int curgeneration;
526 if (object->type != OBJT_VNODE ||
527 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
528 return;
530 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
531 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
532 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
534 vp = object->handle;
537 * Interlock other major object operations. This allows us to
538 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
540 crit_enter();
541 vm_object_set_flag(object, OBJ_CLEANING);
544 * Handle 'entire object' case
546 info.start_pindex = start;
547 if (end == 0) {
548 info.end_pindex = object->size - 1;
549 } else {
550 info.end_pindex = end - 1;
552 wholescan = (start == 0 && info.end_pindex == object->size - 1);
553 info.limit = flags;
554 info.pagerflags = pagerflags;
555 info.object = object;
558 * If cleaning the entire object do a pass to mark the pages read-only.
559 * If everything worked out ok, clear OBJ_WRITEABLE and
560 * OBJ_MIGHTBEDIRTY.
562 if (wholescan) {
563 info.error = 0;
564 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
565 vm_object_page_clean_pass1, &info);
566 if (info.error == 0) {
567 vm_object_clear_flag(object,
568 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
569 if (object->type == OBJT_VNODE &&
570 (vp = (struct vnode *)object->handle) != NULL) {
571 if (vp->v_flag & VOBJDIRTY)
572 vclrflags(vp, VOBJDIRTY);
578 * Do a pass to clean all the dirty pages we find.
580 do {
581 info.error = 0;
582 curgeneration = object->generation;
583 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
584 vm_object_page_clean_pass2, &info);
585 } while (info.error || curgeneration != object->generation);
587 vm_object_clear_flag(object, OBJ_CLEANING);
588 crit_exit();
591 static
593 vm_object_page_clean_pass1(struct vm_page *p, void *data)
595 struct rb_vm_page_scan_info *info = data;
597 vm_page_flag_set(p, PG_CLEANCHK);
598 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
599 info->error = 1;
600 else
601 vm_page_protect(p, VM_PROT_READ); /* must not block */
602 return(0);
605 static
607 vm_object_page_clean_pass2(struct vm_page *p, void *data)
609 struct rb_vm_page_scan_info *info = data;
610 int n;
613 * Do not mess with pages that were inserted after we started
614 * the cleaning pass.
616 if ((p->flags & PG_CLEANCHK) == 0)
617 return(0);
620 * Before wasting time traversing the pmaps, check for trivial
621 * cases where the page cannot be dirty.
623 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
624 KKASSERT((p->dirty & p->valid) == 0);
625 return(0);
629 * Check whether the page is dirty or not. The page has been set
630 * to be read-only so the check will not race a user dirtying the
631 * page.
633 vm_page_test_dirty(p);
634 if ((p->dirty & p->valid) == 0) {
635 vm_page_flag_clear(p, PG_CLEANCHK);
636 return(0);
640 * If we have been asked to skip nosync pages and this is a
641 * nosync page, skip it. Note that the object flags were
642 * not cleared in this case (because pass1 will have returned an
643 * error), so we do not have to set them.
645 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
646 vm_page_flag_clear(p, PG_CLEANCHK);
647 return(0);
651 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
652 * the pages that get successfully flushed. Set info->error if
653 * we raced an object modification.
655 n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
656 if (n == 0)
657 info->error = 1;
658 return(0);
662 * This routine must be called within a critical section to properly avoid
663 * an interrupt unbusy/free race that can occur prior to the busy check.
665 * Using the object generation number here to detect page ripout is not
666 * the best idea in the world. XXX
668 * NOTE: we operate under the assumption that a page found to not be busy
669 * will not be ripped out from under us by an interrupt. XXX we should
670 * recode this to explicitly busy the pages.
672 static int
673 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
675 int runlen;
676 int maxf;
677 int chkb;
678 int maxb;
679 int i;
680 int curgeneration;
681 vm_pindex_t pi;
682 vm_page_t maf[vm_pageout_page_count];
683 vm_page_t mab[vm_pageout_page_count];
684 vm_page_t ma[vm_pageout_page_count];
686 curgeneration = object->generation;
688 pi = p->pindex;
689 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
690 if (object->generation != curgeneration) {
691 return(0);
694 KKASSERT(p->object == object && p->pindex == pi);
696 maxf = 0;
697 for(i = 1; i < vm_pageout_page_count; i++) {
698 vm_page_t tp;
700 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
701 if ((tp->flags & PG_BUSY) ||
702 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
703 (tp->flags & PG_CLEANCHK) == 0) ||
704 (tp->busy != 0))
705 break;
706 if((tp->queue - tp->pc) == PQ_CACHE) {
707 vm_page_flag_clear(tp, PG_CLEANCHK);
708 break;
710 vm_page_test_dirty(tp);
711 if ((tp->dirty & tp->valid) == 0) {
712 vm_page_flag_clear(tp, PG_CLEANCHK);
713 break;
715 maf[ i - 1 ] = tp;
716 maxf++;
717 continue;
719 break;
722 maxb = 0;
723 chkb = vm_pageout_page_count - maxf;
724 if (chkb) {
725 for(i = 1; i < chkb;i++) {
726 vm_page_t tp;
728 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
729 if ((tp->flags & PG_BUSY) ||
730 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
731 (tp->flags & PG_CLEANCHK) == 0) ||
732 (tp->busy != 0))
733 break;
734 if((tp->queue - tp->pc) == PQ_CACHE) {
735 vm_page_flag_clear(tp, PG_CLEANCHK);
736 break;
738 vm_page_test_dirty(tp);
739 if ((tp->dirty & tp->valid) == 0) {
740 vm_page_flag_clear(tp, PG_CLEANCHK);
741 break;
743 mab[ i - 1 ] = tp;
744 maxb++;
745 continue;
747 break;
751 for(i = 0; i < maxb; i++) {
752 int index = (maxb - i) - 1;
753 ma[index] = mab[i];
754 vm_page_flag_clear(ma[index], PG_CLEANCHK);
756 vm_page_flag_clear(p, PG_CLEANCHK);
757 ma[maxb] = p;
758 for(i = 0; i < maxf; i++) {
759 int index = (maxb + i) + 1;
760 ma[index] = maf[i];
761 vm_page_flag_clear(ma[index], PG_CLEANCHK);
763 runlen = maxb + maxf + 1;
765 vm_pageout_flush(ma, runlen, pagerflags);
766 for (i = 0; i < runlen; i++) {
767 if (ma[i]->valid & ma[i]->dirty) {
768 vm_page_protect(ma[i], VM_PROT_READ);
769 vm_page_flag_set(ma[i], PG_CLEANCHK);
772 * maxf will end up being the actual number of pages
773 * we wrote out contiguously, non-inclusive of the
774 * first page. We do not count look-behind pages.
776 if (i >= maxb + 1 && (maxf > i - maxb - 1))
777 maxf = i - maxb - 1;
780 return(maxf + 1);
783 #ifdef not_used
784 /* XXX I cannot tell if this should be an exported symbol */
786 * vm_object_deactivate_pages
788 * Deactivate all pages in the specified object. (Keep its pages
789 * in memory even though it is no longer referenced.)
791 * The object must be locked.
793 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
795 static void
796 vm_object_deactivate_pages(vm_object_t object)
798 crit_enter();
799 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
800 vm_object_deactivate_pages_callback, NULL);
801 crit_exit();
804 static int
805 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
807 vm_page_deactivate(p);
808 return(0);
811 #endif
814 * Same as vm_object_pmap_copy, except range checking really
815 * works, and is meant for small sections of an object.
817 * This code protects resident pages by making them read-only
818 * and is typically called on a fork or split when a page
819 * is converted to copy-on-write.
821 * NOTE: If the page is already at VM_PROT_NONE, calling
822 * vm_page_protect will have no effect.
824 void
825 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
827 vm_pindex_t idx;
828 vm_page_t p;
830 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
831 return;
834 * spl protection needed to prevent races between the lookup,
835 * an interrupt unbusy/free, and our protect call.
837 crit_enter();
838 for (idx = start; idx < end; idx++) {
839 p = vm_page_lookup(object, idx);
840 if (p == NULL)
841 continue;
842 vm_page_protect(p, VM_PROT_READ);
844 crit_exit();
848 * vm_object_pmap_remove:
850 * Removes all physical pages in the specified
851 * object range from all physical maps.
853 * The object must *not* be locked.
856 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
858 void
859 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
861 struct rb_vm_page_scan_info info;
863 if (object == NULL)
864 return;
865 info.start_pindex = start;
866 info.end_pindex = end - 1;
867 crit_enter();
868 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
869 vm_object_pmap_remove_callback, &info);
870 if (start == 0 && end == object->size)
871 vm_object_clear_flag(object, OBJ_WRITEABLE);
872 crit_exit();
875 static int
876 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
878 vm_page_protect(p, VM_PROT_NONE);
879 return(0);
883 * vm_object_madvise:
885 * Implements the madvise function at the object/page level.
887 * MADV_WILLNEED (any object)
889 * Activate the specified pages if they are resident.
891 * MADV_DONTNEED (any object)
893 * Deactivate the specified pages if they are resident.
895 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
896 * OBJ_ONEMAPPING only)
898 * Deactivate and clean the specified pages if they are
899 * resident. This permits the process to reuse the pages
900 * without faulting or the kernel to reclaim the pages
901 * without I/O.
903 void
904 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
906 vm_pindex_t end, tpindex;
907 vm_object_t tobject;
908 vm_page_t m;
910 if (object == NULL)
911 return;
913 end = pindex + count;
916 * Locate and adjust resident pages
919 for (; pindex < end; pindex += 1) {
920 relookup:
921 tobject = object;
922 tpindex = pindex;
923 shadowlookup:
925 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
926 * and those pages must be OBJ_ONEMAPPING.
928 if (advise == MADV_FREE) {
929 if ((tobject->type != OBJT_DEFAULT &&
930 tobject->type != OBJT_SWAP) ||
931 (tobject->flags & OBJ_ONEMAPPING) == 0) {
932 continue;
937 * spl protection is required to avoid a race between the
938 * lookup, an interrupt unbusy/free, and our busy check.
941 crit_enter();
942 m = vm_page_lookup(tobject, tpindex);
944 if (m == NULL) {
946 * There may be swap even if there is no backing page
948 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
949 swap_pager_freespace(tobject, tpindex, 1);
952 * next object
954 crit_exit();
955 if (tobject->backing_object == NULL)
956 continue;
957 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
958 tobject = tobject->backing_object;
959 goto shadowlookup;
963 * If the page is busy or not in a normal active state,
964 * we skip it. If the page is not managed there are no
965 * page queues to mess with. Things can break if we mess
966 * with pages in any of the below states.
968 if (
969 m->hold_count ||
970 m->wire_count ||
971 (m->flags & PG_UNMANAGED) ||
972 m->valid != VM_PAGE_BITS_ALL
974 crit_exit();
975 continue;
978 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
979 crit_exit();
980 goto relookup;
982 crit_exit();
985 * Theoretically once a page is known not to be busy, an
986 * interrupt cannot come along and rip it out from under us.
989 if (advise == MADV_WILLNEED) {
990 vm_page_activate(m);
991 } else if (advise == MADV_DONTNEED) {
992 vm_page_dontneed(m);
993 } else if (advise == MADV_FREE) {
995 * Mark the page clean. This will allow the page
996 * to be freed up by the system. However, such pages
997 * are often reused quickly by malloc()/free()
998 * so we do not do anything that would cause
999 * a page fault if we can help it.
1001 * Specifically, we do not try to actually free
1002 * the page now nor do we try to put it in the
1003 * cache (which would cause a page fault on reuse).
1005 * But we do make the page is freeable as we
1006 * can without actually taking the step of unmapping
1007 * it.
1009 pmap_clear_modify(m);
1010 m->dirty = 0;
1011 m->act_count = 0;
1012 vm_page_dontneed(m);
1013 if (tobject->type == OBJT_SWAP)
1014 swap_pager_freespace(tobject, tpindex, 1);
1020 * vm_object_shadow:
1022 * Create a new object which is backed by the
1023 * specified existing object range. The source
1024 * object reference is deallocated.
1026 * The new object and offset into that object
1027 * are returned in the source parameters.
1030 void
1031 vm_object_shadow(vm_object_t *object, /* IN/OUT */
1032 vm_ooffset_t *offset, /* IN/OUT */
1033 vm_size_t length)
1035 vm_object_t source;
1036 vm_object_t result;
1038 source = *object;
1041 * Don't create the new object if the old object isn't shared.
1044 if (source != NULL &&
1045 source->ref_count == 1 &&
1046 source->handle == NULL &&
1047 (source->type == OBJT_DEFAULT ||
1048 source->type == OBJT_SWAP))
1049 return;
1052 * Allocate a new object with the given length
1055 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1056 panic("vm_object_shadow: no object for shadowing");
1059 * The new object shadows the source object, adding a reference to it.
1060 * Our caller changes his reference to point to the new object,
1061 * removing a reference to the source object. Net result: no change
1062 * of reference count.
1064 * Try to optimize the result object's page color when shadowing
1065 * in order to maintain page coloring consistency in the combined
1066 * shadowed object.
1068 result->backing_object = source;
1069 if (source) {
1070 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1071 source->shadow_count++;
1072 source->generation++;
1073 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1077 * Store the offset into the source object, and fix up the offset into
1078 * the new object.
1081 result->backing_object_offset = *offset;
1084 * Return the new things
1087 *offset = 0;
1088 *object = result;
1091 #define OBSC_TEST_ALL_SHADOWED 0x0001
1092 #define OBSC_COLLAPSE_NOWAIT 0x0002
1093 #define OBSC_COLLAPSE_WAIT 0x0004
1095 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1097 static __inline int
1098 vm_object_backing_scan(vm_object_t object, int op)
1100 struct rb_vm_page_scan_info info;
1101 vm_object_t backing_object;
1104 * spl protection is required to avoid races between the memq/lookup,
1105 * an interrupt doing an unbusy/free, and our busy check. Amoung
1106 * other things.
1108 crit_enter();
1110 backing_object = object->backing_object;
1111 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1114 * Initial conditions
1117 if (op & OBSC_TEST_ALL_SHADOWED) {
1119 * We do not want to have to test for the existence of
1120 * swap pages in the backing object. XXX but with the
1121 * new swapper this would be pretty easy to do.
1123 * XXX what about anonymous MAP_SHARED memory that hasn't
1124 * been ZFOD faulted yet? If we do not test for this, the
1125 * shadow test may succeed! XXX
1127 if (backing_object->type != OBJT_DEFAULT) {
1128 crit_exit();
1129 return(0);
1132 if (op & OBSC_COLLAPSE_WAIT) {
1133 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1134 vm_object_set_flag(backing_object, OBJ_DEAD);
1138 * Our scan. We have to retry if a negative error code is returned,
1139 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1140 * the scan had to be stopped because the parent does not completely
1141 * shadow the child.
1143 info.object = object;
1144 info.backing_object = backing_object;
1145 info.limit = op;
1146 do {
1147 info.error = 1;
1148 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1149 vm_object_backing_scan_callback,
1150 &info);
1151 } while (info.error < 0);
1152 crit_exit();
1153 return(info.error);
1156 static int
1157 vm_object_backing_scan_callback(vm_page_t p, void *data)
1159 struct rb_vm_page_scan_info *info = data;
1160 vm_object_t backing_object;
1161 vm_object_t object;
1162 vm_pindex_t new_pindex;
1163 vm_pindex_t backing_offset_index;
1164 int op;
1166 new_pindex = p->pindex - info->backing_offset_index;
1167 op = info->limit;
1168 object = info->object;
1169 backing_object = info->backing_object;
1170 backing_offset_index = info->backing_offset_index;
1172 if (op & OBSC_TEST_ALL_SHADOWED) {
1173 vm_page_t pp;
1176 * Ignore pages outside the parent object's range
1177 * and outside the parent object's mapping of the
1178 * backing object.
1180 * note that we do not busy the backing object's
1181 * page.
1183 if (
1184 p->pindex < backing_offset_index ||
1185 new_pindex >= object->size
1187 return(0);
1191 * See if the parent has the page or if the parent's
1192 * object pager has the page. If the parent has the
1193 * page but the page is not valid, the parent's
1194 * object pager must have the page.
1196 * If this fails, the parent does not completely shadow
1197 * the object and we might as well give up now.
1200 pp = vm_page_lookup(object, new_pindex);
1201 if (
1202 (pp == NULL || pp->valid == 0) &&
1203 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1205 info->error = 0; /* problemo */
1206 return(-1); /* stop the scan */
1211 * Check for busy page
1214 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1215 vm_page_t pp;
1217 if (op & OBSC_COLLAPSE_NOWAIT) {
1218 if (
1219 (p->flags & PG_BUSY) ||
1220 !p->valid ||
1221 p->hold_count ||
1222 p->wire_count ||
1223 p->busy
1225 return(0);
1227 } else if (op & OBSC_COLLAPSE_WAIT) {
1228 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1230 * If we slept, anything could have
1231 * happened. Ask that the scan be restarted.
1233 * Since the object is marked dead, the
1234 * backing offset should not have changed.
1236 info->error = -1;
1237 return(-1);
1242 * Busy the page
1244 vm_page_busy(p);
1246 KASSERT(
1247 p->object == backing_object,
1248 ("vm_object_qcollapse(): object mismatch")
1252 * Destroy any associated swap
1254 if (backing_object->type == OBJT_SWAP) {
1255 swap_pager_freespace(
1256 backing_object,
1257 p->pindex,
1262 if (
1263 p->pindex < backing_offset_index ||
1264 new_pindex >= object->size
1267 * Page is out of the parent object's range, we
1268 * can simply destroy it.
1270 vm_page_protect(p, VM_PROT_NONE);
1271 vm_page_free(p);
1272 return(0);
1275 pp = vm_page_lookup(object, new_pindex);
1276 if (
1277 pp != NULL ||
1278 vm_pager_has_page(object, new_pindex, NULL, NULL)
1281 * page already exists in parent OR swap exists
1282 * for this location in the parent. Destroy
1283 * the original page from the backing object.
1285 * Leave the parent's page alone
1287 vm_page_protect(p, VM_PROT_NONE);
1288 vm_page_free(p);
1289 return(0);
1293 * Page does not exist in parent, rename the
1294 * page from the backing object to the main object.
1296 * If the page was mapped to a process, it can remain
1297 * mapped through the rename.
1299 if ((p->queue - p->pc) == PQ_CACHE)
1300 vm_page_deactivate(p);
1302 vm_page_rename(p, object, new_pindex);
1303 /* page automatically made dirty by rename */
1305 return(0);
1309 * this version of collapse allows the operation to occur earlier and
1310 * when paging_in_progress is true for an object... This is not a complete
1311 * operation, but should plug 99.9% of the rest of the leaks.
1313 static void
1314 vm_object_qcollapse(vm_object_t object)
1316 vm_object_t backing_object = object->backing_object;
1318 if (backing_object->ref_count != 1)
1319 return;
1321 backing_object->ref_count += 2;
1323 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1325 backing_object->ref_count -= 2;
1329 * vm_object_collapse:
1331 * Collapse an object with the object backing it.
1332 * Pages in the backing object are moved into the
1333 * parent, and the backing object is deallocated.
1335 void
1336 vm_object_collapse(vm_object_t object)
1338 while (TRUE) {
1339 vm_object_t backing_object;
1342 * Verify that the conditions are right for collapse:
1344 * The object exists and the backing object exists.
1346 if (object == NULL)
1347 break;
1349 if ((backing_object = object->backing_object) == NULL)
1350 break;
1353 * we check the backing object first, because it is most likely
1354 * not collapsable.
1356 if (backing_object->handle != NULL ||
1357 (backing_object->type != OBJT_DEFAULT &&
1358 backing_object->type != OBJT_SWAP) ||
1359 (backing_object->flags & OBJ_DEAD) ||
1360 object->handle != NULL ||
1361 (object->type != OBJT_DEFAULT &&
1362 object->type != OBJT_SWAP) ||
1363 (object->flags & OBJ_DEAD)) {
1364 break;
1367 if (
1368 object->paging_in_progress != 0 ||
1369 backing_object->paging_in_progress != 0
1371 vm_object_qcollapse(object);
1372 break;
1376 * We know that we can either collapse the backing object (if
1377 * the parent is the only reference to it) or (perhaps) have
1378 * the parent bypass the object if the parent happens to shadow
1379 * all the resident pages in the entire backing object.
1381 * This is ignoring pager-backed pages such as swap pages.
1382 * vm_object_backing_scan fails the shadowing test in this
1383 * case.
1386 if (backing_object->ref_count == 1) {
1388 * If there is exactly one reference to the backing
1389 * object, we can collapse it into the parent.
1391 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1394 * Move the pager from backing_object to object.
1397 if (backing_object->type == OBJT_SWAP) {
1398 vm_object_pip_add(backing_object, 1);
1401 * scrap the paging_offset junk and do a
1402 * discrete copy. This also removes major
1403 * assumptions about how the swap-pager
1404 * works from where it doesn't belong. The
1405 * new swapper is able to optimize the
1406 * destroy-source case.
1409 vm_object_pip_add(object, 1);
1410 swap_pager_copy(
1411 backing_object,
1412 object,
1413 OFF_TO_IDX(object->backing_object_offset), TRUE);
1414 vm_object_pip_wakeup(object);
1416 vm_object_pip_wakeup(backing_object);
1419 * Object now shadows whatever backing_object did.
1420 * Note that the reference to
1421 * backing_object->backing_object moves from within
1422 * backing_object to within object.
1425 LIST_REMOVE(object, shadow_list);
1426 object->backing_object->shadow_count--;
1427 object->backing_object->generation++;
1428 if (backing_object->backing_object) {
1429 LIST_REMOVE(backing_object, shadow_list);
1430 backing_object->backing_object->shadow_count--;
1431 backing_object->backing_object->generation++;
1433 object->backing_object = backing_object->backing_object;
1434 if (object->backing_object) {
1435 LIST_INSERT_HEAD(
1436 &object->backing_object->shadow_head,
1437 object,
1438 shadow_list
1440 object->backing_object->shadow_count++;
1441 object->backing_object->generation++;
1444 object->backing_object_offset +=
1445 backing_object->backing_object_offset;
1448 * Discard backing_object.
1450 * Since the backing object has no pages, no pager left,
1451 * and no object references within it, all that is
1452 * necessary is to dispose of it.
1455 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1456 KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1457 crit_enter();
1458 TAILQ_REMOVE(
1459 &vm_object_list,
1460 backing_object,
1461 object_list
1463 vm_object_count--;
1464 crit_exit();
1466 zfree(obj_zone, backing_object);
1468 object_collapses++;
1469 } else {
1470 vm_object_t new_backing_object;
1473 * If we do not entirely shadow the backing object,
1474 * there is nothing we can do so we give up.
1477 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1478 break;
1482 * Make the parent shadow the next object in the
1483 * chain. Deallocating backing_object will not remove
1484 * it, since its reference count is at least 2.
1487 LIST_REMOVE(object, shadow_list);
1488 backing_object->shadow_count--;
1489 backing_object->generation++;
1491 new_backing_object = backing_object->backing_object;
1492 if ((object->backing_object = new_backing_object) != NULL) {
1493 vm_object_reference(new_backing_object);
1494 LIST_INSERT_HEAD(
1495 &new_backing_object->shadow_head,
1496 object,
1497 shadow_list
1499 new_backing_object->shadow_count++;
1500 new_backing_object->generation++;
1501 object->backing_object_offset +=
1502 backing_object->backing_object_offset;
1506 * Drop the reference count on backing_object. Since
1507 * its ref_count was at least 2, it will not vanish;
1508 * so we don't need to call vm_object_deallocate, but
1509 * we do anyway.
1511 vm_object_deallocate(backing_object);
1512 object_bypasses++;
1516 * Try again with this object's new backing object.
1522 * vm_object_page_remove: [internal]
1524 * Removes all physical pages in the specified
1525 * object range from the object's list of pages.
1527 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1529 void
1530 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1531 boolean_t clean_only)
1533 struct rb_vm_page_scan_info info;
1534 int all;
1537 * Degenerate cases and assertions
1539 if (object == NULL || object->resident_page_count == 0)
1540 return;
1541 KASSERT(object->type != OBJT_PHYS,
1542 ("attempt to remove pages from a physical object"));
1545 * Indicate that paging is occuring on the object
1547 crit_enter();
1548 vm_object_pip_add(object, 1);
1551 * Figure out the actual removal range and whether we are removing
1552 * the entire contents of the object or not. If removing the entire
1553 * contents, be sure to get all pages, even those that might be
1554 * beyond the end of the object.
1556 info.start_pindex = start;
1557 if (end == 0)
1558 info.end_pindex = (vm_pindex_t)-1;
1559 else
1560 info.end_pindex = end - 1;
1561 info.limit = clean_only;
1562 all = (start == 0 && info.end_pindex >= object->size - 1);
1565 * Loop until we are sure we have gotten them all.
1567 do {
1568 info.error = 0;
1569 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1570 vm_object_page_remove_callback, &info);
1571 } while (info.error);
1574 * Cleanup
1576 vm_object_pip_wakeup(object);
1577 crit_exit();
1580 static int
1581 vm_object_page_remove_callback(vm_page_t p, void *data)
1583 struct rb_vm_page_scan_info *info = data;
1586 * Wired pages cannot be destroyed, but they can be invalidated
1587 * and we do so if clean_only (limit) is not set.
1589 if (p->wire_count != 0) {
1590 vm_page_protect(p, VM_PROT_NONE);
1591 if (info->limit == 0)
1592 p->valid = 0;
1593 return(0);
1597 * The busy flags are only cleared at
1598 * interrupt -- minimize the spl transitions
1601 if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1602 info->error = 1;
1603 return(0);
1607 * limit is our clean_only flag. If set and the page is dirty, do
1608 * not free it. If set and the page is being held by someone, do
1609 * not free it.
1611 if (info->limit && p->valid) {
1612 vm_page_test_dirty(p);
1613 if (p->valid & p->dirty)
1614 return(0);
1615 if (p->hold_count)
1616 return(0);
1620 * Destroy the page
1622 vm_page_busy(p);
1623 vm_page_protect(p, VM_PROT_NONE);
1624 vm_page_free(p);
1625 return(0);
1629 * Routine: vm_object_coalesce
1630 * Function: Coalesces two objects backing up adjoining
1631 * regions of memory into a single object.
1633 * returns TRUE if objects were combined.
1635 * NOTE: Only works at the moment if the second object is NULL -
1636 * if it's not, which object do we lock first?
1638 * Parameters:
1639 * prev_object First object to coalesce
1640 * prev_offset Offset into prev_object
1641 * next_object Second object into coalesce
1642 * next_offset Offset into next_object
1644 * prev_size Size of reference to prev_object
1645 * next_size Size of reference to next_object
1647 * Conditions:
1648 * The object must *not* be locked.
1650 boolean_t
1651 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1652 vm_size_t prev_size, vm_size_t next_size)
1654 vm_pindex_t next_pindex;
1656 if (prev_object == NULL) {
1657 return (TRUE);
1660 if (prev_object->type != OBJT_DEFAULT &&
1661 prev_object->type != OBJT_SWAP) {
1662 return (FALSE);
1666 * Try to collapse the object first
1668 vm_object_collapse(prev_object);
1671 * Can't coalesce if: . more than one reference . paged out . shadows
1672 * another object . has a copy elsewhere (any of which mean that the
1673 * pages not mapped to prev_entry may be in use anyway)
1676 if (prev_object->backing_object != NULL) {
1677 return (FALSE);
1680 prev_size >>= PAGE_SHIFT;
1681 next_size >>= PAGE_SHIFT;
1682 next_pindex = prev_pindex + prev_size;
1684 if ((prev_object->ref_count > 1) &&
1685 (prev_object->size != next_pindex)) {
1686 return (FALSE);
1690 * Remove any pages that may still be in the object from a previous
1691 * deallocation.
1693 if (next_pindex < prev_object->size) {
1694 vm_object_page_remove(prev_object,
1695 next_pindex,
1696 next_pindex + next_size, FALSE);
1697 if (prev_object->type == OBJT_SWAP)
1698 swap_pager_freespace(prev_object,
1699 next_pindex, next_size);
1703 * Extend the object if necessary.
1705 if (next_pindex + next_size > prev_object->size)
1706 prev_object->size = next_pindex + next_size;
1708 return (TRUE);
1711 void
1712 vm_object_set_writeable_dirty(vm_object_t object)
1714 struct vnode *vp;
1716 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1717 if (object->type == OBJT_VNODE &&
1718 (vp = (struct vnode *)object->handle) != NULL) {
1719 if ((vp->v_flag & VOBJDIRTY) == 0) {
1720 vsetflags(vp, VOBJDIRTY);
1727 #include "opt_ddb.h"
1728 #ifdef DDB
1729 #include <sys/kernel.h>
1731 #include <sys/cons.h>
1733 #include <ddb/ddb.h>
1735 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1736 vm_map_entry_t entry);
1737 static int vm_object_in_map (vm_object_t object);
1739 static int
1740 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1742 vm_map_t tmpm;
1743 vm_map_entry_t tmpe;
1744 vm_object_t obj;
1745 int entcount;
1747 if (map == 0)
1748 return 0;
1749 if (entry == 0) {
1750 tmpe = map->header.next;
1751 entcount = map->nentries;
1752 while (entcount-- && (tmpe != &map->header)) {
1753 if( _vm_object_in_map(map, object, tmpe)) {
1754 return 1;
1756 tmpe = tmpe->next;
1758 return (0);
1760 switch(entry->maptype) {
1761 case VM_MAPTYPE_SUBMAP:
1762 tmpm = entry->object.sub_map;
1763 tmpe = tmpm->header.next;
1764 entcount = tmpm->nentries;
1765 while (entcount-- && tmpe != &tmpm->header) {
1766 if( _vm_object_in_map(tmpm, object, tmpe)) {
1767 return 1;
1769 tmpe = tmpe->next;
1771 break;
1772 case VM_MAPTYPE_NORMAL:
1773 case VM_MAPTYPE_VPAGETABLE:
1774 obj = entry->object.vm_object;
1775 while (obj) {
1776 if (obj == object)
1777 return 1;
1778 obj = obj->backing_object;
1780 break;
1781 default:
1782 break;
1784 return 0;
1787 static int vm_object_in_map_callback(struct proc *p, void *data);
1789 struct vm_object_in_map_info {
1790 vm_object_t object;
1791 int rv;
1794 static int
1795 vm_object_in_map(vm_object_t object)
1797 struct vm_object_in_map_info info;
1799 info.rv = 0;
1800 info.object = object;
1802 allproc_scan(vm_object_in_map_callback, &info);
1803 if (info.rv)
1804 return 1;
1805 if( _vm_object_in_map(&kernel_map, object, 0))
1806 return 1;
1807 if( _vm_object_in_map(&pager_map, object, 0))
1808 return 1;
1809 if( _vm_object_in_map(&buffer_map, object, 0))
1810 return 1;
1811 return 0;
1814 static int
1815 vm_object_in_map_callback(struct proc *p, void *data)
1817 struct vm_object_in_map_info *info = data;
1819 if (p->p_vmspace) {
1820 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1821 info->rv = 1;
1822 return -1;
1825 return (0);
1828 DB_SHOW_COMMAND(vmochk, vm_object_check)
1830 vm_object_t object;
1833 * make sure that internal objs are in a map somewhere
1834 * and none have zero ref counts.
1836 for (object = TAILQ_FIRST(&vm_object_list);
1837 object != NULL;
1838 object = TAILQ_NEXT(object, object_list)) {
1839 if (object->handle == NULL &&
1840 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1841 if (object->ref_count == 0) {
1842 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1843 (long)object->size);
1845 if (!vm_object_in_map(object)) {
1846 db_printf(
1847 "vmochk: internal obj is not in a map: "
1848 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1849 object->ref_count, (u_long)object->size,
1850 (u_long)object->size,
1851 (void *)object->backing_object);
1858 * vm_object_print: [ debug ]
1860 DB_SHOW_COMMAND(object, vm_object_print_static)
1862 /* XXX convert args. */
1863 vm_object_t object = (vm_object_t)addr;
1864 boolean_t full = have_addr;
1866 vm_page_t p;
1868 /* XXX count is an (unused) arg. Avoid shadowing it. */
1869 #define count was_count
1871 int count;
1873 if (object == NULL)
1874 return;
1876 db_iprintf(
1877 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1878 object, (int)object->type, (u_long)object->size,
1879 object->resident_page_count, object->ref_count, object->flags);
1881 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1883 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1884 object->shadow_count,
1885 object->backing_object ? object->backing_object->ref_count : 0,
1886 object->backing_object, (long)object->backing_object_offset);
1888 if (!full)
1889 return;
1891 db_indent += 2;
1892 count = 0;
1893 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1894 if (count == 0)
1895 db_iprintf("memory:=");
1896 else if (count == 6) {
1897 db_printf("\n");
1898 db_iprintf(" ...");
1899 count = 0;
1900 } else
1901 db_printf(",");
1902 count++;
1904 db_printf("(off=0x%lx,page=0x%lx)",
1905 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1907 if (count != 0)
1908 db_printf("\n");
1909 db_indent -= 2;
1912 /* XXX. */
1913 #undef count
1915 /* XXX need this non-static entry for calling from vm_map_print. */
1916 void
1917 vm_object_print(/* db_expr_t */ long addr,
1918 boolean_t have_addr,
1919 /* db_expr_t */ long count,
1920 char *modif)
1922 vm_object_print_static(addr, have_addr, count, modif);
1925 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1927 vm_object_t object;
1928 int nl = 0;
1929 int c;
1930 for (object = TAILQ_FIRST(&vm_object_list);
1931 object != NULL;
1932 object = TAILQ_NEXT(object, object_list)) {
1933 vm_pindex_t idx, fidx;
1934 vm_pindex_t osize;
1935 vm_paddr_t pa = -1, padiff;
1936 int rcount;
1937 vm_page_t m;
1939 db_printf("new object: %p\n", (void *)object);
1940 if ( nl > 18) {
1941 c = cngetc();
1942 if (c != ' ')
1943 return;
1944 nl = 0;
1946 nl++;
1947 rcount = 0;
1948 fidx = 0;
1949 osize = object->size;
1950 if (osize > 128)
1951 osize = 128;
1952 for (idx = 0; idx < osize; idx++) {
1953 m = vm_page_lookup(object, idx);
1954 if (m == NULL) {
1955 if (rcount) {
1956 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1957 (long)fidx, rcount, (long)pa);
1958 if ( nl > 18) {
1959 c = cngetc();
1960 if (c != ' ')
1961 return;
1962 nl = 0;
1964 nl++;
1965 rcount = 0;
1967 continue;
1971 if (rcount &&
1972 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1973 ++rcount;
1974 continue;
1976 if (rcount) {
1977 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1978 padiff >>= PAGE_SHIFT;
1979 padiff &= PQ_L2_MASK;
1980 if (padiff == 0) {
1981 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1982 ++rcount;
1983 continue;
1985 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1986 (long)fidx, rcount, (long)pa);
1987 db_printf("pd(%ld)\n", (long)padiff);
1988 if ( nl > 18) {
1989 c = cngetc();
1990 if (c != ' ')
1991 return;
1992 nl = 0;
1994 nl++;
1996 fidx = idx;
1997 pa = VM_PAGE_TO_PHYS(m);
1998 rcount = 1;
2000 if (rcount) {
2001 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2002 (long)fidx, rcount, (long)pa);
2003 if ( nl > 18) {
2004 c = cngetc();
2005 if (c != ' ')
2006 return;
2007 nl = 0;
2009 nl++;
2013 #endif /* DDB */