MFC r1.27:
[dragonfly.git] / sys / vfs / procfs / procfs_subr.c
blob0759570daee4c6ae98fdaebe67f083ad4b3b7667
1 /*
2 * Copyright (c) 1993 Jan-Simon Pendry
3 * Copyright (c) 1993
4 * The Regents of the University of California. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * Jan-Simon Pendry.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * @(#)procfs_subr.c 8.6 (Berkeley) 5/14/95
39 * $FreeBSD: src/sys/miscfs/procfs/procfs_subr.c,v 1.26.2.3 2002/02/18 21:28:04 des Exp $
40 * $DragonFly: src/sys/vfs/procfs/procfs_subr.c,v 1.18 2007/08/25 23:27:02 corecode Exp $
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/proc.h>
47 #include <sys/mount.h>
48 #include <sys/vnode.h>
49 #include <sys/malloc.h>
51 #include <vfs/procfs/procfs.h>
53 #define PFS_HSIZE 256
54 #define PFS_HMASK (PFS_HSIZE - 1)
56 static struct pfsnode *pfshead[PFS_HSIZE];
57 static int pfsvplock;
59 #define PFSHASH(pid) &pfshead[(pid) & PFS_HMASK]
62 * Allocate a pfsnode/vnode pair. If no error occurs the returned vnode
63 * will be referenced and exclusively locked.
65 * The pid, pfs_type, and mount point uniquely identify a pfsnode.
66 * The mount point is needed because someone might mount this filesystem
67 * twice.
69 * All pfsnodes are maintained on a singly-linked list. new nodes are
70 * only allocated when they cannot be found on this list. entries on
71 * the list are removed when the vfs reclaim entry is called.
73 * A single lock is kept for the entire list. this is needed because the
74 * getnewvnode() function can block waiting for a vnode to become free,
75 * in which case there may be more than one process trying to get the same
76 * vnode. this lock is only taken if we are going to call getnewvnode,
77 * since the kernel itself is single-threaded.
79 * If an entry is found on the list, then call vget() to take a reference
80 * and obtain the lock. This will properly re-reference the vnode if it
81 * had gotten onto the free list.
83 int
84 procfs_allocvp(struct mount *mp, struct vnode **vpp, long pid, pfstype pfs_type)
86 struct pfsnode *pfs;
87 struct vnode *vp;
88 struct pfsnode **pp;
89 int error;
91 pp = PFSHASH(pid);
92 loop:
93 for (pfs = *pp; pfs; pfs = pfs->pfs_next) {
94 if (pfs->pfs_pid == pid && pfs->pfs_type == pfs_type &&
95 PFSTOV(pfs)->v_mount == mp) {
96 vp = PFSTOV(pfs);
97 if (vget(vp, LK_EXCLUSIVE))
98 goto loop;
101 * Make sure the vnode is still in the cache after
102 * getting the interlock to avoid racing a free.
104 for (pfs = *pp; pfs; pfs = pfs->pfs_next) {
105 if (PFSTOV(pfs) == vp &&
106 pfs->pfs_pid == pid &&
107 pfs->pfs_type == pfs_type &&
108 PFSTOV(pfs)->v_mount == mp) {
109 break;
112 if (pfs == NULL || PFSTOV(pfs) != vp) {
113 vput(vp);
114 goto loop;
117 *vpp = vp;
118 return (0);
123 * otherwise lock the vp list while we call getnewvnode
124 * since that can block.
126 if (pfsvplock & PROCFS_LOCKED) {
127 pfsvplock |= PROCFS_WANT;
128 (void) tsleep((caddr_t) &pfsvplock, 0, "pfsavp", 0);
129 goto loop;
131 pfsvplock |= PROCFS_LOCKED;
134 * Do the MALLOC before the getnewvnode since doing so afterward
135 * might cause a bogus v_data pointer to get dereferenced
136 * elsewhere if MALLOC should block.
138 * XXX this may not matter anymore since getnewvnode now returns
139 * a VX locked vnode.
141 MALLOC(pfs, struct pfsnode *, sizeof(struct pfsnode), M_TEMP, M_WAITOK);
143 error = getnewvnode(VT_PROCFS, mp, vpp, 0, 0);
144 if (error) {
145 kfree(pfs, M_TEMP);
146 goto out;
148 vp = *vpp;
150 vp->v_data = pfs;
152 pfs->pfs_next = 0;
153 pfs->pfs_pid = (pid_t) pid;
154 pfs->pfs_type = pfs_type;
155 pfs->pfs_vnode = vp;
156 pfs->pfs_flags = 0;
157 pfs->pfs_lockowner = 0;
158 pfs->pfs_fileno = PROCFS_FILENO(pid, pfs_type);
160 switch (pfs_type) {
161 case Proot: /* /proc = dr-xr-xr-x */
162 pfs->pfs_mode = (VREAD|VEXEC) |
163 (VREAD|VEXEC) >> 3 |
164 (VREAD|VEXEC) >> 6;
165 vp->v_type = VDIR;
166 vp->v_flag = VROOT;
167 break;
169 case Pcurproc: /* /proc/curproc = lr--r--r-- */
170 pfs->pfs_mode = (VREAD) |
171 (VREAD >> 3) |
172 (VREAD >> 6);
173 vp->v_type = VLNK;
174 break;
176 case Pproc:
177 pfs->pfs_mode = (VREAD|VEXEC) |
178 (VREAD|VEXEC) >> 3 |
179 (VREAD|VEXEC) >> 6;
180 vp->v_type = VDIR;
181 break;
183 case Pfile:
184 pfs->pfs_mode = (VREAD|VEXEC) |
185 (VREAD|VEXEC) >> 3 |
186 (VREAD|VEXEC) >> 6;
187 vp->v_type = VLNK;
188 break;
190 case Pmem:
191 pfs->pfs_mode = (VREAD|VWRITE);
192 vp->v_type = VREG;
193 break;
195 case Pregs:
196 case Pfpregs:
197 case Pdbregs:
198 pfs->pfs_mode = (VREAD|VWRITE);
199 vp->v_type = VREG;
200 break;
202 case Pctl:
203 case Pnote:
204 case Pnotepg:
205 pfs->pfs_mode = (VWRITE);
206 vp->v_type = VREG;
207 break;
209 case Ptype:
210 case Pmap:
211 case Pstatus:
212 case Pcmdline:
213 case Prlimit:
214 pfs->pfs_mode = (VREAD) |
215 (VREAD >> 3) |
216 (VREAD >> 6);
217 vp->v_type = VREG;
218 break;
220 default:
221 panic("procfs_allocvp");
224 /* add to procfs vnode list */
225 pfs->pfs_next = *pp;
226 *pp = pfs;
228 out:
229 pfsvplock &= ~PROCFS_LOCKED;
231 if (pfsvplock & PROCFS_WANT) {
232 pfsvplock &= ~PROCFS_WANT;
233 wakeup((caddr_t) &pfsvplock);
236 return (error);
240 procfs_freevp(struct vnode *vp)
242 struct pfsnode **pfspp;
243 struct pfsnode *pfs;
245 pfs = VTOPFS(vp);
246 vp->v_data = NULL;
248 pfspp = PFSHASH(pfs->pfs_pid);
249 while (*pfspp != pfs && *pfspp)
250 pfspp = &(*pfspp)->pfs_next;
251 KKASSERT(*pfspp);
252 *pfspp = pfs->pfs_next;
253 pfs->pfs_next = NULL;
254 kfree(pfs, M_TEMP);
255 return (0);
259 procfs_rw(struct vop_read_args *ap)
261 struct vnode *vp = ap->a_vp;
262 struct uio *uio = ap->a_uio;
263 struct thread *curtd = uio->uio_td;
264 struct proc *curp;
265 struct pfsnode *pfs = VTOPFS(vp);
266 struct proc *p;
267 struct lwp *lp;
268 int rtval;
270 if (curtd == NULL)
271 return (EINVAL);
272 if ((curp = curtd->td_proc) == NULL) /* XXX */
273 return (EINVAL);
275 p = PFIND(pfs->pfs_pid);
276 if (p == NULL)
277 return (EINVAL);
278 if (p->p_pid == 1 && securelevel > 0 && uio->uio_rw == UIO_WRITE)
279 return (EACCES);
280 /* XXX lwp */
281 lp = FIRST_LWP_IN_PROC(p);
282 LWPHOLD(lp);
284 while (pfs->pfs_lockowner) {
285 tsleep(&pfs->pfs_lockowner, 0, "pfslck", 0);
287 pfs->pfs_lockowner = curproc->p_pid;
289 switch (pfs->pfs_type) {
290 case Pnote:
291 case Pnotepg:
292 rtval = procfs_donote(curp, lp, pfs, uio);
293 break;
295 case Pregs:
296 rtval = procfs_doregs(curp, lp, pfs, uio);
297 break;
299 case Pfpregs:
300 rtval = procfs_dofpregs(curp, lp, pfs, uio);
301 break;
303 case Pdbregs:
304 rtval = procfs_dodbregs(curp, lp, pfs, uio);
305 break;
307 case Pctl:
308 rtval = procfs_doctl(curp, lp, pfs, uio);
309 break;
311 case Pstatus:
312 rtval = procfs_dostatus(curp, lp, pfs, uio);
313 break;
315 case Pmap:
316 rtval = procfs_domap(curp, lp, pfs, uio);
317 break;
319 case Pmem:
320 rtval = procfs_domem(curp, lp, pfs, uio);
321 break;
323 case Ptype:
324 rtval = procfs_dotype(curp, lp, pfs, uio);
325 break;
327 case Pcmdline:
328 rtval = procfs_docmdline(curp, lp, pfs, uio);
329 break;
331 case Prlimit:
332 rtval = procfs_dorlimit(curp, lp, pfs, uio);
333 break;
335 default:
336 rtval = EOPNOTSUPP;
337 break;
339 LWPRELE(lp);
340 pfs->pfs_lockowner = 0;
341 wakeup(&pfs->pfs_lockowner);
342 return rtval;
346 * Get a string from userland into (buf). Strip a trailing
347 * nl character (to allow easy access from the shell).
348 * The buffer should be *buflenp + 1 chars long. vfs_getuserstr
349 * will automatically add a nul char at the end.
351 * Returns 0 on success or the following errors
353 * EINVAL: file offset is non-zero.
354 * EMSGSIZE: message is longer than kernel buffer
355 * EFAULT: user i/o buffer is not addressable
358 vfs_getuserstr(struct uio *uio, char *buf, int *buflenp)
360 int xlen;
361 int error;
363 if (uio->uio_offset != 0)
364 return (EINVAL);
366 xlen = *buflenp;
368 /* must be able to read the whole string in one go */
369 if (xlen < uio->uio_resid)
370 return (EMSGSIZE);
371 xlen = uio->uio_resid;
373 if ((error = uiomove(buf, xlen, uio)) != 0)
374 return (error);
376 /* allow multiple writes without seeks */
377 uio->uio_offset = 0;
379 /* cleanup string and remove trailing newline */
380 buf[xlen] = '\0';
381 xlen = strlen(buf);
382 if (xlen > 0 && buf[xlen-1] == '\n')
383 buf[--xlen] = '\0';
384 *buflenp = xlen;
386 return (0);
389 vfs_namemap_t *
390 vfs_findname(vfs_namemap_t *nm, char *buf, int buflen)
393 for (; nm->nm_name; nm++)
394 if (bcmp(buf, nm->nm_name, buflen+1) == 0)
395 return (nm);
397 return (0);
400 void
401 procfs_exit(struct thread *td)
403 struct pfsnode *pfs;
404 struct vnode *vp;
405 pid_t pid;
407 KKASSERT(td->td_proc);
408 pid = td->td_proc->p_pid;
411 * The reason for this loop is not obvious -- basicly,
412 * procfs_freevp(), which is called via vgone() (eventually),
413 * removes the specified procfs node from the pfshead list.
414 * It does this by *pfsp = pfs->pfs_next, meaning that it
415 * overwrites the node. So when we do pfs = pfs->next, we
416 * end up skipping the node that replaces the one that was
417 * vgone'd. Since it may have been the last one on the list,
418 * it may also have been set to null -- but *our* pfs pointer,
419 * here, doesn't see this. So the loop starts from the beginning
420 * again.
422 * This is not a for() loop because the final event
423 * would be "pfs = pfs->pfs_next"; in the case where
424 * pfs is set to pfshead again, that would mean that
425 * pfshead is skipped over.
428 again:
429 pfs = *PFSHASH(pid);
430 while (pfs) {
431 if (pfs->pfs_pid == pid) {
432 vp = PFSTOV(pfs);
433 vx_lock(vp);
434 vgone_vxlocked(vp);
435 vx_unlock(vp);
436 goto again;
438 pfs = pfs->pfs_next;