MFC r1.27:
[dragonfly.git] / sys / net / zlib.c
blobd7bade341dffb60a692134d11e76877366e60155
1 /*
2 * This file is derived from various .h and .c files from the zlib-1.0.4
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets. See zlib.h for conditions of
6 * distribution and use.
8 * Changes that have been made include:
9 * - added Z_PACKET_FLUSH (see zlib.h for details)
10 * - added inflateIncomp and deflateOutputPending
11 * - allow strm->next_out to be NULL, meaning discard the output
13 * $FreeBSD: src/sys/net/zlib.c,v 1.10.2.3 2002/03/24 23:12:48 jedgar Exp $
14 * $DragonFly: src/sys/net/zlib.c,v 1.11 2007/01/07 00:41:29 dillon Exp $
17 /*
18 * ==FILEVERSION 971210==
20 * This marker is used by the Linux installation script to determine
21 * whether an up-to-date version of this file is already installed.
24 #define NO_DUMMY_DECL
25 #define NO_ZCFUNCS
26 #define MY_ZCALLOC
28 #if (defined(__DragonFly__) || defined(__FreeBSD__)) && defined(_KERNEL)
29 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
30 #endif
33 /* +++ zutil.h */
34 /* zutil.h -- internal interface and configuration of the compression library
35 * Copyright (C) 1995-1996 Jean-loup Gailly.
36 * For conditions of distribution and use, see copyright notice in zlib.h
39 /* WARNING: this file should *not* be used by applications. It is
40 part of the implementation of the compression library and is
41 subject to change. Applications should only use zlib.h.
44 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
46 #ifndef _Z_UTIL_H
47 #define _Z_UTIL_H
49 #ifdef _KERNEL
50 #include <net/zlib.h>
51 #else
52 #include "zlib.h"
53 #endif
55 #ifdef _KERNEL
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/types.h>
59 #include <sys/time.h>
60 #include <sys/systm.h>
61 # define HAVE_MEMCPY
62 # define memcpy(d, s, n) bcopy((s), (d), (n))
63 # define memset(d, v, n) bzero((d), (n))
64 # define memcmp bcmp
66 #else
67 #if defined(__KERNEL__)
68 /* Assume this is a Linux kernel */
69 #include <linux/string.h>
70 #define HAVE_MEMCPY
72 #else /* not kernel */
74 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
75 # include <stddef.h>
76 # include <errno.h>
77 #else
78 extern int errno;
79 #endif
80 #ifdef STDC
81 # include <string.h>
82 # include <stdlib.h>
83 #endif
84 #endif /* __KERNEL__ */
85 #endif /* _KERNEL */
87 #ifndef local
88 # define local static
89 #endif
90 /* compile with -Dlocal if your debugger can't find static symbols */
92 typedef unsigned char uch;
93 typedef uch FAR uchf;
94 typedef unsigned short ush;
95 typedef ush FAR ushf;
96 typedef unsigned long ulg;
98 static const char *z_errmsg[10] = {
99 "need dictionary", /* Z_NEED_DICT 2 */
100 "stream end", /* Z_STREAM_END 1 */
101 "", /* Z_OK 0 */
102 "file error", /* Z_ERRNO (-1) */
103 "stream error", /* Z_STREAM_ERROR (-2) */
104 "data error", /* Z_DATA_ERROR (-3) */
105 "insufficient memory", /* Z_MEM_ERROR (-4) */
106 "buffer error", /* Z_BUF_ERROR (-5) */
107 "incompatible version",/* Z_VERSION_ERROR (-6) */
108 ""};
110 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
112 #define ERR_RETURN(strm,err) \
113 return (strm->msg = (const char*)ERR_MSG(err), (err))
114 /* To be used only when the state is known to be valid */
116 /* common constants */
118 #ifndef DEF_WBITS
119 # define DEF_WBITS MAX_WBITS
120 #endif
121 /* default windowBits for decompression. MAX_WBITS is for compression only */
123 #if MAX_MEM_LEVEL >= 8
124 # define DEF_MEM_LEVEL 8
125 #else
126 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
127 #endif
128 /* default memLevel */
130 #define STORED_BLOCK 0
131 #define STATIC_TREES 1
132 #define DYN_TREES 2
133 /* The three kinds of block type */
135 #define MIN_MATCH 3
136 #define MAX_MATCH 258
137 /* The minimum and maximum match lengths */
139 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
141 /* target dependencies */
143 #ifdef MSDOS
144 # define OS_CODE 0x00
145 # ifdef __TURBOC__
146 # include <alloc.h>
147 # else /* MSC or DJGPP */
148 # include <malloc.h>
149 # endif
150 #endif
152 #ifdef OS2
153 # define OS_CODE 0x06
154 #endif
156 #ifdef WIN32 /* Window 95 & Windows NT */
157 # define OS_CODE 0x0b
158 #endif
160 #if defined(VAXC) || defined(VMS)
161 # define OS_CODE 0x02
162 # define FOPEN(name, mode) \
163 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
164 #endif
166 #ifdef AMIGA
167 # define OS_CODE 0x01
168 #endif
170 #if defined(ATARI) || defined(atarist)
171 # define OS_CODE 0x05
172 #endif
174 #ifdef MACOS
175 # define OS_CODE 0x07
176 #endif
178 #ifdef __50SERIES /* Prime/PRIMOS */
179 # define OS_CODE 0x0F
180 #endif
182 #ifdef TOPS20
183 # define OS_CODE 0x0a
184 #endif
186 #if defined(_BEOS_) || defined(RISCOS)
187 # define fdopen(fd,mode) NULL /* No fdopen() */
188 #endif
190 /* Common defaults */
192 #ifndef OS_CODE
193 # define OS_CODE 0x03 /* assume Unix */
194 #endif
196 #ifndef FOPEN
197 # define FOPEN(name, mode) fopen((name), (mode))
198 #endif
200 /* functions */
202 #ifdef HAVE_STRERROR
203 extern char *strerror OF((int));
204 # define zstrerror(errnum) strerror(errnum)
205 #else
206 # define zstrerror(errnum) ""
207 #endif
209 #if defined(pyr)
210 # define NO_MEMCPY
211 #endif
212 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
213 /* Use our own functions for small and medium model with MSC <= 5.0.
214 * You may have to use the same strategy for Borland C (untested).
216 # define NO_MEMCPY
217 #endif
218 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
219 # define HAVE_MEMCPY
220 #endif
221 #ifdef HAVE_MEMCPY
222 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
223 # define zmemcpy _fmemcpy
224 # define zmemcmp _fmemcmp
225 # define zmemzero(dest, len) _fmemset(dest, 0, len)
226 # else
227 # define zmemcpy memcpy
228 # define zmemcmp memcmp
229 # define zmemzero(dest, len) memset(dest, 0, len)
230 # endif
231 #else
232 extern void zmemcpy OF((Bytef* dest, Bytef* source, uInt len));
233 extern int zmemcmp OF((Bytef* s1, Bytef* s2, uInt len));
234 extern void zmemzero OF((Bytef* dest, uInt len));
235 #endif
237 /* Diagnostic functions */
238 #ifdef DEBUG_ZLIB
239 # include <stdio.h>
240 # ifndef verbose
241 # define verbose 0
242 # endif
243 extern void z_error OF((char *m));
244 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
245 # define Trace(x) fprintf x
246 # define Tracev(x) {if (verbose) fprintf x ;}
247 # define Tracevv(x) {if (verbose>1) fprintf x ;}
248 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
249 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
250 #else
251 # define Assert(cond,msg)
252 # define Trace(x)
253 # define Tracev(x)
254 # define Tracevv(x)
255 # define Tracec(c,x)
256 # define Tracecv(c,x)
257 #endif
260 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
262 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
263 void zcfree OF((voidpf opaque, voidpf ptr));
265 #define ZALLOC(strm, items, size) \
266 (*((strm)->zalloc))((strm)->opaque, (items), (size))
267 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
268 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
270 #endif /* _Z_UTIL_H */
271 /* --- zutil.h */
273 /* +++ deflate.h */
274 /* deflate.h -- internal compression state
275 * Copyright (C) 1995-1996 Jean-loup Gailly
276 * For conditions of distribution and use, see copyright notice in zlib.h
279 /* WARNING: this file should *not* be used by applications. It is
280 part of the implementation of the compression library and is
281 subject to change. Applications should only use zlib.h.
284 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
286 #ifndef _DEFLATE_H
287 #define _DEFLATE_H
289 /* #include "zutil.h" */
291 /* ===========================================================================
292 * Internal compression state.
295 #define LENGTH_CODES 29
296 /* number of length codes, not counting the special END_BLOCK code */
298 #define LITERALS 256
299 /* number of literal bytes 0..255 */
301 #define L_CODES (LITERALS+1+LENGTH_CODES)
302 /* number of Literal or Length codes, including the END_BLOCK code */
304 #define D_CODES 30
305 /* number of distance codes */
307 #define BL_CODES 19
308 /* number of codes used to transfer the bit lengths */
310 #define HEAP_SIZE (2*L_CODES+1)
311 /* maximum heap size */
313 #define MAX_BITS 15
314 /* All codes must not exceed MAX_BITS bits */
316 #define INIT_STATE 42
317 #define BUSY_STATE 113
318 #define FINISH_STATE 666
319 /* Stream status */
322 /* Data structure describing a single value and its code string. */
323 typedef struct ct_data_s {
324 union {
325 ush freq; /* frequency count */
326 ush code; /* bit string */
327 } fc;
328 union {
329 ush dad; /* father node in Huffman tree */
330 ush len; /* length of bit string */
331 } dl;
332 } FAR ct_data;
334 #define Freq fc.freq
335 #define Code fc.code
336 #define Dad dl.dad
337 #define Len dl.len
339 typedef struct static_tree_desc_s static_tree_desc;
341 typedef struct tree_desc_s {
342 ct_data *dyn_tree; /* the dynamic tree */
343 int max_code; /* largest code with non zero frequency */
344 static_tree_desc *stat_desc; /* the corresponding static tree */
345 } FAR tree_desc;
347 typedef ush Pos;
348 typedef Pos FAR Posf;
349 typedef unsigned IPos;
351 /* A Pos is an index in the character window. We use short instead of int to
352 * save space in the various tables. IPos is used only for parameter passing.
355 typedef struct deflate_state {
356 z_streamp strm; /* pointer back to this zlib stream */
357 int status; /* as the name implies */
358 Bytef *pending_buf; /* output still pending */
359 ulg pending_buf_size; /* size of pending_buf */
360 Bytef *pending_out; /* next pending byte to output to the stream */
361 int pending; /* nb of bytes in the pending buffer */
362 int noheader; /* suppress zlib header and adler32 */
363 Byte data_type; /* UNKNOWN, BINARY or ASCII */
364 Byte method; /* STORED (for zip only) or DEFLATED */
365 int last_flush; /* value of flush param for previous deflate call */
367 /* used by deflate.c: */
369 uInt w_size; /* LZ77 window size (32K by default) */
370 uInt w_bits; /* log2(w_size) (8..16) */
371 uInt w_mask; /* w_size - 1 */
373 Bytef *window;
374 /* Sliding window. Input bytes are read into the second half of the window,
375 * and move to the first half later to keep a dictionary of at least wSize
376 * bytes. With this organization, matches are limited to a distance of
377 * wSize-MAX_MATCH bytes, but this ensures that IO is always
378 * performed with a length multiple of the block size. Also, it limits
379 * the window size to 64K, which is quite useful on MSDOS.
380 * To do: use the user input buffer as sliding window.
383 ulg window_size;
384 /* Actual size of window: 2*wSize, except when the user input buffer
385 * is directly used as sliding window.
388 Posf *prev;
389 /* Link to older string with same hash index. To limit the size of this
390 * array to 64K, this link is maintained only for the last 32K strings.
391 * An index in this array is thus a window index modulo 32K.
394 Posf *head; /* Heads of the hash chains or NIL. */
396 uInt ins_h; /* hash index of string to be inserted */
397 uInt hash_size; /* number of elements in hash table */
398 uInt hash_bits; /* log2(hash_size) */
399 uInt hash_mask; /* hash_size-1 */
401 uInt hash_shift;
402 /* Number of bits by which ins_h must be shifted at each input
403 * step. It must be such that after MIN_MATCH steps, the oldest
404 * byte no longer takes part in the hash key, that is:
405 * hash_shift * MIN_MATCH >= hash_bits
408 long block_start;
409 /* Window position at the beginning of the current output block. Gets
410 * negative when the window is moved backwards.
413 uInt match_length; /* length of best match */
414 IPos prev_match; /* previous match */
415 int match_available; /* set if previous match exists */
416 uInt strstart; /* start of string to insert */
417 uInt match_start; /* start of matching string */
418 uInt lookahead; /* number of valid bytes ahead in window */
420 uInt prev_length;
421 /* Length of the best match at previous step. Matches not greater than this
422 * are discarded. This is used in the lazy match evaluation.
425 uInt max_chain_length;
426 /* To speed up deflation, hash chains are never searched beyond this
427 * length. A higher limit improves compression ratio but degrades the
428 * speed.
431 uInt max_lazy_match;
432 /* Attempt to find a better match only when the current match is strictly
433 * smaller than this value. This mechanism is used only for compression
434 * levels >= 4.
436 # define max_insert_length max_lazy_match
437 /* Insert new strings in the hash table only if the match length is not
438 * greater than this length. This saves time but degrades compression.
439 * max_insert_length is used only for compression levels <= 3.
442 int level; /* compression level (1..9) */
443 int strategy; /* favor or force Huffman coding*/
445 uInt good_match;
446 /* Use a faster search when the previous match is longer than this */
448 int nice_match; /* Stop searching when current match exceeds this */
450 /* used by trees.c: */
451 /* Didn't use ct_data typedef below to supress compiler warning */
452 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
453 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
454 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
456 struct tree_desc_s l_desc; /* desc. for literal tree */
457 struct tree_desc_s d_desc; /* desc. for distance tree */
458 struct tree_desc_s bl_desc; /* desc. for bit length tree */
460 ush bl_count[MAX_BITS+1];
461 /* number of codes at each bit length for an optimal tree */
463 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
464 int heap_len; /* number of elements in the heap */
465 int heap_max; /* element of largest frequency */
466 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
467 * The same heap array is used to build all trees.
470 uch depth[2*L_CODES+1];
471 /* Depth of each subtree used as tie breaker for trees of equal frequency
474 uchf *l_buf; /* buffer for literals or lengths */
476 uInt lit_bufsize;
477 /* Size of match buffer for literals/lengths. There are 4 reasons for
478 * limiting lit_bufsize to 64K:
479 * - frequencies can be kept in 16 bit counters
480 * - if compression is not successful for the first block, all input
481 * data is still in the window so we can still emit a stored block even
482 * when input comes from standard input. (This can also be done for
483 * all blocks if lit_bufsize is not greater than 32K.)
484 * - if compression is not successful for a file smaller than 64K, we can
485 * even emit a stored file instead of a stored block (saving 5 bytes).
486 * This is applicable only for zip (not gzip or zlib).
487 * - creating new Huffman trees less frequently may not provide fast
488 * adaptation to changes in the input data statistics. (Take for
489 * example a binary file with poorly compressible code followed by
490 * a highly compressible string table.) Smaller buffer sizes give
491 * fast adaptation but have of course the overhead of transmitting
492 * trees more frequently.
493 * - I can't count above 4
496 uInt last_lit; /* running index in l_buf */
498 ushf *d_buf;
499 /* Buffer for distances. To simplify the code, d_buf and l_buf have
500 * the same number of elements. To use different lengths, an extra flag
501 * array would be necessary.
504 ulg opt_len; /* bit length of current block with optimal trees */
505 ulg static_len; /* bit length of current block with static trees */
506 ulg compressed_len; /* total bit length of compressed file */
507 uInt matches; /* number of string matches in current block */
508 int last_eob_len; /* bit length of EOB code for last block */
510 #ifdef DEBUG_ZLIB
511 ulg bits_sent; /* bit length of the compressed data */
512 #endif
514 ush bi_buf;
515 /* Output buffer. bits are inserted starting at the bottom (least
516 * significant bits).
518 int bi_valid;
519 /* Number of valid bits in bi_buf. All bits above the last valid bit
520 * are always zero.
523 } FAR deflate_state;
525 /* Output a byte on the stream.
526 * IN assertion: there is enough room in pending_buf.
528 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
531 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
532 /* Minimum amount of lookahead, except at the end of the input file.
533 * See deflate.c for comments about the MIN_MATCH+1.
536 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
537 /* In order to simplify the code, particularly on 16 bit machines, match
538 * distances are limited to MAX_DIST instead of WSIZE.
541 /* in trees.c */
542 void _tr_init OF((deflate_state *s));
543 int _tr_tally OF((deflate_state *s, unsigned dist, unsigned lc));
544 ulg _tr_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
545 int eof));
546 void _tr_align OF((deflate_state *s));
547 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
548 int eof));
549 void _tr_stored_type_only OF((deflate_state *));
551 #endif
552 /* --- deflate.h */
554 /* +++ deflate.c */
555 /* deflate.c -- compress data using the deflation algorithm
556 * Copyright (C) 1995-1996 Jean-loup Gailly.
557 * For conditions of distribution and use, see copyright notice in zlib.h
561 * ALGORITHM
563 * The "deflation" process depends on being able to identify portions
564 * of the input text which are identical to earlier input (within a
565 * sliding window trailing behind the input currently being processed).
567 * The most straightforward technique turns out to be the fastest for
568 * most input files: try all possible matches and select the longest.
569 * The key feature of this algorithm is that insertions into the string
570 * dictionary are very simple and thus fast, and deletions are avoided
571 * completely. Insertions are performed at each input character, whereas
572 * string matches are performed only when the previous match ends. So it
573 * is preferable to spend more time in matches to allow very fast string
574 * insertions and avoid deletions. The matching algorithm for small
575 * strings is inspired from that of Rabin & Karp. A brute force approach
576 * is used to find longer strings when a small match has been found.
577 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
578 * (by Leonid Broukhis).
579 * A previous version of this file used a more sophisticated algorithm
580 * (by Fiala and Greene) which is guaranteed to run in linear amortized
581 * time, but has a larger average cost, uses more memory and is patented.
582 * However the F&G algorithm may be faster for some highly redundant
583 * files if the parameter max_chain_length (described below) is too large.
585 * ACKNOWLEDGEMENTS
587 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
588 * I found it in 'freeze' written by Leonid Broukhis.
589 * Thanks to many people for bug reports and testing.
591 * REFERENCES
593 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
594 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
596 * A description of the Rabin and Karp algorithm is given in the book
597 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
599 * Fiala,E.R., and Greene,D.H.
600 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
604 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
606 /* #include "deflate.h" */
608 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
610 If you use the zlib library in a product, an acknowledgment is welcome
611 in the documentation of your product. If for some reason you cannot
612 include such an acknowledgment, I would appreciate that you keep this
613 copyright string in the executable of your product.
616 /* ===========================================================================
617 * Function prototypes.
619 typedef enum {
620 need_more, /* block not completed, need more input or more output */
621 block_done, /* block flush performed */
622 finish_started, /* finish started, need only more output at next deflate */
623 finish_done /* finish done, accept no more input or output */
624 } block_state;
626 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
627 /* Compression function. Returns the block state after the call. */
629 local void fill_window OF((deflate_state *s));
630 local block_state deflate_stored OF((deflate_state *s, int flush));
631 local block_state deflate_fast OF((deflate_state *s, int flush));
632 local block_state deflate_slow OF((deflate_state *s, int flush));
633 local void lm_init OF((deflate_state *s));
634 local void putShortMSB OF((deflate_state *s, uInt b));
635 local void flush_pending OF((z_streamp strm));
636 local int read_buf OF((z_streamp strm, charf *buf, unsigned size));
637 #ifdef ASMV
638 void match_init OF((void)); /* asm code initialization */
639 uInt longest_match OF((deflate_state *s, IPos cur_match));
640 #else
641 local uInt longest_match OF((deflate_state *s, IPos cur_match));
642 #endif
644 #ifdef DEBUG_ZLIB
645 local void check_match OF((deflate_state *s, IPos start, IPos match,
646 int length));
647 #endif
649 /* ===========================================================================
650 * Local data
653 #define NIL 0
654 /* Tail of hash chains */
656 #ifndef TOO_FAR
657 # define TOO_FAR 4096
658 #endif
659 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
661 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
662 /* Minimum amount of lookahead, except at the end of the input file.
663 * See deflate.c for comments about the MIN_MATCH+1.
666 /* Values for max_lazy_match, good_match and max_chain_length, depending on
667 * the desired pack level (0..9). The values given below have been tuned to
668 * exclude worst case performance for pathological files. Better values may be
669 * found for specific files.
671 typedef struct config_s {
672 ush good_length; /* reduce lazy search above this match length */
673 ush max_lazy; /* do not perform lazy search above this match length */
674 ush nice_length; /* quit search above this match length */
675 ush max_chain;
676 compress_func func;
677 } config;
679 local config configuration_table[10] = {
680 /* good lazy nice chain */
681 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
682 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */
683 /* 2 */ {4, 5, 16, 8, deflate_fast},
684 /* 3 */ {4, 6, 32, 32, deflate_fast},
686 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
687 /* 5 */ {8, 16, 32, 32, deflate_slow},
688 /* 6 */ {8, 16, 128, 128, deflate_slow},
689 /* 7 */ {8, 32, 128, 256, deflate_slow},
690 /* 8 */ {32, 128, 258, 1024, deflate_slow},
691 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
693 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
694 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
695 * meaning.
698 #define EQUAL 0
699 /* result of memcmp for equal strings */
701 #ifndef NO_DUMMY_DECL
702 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
703 #endif
705 /* ===========================================================================
706 * Update a hash value with the given input byte
707 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
708 * input characters, so that a running hash key can be computed from the
709 * previous key instead of complete recalculation each time.
711 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
714 /* ===========================================================================
715 * Insert string str in the dictionary and set match_head to the previous head
716 * of the hash chain (the most recent string with same hash key). Return
717 * the previous length of the hash chain.
718 * IN assertion: all calls to to INSERT_STRING are made with consecutive
719 * input characters and the first MIN_MATCH bytes of str are valid
720 * (except for the last MIN_MATCH-1 bytes of the input file).
722 #define INSERT_STRING(s, str, match_head) \
723 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
724 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
725 s->head[s->ins_h] = (Pos)(str))
727 /* ===========================================================================
728 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
729 * prev[] will be initialized on the fly.
731 #define CLEAR_HASH(s) \
732 s->head[s->hash_size-1] = NIL; \
733 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
735 /* ========================================================================= */
737 deflateInit_(z_streamp strm, int level, const char * version,
738 int stream_size)
740 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
741 Z_DEFAULT_STRATEGY, version, stream_size);
742 /* To do: ignore strm->next_in if we use it as window */
745 /* ========================================================================= */
747 deflateInit2_(z_streamp strm, int level, int method, int windowBits,
748 int memLevel, int strategy, const char *version,
749 int stream_size)
751 deflate_state *s;
752 int noheader = 0;
753 static char* my_version = ZLIB_VERSION;
755 ushf *overlay;
756 /* We overlay pending_buf and d_buf+l_buf. This works since the average
757 * output size for (length,distance) codes is <= 24 bits.
760 if (version == Z_NULL || version[0] != my_version[0] ||
761 stream_size != sizeof(z_stream)) {
762 return Z_VERSION_ERROR;
764 if (strm == Z_NULL) return Z_STREAM_ERROR;
766 strm->msg = Z_NULL;
767 #ifndef NO_ZCFUNCS
768 if (strm->zalloc == Z_NULL) {
769 strm->zalloc = zcalloc;
770 strm->opaque = (voidpf)0;
772 if (strm->zfree == Z_NULL) strm->zfree = zcfree;
773 #endif
775 if (level == Z_DEFAULT_COMPRESSION) level = 6;
777 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
778 noheader = 1;
779 windowBits = -windowBits;
781 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
782 windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
783 strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
784 return Z_STREAM_ERROR;
786 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
787 if (s == Z_NULL) return Z_MEM_ERROR;
788 strm->state = (struct internal_state FAR *)s;
789 s->strm = strm;
791 s->noheader = noheader;
792 s->w_bits = windowBits;
793 s->w_size = 1 << s->w_bits;
794 s->w_mask = s->w_size - 1;
796 s->hash_bits = memLevel + 7;
797 s->hash_size = 1 << s->hash_bits;
798 s->hash_mask = s->hash_size - 1;
799 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
801 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
802 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
803 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
805 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
807 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
808 s->pending_buf = (uchf *) overlay;
809 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
811 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
812 s->pending_buf == Z_NULL) {
813 strm->msg = (const char*)ERR_MSG(Z_MEM_ERROR);
814 deflateEnd (strm);
815 return Z_MEM_ERROR;
817 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
818 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
820 s->level = level;
821 s->strategy = strategy;
822 s->method = (Byte)method;
824 return deflateReset(strm);
827 /* ========================================================================= */
829 deflateSetDictionary(z_streamp strm, const Bytef *dictionary, uInt dictLength)
831 deflate_state *s;
832 uInt length = dictLength;
833 uInt n;
834 IPos hash_head = 0;
836 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
837 return Z_STREAM_ERROR;
839 s = (deflate_state *) strm->state;
840 if (s->status != INIT_STATE) return Z_STREAM_ERROR;
842 strm->adler = adler32(strm->adler, dictionary, dictLength);
844 if (length < MIN_MATCH) return Z_OK;
845 if (length > MAX_DIST(s)) {
846 length = MAX_DIST(s);
847 #ifndef USE_DICT_HEAD
848 dictionary += dictLength - length; /* use the tail of the dictionary */
849 #endif
851 zmemcpy((charf *)s->window, dictionary, length);
852 s->strstart = length;
853 s->block_start = (long)length;
855 /* Insert all strings in the hash table (except for the last two bytes).
856 * s->lookahead stays null, so s->ins_h will be recomputed at the next
857 * call of fill_window.
859 s->ins_h = s->window[0];
860 UPDATE_HASH(s, s->ins_h, s->window[1]);
861 for (n = 0; n <= length - MIN_MATCH; n++) {
862 INSERT_STRING(s, n, hash_head);
864 if (hash_head) hash_head = 0; /* to make compiler happy */
865 return Z_OK;
868 /* ========================================================================= */
870 deflateReset(z_streamp strm)
872 deflate_state *s;
874 if (strm == Z_NULL || strm->state == Z_NULL ||
875 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
877 strm->total_in = strm->total_out = 0;
878 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
879 strm->data_type = Z_UNKNOWN;
881 s = (deflate_state *)strm->state;
882 s->pending = 0;
883 s->pending_out = s->pending_buf;
885 if (s->noheader < 0) {
886 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
888 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
889 strm->adler = 1;
890 s->last_flush = Z_NO_FLUSH;
892 _tr_init(s);
893 lm_init(s);
895 return Z_OK;
898 /* ========================================================================= */
900 deflateParams(z_streamp strm, int level, int strategy)
902 deflate_state *s;
903 compress_func func;
904 int err = Z_OK;
906 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
907 s = (deflate_state *) strm->state;
909 if (level == Z_DEFAULT_COMPRESSION) {
910 level = 6;
912 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
913 return Z_STREAM_ERROR;
915 func = configuration_table[s->level].func;
917 if (func != configuration_table[level].func && strm->total_in != 0) {
918 /* Flush the last buffer: */
919 err = deflate(strm, Z_PARTIAL_FLUSH);
921 if (s->level != level) {
922 s->level = level;
923 s->max_lazy_match = configuration_table[level].max_lazy;
924 s->good_match = configuration_table[level].good_length;
925 s->nice_match = configuration_table[level].nice_length;
926 s->max_chain_length = configuration_table[level].max_chain;
928 s->strategy = strategy;
929 return err;
932 /* =========================================================================
933 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
934 * IN assertion: the stream state is correct and there is enough room in
935 * pending_buf.
937 local void
938 putShortMSB(deflate_state *s, uInt b)
940 put_byte(s, (Byte)(b >> 8));
941 put_byte(s, (Byte)(b & 0xff));
944 /* =========================================================================
945 * Flush as much pending output as possible. All deflate() output goes
946 * through this function so some applications may wish to modify it
947 * to avoid allocating a large strm->next_out buffer and copying into it.
948 * (See also read_buf()).
950 local void
951 flush_pending(z_streamp strm)
953 deflate_state *s = (deflate_state *) strm->state;
954 unsigned len = s->pending;
956 if (len > strm->avail_out) len = strm->avail_out;
957 if (len == 0) return;
959 if (strm->next_out != Z_NULL) {
960 zmemcpy(strm->next_out, s->pending_out, len);
961 strm->next_out += len;
963 s->pending_out += len;
964 strm->total_out += len;
965 strm->avail_out -= len;
966 s->pending -= len;
967 if (s->pending == 0) {
968 s->pending_out = s->pending_buf;
972 /* ========================================================================= */
974 deflate(z_streamp strm, int flush)
976 int old_flush; /* value of flush param for previous deflate call */
977 deflate_state *s;
979 if (strm == Z_NULL || strm->state == Z_NULL ||
980 flush > Z_FINISH || flush < 0) {
981 return Z_STREAM_ERROR;
983 s = (deflate_state *) strm->state;
985 if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986 (s->status == FINISH_STATE && flush != Z_FINISH)) {
987 ERR_RETURN(strm, Z_STREAM_ERROR);
989 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
991 s->strm = strm; /* just in case */
992 old_flush = s->last_flush;
993 s->last_flush = flush;
995 /* Write the zlib header */
996 if (s->status == INIT_STATE) {
998 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999 uInt level_flags = (s->level-1) >> 1;
1001 if (level_flags > 3) level_flags = 3;
1002 header |= (level_flags << 6);
1003 if (s->strstart != 0) header |= PRESET_DICT;
1004 header += 31 - (header % 31);
1006 s->status = BUSY_STATE;
1007 putShortMSB(s, header);
1009 /* Save the adler32 of the preset dictionary: */
1010 if (s->strstart != 0) {
1011 putShortMSB(s, (uInt)(strm->adler >> 16));
1012 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1014 strm->adler = 1L;
1017 /* Flush as much pending output as possible */
1018 if (s->pending != 0) {
1019 flush_pending(strm);
1020 if (strm->avail_out == 0) {
1021 /* Since avail_out is 0, deflate will be called again with
1022 * more output space, but possibly with both pending and
1023 * avail_in equal to zero. There won't be anything to do,
1024 * but this is not an error situation so make sure we
1025 * return OK instead of BUF_ERROR at next call of deflate:
1027 s->last_flush = -1;
1028 return Z_OK;
1031 /* Make sure there is something to do and avoid duplicate consecutive
1032 * flushes. For repeated and useless calls with Z_FINISH, we keep
1033 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1035 } else if (strm->avail_in == 0 && flush <= old_flush &&
1036 flush != Z_FINISH) {
1037 ERR_RETURN(strm, Z_BUF_ERROR);
1040 /* User must not provide more input after the first FINISH: */
1041 if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042 ERR_RETURN(strm, Z_BUF_ERROR);
1045 /* Start a new block or continue the current one.
1047 if (strm->avail_in != 0 || s->lookahead != 0 ||
1048 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049 block_state bstate;
1051 bstate = (*(configuration_table[s->level].func))(s, flush);
1053 if (bstate == finish_started || bstate == finish_done) {
1054 s->status = FINISH_STATE;
1056 if (bstate == need_more || bstate == finish_started) {
1057 if (strm->avail_out == 0) {
1058 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1060 return Z_OK;
1061 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062 * of deflate should use the same flush parameter to make sure
1063 * that the flush is complete. So we don't have to output an
1064 * empty block here, this will be done at next call. This also
1065 * ensures that for a very small output buffer, we emit at most
1066 * one empty block.
1069 if (bstate == block_done) {
1070 if (flush == Z_PARTIAL_FLUSH) {
1071 _tr_align(s);
1072 } else if (flush == Z_PACKET_FLUSH) {
1073 /* Output just the 3-bit `stored' block type value,
1074 but not a zero length. */
1075 _tr_stored_type_only(s);
1076 } else { /* FULL_FLUSH or SYNC_FLUSH */
1077 _tr_stored_block(s, (char*)0, 0L, 0);
1078 /* For a full flush, this empty block will be recognized
1079 * as a special marker by inflate_sync().
1081 if (flush == Z_FULL_FLUSH) {
1082 CLEAR_HASH(s); /* forget history */
1085 flush_pending(strm);
1086 if (strm->avail_out == 0) {
1087 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088 return Z_OK;
1092 Assert(strm->avail_out > 0, "bug2");
1094 if (flush != Z_FINISH) return Z_OK;
1095 if (s->noheader) return Z_STREAM_END;
1097 /* Write the zlib trailer (adler32) */
1098 putShortMSB(s, (uInt)(strm->adler >> 16));
1099 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100 flush_pending(strm);
1101 /* If avail_out is zero, the application will call deflate again
1102 * to flush the rest.
1104 s->noheader = -1; /* write the trailer only once! */
1105 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1108 /* ========================================================================= */
1110 deflateEnd(z_streamp strm)
1112 int status;
1113 deflate_state *s;
1115 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116 s = (deflate_state *) strm->state;
1118 status = s->status;
1119 if (status != INIT_STATE && status != BUSY_STATE &&
1120 status != FINISH_STATE) {
1121 return Z_STREAM_ERROR;
1124 /* Deallocate in reverse order of allocations: */
1125 TRY_FREE(strm, s->pending_buf);
1126 TRY_FREE(strm, s->head);
1127 TRY_FREE(strm, s->prev);
1128 TRY_FREE(strm, s->window);
1130 ZFREE(strm, s);
1131 strm->state = Z_NULL;
1133 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1136 /* =========================================================================
1137 * Copy the source state to the destination state.
1140 deflateCopy(z_streamp dest, z_streamp source)
1142 deflate_state *ds;
1143 deflate_state *ss;
1144 ushf *overlay;
1146 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1147 return Z_STREAM_ERROR;
1148 ss = (deflate_state *) source->state;
1150 zmemcpy(dest, source, sizeof(*dest));
1152 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1153 if (ds == Z_NULL) return Z_MEM_ERROR;
1154 dest->state = (struct internal_state FAR *) ds;
1155 zmemcpy(ds, ss, sizeof(*ds));
1156 ds->strm = dest;
1158 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1159 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1160 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1161 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1162 ds->pending_buf = (uchf *) overlay;
1164 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1165 ds->pending_buf == Z_NULL) {
1166 deflateEnd (dest);
1167 return Z_MEM_ERROR;
1169 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1170 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1171 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1172 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1173 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1176 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1177 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179 ds->l_desc.dyn_tree = ds->dyn_ltree;
1180 ds->d_desc.dyn_tree = ds->dyn_dtree;
1181 ds->bl_desc.dyn_tree = ds->bl_tree;
1183 return Z_OK;
1186 /* ===========================================================================
1187 * Return the number of bytes of output which are immediately available
1188 * for output from the decompressor.
1191 deflateOutputPending(z_streamp strm)
1193 if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195 return ((deflate_state *)(strm->state))->pending;
1198 /* ===========================================================================
1199 * Read a new buffer from the current input stream, update the adler32
1200 * and total number of bytes read. All deflate() input goes through
1201 * this function so some applications may wish to modify it to avoid
1202 * allocating a large strm->next_in buffer and copying from it.
1203 * (See also flush_pending()).
1205 local int
1206 read_buf(z_streamp strm, charf *buf, unsigned size)
1208 unsigned len = strm->avail_in;
1210 if (len > size) len = size;
1211 if (len == 0) return 0;
1213 strm->avail_in -= len;
1215 if (!((deflate_state *)(strm->state))->noheader) {
1216 strm->adler = adler32(strm->adler, strm->next_in, len);
1218 zmemcpy(buf, strm->next_in, len);
1219 strm->next_in += len;
1220 strm->total_in += len;
1222 return (int)len;
1225 /* ===========================================================================
1226 * Initialize the "longest match" routines for a new zlib stream
1228 local void
1229 lm_init(deflate_state *s)
1231 s->window_size = (ulg)2L*s->w_size;
1233 CLEAR_HASH(s);
1235 /* Set the default configuration parameters:
1237 s->max_lazy_match = configuration_table[s->level].max_lazy;
1238 s->good_match = configuration_table[s->level].good_length;
1239 s->nice_match = configuration_table[s->level].nice_length;
1240 s->max_chain_length = configuration_table[s->level].max_chain;
1242 s->strstart = 0;
1243 s->block_start = 0L;
1244 s->lookahead = 0;
1245 s->match_length = s->prev_length = MIN_MATCH-1;
1246 s->match_available = 0;
1247 s->ins_h = 0;
1248 #ifdef ASMV
1249 match_init(); /* initialize the asm code */
1250 #endif
1253 /* ===========================================================================
1254 * Set match_start to the longest match starting at the given string and
1255 * return its length. Matches shorter or equal to prev_length are discarded,
1256 * in which case the result is equal to prev_length and match_start is
1257 * garbage.
1258 * IN assertions: cur_match is the head of the hash chain for the current
1259 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1260 * OUT assertion: the match length is not greater than s->lookahead.
1262 * Parameters:
1263 * cur_match: current match
1265 #ifndef ASMV
1266 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267 * match.S. The code will be functionally equivalent.
1269 local uInt
1270 longest_match(deflate_state *s, IPos cur_match)
1272 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1273 Bytef *scan = s->window + s->strstart; /* current string */
1274 Bytef *match; /* matched string */
1275 int len; /* length of current match */
1276 int best_len = s->prev_length; /* best match length so far */
1277 int nice_match = s->nice_match; /* stop if match long enough */
1278 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1279 s->strstart - (IPos)MAX_DIST(s) : NIL;
1280 /* Stop when cur_match becomes <= limit. To simplify the code,
1281 * we prevent matches with the string of window index 0.
1283 Posf *prev = s->prev;
1284 uInt wmask = s->w_mask;
1286 #ifdef UNALIGNED_OK
1287 /* Compare two bytes at a time. Note: this is not always beneficial.
1288 * Try with and without -DUNALIGNED_OK to check.
1290 Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1291 ush scan_start = *(ushf*)scan;
1292 ush scan_end = *(ushf*)(scan+best_len-1);
1293 #else
1294 Bytef *strend = s->window + s->strstart + MAX_MATCH;
1295 Byte scan_end1 = scan[best_len-1];
1296 Byte scan_end = scan[best_len];
1297 #endif
1299 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1300 * It is easy to get rid of this optimization if necessary.
1302 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304 /* Do not waste too much time if we already have a good match: */
1305 if (s->prev_length >= s->good_match) {
1306 chain_length >>= 2;
1308 /* Do not look for matches beyond the end of the input. This is necessary
1309 * to make deflate deterministic.
1311 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315 do {
1316 Assert(cur_match < s->strstart, "no future");
1317 match = s->window + cur_match;
1319 /* Skip to next match if the match length cannot increase
1320 * or if the match length is less than 2:
1322 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1323 /* This code assumes sizeof(unsigned short) == 2. Do not use
1324 * UNALIGNED_OK if your compiler uses a different size.
1326 if (*(ushf*)(match+best_len-1) != scan_end ||
1327 *(ushf*)match != scan_start) continue;
1329 /* It is not necessary to compare scan[2] and match[2] since they are
1330 * always equal when the other bytes match, given that the hash keys
1331 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1332 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1333 * lookahead only every 4th comparison; the 128th check will be made
1334 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1335 * necessary to put more guard bytes at the end of the window, or
1336 * to check more often for insufficient lookahead.
1338 Assert(scan[2] == match[2], "scan[2]?");
1339 scan++, match++;
1340 do {
1341 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345 scan < strend);
1346 /* The funny "do {}" generates better code on most compilers */
1348 /* Here, scan <= window+strstart+257 */
1349 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1350 if (*scan == *match) scan++;
1352 len = (MAX_MATCH - 1) - (int)(strend-scan);
1353 scan = strend - (MAX_MATCH-1);
1355 #else /* UNALIGNED_OK */
1357 if (match[best_len] != scan_end ||
1358 match[best_len-1] != scan_end1 ||
1359 *match != *scan ||
1360 *++match != scan[1]) continue;
1362 /* The check at best_len-1 can be removed because it will be made
1363 * again later. (This heuristic is not always a win.)
1364 * It is not necessary to compare scan[2] and match[2] since they
1365 * are always equal when the other bytes match, given that
1366 * the hash keys are equal and that HASH_BITS >= 8.
1368 scan += 2, match++;
1369 Assert(*scan == *match, "match[2]?");
1371 /* We check for insufficient lookahead only every 8th comparison;
1372 * the 256th check will be made at strstart+258.
1374 do {
1375 } while (*++scan == *++match && *++scan == *++match &&
1376 *++scan == *++match && *++scan == *++match &&
1377 *++scan == *++match && *++scan == *++match &&
1378 *++scan == *++match && *++scan == *++match &&
1379 scan < strend);
1381 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383 len = MAX_MATCH - (int)(strend - scan);
1384 scan = strend - MAX_MATCH;
1386 #endif /* UNALIGNED_OK */
1388 if (len > best_len) {
1389 s->match_start = cur_match;
1390 best_len = len;
1391 if (len >= nice_match) break;
1392 #ifdef UNALIGNED_OK
1393 scan_end = *(ushf*)(scan+best_len-1);
1394 #else
1395 scan_end1 = scan[best_len-1];
1396 scan_end = scan[best_len];
1397 #endif
1399 } while ((cur_match = prev[cur_match & wmask]) > limit
1400 && --chain_length != 0);
1402 if ((uInt)best_len <= s->lookahead) return best_len;
1403 return s->lookahead;
1405 #endif /* ASMV */
1407 #ifdef DEBUG_ZLIB
1408 /* ===========================================================================
1409 * Check that the match at match_start is indeed a match.
1411 local void
1412 check_match(deflate_state *s, IPos start, IPos match, int length)
1414 /* check that the match is indeed a match */
1415 if (zmemcmp((charf *)s->window + match,
1416 (charf *)s->window + start, length) != EQUAL) {
1417 fprintf(stderr, " start %u, match %u, length %d\n",
1418 start, match, length);
1419 do {
1420 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1421 } while (--length != 0);
1422 z_error("invalid match");
1424 if (z_verbose > 1) {
1425 fprintf(stderr,"\\[%d,%d]", start-match, length);
1426 do { putc(s->window[start++], stderr); } while (--length != 0);
1429 #else
1430 # define check_match(s, start, match, length)
1431 #endif
1433 /* ===========================================================================
1434 * Fill the window when the lookahead becomes insufficient.
1435 * Updates strstart and lookahead.
1437 * IN assertion: lookahead < MIN_LOOKAHEAD
1438 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1439 * At least one byte has been read, or avail_in == 0; reads are
1440 * performed for at least two bytes (required for the zip translate_eol
1441 * option -- not supported here).
1443 local void
1444 fill_window(deflate_state *s)
1446 unsigned n, m;
1447 Posf *p;
1448 unsigned more; /* Amount of free space at the end of the window. */
1449 uInt wsize = s->w_size;
1451 do {
1452 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1454 /* Deal with !@#$% 64K limit: */
1455 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1456 more = wsize;
1458 } else if (more == (unsigned)(-1)) {
1459 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1460 * and lookahead == 1 (input done one byte at time)
1462 more--;
1464 /* If the window is almost full and there is insufficient lookahead,
1465 * move the upper half to the lower one to make room in the upper half.
1467 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1469 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1470 (unsigned)wsize);
1471 s->match_start -= wsize;
1472 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1473 s->block_start -= (long) wsize;
1475 /* Slide the hash table (could be avoided with 32 bit values
1476 at the expense of memory usage). We slide even when level == 0
1477 to keep the hash table consistent if we switch back to level > 0
1478 later. (Using level 0 permanently is not an optimal usage of
1479 zlib, so we don't care about this pathological case.)
1481 n = s->hash_size;
1482 p = &s->head[n];
1483 do {
1484 m = *--p;
1485 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1486 } while (--n);
1488 n = wsize;
1489 p = &s->prev[n];
1490 do {
1491 m = *--p;
1492 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1493 /* If n is not on any hash chain, prev[n] is garbage but
1494 * its value will never be used.
1496 } while (--n);
1497 more += wsize;
1499 if (s->strm->avail_in == 0) return;
1501 /* If there was no sliding:
1502 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1503 * more == window_size - lookahead - strstart
1504 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1505 * => more >= window_size - 2*WSIZE + 2
1506 * In the BIG_MEM or MMAP case (not yet supported),
1507 * window_size == input_size + MIN_LOOKAHEAD &&
1508 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1509 * Otherwise, window_size == 2*WSIZE so more >= 2.
1510 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1512 Assert(more >= 2, "more < 2");
1514 n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1515 more);
1516 s->lookahead += n;
1518 /* Initialize the hash value now that we have some input: */
1519 if (s->lookahead >= MIN_MATCH) {
1520 s->ins_h = s->window[s->strstart];
1521 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1522 #if MIN_MATCH != 3
1523 Call UPDATE_HASH() MIN_MATCH-3 more times
1524 #endif
1526 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1527 * but this is not important since only literal bytes will be emitted.
1530 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1533 /* ===========================================================================
1534 * Flush the current block, with given end-of-file flag.
1535 * IN assertion: strstart is set to the end of the current match.
1537 #define FLUSH_BLOCK_ONLY(s, eof) { \
1538 _tr_flush_block(s, (s->block_start >= 0L ? \
1539 (charf *)&s->window[(unsigned)s->block_start] : \
1540 (charf *)Z_NULL), \
1541 (ulg)((long)s->strstart - s->block_start), \
1542 (eof)); \
1543 s->block_start = s->strstart; \
1544 flush_pending(s->strm); \
1545 Tracev((stderr,"[FLUSH]")); \
1548 /* Same but force premature exit if necessary. */
1549 #define FLUSH_BLOCK(s, eof) { \
1550 FLUSH_BLOCK_ONLY(s, eof); \
1551 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1554 /* ===========================================================================
1555 * Copy without compression as much as possible from the input stream, return
1556 * the current block state.
1557 * This function does not insert new strings in the dictionary since
1558 * uncompressible data is probably not useful. This function is used
1559 * only for the level=0 compression option.
1560 * NOTE: this function should be optimized to avoid extra copying from
1561 * window to pending_buf.
1563 local block_state
1564 deflate_stored(deflate_state *s, int flush)
1566 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1567 * to pending_buf_size, and each stored block has a 5 byte header:
1569 ulg max_block_size = 0xffff;
1570 ulg max_start;
1572 if (max_block_size > s->pending_buf_size - 5) {
1573 max_block_size = s->pending_buf_size - 5;
1576 /* Copy as much as possible from input to output: */
1577 for (;;) {
1578 /* Fill the window as much as possible: */
1579 if (s->lookahead <= 1) {
1581 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1582 s->block_start >= (long)s->w_size, "slide too late");
1584 fill_window(s);
1585 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1587 if (s->lookahead == 0) break; /* flush the current block */
1589 Assert(s->block_start >= 0L, "block gone");
1591 s->strstart += s->lookahead;
1592 s->lookahead = 0;
1594 /* Emit a stored block if pending_buf will be full: */
1595 max_start = s->block_start + max_block_size;
1596 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1597 /* strstart == 0 is possible when wraparound on 16-bit machine */
1598 s->lookahead = (uInt)(s->strstart - max_start);
1599 s->strstart = (uInt)max_start;
1600 FLUSH_BLOCK(s, 0);
1602 /* Flush if we may have to slide, otherwise block_start may become
1603 * negative and the data will be gone:
1605 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1606 FLUSH_BLOCK(s, 0);
1609 FLUSH_BLOCK(s, flush == Z_FINISH);
1610 return flush == Z_FINISH ? finish_done : block_done;
1613 /* ===========================================================================
1614 * Compress as much as possible from the input stream, return the current
1615 * block state.
1616 * This function does not perform lazy evaluation of matches and inserts
1617 * new strings in the dictionary only for unmatched strings or for short
1618 * matches. It is used only for the fast compression options.
1620 local block_state
1621 deflate_fast(deflate_state *s, int flush)
1623 IPos hash_head = NIL; /* head of the hash chain */
1624 int bflush; /* set if current block must be flushed */
1626 for (;;) {
1627 /* Make sure that we always have enough lookahead, except
1628 * at the end of the input file. We need MAX_MATCH bytes
1629 * for the next match, plus MIN_MATCH bytes to insert the
1630 * string following the next match.
1632 if (s->lookahead < MIN_LOOKAHEAD) {
1633 fill_window(s);
1634 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1635 return need_more;
1637 if (s->lookahead == 0) break; /* flush the current block */
1640 /* Insert the string window[strstart .. strstart+2] in the
1641 * dictionary, and set hash_head to the head of the hash chain:
1643 if (s->lookahead >= MIN_MATCH) {
1644 INSERT_STRING(s, s->strstart, hash_head);
1647 /* Find the longest match, discarding those <= prev_length.
1648 * At this point we have always match_length < MIN_MATCH
1650 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1651 /* To simplify the code, we prevent matches with the string
1652 * of window index 0 (in particular we have to avoid a match
1653 * of the string with itself at the start of the input file).
1655 if (s->strategy != Z_HUFFMAN_ONLY) {
1656 s->match_length = longest_match (s, hash_head);
1658 /* longest_match() sets match_start */
1660 if (s->match_length >= MIN_MATCH) {
1661 check_match(s, s->strstart, s->match_start, s->match_length);
1663 bflush = _tr_tally(s, s->strstart - s->match_start,
1664 s->match_length - MIN_MATCH);
1666 s->lookahead -= s->match_length;
1668 /* Insert new strings in the hash table only if the match length
1669 * is not too large. This saves time but degrades compression.
1671 if (s->match_length <= s->max_insert_length &&
1672 s->lookahead >= MIN_MATCH) {
1673 s->match_length--; /* string at strstart already in hash table */
1674 do {
1675 s->strstart++;
1676 INSERT_STRING(s, s->strstart, hash_head);
1677 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1678 * always MIN_MATCH bytes ahead.
1680 } while (--s->match_length != 0);
1681 s->strstart++;
1682 } else {
1683 s->strstart += s->match_length;
1684 s->match_length = 0;
1685 s->ins_h = s->window[s->strstart];
1686 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1687 #if MIN_MATCH != 3
1688 Call UPDATE_HASH() MIN_MATCH-3 more times
1689 #endif
1690 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1691 * matter since it will be recomputed at next deflate call.
1694 } else {
1695 /* No match, output a literal byte */
1696 Tracevv((stderr,"%c", s->window[s->strstart]));
1697 bflush = _tr_tally (s, 0, s->window[s->strstart]);
1698 s->lookahead--;
1699 s->strstart++;
1701 if (bflush) FLUSH_BLOCK(s, 0);
1703 FLUSH_BLOCK(s, flush == Z_FINISH);
1704 return flush == Z_FINISH ? finish_done : block_done;
1707 /* ===========================================================================
1708 * Same as above, but achieves better compression. We use a lazy
1709 * evaluation for matches: a match is finally adopted only if there is
1710 * no better match at the next window position.
1712 local block_state
1713 deflate_slow(deflate_state *s, int flush)
1715 IPos hash_head = NIL; /* head of hash chain */
1716 int bflush; /* set if current block must be flushed */
1718 /* Process the input block. */
1719 for (;;) {
1720 /* Make sure that we always have enough lookahead, except
1721 * at the end of the input file. We need MAX_MATCH bytes
1722 * for the next match, plus MIN_MATCH bytes to insert the
1723 * string following the next match.
1725 if (s->lookahead < MIN_LOOKAHEAD) {
1726 fill_window(s);
1727 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1728 return need_more;
1730 if (s->lookahead == 0) break; /* flush the current block */
1733 /* Insert the string window[strstart .. strstart+2] in the
1734 * dictionary, and set hash_head to the head of the hash chain:
1736 if (s->lookahead >= MIN_MATCH) {
1737 INSERT_STRING(s, s->strstart, hash_head);
1740 /* Find the longest match, discarding those <= prev_length.
1742 s->prev_length = s->match_length, s->prev_match = s->match_start;
1743 s->match_length = MIN_MATCH-1;
1745 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1746 s->strstart - hash_head <= MAX_DIST(s)) {
1747 /* To simplify the code, we prevent matches with the string
1748 * of window index 0 (in particular we have to avoid a match
1749 * of the string with itself at the start of the input file).
1751 if (s->strategy != Z_HUFFMAN_ONLY) {
1752 s->match_length = longest_match (s, hash_head);
1754 /* longest_match() sets match_start */
1756 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1757 (s->match_length == MIN_MATCH &&
1758 s->strstart - s->match_start > TOO_FAR))) {
1760 /* If prev_match is also MIN_MATCH, match_start is garbage
1761 * but we will ignore the current match anyway.
1763 s->match_length = MIN_MATCH-1;
1766 /* If there was a match at the previous step and the current
1767 * match is not better, output the previous match:
1769 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1770 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1771 /* Do not insert strings in hash table beyond this. */
1773 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1775 bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1776 s->prev_length - MIN_MATCH);
1778 /* Insert in hash table all strings up to the end of the match.
1779 * strstart-1 and strstart are already inserted. If there is not
1780 * enough lookahead, the last two strings are not inserted in
1781 * the hash table.
1783 s->lookahead -= s->prev_length-1;
1784 s->prev_length -= 2;
1785 do {
1786 if (++s->strstart <= max_insert) {
1787 INSERT_STRING(s, s->strstart, hash_head);
1789 } while (--s->prev_length != 0);
1790 s->match_available = 0;
1791 s->match_length = MIN_MATCH-1;
1792 s->strstart++;
1794 if (bflush) FLUSH_BLOCK(s, 0);
1796 } else if (s->match_available) {
1797 /* If there was no match at the previous position, output a
1798 * single literal. If there was a match but the current match
1799 * is longer, truncate the previous match to a single literal.
1801 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1802 if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1803 FLUSH_BLOCK_ONLY(s, 0);
1805 s->strstart++;
1806 s->lookahead--;
1807 if (s->strm->avail_out == 0) return need_more;
1808 } else {
1809 /* There is no previous match to compare with, wait for
1810 * the next step to decide.
1812 s->match_available = 1;
1813 s->strstart++;
1814 s->lookahead--;
1817 Assert (flush != Z_NO_FLUSH, "no flush?");
1818 if (s->match_available) {
1819 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1820 _tr_tally (s, 0, s->window[s->strstart-1]);
1821 s->match_available = 0;
1823 FLUSH_BLOCK(s, flush == Z_FINISH);
1824 return flush == Z_FINISH ? finish_done : block_done;
1826 /* --- deflate.c */
1828 /* +++ trees.c */
1829 /* trees.c -- output deflated data using Huffman coding
1830 * Copyright (C) 1995-1996 Jean-loup Gailly
1831 * For conditions of distribution and use, see copyright notice in zlib.h
1835 * ALGORITHM
1837 * The "deflation" process uses several Huffman trees. The more
1838 * common source values are represented by shorter bit sequences.
1840 * Each code tree is stored in a compressed form which is itself
1841 * a Huffman encoding of the lengths of all the code strings (in
1842 * ascending order by source values). The actual code strings are
1843 * reconstructed from the lengths in the inflate process, as described
1844 * in the deflate specification.
1846 * REFERENCES
1848 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1849 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1851 * Storer, James A.
1852 * Data Compression: Methods and Theory, pp. 49-50.
1853 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1855 * Sedgewick, R.
1856 * Algorithms, p290.
1857 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1860 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1862 /* #include "deflate.h" */
1864 #ifdef DEBUG_ZLIB
1865 # include <ctype.h>
1866 #endif
1868 /* ===========================================================================
1869 * Constants
1872 #define MAX_BL_BITS 7
1873 /* Bit length codes must not exceed MAX_BL_BITS bits */
1875 #define END_BLOCK 256
1876 /* end of block literal code */
1878 #define REP_3_6 16
1879 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1881 #define REPZ_3_10 17
1882 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1884 #define REPZ_11_138 18
1885 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1887 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1888 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1890 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1891 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1893 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1894 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1896 local uch bl_order[BL_CODES]
1897 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1898 /* The lengths of the bit length codes are sent in order of decreasing
1899 * probability, to avoid transmitting the lengths for unused bit length codes.
1902 #define Buf_size (8 * 2*sizeof(char))
1903 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1904 * more than 16 bits on some systems.)
1907 /* ===========================================================================
1908 * Local data. These are initialized only once.
1911 local ct_data static_ltree[L_CODES+2];
1912 /* The static literal tree. Since the bit lengths are imposed, there is no
1913 * need for the L_CODES extra codes used during heap construction. However
1914 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1915 * below).
1918 local ct_data static_dtree[D_CODES];
1919 /* The static distance tree. (Actually a trivial tree since all codes use
1920 * 5 bits.)
1923 local uch dist_code[512];
1924 /* distance codes. The first 256 values correspond to the distances
1925 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1926 * the 15 bit distances.
1929 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1930 /* length code for each normalized match length (0 == MIN_MATCH) */
1932 local int base_length[LENGTH_CODES];
1933 /* First normalized length for each code (0 = MIN_MATCH) */
1935 local int base_dist[D_CODES];
1936 /* First normalized distance for each code (0 = distance of 1) */
1938 struct static_tree_desc_s {
1939 ct_data *static_tree; /* static tree or NULL */
1940 intf *extra_bits; /* extra bits for each code or NULL */
1941 int extra_base; /* base index for extra_bits */
1942 int elems; /* max number of elements in the tree */
1943 int max_length; /* max bit length for the codes */
1946 local static_tree_desc static_l_desc =
1947 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1949 local static_tree_desc static_d_desc =
1950 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1952 local static_tree_desc static_bl_desc =
1953 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1955 /* ===========================================================================
1956 * Local (static) routines in this file.
1959 local void tr_static_init OF((void));
1960 local void init_block OF((deflate_state *s));
1961 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1962 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1963 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1964 local void build_tree OF((deflate_state *s, tree_desc *desc));
1965 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1966 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1967 local int build_bl_tree OF((deflate_state *s));
1968 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1969 int blcodes));
1970 local void compress_block OF((deflate_state *s, ct_data *ltree,
1971 ct_data *dtree));
1972 local void set_data_type OF((deflate_state *s));
1973 local unsigned bi_reverse OF((unsigned value, int length));
1974 local void bi_windup OF((deflate_state *s));
1975 local void bi_flush OF((deflate_state *s));
1976 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1977 int header));
1979 #ifndef DEBUG_ZLIB
1980 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1981 /* Send a code of the given tree. c and tree must not have side effects */
1983 #else /* DEBUG_ZLIB */
1984 # define send_code(s, c, tree) \
1985 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1986 send_bits(s, tree[c].Code, tree[c].Len); }
1987 #endif
1989 #define d_code(dist) \
1990 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1991 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1992 * must not have side effects. dist_code[256] and dist_code[257] are never
1993 * used.
1996 /* ===========================================================================
1997 * Output a short LSB first on the stream.
1998 * IN assertion: there is enough room in pendingBuf.
2000 #define put_short(s, w) { \
2001 put_byte(s, (uch)((w) & 0xff)); \
2002 put_byte(s, (uch)((ush)(w) >> 8)); \
2005 /* ===========================================================================
2006 * Send a value on a given number of bits.
2007 * IN assertion: length <= 16 and value fits in length bits.
2009 * Parameters:
2010 * value: value to send
2011 * length: number of bits
2013 #ifdef DEBUG_ZLIB
2014 local void send_bits OF((deflate_state *s, int value, int length));
2016 local void
2017 send_bits(deflate_state *s, int value, int length)
2019 Tracevv((stderr," l %2d v %4x ", length, value));
2020 Assert(length > 0 && length <= 15, "invalid length");
2021 s->bits_sent += (ulg)length;
2023 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2024 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2025 * unused bits in value.
2027 if (s->bi_valid > (int)Buf_size - length) {
2028 s->bi_buf |= (value << s->bi_valid);
2029 put_short(s, s->bi_buf);
2030 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2031 s->bi_valid += length - Buf_size;
2032 } else {
2033 s->bi_buf |= value << s->bi_valid;
2034 s->bi_valid += length;
2037 #else /* !DEBUG_ZLIB */
2039 #define send_bits(s, value, length) \
2040 { int len = length;\
2041 if (s->bi_valid > (int)Buf_size - len) {\
2042 int val = value;\
2043 s->bi_buf |= (val << s->bi_valid);\
2044 put_short(s, s->bi_buf);\
2045 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2046 s->bi_valid += len - Buf_size;\
2047 } else {\
2048 s->bi_buf |= (value) << s->bi_valid;\
2049 s->bi_valid += len;\
2052 #endif /* DEBUG_ZLIB */
2054 /* the arguments must not have side effects */
2056 /* ===========================================================================
2057 * Initialize the various 'constant' tables. In a multi-threaded environment,
2058 * this function may be called by two threads concurrently, but this is
2059 * harmless since both invocations do exactly the same thing.
2061 local void
2062 tr_static_init(void)
2064 static int static_init_done = 0;
2065 int n; /* iterates over tree elements */
2066 int bits; /* bit counter */
2067 int length; /* length value */
2068 int code; /* code value */
2069 int dist; /* distance index */
2070 ush bl_count[MAX_BITS+1];
2071 /* number of codes at each bit length for an optimal tree */
2073 if (static_init_done) return;
2075 /* Initialize the mapping length (0..255) -> length code (0..28) */
2076 length = 0;
2077 for (code = 0; code < LENGTH_CODES-1; code++) {
2078 base_length[code] = length;
2079 for (n = 0; n < (1<<extra_lbits[code]); n++) {
2080 length_code[length++] = (uch)code;
2083 Assert (length == 256, "tr_static_init: length != 256");
2084 /* Note that the length 255 (match length 258) can be represented
2085 * in two different ways: code 284 + 5 bits or code 285, so we
2086 * overwrite length_code[255] to use the best encoding:
2088 length_code[length-1] = (uch)code;
2090 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2091 dist = 0;
2092 for (code = 0 ; code < 16; code++) {
2093 base_dist[code] = dist;
2094 for (n = 0; n < (1<<extra_dbits[code]); n++) {
2095 dist_code[dist++] = (uch)code;
2098 Assert (dist == 256, "tr_static_init: dist != 256");
2099 dist >>= 7; /* from now on, all distances are divided by 128 */
2100 for ( ; code < D_CODES; code++) {
2101 base_dist[code] = dist << 7;
2102 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2103 dist_code[256 + dist++] = (uch)code;
2106 Assert (dist == 256, "tr_static_init: 256+dist != 512");
2108 /* Construct the codes of the static literal tree */
2109 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2110 n = 0;
2111 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2112 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2113 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2114 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2115 /* Codes 286 and 287 do not exist, but we must include them in the
2116 * tree construction to get a canonical Huffman tree (longest code
2117 * all ones)
2119 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2121 /* The static distance tree is trivial: */
2122 for (n = 0; n < D_CODES; n++) {
2123 static_dtree[n].Len = 5;
2124 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2126 static_init_done = 1;
2129 /* ===========================================================================
2130 * Initialize the tree data structures for a new zlib stream.
2132 void
2133 _tr_init(deflate_state *s)
2135 tr_static_init();
2137 s->compressed_len = 0L;
2139 s->l_desc.dyn_tree = s->dyn_ltree;
2140 s->l_desc.stat_desc = &static_l_desc;
2142 s->d_desc.dyn_tree = s->dyn_dtree;
2143 s->d_desc.stat_desc = &static_d_desc;
2145 s->bl_desc.dyn_tree = s->bl_tree;
2146 s->bl_desc.stat_desc = &static_bl_desc;
2148 s->bi_buf = 0;
2149 s->bi_valid = 0;
2150 s->last_eob_len = 8; /* enough lookahead for inflate */
2151 #ifdef DEBUG_ZLIB
2152 s->bits_sent = 0L;
2153 #endif
2155 /* Initialize the first block of the first file: */
2156 init_block(s);
2159 /* ===========================================================================
2160 * Initialize a new block.
2162 local void
2163 init_block(deflate_state *s)
2165 int n; /* iterates over tree elements */
2167 /* Initialize the trees. */
2168 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
2169 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
2170 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2172 s->dyn_ltree[END_BLOCK].Freq = 1;
2173 s->opt_len = s->static_len = 0L;
2174 s->last_lit = s->matches = 0;
2177 #define SMALLEST 1
2178 /* Index within the heap array of least frequent node in the Huffman tree */
2181 /* ===========================================================================
2182 * Remove the smallest element from the heap and recreate the heap with
2183 * one less element. Updates heap and heap_len.
2185 #define pqremove(s, tree, top) \
2187 top = s->heap[SMALLEST]; \
2188 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2189 pqdownheap(s, tree, SMALLEST); \
2192 /* ===========================================================================
2193 * Compares to subtrees, using the tree depth as tie breaker when
2194 * the subtrees have equal frequency. This minimizes the worst case length.
2196 #define smaller(tree, n, m, depth) \
2197 (tree[n].Freq < tree[m].Freq || \
2198 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2200 /* ===========================================================================
2201 * Restore the heap property by moving down the tree starting at node k,
2202 * exchanging a node with the smallest of its two sons if necessary, stopping
2203 * when the heap property is re-established (each father smaller than its
2204 * two sons).
2206 * Parameters:
2207 * tree: the tree to restore
2208 * k: node to move down
2210 local void
2211 pqdownheap(deflate_state *s, ct_data *tree, int k)
2213 int v = s->heap[k];
2214 int j = k << 1; /* left son of k */
2215 while (j <= s->heap_len) {
2216 /* Set j to the smallest of the two sons: */
2217 if (j < s->heap_len &&
2218 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2219 j++;
2221 /* Exit if v is smaller than both sons */
2222 if (smaller(tree, v, s->heap[j], s->depth)) break;
2224 /* Exchange v with the smallest son */
2225 s->heap[k] = s->heap[j]; k = j;
2227 /* And continue down the tree, setting j to the left son of k */
2228 j <<= 1;
2230 s->heap[k] = v;
2233 /* ===========================================================================
2234 * Compute the optimal bit lengths for a tree and update the total bit length
2235 * for the current block.
2236 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2237 * above are the tree nodes sorted by increasing frequency.
2238 * OUT assertions: the field len is set to the optimal bit length, the
2239 * array bl_count contains the frequencies for each bit length.
2240 * The length opt_len is updated; static_len is also updated if stree is
2241 * not null.
2243 * Parameters:
2244 * desc: the tree descriptor
2246 local void
2247 gen_bitlen(deflate_state *s, tree_desc *desc)
2249 ct_data *tree = desc->dyn_tree;
2250 int max_code = desc->max_code;
2251 ct_data *stree = desc->stat_desc->static_tree;
2252 intf *extra = desc->stat_desc->extra_bits;
2253 int base = desc->stat_desc->extra_base;
2254 int max_length = desc->stat_desc->max_length;
2255 int h; /* heap index */
2256 int n, m; /* iterate over the tree elements */
2257 int bits; /* bit length */
2258 int xbits; /* extra bits */
2259 ush f; /* frequency */
2260 int overflow = 0; /* number of elements with bit length too large */
2262 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264 /* In a first pass, compute the optimal bit lengths (which may
2265 * overflow in the case of the bit length tree).
2267 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2270 n = s->heap[h];
2271 bits = tree[tree[n].Dad].Len + 1;
2272 if (bits > max_length) bits = max_length, overflow++;
2273 tree[n].Len = (ush)bits;
2274 /* We overwrite tree[n].Dad which is no longer needed */
2276 if (n > max_code) continue; /* not a leaf node */
2278 s->bl_count[bits]++;
2279 xbits = 0;
2280 if (n >= base) xbits = extra[n-base];
2281 f = tree[n].Freq;
2282 s->opt_len += (ulg)f * (bits + xbits);
2283 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285 if (overflow == 0) return;
2287 Trace((stderr,"\nbit length overflow\n"));
2288 /* This happens for example on obj2 and pic of the Calgary corpus */
2290 /* Find the first bit length which could increase: */
2291 do {
2292 bits = max_length-1;
2293 while (s->bl_count[bits] == 0) bits--;
2294 s->bl_count[bits]--; /* move one leaf down the tree */
2295 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2296 s->bl_count[max_length]--;
2297 /* The brother of the overflow item also moves one step up,
2298 * but this does not affect bl_count[max_length]
2300 overflow -= 2;
2301 } while (overflow > 0);
2303 /* Now recompute all bit lengths, scanning in increasing frequency.
2304 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2305 * lengths instead of fixing only the wrong ones. This idea is taken
2306 * from 'ar' written by Haruhiko Okumura.)
2308 for (bits = max_length; bits != 0; bits--) {
2309 n = s->bl_count[bits];
2310 while (n != 0) {
2311 m = s->heap[--h];
2312 if (m > max_code) continue;
2313 if (tree[m].Len != (unsigned) bits) {
2314 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2315 s->opt_len += ((long)bits - (long)tree[m].Len)
2316 *(long)tree[m].Freq;
2317 tree[m].Len = (ush)bits;
2319 n--;
2324 /* ===========================================================================
2325 * Generate the codes for a given tree and bit counts (which need not be
2326 * optimal).
2327 * IN assertion: the array bl_count contains the bit length statistics for
2328 * the given tree and the field len is set for all tree elements.
2329 * OUT assertion: the field code is set for all tree elements of non
2330 * zero code length.
2332 * Parameters:
2333 * tree: the tree to decorate
2334 * max_code: largest code with non zero frequency
2335 * bl_count: number of codes at each bit length
2337 local void
2338 gen_codes(ct_data *tree, int max_code, ushf *bl_count)
2340 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2341 ush code = 0; /* running code value */
2342 int bits; /* bit index */
2343 int n; /* code index */
2345 /* The distribution counts are first used to generate the code values
2346 * without bit reversal.
2348 for (bits = 1; bits <= MAX_BITS; bits++) {
2349 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2351 /* Check that the bit counts in bl_count are consistent. The last code
2352 * must be all ones.
2354 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2355 "inconsistent bit counts");
2356 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2358 for (n = 0; n <= max_code; n++) {
2359 int len = tree[n].Len;
2360 if (len == 0) continue;
2361 /* Now reverse the bits */
2362 tree[n].Code = bi_reverse(next_code[len]++, len);
2364 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2365 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2369 /* ===========================================================================
2370 * Construct one Huffman tree and assigns the code bit strings and lengths.
2371 * Update the total bit length for the current block.
2372 * IN assertion: the field freq is set for all tree elements.
2373 * OUT assertions: the fields len and code are set to the optimal bit length
2374 * and corresponding code. The length opt_len is updated; static_len is
2375 * also updated if stree is not null. The field max_code is set.
2377 * Parameters:
2378 * desc: the tree descriptor
2380 local void
2381 build_tree(deflate_state *s, tree_desc *desc)
2383 ct_data *tree = desc->dyn_tree;
2384 ct_data *stree = desc->stat_desc->static_tree;
2385 int elems = desc->stat_desc->elems;
2386 int n, m; /* iterate over heap elements */
2387 int max_code = -1; /* largest code with non zero frequency */
2388 int node; /* new node being created */
2390 /* Construct the initial heap, with least frequent element in
2391 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2392 * heap[0] is not used.
2394 s->heap_len = 0, s->heap_max = HEAP_SIZE;
2396 for (n = 0; n < elems; n++) {
2397 if (tree[n].Freq != 0) {
2398 s->heap[++(s->heap_len)] = max_code = n;
2399 s->depth[n] = 0;
2400 } else {
2401 tree[n].Len = 0;
2405 /* The pkzip format requires that at least one distance code exists,
2406 * and that at least one bit should be sent even if there is only one
2407 * possible code. So to avoid special checks later on we force at least
2408 * two codes of non zero frequency.
2410 while (s->heap_len < 2) {
2411 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2412 tree[node].Freq = 1;
2413 s->depth[node] = 0;
2414 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2415 /* node is 0 or 1 so it does not have extra bits */
2417 desc->max_code = max_code;
2419 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2420 * establish sub-heaps of increasing lengths:
2422 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2424 /* Construct the Huffman tree by repeatedly combining the least two
2425 * frequent nodes.
2427 node = elems; /* next internal node of the tree */
2428 do {
2429 pqremove(s, tree, n); /* n = node of least frequency */
2430 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2432 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2433 s->heap[--(s->heap_max)] = m;
2435 /* Create a new node father of n and m */
2436 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2437 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2438 tree[n].Dad = tree[m].Dad = (ush)node;
2439 #ifdef DUMP_BL_TREE
2440 if (tree == s->bl_tree) {
2441 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2442 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2444 #endif
2445 /* and insert the new node in the heap */
2446 s->heap[SMALLEST] = node++;
2447 pqdownheap(s, tree, SMALLEST);
2449 } while (s->heap_len >= 2);
2451 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2453 /* At this point, the fields freq and dad are set. We can now
2454 * generate the bit lengths.
2456 gen_bitlen(s, (tree_desc *)desc);
2458 /* The field len is now set, we can generate the bit codes */
2459 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2462 /* ===========================================================================
2463 * Scan a literal or distance tree to determine the frequencies of the codes
2464 * in the bit length tree.
2466 * Parameters:
2467 * tree: the tree to be scanned
2468 * max_code: and its largest code of non zero frequency
2470 local void
2471 scan_tree (deflate_state *s, ct_data *tree, int max_code)
2473 int n; /* iterates over all tree elements */
2474 int prevlen = -1; /* last emitted length */
2475 int curlen; /* length of current code */
2476 int nextlen = tree[0].Len; /* length of next code */
2477 int count = 0; /* repeat count of the current code */
2478 int max_count = 7; /* max repeat count */
2479 int min_count = 4; /* min repeat count */
2481 if (nextlen == 0) max_count = 138, min_count = 3;
2482 tree[max_code+1].Len = (ush)0xffff; /* guard */
2484 for (n = 0; n <= max_code; n++) {
2485 curlen = nextlen; nextlen = tree[n+1].Len;
2486 if (++count < max_count && curlen == nextlen) {
2487 continue;
2488 } else if (count < min_count) {
2489 s->bl_tree[curlen].Freq += count;
2490 } else if (curlen != 0) {
2491 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2492 s->bl_tree[REP_3_6].Freq++;
2493 } else if (count <= 10) {
2494 s->bl_tree[REPZ_3_10].Freq++;
2495 } else {
2496 s->bl_tree[REPZ_11_138].Freq++;
2498 count = 0; prevlen = curlen;
2499 if (nextlen == 0) {
2500 max_count = 138, min_count = 3;
2501 } else if (curlen == nextlen) {
2502 max_count = 6, min_count = 3;
2503 } else {
2504 max_count = 7, min_count = 4;
2509 /* ===========================================================================
2510 * Send a literal or distance tree in compressed form, using the codes in
2511 * bl_tree.
2513 * Parameters:
2514 * tree: the tree to be scanned
2515 * max_code: and its largest code of non zero frequency
2517 local void
2518 send_tree(deflate_state *s, ct_data *tree, int max_code)
2520 int n; /* iterates over all tree elements */
2521 int prevlen = -1; /* last emitted length */
2522 int curlen; /* length of current code */
2523 int nextlen = tree[0].Len; /* length of next code */
2524 int count = 0; /* repeat count of the current code */
2525 int max_count = 7; /* max repeat count */
2526 int min_count = 4; /* min repeat count */
2528 /* tree[max_code+1].Len = -1; */ /* guard already set */
2529 if (nextlen == 0) max_count = 138, min_count = 3;
2531 for (n = 0; n <= max_code; n++) {
2532 curlen = nextlen; nextlen = tree[n+1].Len;
2533 if (++count < max_count && curlen == nextlen) {
2534 continue;
2535 } else if (count < min_count) {
2536 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2538 } else if (curlen != 0) {
2539 if (curlen != prevlen) {
2540 send_code(s, curlen, s->bl_tree); count--;
2542 Assert(count >= 3 && count <= 6, " 3_6?");
2543 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2545 } else if (count <= 10) {
2546 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2548 } else {
2549 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2551 count = 0; prevlen = curlen;
2552 if (nextlen == 0) {
2553 max_count = 138, min_count = 3;
2554 } else if (curlen == nextlen) {
2555 max_count = 6, min_count = 3;
2556 } else {
2557 max_count = 7, min_count = 4;
2562 /* ===========================================================================
2563 * Construct the Huffman tree for the bit lengths and return the index in
2564 * bl_order of the last bit length code to send.
2566 local int
2567 build_bl_tree(deflate_state *s)
2569 int max_blindex; /* index of last bit length code of non zero freq */
2571 /* Determine the bit length frequencies for literal and distance trees */
2572 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2573 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2575 /* Build the bit length tree: */
2576 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2577 /* opt_len now includes the length of the tree representations, except
2578 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2581 /* Determine the number of bit length codes to send. The pkzip format
2582 * requires that at least 4 bit length codes be sent. (appnote.txt says
2583 * 3 but the actual value used is 4.)
2585 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2586 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2588 /* Update opt_len to include the bit length tree and counts */
2589 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2590 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2591 s->opt_len, s->static_len));
2593 return max_blindex;
2596 /* ===========================================================================
2597 * Send the header for a block using dynamic Huffman trees: the counts, the
2598 * lengths of the bit length codes, the literal tree and the distance tree.
2599 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2601 * Parameters:
2602 * lcodes, dcodes, blcodes: number of codes for each tree
2604 local void
2605 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
2607 int rank; /* index in bl_order */
2609 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2610 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2611 "too many codes");
2612 Tracev((stderr, "\nbl counts: "));
2613 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2614 send_bits(s, dcodes-1, 5);
2615 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2616 for (rank = 0; rank < blcodes; rank++) {
2617 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2618 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2620 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2622 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2623 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2625 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2626 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2629 /* ===========================================================================
2630 * Send a stored block
2632 * Parameters:
2633 * buf: input block
2634 * stored_len: length of input block
2635 * eof: true if this is the last block for a file
2637 void
2638 _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2640 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2641 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2642 s->compressed_len += (stored_len + 4) << 3;
2644 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2647 /* Send just the `stored block' type code without any length bytes or data.
2649 void
2650 _tr_stored_type_only(deflate_state *s)
2652 send_bits(s, (STORED_BLOCK << 1), 3);
2653 bi_windup(s);
2654 s->compressed_len = (s->compressed_len + 3) & ~7L;
2658 /* ===========================================================================
2659 * Send one empty static block to give enough lookahead for inflate.
2660 * This takes 10 bits, of which 7 may remain in the bit buffer.
2661 * The current inflate code requires 9 bits of lookahead. If the
2662 * last two codes for the previous block (real code plus EOB) were coded
2663 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2664 * the last real code. In this case we send two empty static blocks instead
2665 * of one. (There are no problems if the previous block is stored or fixed.)
2666 * To simplify the code, we assume the worst case of last real code encoded
2667 * on one bit only.
2669 void
2670 _tr_align(deflate_state *s)
2672 send_bits(s, STATIC_TREES<<1, 3);
2673 send_code(s, END_BLOCK, static_ltree);
2674 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2675 bi_flush(s);
2676 /* Of the 10 bits for the empty block, we have already sent
2677 * (10 - bi_valid) bits. The lookahead for the last real code (before
2678 * the EOB of the previous block) was thus at least one plus the length
2679 * of the EOB plus what we have just sent of the empty static block.
2681 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2682 send_bits(s, STATIC_TREES<<1, 3);
2683 send_code(s, END_BLOCK, static_ltree);
2684 s->compressed_len += 10L;
2685 bi_flush(s);
2687 s->last_eob_len = 7;
2690 /* ===========================================================================
2691 * Determine the best encoding for the current block: dynamic trees, static
2692 * trees or store, and output the encoded block to the zip file. This function
2693 * returns the total compressed length for the file so far.
2695 * Parameters:
2696 * buf: input block, or NULL if too old
2697 * stored_len: length of input block
2698 * eof: true if this is the last block for a file
2701 _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
2703 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2704 int max_blindex = 0; /* index of last bit length code of non zero freq */
2706 /* Build the Huffman trees unless a stored block is forced */
2707 if (s->level > 0) {
2709 /* Check if the file is ascii or binary */
2710 if (s->data_type == Z_UNKNOWN) set_data_type(s);
2712 /* Construct the literal and distance trees */
2713 build_tree(s, (tree_desc *)(&(s->l_desc)));
2714 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2715 s->static_len));
2717 build_tree(s, (tree_desc *)(&(s->d_desc)));
2718 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2719 s->static_len));
2720 /* At this point, opt_len and static_len are the total bit lengths of
2721 * the compressed block data, excluding the tree representations.
2724 /* Build the bit length tree for the above two trees, and get the index
2725 * in bl_order of the last bit length code to send.
2727 max_blindex = build_bl_tree(s);
2729 /* Determine the best encoding. Compute first the block length in bytes*/
2730 opt_lenb = (s->opt_len+3+7)>>3;
2731 static_lenb = (s->static_len+3+7)>>3;
2733 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2734 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2735 s->last_lit));
2737 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2739 } else {
2740 Assert(buf != (char*)0, "lost buf");
2741 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2744 /* If compression failed and this is the first and last block,
2745 * and if the .zip file can be seeked (to rewrite the local header),
2746 * the whole file is transformed into a stored file:
2748 #ifdef STORED_FILE_OK
2749 # ifdef FORCE_STORED_FILE
2750 if (eof && s->compressed_len == 0L) { /* force stored file */
2751 # else
2752 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2753 # endif
2754 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2755 if (buf == (charf*)0) error ("block vanished");
2757 copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2758 s->compressed_len = stored_len << 3;
2759 s->method = STORED;
2760 } else
2761 #endif /* STORED_FILE_OK */
2763 #ifdef FORCE_STORED
2764 if (buf != (char*)0) { /* force stored block */
2765 #else
2766 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2767 /* 4: two words for the lengths */
2768 #endif
2769 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2770 * Otherwise we can't have processed more than WSIZE input bytes since
2771 * the last block flush, because compression would have been
2772 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2773 * transform a block into a stored block.
2775 _tr_stored_block(s, buf, stored_len, eof);
2777 #ifdef FORCE_STATIC
2778 } else if (static_lenb >= 0) { /* force static trees */
2779 #else
2780 } else if (static_lenb == opt_lenb) {
2781 #endif
2782 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2783 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2784 s->compressed_len += 3 + s->static_len;
2785 } else {
2786 send_bits(s, (DYN_TREES<<1)+eof, 3);
2787 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2788 max_blindex+1);
2789 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2790 s->compressed_len += 3 + s->opt_len;
2792 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2793 init_block(s);
2795 if (eof) {
2796 bi_windup(s);
2797 s->compressed_len += 7; /* align on byte boundary */
2799 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2800 s->compressed_len-7*eof));
2802 return s->compressed_len >> 3;
2805 /* ===========================================================================
2806 * Save the match info and tally the frequency counts. Return true if
2807 * the current block must be flushed.
2809 * Parameters:
2810 * dist: distance of matched string
2811 * lc: match length-MIN_MATCH or unmatched char (if dist==0)
2814 _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
2816 s->d_buf[s->last_lit] = (ush)dist;
2817 s->l_buf[s->last_lit++] = (uch)lc;
2818 if (dist == 0) {
2819 /* lc is the unmatched char */
2820 s->dyn_ltree[lc].Freq++;
2821 } else {
2822 s->matches++;
2823 /* Here, lc is the match length - MIN_MATCH */
2824 dist--; /* dist = match distance - 1 */
2825 Assert((ush)dist < (ush)MAX_DIST(s) &&
2826 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2827 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
2829 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2830 s->dyn_dtree[d_code(dist)].Freq++;
2833 /* Try to guess if it is profitable to stop the current block here */
2834 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2835 /* Compute an upper bound for the compressed length */
2836 ulg out_length = (ulg)s->last_lit*8L;
2837 ulg in_length = (ulg)((long)s->strstart - s->block_start);
2838 int dcode;
2839 for (dcode = 0; dcode < D_CODES; dcode++) {
2840 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2841 (5L+extra_dbits[dcode]);
2843 out_length >>= 3;
2844 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2845 s->last_lit, in_length, out_length,
2846 100L - out_length*100L/in_length));
2847 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2849 return (s->last_lit == s->lit_bufsize-1);
2850 /* We avoid equality with lit_bufsize because of wraparound at 64K
2851 * on 16 bit machines and because stored blocks are restricted to
2852 * 64K-1 bytes.
2856 /* ===========================================================================
2857 * Send the block data compressed using the given Huffman trees
2859 * Parameters:
2860 * ltree: literal tree
2861 * dtree: distance tree
2863 local void
2864 compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
2866 unsigned dist; /* distance of matched string */
2867 int lc; /* match length or unmatched char (if dist == 0) */
2868 unsigned lx = 0; /* running index in l_buf */
2869 unsigned code; /* the code to send */
2870 int extra; /* number of extra bits to send */
2872 if (s->last_lit != 0) do {
2873 dist = s->d_buf[lx];
2874 lc = s->l_buf[lx++];
2875 if (dist == 0) {
2876 send_code(s, lc, ltree); /* send a literal byte */
2877 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2878 } else {
2879 /* Here, lc is the match length - MIN_MATCH */
2880 code = length_code[lc];
2881 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2882 extra = extra_lbits[code];
2883 if (extra != 0) {
2884 lc -= base_length[code];
2885 send_bits(s, lc, extra); /* send the extra length bits */
2887 dist--; /* dist is now the match distance - 1 */
2888 code = d_code(dist);
2889 Assert (code < D_CODES, "bad d_code");
2891 send_code(s, code, dtree); /* send the distance code */
2892 extra = extra_dbits[code];
2893 if (extra != 0) {
2894 dist -= base_dist[code];
2895 send_bits(s, dist, extra); /* send the extra distance bits */
2897 } /* literal or match pair ? */
2899 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2900 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2902 } while (lx < s->last_lit);
2904 send_code(s, END_BLOCK, ltree);
2905 s->last_eob_len = ltree[END_BLOCK].Len;
2908 /* ===========================================================================
2909 * Set the data type to ASCII or BINARY, using a crude approximation:
2910 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2911 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2912 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2914 local void
2915 set_data_type(deflate_state *s)
2917 int n = 0;
2918 unsigned ascii_freq = 0;
2919 unsigned bin_freq = 0;
2920 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2921 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2922 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2923 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2926 /* ===========================================================================
2927 * Reverse the first len bits of a code, using straightforward code (a faster
2928 * method would use a table)
2929 * IN assertion: 1 <= len <= 15
2931 * Parameters:
2932 * code: the value to invert
2933 * len: its bit length
2935 local unsigned
2936 bi_reverse(unsigned code, int len)
2938 unsigned res = 0;
2939 do {
2940 res |= code & 1;
2941 code >>= 1, res <<= 1;
2942 } while (--len > 0);
2943 return res >> 1;
2946 /* ===========================================================================
2947 * Flush the bit buffer, keeping at most 7 bits in it.
2949 local void
2950 bi_flush(deflate_state *s)
2952 if (s->bi_valid == 16) {
2953 put_short(s, s->bi_buf);
2954 s->bi_buf = 0;
2955 s->bi_valid = 0;
2956 } else if (s->bi_valid >= 8) {
2957 put_byte(s, (Byte)s->bi_buf);
2958 s->bi_buf >>= 8;
2959 s->bi_valid -= 8;
2963 /* ===========================================================================
2964 * Flush the bit buffer and align the output on a byte boundary
2966 local void
2967 bi_windup(deflate_state *s)
2969 if (s->bi_valid > 8) {
2970 put_short(s, s->bi_buf);
2971 } else if (s->bi_valid > 0) {
2972 put_byte(s, (Byte)s->bi_buf);
2974 s->bi_buf = 0;
2975 s->bi_valid = 0;
2976 #ifdef DEBUG_ZLIB
2977 s->bits_sent = (s->bits_sent+7) & ~7;
2978 #endif
2981 /* ===========================================================================
2982 * Copy a stored block, storing first the length and its
2983 * one's complement if requested.
2985 * Parameters:
2986 * buf: the input data
2987 * len: its length
2988 * header: true if block header must be written
2990 local void
2991 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
2993 bi_windup(s); /* align on byte boundary */
2994 s->last_eob_len = 8; /* enough lookahead for inflate */
2996 if (header) {
2997 put_short(s, (ush)len);
2998 put_short(s, (ush)~len);
2999 #ifdef DEBUG_ZLIB
3000 s->bits_sent += 2*16;
3001 #endif
3003 #ifdef DEBUG_ZLIB
3004 s->bits_sent += (ulg)len<<3;
3005 #endif
3006 /* bundle up the put_byte(s, *buf++) calls */
3007 zmemcpy(&s->pending_buf[s->pending], buf, len);
3008 s->pending += len;
3010 /* --- trees.c */
3012 /* +++ inflate.c */
3013 /* inflate.c -- zlib interface to inflate modules
3014 * Copyright (C) 1995-1996 Mark Adler
3015 * For conditions of distribution and use, see copyright notice in zlib.h
3018 /* #include "zutil.h" */
3020 /* +++ infblock.h */
3021 /* infblock.h -- header to use infblock.c
3022 * Copyright (C) 1995-1996 Mark Adler
3023 * For conditions of distribution and use, see copyright notice in zlib.h
3026 /* WARNING: this file should *not* be used by applications. It is
3027 part of the implementation of the compression library and is
3028 subject to change. Applications should only use zlib.h.
3031 struct inflate_blocks_state;
3032 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3034 extern inflate_blocks_statef * inflate_blocks_new OF((
3035 z_streamp z,
3036 check_func c, /* check function */
3037 uInt w)); /* window size */
3039 extern int inflate_blocks OF((
3040 inflate_blocks_statef *,
3041 z_streamp ,
3042 int)); /* initial return code */
3044 extern void inflate_blocks_reset OF((
3045 inflate_blocks_statef *,
3046 z_streamp ,
3047 uLongf *)); /* check value on output */
3049 extern int inflate_blocks_free OF((
3050 inflate_blocks_statef *,
3051 z_streamp ,
3052 uLongf *)); /* check value on output */
3054 extern void inflate_set_dictionary OF((
3055 inflate_blocks_statef *s,
3056 const Bytef *d, /* dictionary */
3057 uInt n)); /* dictionary length */
3059 extern int inflate_addhistory OF((
3060 inflate_blocks_statef *,
3061 z_streamp));
3063 extern int inflate_packet_flush OF((
3064 inflate_blocks_statef *));
3065 /* --- infblock.h */
3067 #ifndef NO_DUMMY_DECL
3068 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3069 #endif
3071 /* inflate private state */
3072 struct internal_state {
3074 /* mode */
3075 enum {
3076 METHOD, /* waiting for method byte */
3077 FLAG, /* waiting for flag byte */
3078 DICT4, /* four dictionary check bytes to go */
3079 DICT3, /* three dictionary check bytes to go */
3080 DICT2, /* two dictionary check bytes to go */
3081 DICT1, /* one dictionary check byte to go */
3082 DICT0, /* waiting for inflateSetDictionary */
3083 BLOCKS, /* decompressing blocks */
3084 CHECK4, /* four check bytes to go */
3085 CHECK3, /* three check bytes to go */
3086 CHECK2, /* two check bytes to go */
3087 CHECK1, /* one check byte to go */
3088 DONE, /* finished check, done */
3089 BAD} /* got an error--stay here */
3090 mode; /* current inflate mode */
3092 /* mode dependent information */
3093 union {
3094 uInt method; /* if FLAGS, method byte */
3095 struct {
3096 uLong was; /* computed check value */
3097 uLong need; /* stream check value */
3098 } check; /* if CHECK, check values to compare */
3099 uInt marker; /* if BAD, inflateSync's marker bytes count */
3100 } sub; /* submode */
3102 /* mode independent information */
3103 int nowrap; /* flag for no wrapper */
3104 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
3105 inflate_blocks_statef
3106 *blocks; /* current inflate_blocks state */
3112 inflateReset(z_streamp z)
3114 uLong c;
3116 if (z == Z_NULL || z->state == Z_NULL)
3117 return Z_STREAM_ERROR;
3118 z->total_in = z->total_out = 0;
3119 z->msg = Z_NULL;
3120 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3121 inflate_blocks_reset(z->state->blocks, z, &c);
3122 Trace((stderr, "inflate: reset\n"));
3123 return Z_OK;
3128 inflateEnd(z_streamp z)
3130 uLong c;
3132 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3133 return Z_STREAM_ERROR;
3134 if (z->state->blocks != Z_NULL)
3135 inflate_blocks_free(z->state->blocks, z, &c);
3136 ZFREE(z, z->state);
3137 z->state = Z_NULL;
3138 Trace((stderr, "inflate: end\n"));
3139 return Z_OK;
3144 inflateInit2_(z_streamp z, int w, const char *version, int stream_size)
3146 if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3147 stream_size != sizeof(z_stream))
3148 return Z_VERSION_ERROR;
3150 /* initialize state */
3151 if (z == Z_NULL)
3152 return Z_STREAM_ERROR;
3153 z->msg = Z_NULL;
3154 #ifndef NO_ZCFUNCS
3155 if (z->zalloc == Z_NULL)
3157 z->zalloc = zcalloc;
3158 z->opaque = (voidpf)0;
3160 if (z->zfree == Z_NULL) z->zfree = zcfree;
3161 #endif
3162 if ((z->state = (struct internal_state FAR *)
3163 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3164 return Z_MEM_ERROR;
3165 z->state->blocks = Z_NULL;
3167 /* handle undocumented nowrap option (no zlib header or check) */
3168 z->state->nowrap = 0;
3169 if (w < 0)
3171 w = - w;
3172 z->state->nowrap = 1;
3175 /* set window size */
3176 if (w < 8 || w > 15)
3178 inflateEnd(z);
3179 return Z_STREAM_ERROR;
3181 z->state->wbits = (uInt)w;
3183 /* create inflate_blocks state */
3184 if ((z->state->blocks =
3185 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3186 == Z_NULL)
3188 inflateEnd(z);
3189 return Z_MEM_ERROR;
3191 Trace((stderr, "inflate: allocated\n"));
3193 /* reset state */
3194 inflateReset(z);
3195 return Z_OK;
3200 inflateInit_(z_streamp z, const char *version, int stream_size)
3202 return inflateInit2_(z, DEF_WBITS, version, stream_size);
3206 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3207 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3210 inflate(z_streamp z, int f)
3212 int r;
3213 uInt b;
3215 if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3216 return Z_STREAM_ERROR;
3217 r = Z_BUF_ERROR;
3218 while (1) switch (z->state->mode)
3220 case METHOD:
3221 NEEDBYTE
3222 if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3224 z->state->mode = BAD;
3225 z->msg = (char*)"unknown compression method";
3226 z->state->sub.marker = 5; /* can't try inflateSync */
3227 break;
3229 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3231 z->state->mode = BAD;
3232 z->msg = (char*)"invalid window size";
3233 z->state->sub.marker = 5; /* can't try inflateSync */
3234 break;
3236 z->state->mode = FLAG;
3237 case FLAG:
3238 NEEDBYTE
3239 b = NEXTBYTE;
3240 if (((z->state->sub.method << 8) + b) % 31)
3242 z->state->mode = BAD;
3243 z->msg = (char*)"incorrect header check";
3244 z->state->sub.marker = 5; /* can't try inflateSync */
3245 break;
3247 Trace((stderr, "inflate: zlib header ok\n"));
3248 if (!(b & PRESET_DICT))
3250 z->state->mode = BLOCKS;
3251 break;
3253 z->state->mode = DICT4;
3254 case DICT4:
3255 NEEDBYTE
3256 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3257 z->state->mode = DICT3;
3258 case DICT3:
3259 NEEDBYTE
3260 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3261 z->state->mode = DICT2;
3262 case DICT2:
3263 NEEDBYTE
3264 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3265 z->state->mode = DICT1;
3266 case DICT1:
3267 NEEDBYTE
3268 z->state->sub.check.need += (uLong)NEXTBYTE;
3269 z->adler = z->state->sub.check.need;
3270 z->state->mode = DICT0;
3271 return Z_NEED_DICT;
3272 case DICT0:
3273 z->state->mode = BAD;
3274 z->msg = (char*)"need dictionary";
3275 z->state->sub.marker = 0; /* can try inflateSync */
3276 return Z_STREAM_ERROR;
3277 case BLOCKS:
3278 r = inflate_blocks(z->state->blocks, z, r);
3279 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3280 r = inflate_packet_flush(z->state->blocks);
3281 if (r == Z_DATA_ERROR)
3283 z->state->mode = BAD;
3284 z->state->sub.marker = 0; /* can try inflateSync */
3285 break;
3287 if (r != Z_STREAM_END)
3288 return r;
3289 r = Z_OK;
3290 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3291 if (z->state->nowrap)
3293 z->state->mode = DONE;
3294 break;
3296 z->state->mode = CHECK4;
3297 case CHECK4:
3298 NEEDBYTE
3299 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3300 z->state->mode = CHECK3;
3301 case CHECK3:
3302 NEEDBYTE
3303 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3304 z->state->mode = CHECK2;
3305 case CHECK2:
3306 NEEDBYTE
3307 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3308 z->state->mode = CHECK1;
3309 case CHECK1:
3310 NEEDBYTE
3311 z->state->sub.check.need += (uLong)NEXTBYTE;
3313 if (z->state->sub.check.was != z->state->sub.check.need)
3315 z->state->mode = BAD;
3316 z->msg = (char*)"incorrect data check";
3317 z->state->sub.marker = 5; /* can't try inflateSync */
3318 break;
3320 Trace((stderr, "inflate: zlib check ok\n"));
3321 z->state->mode = DONE;
3322 case DONE:
3323 return Z_STREAM_END;
3324 case BAD:
3325 return Z_DATA_ERROR;
3326 default:
3327 return Z_STREAM_ERROR;
3330 empty:
3331 if (f != Z_PACKET_FLUSH)
3332 return r;
3333 z->state->mode = BAD;
3334 z->msg = (char *)"need more for packet flush";
3335 z->state->sub.marker = 0; /* can try inflateSync */
3336 return Z_DATA_ERROR;
3341 inflateSetDictionary(z_streamp z, const Bytef *dictionary, uInt dictLength)
3343 uInt length = dictLength;
3345 if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3346 return Z_STREAM_ERROR;
3348 if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3349 z->adler = 1L;
3351 if (length >= ((uInt)1<<z->state->wbits))
3353 length = (1<<z->state->wbits)-1;
3354 dictionary += dictLength - length;
3356 inflate_set_dictionary(z->state->blocks, dictionary, length);
3357 z->state->mode = BLOCKS;
3358 return Z_OK;
3362 * This subroutine adds the data at next_in/avail_in to the output history
3363 * without performing any output. The output buffer must be "caught up";
3364 * i.e. no pending output (hence s->read equals s->write), and the state must
3365 * be BLOCKS (i.e. we should be willing to see the start of a series of
3366 * BLOCKS). On exit, the output will also be caught up, and the checksum
3367 * will have been updated if need be.
3371 inflateIncomp(z_stream *z)
3373 if (z->state->mode != BLOCKS)
3374 return Z_DATA_ERROR;
3375 return inflate_addhistory(z->state->blocks, z);
3380 inflateSync(z_streamp z)
3382 uInt n; /* number of bytes to look at */
3383 Bytef *p; /* pointer to bytes */
3384 uInt m; /* number of marker bytes found in a row */
3385 uLong r, w; /* temporaries to save total_in and total_out */
3387 /* set up */
3388 if (z == Z_NULL || z->state == Z_NULL)
3389 return Z_STREAM_ERROR;
3390 if (z->state->mode != BAD)
3392 z->state->mode = BAD;
3393 z->state->sub.marker = 0;
3395 if ((n = z->avail_in) == 0)
3396 return Z_BUF_ERROR;
3397 p = z->next_in;
3398 m = z->state->sub.marker;
3400 /* search */
3401 while (n && m < 4)
3403 if (*p == (Byte)(m < 2 ? 0 : 0xff))
3404 m++;
3405 else if (*p)
3406 m = 0;
3407 else
3408 m = 4 - m;
3409 p++, n--;
3412 /* restore */
3413 z->total_in += p - z->next_in;
3414 z->next_in = p;
3415 z->avail_in = n;
3416 z->state->sub.marker = m;
3418 /* return no joy or set up to restart on a new block */
3419 if (m != 4)
3420 return Z_DATA_ERROR;
3421 r = z->total_in; w = z->total_out;
3422 inflateReset(z);
3423 z->total_in = r; z->total_out = w;
3424 z->state->mode = BLOCKS;
3425 return Z_OK;
3428 #undef NEEDBYTE
3429 #undef NEXTBYTE
3430 /* --- inflate.c */
3432 /* +++ infblock.c */
3433 /* infblock.c -- interpret and process block types to last block
3434 * Copyright (C) 1995-1996 Mark Adler
3435 * For conditions of distribution and use, see copyright notice in zlib.h
3438 /* #include "zutil.h" */
3439 /* #include "infblock.h" */
3441 /* +++ inftrees.h */
3442 /* inftrees.h -- header to use inftrees.c
3443 * Copyright (C) 1995-1996 Mark Adler
3444 * For conditions of distribution and use, see copyright notice in zlib.h
3447 /* WARNING: this file should *not* be used by applications. It is
3448 part of the implementation of the compression library and is
3449 subject to change. Applications should only use zlib.h.
3452 /* Huffman code lookup table entry--this entry is four bytes for machines
3453 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3455 typedef struct inflate_huft_s FAR inflate_huft;
3457 struct inflate_huft_s {
3458 union {
3459 struct {
3460 Byte Exop; /* number of extra bits or operation */
3461 Byte Bits; /* number of bits in this code or subcode */
3462 } what;
3463 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
3464 } word; /* 16-bit, 8 bytes for 32-bit machines) */
3465 union {
3466 uInt Base; /* literal, length base, or distance base */
3467 inflate_huft *Next; /* pointer to next level of table */
3468 } more;
3471 #ifdef DEBUG_ZLIB
3472 extern uInt inflate_hufts;
3473 #endif
3475 extern int inflate_trees_bits OF((
3476 uIntf *, /* 19 code lengths */
3477 uIntf *, /* bits tree desired/actual depth */
3478 inflate_huft * FAR *, /* bits tree result */
3479 z_streamp )); /* for zalloc, zfree functions */
3481 extern int inflate_trees_dynamic OF((
3482 uInt, /* number of literal/length codes */
3483 uInt, /* number of distance codes */
3484 uIntf *, /* that many (total) code lengths */
3485 uIntf *, /* literal desired/actual bit depth */
3486 uIntf *, /* distance desired/actual bit depth */
3487 inflate_huft * FAR *, /* literal/length tree result */
3488 inflate_huft * FAR *, /* distance tree result */
3489 z_streamp )); /* for zalloc, zfree functions */
3491 extern int inflate_trees_fixed OF((
3492 uIntf *, /* literal desired/actual bit depth */
3493 uIntf *, /* distance desired/actual bit depth */
3494 inflate_huft * FAR *, /* literal/length tree result */
3495 inflate_huft * FAR *)); /* distance tree result */
3497 extern int inflate_trees_free OF((
3498 inflate_huft *, /* tables to free */
3499 z_streamp )); /* for zfree function */
3501 /* --- inftrees.h */
3503 /* +++ infcodes.h */
3504 /* infcodes.h -- header to use infcodes.c
3505 * Copyright (C) 1995-1996 Mark Adler
3506 * For conditions of distribution and use, see copyright notice in zlib.h
3509 /* WARNING: this file should *not* be used by applications. It is
3510 part of the implementation of the compression library and is
3511 subject to change. Applications should only use zlib.h.
3514 struct inflate_codes_state;
3515 typedef struct inflate_codes_state FAR inflate_codes_statef;
3517 extern inflate_codes_statef *inflate_codes_new OF((
3518 uInt, uInt,
3519 inflate_huft *, inflate_huft *,
3520 z_streamp ));
3522 extern int inflate_codes OF((
3523 inflate_blocks_statef *,
3524 z_streamp ,
3525 int));
3527 extern void inflate_codes_free OF((
3528 inflate_codes_statef *,
3529 z_streamp ));
3531 /* --- infcodes.h */
3533 /* +++ infutil.h */
3534 /* infutil.h -- types and macros common to blocks and codes
3535 * Copyright (C) 1995-1996 Mark Adler
3536 * For conditions of distribution and use, see copyright notice in zlib.h
3539 /* WARNING: this file should *not* be used by applications. It is
3540 part of the implementation of the compression library and is
3541 subject to change. Applications should only use zlib.h.
3544 #ifndef _INFUTIL_H
3545 #define _INFUTIL_H
3547 typedef enum {
3548 TYPE, /* get type bits (3, including end bit) */
3549 LENS, /* get lengths for stored */
3550 STORED, /* processing stored block */
3551 TABLE, /* get table lengths */
3552 BTREE, /* get bit lengths tree for a dynamic block */
3553 DTREE, /* get length, distance trees for a dynamic block */
3554 CODES, /* processing fixed or dynamic block */
3555 DRY, /* output remaining window bytes */
3556 DONEB, /* finished last block, done */
3557 BADB} /* got a data error--stuck here */
3558 inflate_block_mode;
3560 /* inflate blocks semi-private state */
3561 struct inflate_blocks_state {
3563 /* mode */
3564 inflate_block_mode mode; /* current inflate_block mode */
3566 /* mode dependent information */
3567 union {
3568 uInt left; /* if STORED, bytes left to copy */
3569 struct {
3570 uInt table; /* table lengths (14 bits) */
3571 uInt index; /* index into blens (or border) */
3572 uIntf *blens; /* bit lengths of codes */
3573 uInt bb; /* bit length tree depth */
3574 inflate_huft *tb; /* bit length decoding tree */
3575 } trees; /* if DTREE, decoding info for trees */
3576 struct {
3577 inflate_huft *tl;
3578 inflate_huft *td; /* trees to free */
3579 inflate_codes_statef
3580 *codes;
3581 } decode; /* if CODES, current state */
3582 } sub; /* submode */
3583 uInt last; /* true if this block is the last block */
3585 /* mode independent information */
3586 uInt bitk; /* bits in bit buffer */
3587 uLong bitb; /* bit buffer */
3588 Bytef *window; /* sliding window */
3589 Bytef *end; /* one byte after sliding window */
3590 Bytef *read; /* window read pointer */
3591 Bytef *write; /* window write pointer */
3592 check_func checkfn; /* check function */
3593 uLong check; /* check on output */
3598 /* defines for inflate input/output */
3599 /* update pointers and return */
3600 #define UPDBITS {s->bitb=b;s->bitk=k;}
3601 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3602 #define UPDOUT {s->write=q;}
3603 #define UPDATE {UPDBITS UPDIN UPDOUT}
3604 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3605 /* get bytes and bits */
3606 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3607 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3608 #define NEXTBYTE (n--,*p++)
3609 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3610 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3611 /* output bytes */
3612 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3613 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3614 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3615 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3616 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3617 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3618 /* load local pointers */
3619 #define LOAD {LOADIN LOADOUT}
3621 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3622 extern uInt inflate_mask[17];
3624 /* copy as much as possible from the sliding window to the output area */
3625 extern int inflate_flush OF((
3626 inflate_blocks_statef *,
3627 z_streamp ,
3628 int));
3630 #ifndef NO_DUMMY_DECL
3631 struct internal_state {int dummy;}; /* for buggy compilers */
3632 #endif
3634 #endif
3635 /* --- infutil.h */
3637 #ifndef NO_DUMMY_DECL
3638 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3639 #endif
3641 /* Table for deflate from PKZIP's appnote.txt. */
3642 local const uInt border[] = { /* Order of the bit length code lengths */
3643 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3646 Notes beyond the 1.93a appnote.txt:
3648 1. Distance pointers never point before the beginning of the output
3649 stream.
3650 2. Distance pointers can point back across blocks, up to 32k away.
3651 3. There is an implied maximum of 7 bits for the bit length table and
3652 15 bits for the actual data.
3653 4. If only one code exists, then it is encoded using one bit. (Zero
3654 would be more efficient, but perhaps a little confusing.) If two
3655 codes exist, they are coded using one bit each (0 and 1).
3656 5. There is no way of sending zero distance codes--a dummy must be
3657 sent if there are none. (History: a pre 2.0 version of PKZIP would
3658 store blocks with no distance codes, but this was discovered to be
3659 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3660 zero distance codes, which is sent as one code of zero bits in
3661 length.
3662 6. There are up to 286 literal/length codes. Code 256 represents the
3663 end-of-block. Note however that the static length tree defines
3664 288 codes just to fill out the Huffman codes. Codes 286 and 287
3665 cannot be used though, since there is no length base or extra bits
3666 defined for them. Similarily, there are up to 30 distance codes.
3667 However, static trees define 32 codes (all 5 bits) to fill out the
3668 Huffman codes, but the last two had better not show up in the data.
3669 7. Unzip can check dynamic Huffman blocks for complete code sets.
3670 The exception is that a single code would not be complete (see #4).
3671 8. The five bits following the block type is really the number of
3672 literal codes sent minus 257.
3673 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3674 (1+6+6). Therefore, to output three times the length, you output
3675 three codes (1+1+1), whereas to output four times the same length,
3676 you only need two codes (1+3). Hmm.
3677 10. In the tree reconstruction algorithm, Code = Code + Increment
3678 only if BitLength(i) is not zero. (Pretty obvious.)
3679 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3680 12. Note: length code 284 can represent 227-258, but length code 285
3681 really is 258. The last length deserves its own, short code
3682 since it gets used a lot in very redundant files. The length
3683 258 is special since 258 - 3 (the min match length) is 255.
3684 13. The literal/length and distance code bit lengths are read as a
3685 single stream of lengths. It is possible (and advantageous) for
3686 a repeat code (16, 17, or 18) to go across the boundary between
3687 the two sets of lengths.
3691 void
3692 inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
3694 if (s->checkfn != Z_NULL)
3695 *c = s->check;
3696 if (s->mode == BTREE || s->mode == DTREE)
3697 ZFREE(z, s->sub.trees.blens);
3698 if (s->mode == CODES)
3700 inflate_codes_free(s->sub.decode.codes, z);
3701 inflate_trees_free(s->sub.decode.td, z);
3702 inflate_trees_free(s->sub.decode.tl, z);
3704 s->mode = TYPE;
3705 s->bitk = 0;
3706 s->bitb = 0;
3707 s->read = s->write = s->window;
3708 if (s->checkfn != Z_NULL)
3709 z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3710 Trace((stderr, "inflate: blocks reset\n"));
3714 inflate_blocks_statef *
3715 inflate_blocks_new(z_streamp z, check_func c, uInt w)
3717 inflate_blocks_statef *s;
3719 if ((s = (inflate_blocks_statef *)ZALLOC
3720 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3721 return s;
3722 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3724 ZFREE(z, s);
3725 return Z_NULL;
3727 s->end = s->window + w;
3728 s->checkfn = c;
3729 s->mode = TYPE;
3730 Trace((stderr, "inflate: blocks allocated\n"));
3731 inflate_blocks_reset(s, z, &s->check);
3732 return s;
3736 #ifdef DEBUG_ZLIB
3737 extern uInt inflate_hufts;
3738 #endif
3741 inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
3743 uInt t; /* temporary storage */
3744 uLong b; /* bit buffer */
3745 uInt k; /* bits in bit buffer */
3746 Bytef *p; /* input data pointer */
3747 uInt n; /* bytes available there */
3748 Bytef *q; /* output window write pointer */
3749 uInt m; /* bytes to end of window or read pointer */
3751 /* copy input/output information to locals (UPDATE macro restores) */
3752 LOAD
3754 /* process input based on current state */
3755 while (1) switch (s->mode)
3757 case TYPE:
3758 NEEDBITS(3)
3759 t = (uInt)b & 7;
3760 s->last = t & 1;
3761 switch (t >> 1)
3763 case 0: /* stored */
3764 Trace((stderr, "inflate: stored block%s\n",
3765 s->last ? " (last)" : ""));
3766 DUMPBITS(3)
3767 t = k & 7; /* go to byte boundary */
3768 DUMPBITS(t)
3769 s->mode = LENS; /* get length of stored block */
3770 break;
3771 case 1: /* fixed */
3772 Trace((stderr, "inflate: fixed codes block%s\n",
3773 s->last ? " (last)" : ""));
3775 uInt bl, bd;
3776 inflate_huft *tl, *td;
3778 inflate_trees_fixed(&bl, &bd, &tl, &td);
3779 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3780 if (s->sub.decode.codes == Z_NULL)
3782 r = Z_MEM_ERROR;
3783 LEAVE
3785 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3786 s->sub.decode.td = Z_NULL;
3788 DUMPBITS(3)
3789 s->mode = CODES;
3790 break;
3791 case 2: /* dynamic */
3792 Trace((stderr, "inflate: dynamic codes block%s\n",
3793 s->last ? " (last)" : ""));
3794 DUMPBITS(3)
3795 s->mode = TABLE;
3796 break;
3797 case 3: /* illegal */
3798 DUMPBITS(3)
3799 s->mode = BADB;
3800 z->msg = (char*)"invalid block type";
3801 r = Z_DATA_ERROR;
3802 LEAVE
3804 break;
3805 case LENS:
3806 NEEDBITS(32)
3807 if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3809 s->mode = BADB;
3810 z->msg = (char*)"invalid stored block lengths";
3811 r = Z_DATA_ERROR;
3812 LEAVE
3814 s->sub.left = (uInt)b & 0xffff;
3815 b = k = 0; /* dump bits */
3816 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3817 s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3818 break;
3819 case STORED:
3820 if (n == 0)
3821 LEAVE
3822 NEEDOUT
3823 t = s->sub.left;
3824 if (t > n) t = n;
3825 if (t > m) t = m;
3826 zmemcpy(q, p, t);
3827 p += t; n -= t;
3828 q += t; m -= t;
3829 if ((s->sub.left -= t) != 0)
3830 break;
3831 Tracev((stderr, "inflate: stored end, %lu total out\n",
3832 z->total_out + (q >= s->read ? q - s->read :
3833 (s->end - s->read) + (q - s->window))));
3834 s->mode = s->last ? DRY : TYPE;
3835 break;
3836 case TABLE:
3837 NEEDBITS(14)
3838 s->sub.trees.table = t = (uInt)b & 0x3fff;
3839 #ifndef PKZIP_BUG_WORKAROUND
3840 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3842 s->mode = BADB;
3843 z->msg = (char*)"too many length or distance symbols";
3844 r = Z_DATA_ERROR;
3845 LEAVE
3847 #endif
3848 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3849 if (t < 19)
3850 t = 19;
3851 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3853 r = Z_MEM_ERROR;
3854 LEAVE
3856 DUMPBITS(14)
3857 s->sub.trees.index = 0;
3858 Tracev((stderr, "inflate: table sizes ok\n"));
3859 s->mode = BTREE;
3860 case BTREE:
3861 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3863 NEEDBITS(3)
3864 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3865 DUMPBITS(3)
3867 while (s->sub.trees.index < 19)
3868 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3869 s->sub.trees.bb = 7;
3870 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3871 &s->sub.trees.tb, z);
3872 if (t != Z_OK)
3874 r = t;
3875 if (r == Z_DATA_ERROR) {
3876 ZFREE(z, s->sub.trees.blens);
3877 s->mode = BADB;
3879 LEAVE
3881 s->sub.trees.index = 0;
3882 Tracev((stderr, "inflate: bits tree ok\n"));
3883 s->mode = DTREE;
3884 case DTREE:
3885 while (t = s->sub.trees.table,
3886 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3888 inflate_huft *h;
3889 uInt i, j, c;
3891 t = s->sub.trees.bb;
3892 NEEDBITS(t)
3893 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3894 t = h->word.what.Bits;
3895 c = h->more.Base;
3896 if (c < 16)
3898 DUMPBITS(t)
3899 s->sub.trees.blens[s->sub.trees.index++] = c;
3901 else /* c == 16..18 */
3903 i = c == 18 ? 7 : c - 14;
3904 j = c == 18 ? 11 : 3;
3905 NEEDBITS(t + i)
3906 DUMPBITS(t)
3907 j += (uInt)b & inflate_mask[i];
3908 DUMPBITS(i)
3909 i = s->sub.trees.index;
3910 t = s->sub.trees.table;
3911 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3912 (c == 16 && i < 1))
3914 inflate_trees_free(s->sub.trees.tb, z);
3915 ZFREE(z, s->sub.trees.blens);
3916 s->mode = BADB;
3917 z->msg = (char*)"invalid bit length repeat";
3918 r = Z_DATA_ERROR;
3919 LEAVE
3921 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3922 do {
3923 s->sub.trees.blens[i++] = c;
3924 } while (--j);
3925 s->sub.trees.index = i;
3928 inflate_trees_free(s->sub.trees.tb, z);
3929 s->sub.trees.tb = Z_NULL;
3931 uInt bl, bd;
3932 inflate_huft *tl, *td;
3933 inflate_codes_statef *c;
3935 bl = 9; /* must be <= 9 for lookahead assumptions */
3936 bd = 6; /* must be <= 9 for lookahead assumptions */
3937 t = s->sub.trees.table;
3938 #ifdef DEBUG_ZLIB
3939 inflate_hufts = 0;
3940 #endif
3941 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3942 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3943 if (t != Z_OK)
3945 if (t == (uInt)Z_DATA_ERROR) {
3946 ZFREE(z, s->sub.trees.blens);
3947 s->mode = BADB;
3949 r = t;
3950 LEAVE
3952 Tracev((stderr, "inflate: trees ok, %d * %d bytes used\n",
3953 inflate_hufts, sizeof(inflate_huft)));
3954 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3956 inflate_trees_free(td, z);
3957 inflate_trees_free(tl, z);
3958 r = Z_MEM_ERROR;
3959 LEAVE
3962 * this ZFREE must occur *BEFORE* we mess with sub.decode, because
3963 * sub.trees is union'd with sub.decode.
3965 ZFREE(z, s->sub.trees.blens);
3966 s->sub.decode.codes = c;
3967 s->sub.decode.tl = tl;
3968 s->sub.decode.td = td;
3970 s->mode = CODES;
3971 case CODES:
3972 UPDATE
3973 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3974 return inflate_flush(s, z, r);
3975 r = Z_OK;
3976 inflate_codes_free(s->sub.decode.codes, z);
3977 inflate_trees_free(s->sub.decode.td, z);
3978 inflate_trees_free(s->sub.decode.tl, z);
3979 LOAD
3980 Tracev((stderr, "inflate: codes end, %lu total out\n",
3981 z->total_out + (q >= s->read ? q - s->read :
3982 (s->end - s->read) + (q - s->window))));
3983 if (!s->last)
3985 s->mode = TYPE;
3986 break;
3988 if (k > 7) /* return unused byte, if any */
3990 Assert(k < 16, "inflate_codes grabbed too many bytes")
3991 k -= 8;
3992 n++;
3993 p--; /* can always return one */
3995 s->mode = DRY;
3996 case DRY:
3997 FLUSH
3998 if (s->read != s->write)
3999 LEAVE
4000 s->mode = DONEB;
4001 case DONEB:
4002 r = Z_STREAM_END;
4003 LEAVE
4004 case BADB:
4005 r = Z_DATA_ERROR;
4006 LEAVE
4007 default:
4008 r = Z_STREAM_ERROR;
4009 LEAVE
4015 inflate_blocks_free(inflate_blocks_statef *s, z_streamp z, uLongf *c)
4017 inflate_blocks_reset(s, z, c);
4018 ZFREE(z, s->window);
4019 ZFREE(z, s);
4020 Trace((stderr, "inflate: blocks freed\n"));
4021 return Z_OK;
4025 void
4026 inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
4028 zmemcpy((charf *)s->window, d, n);
4029 s->read = s->write = s->window + n;
4033 * This subroutine adds the data at next_in/avail_in to the output history
4034 * without performing any output. The output buffer must be "caught up";
4035 * i.e. no pending output (hence s->read equals s->write), and the state must
4036 * be BLOCKS (i.e. we should be willing to see the start of a series of
4037 * BLOCKS). On exit, the output will also be caught up, and the checksum
4038 * will have been updated if need be.
4041 inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
4043 uLong b; /* bit buffer */ /* NOT USED HERE */
4044 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
4045 uInt t; /* temporary storage */
4046 Bytef *p; /* input data pointer */
4047 uInt n; /* bytes available there */
4048 Bytef *q; /* output window write pointer */
4049 uInt m; /* bytes to end of window or read pointer */
4051 if (s->read != s->write)
4052 return Z_STREAM_ERROR;
4053 if (s->mode != TYPE)
4054 return Z_DATA_ERROR;
4056 /* we're ready to rock */
4057 LOAD
4058 /* while there is input ready, copy to output buffer, moving
4059 * pointers as needed.
4061 while (n) {
4062 t = n; /* how many to do */
4063 /* is there room until end of buffer? */
4064 if (t > m) t = m;
4065 /* update check information */
4066 if (s->checkfn != Z_NULL)
4067 s->check = (*s->checkfn)(s->check, q, t);
4068 zmemcpy(q, p, t);
4069 q += t;
4070 p += t;
4071 n -= t;
4072 z->total_out += t;
4073 s->read = q; /* drag read pointer forward */
4074 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4075 if (q == s->end) {
4076 s->read = q = s->window;
4077 m = WAVAIL;
4080 UPDATE
4081 return Z_OK;
4086 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4087 * a `stored' block type value but not the (zero) length bytes.
4090 inflate_packet_flush(inflate_blocks_statef *s)
4092 if (s->mode != LENS)
4093 return Z_DATA_ERROR;
4094 s->mode = TYPE;
4095 return Z_OK;
4097 /* --- infblock.c */
4099 /* +++ inftrees.c */
4100 /* inftrees.c -- generate Huffman trees for efficient decoding
4101 * Copyright (C) 1995-1996 Mark Adler
4102 * For conditions of distribution and use, see copyright notice in zlib.h
4105 /* #include "zutil.h" */
4106 /* #include "inftrees.h" */
4108 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4110 If you use the zlib library in a product, an acknowledgment is welcome
4111 in the documentation of your product. If for some reason you cannot
4112 include such an acknowledgment, I would appreciate that you keep this
4113 copyright string in the executable of your product.
4116 #ifndef NO_DUMMY_DECL
4117 struct internal_state {int dummy;}; /* for buggy compilers */
4118 #endif
4120 /* simplify the use of the inflate_huft type with some defines */
4121 #define base more.Base
4122 #define next more.Next
4123 #define exop word.what.Exop
4124 #define bits word.what.Bits
4127 local int huft_build OF((
4128 uIntf *, /* code lengths in bits */
4129 uInt, /* number of codes */
4130 uInt, /* number of "simple" codes */
4131 const uIntf *, /* list of base values for non-simple codes */
4132 const uIntf *, /* list of extra bits for non-simple codes */
4133 inflate_huft * FAR*,/* result: starting table */
4134 uIntf *, /* maximum lookup bits (returns actual) */
4135 z_streamp )); /* for zalloc function */
4137 local voidpf zfalloc OF((
4138 voidpf, /* opaque pointer (not used) */
4139 uInt, /* number of items */
4140 uInt)); /* size of item */
4142 /* Tables for deflate from PKZIP's appnote.txt. */
4143 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4144 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4145 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4146 /* see note #13 above about 258 */
4147 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4148 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4149 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4150 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4151 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4152 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4153 8193, 12289, 16385, 24577};
4154 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4155 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4156 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4157 12, 12, 13, 13};
4160 Huffman code decoding is performed using a multi-level table lookup.
4161 The fastest way to decode is to simply build a lookup table whose
4162 size is determined by the longest code. However, the time it takes
4163 to build this table can also be a factor if the data being decoded
4164 is not very long. The most common codes are necessarily the
4165 shortest codes, so those codes dominate the decoding time, and hence
4166 the speed. The idea is you can have a shorter table that decodes the
4167 shorter, more probable codes, and then point to subsidiary tables for
4168 the longer codes. The time it costs to decode the longer codes is
4169 then traded against the time it takes to make longer tables.
4171 This results of this trade are in the variables lbits and dbits
4172 below. lbits is the number of bits the first level table for literal/
4173 length codes can decode in one step, and dbits is the same thing for
4174 the distance codes. Subsequent tables are also less than or equal to
4175 those sizes. These values may be adjusted either when all of the
4176 codes are shorter than that, in which case the longest code length in
4177 bits is used, or when the shortest code is *longer* than the requested
4178 table size, in which case the length of the shortest code in bits is
4179 used.
4181 There are two different values for the two tables, since they code a
4182 different number of possibilities each. The literal/length table
4183 codes 286 possible values, or in a flat code, a little over eight
4184 bits. The distance table codes 30 possible values, or a little less
4185 than five bits, flat. The optimum values for speed end up being
4186 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4187 The optimum values may differ though from machine to machine, and
4188 possibly even between compilers. Your mileage may vary.
4192 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4193 #define BMAX 15 /* maximum bit length of any code */
4194 #define N_MAX 288 /* maximum number of codes in any set */
4196 #ifdef DEBUG_ZLIB
4197 uInt inflate_hufts;
4198 #endif
4201 * Parameters:
4202 * b: code lengths in bits (all assumed <= BMAX)
4203 * n: number of codes (assumed <= N_MAX)
4204 * s: number of simple-valued codes (0..s-1)
4205 * d: list of base values for non-simple codes
4206 * e: list of extra bits for non-simple codes
4207 * t: result: starting table
4208 * m: maximum lookup bits, returns actual
4209 * zs: for zalloc function
4211 * Given a list of code lengths and a maximum table size, make a set of
4212 * tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4213 * if the given code set is incomplete (the tables are still built in this
4214 * case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4215 * lengths), or Z_MEM_ERROR if not enough memory.
4217 local int
4218 huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e,
4219 inflate_huft * FAR *t, uIntf *m, z_streamp zs)
4222 uInt a; /* counter for codes of length k */
4223 uInt c[BMAX+1]; /* bit length count table */
4224 uInt f; /* i repeats in table every f entries */
4225 int g; /* maximum code length */
4226 int h; /* table level */
4227 uInt i; /* counter, current code */
4228 uInt j; /* counter */
4229 int k; /* number of bits in current code */
4230 int l; /* bits per table (returned in m) */
4231 uIntf *p; /* pointer into c[], b[], or v[] */
4232 inflate_huft *q; /* points to current table */
4233 struct inflate_huft_s r; /* table entry for structure assignment */
4234 inflate_huft *u[BMAX]; /* table stack */
4235 uInt v[N_MAX]; /* values in order of bit length */
4236 int w; /* bits before this table == (l * h) */
4237 uInt x[BMAX+1]; /* bit offsets, then code stack */
4238 uIntf *xp; /* pointer into x */
4239 int y; /* number of dummy codes added */
4240 uInt z; /* number of entries in current table */
4243 /* Generate counts for each bit length */
4244 p = c;
4245 #define C0 *p++ = 0;
4246 #define C2 C0 C0 C0 C0
4247 #define C4 C2 C2 C2 C2
4248 C4 /* clear c[]--assume BMAX+1 is 16 */
4249 p = b; i = n;
4250 do {
4251 c[*p++]++; /* assume all entries <= BMAX */
4252 } while (--i);
4253 if (c[0] == n) /* null input--all zero length codes */
4255 *t = (inflate_huft *)Z_NULL;
4256 *m = 0;
4257 return Z_OK;
4261 /* Find minimum and maximum length, bound *m by those */
4262 l = *m;
4263 for (j = 1; j <= BMAX; j++)
4264 if (c[j])
4265 break;
4266 k = j; /* minimum code length */
4267 if ((uInt)l < j)
4268 l = j;
4269 for (i = BMAX; i; i--)
4270 if (c[i])
4271 break;
4272 g = i; /* maximum code length */
4273 if ((uInt)l > i)
4274 l = i;
4275 *m = l;
4278 /* Adjust last length count to fill out codes, if needed */
4279 for (y = 1 << j; j < i; j++, y <<= 1)
4280 if ((y -= c[j]) < 0)
4281 return Z_DATA_ERROR;
4282 if ((y -= c[i]) < 0)
4283 return Z_DATA_ERROR;
4284 c[i] += y;
4287 /* Generate starting offsets into the value table for each length */
4288 x[1] = j = 0;
4289 p = c + 1; xp = x + 2;
4290 while (--i) { /* note that i == g from above */
4291 *xp++ = (j += *p++);
4295 /* Make a table of values in order of bit lengths */
4296 p = b; i = 0;
4297 do {
4298 if ((j = *p++) != 0)
4299 v[x[j]++] = i;
4300 } while (++i < n);
4301 n = x[g]; /* set n to length of v */
4304 /* Generate the Huffman codes and for each, make the table entries */
4305 x[0] = i = 0; /* first Huffman code is zero */
4306 p = v; /* grab values in bit order */
4307 h = -1; /* no tables yet--level -1 */
4308 w = -l; /* bits decoded == (l * h) */
4309 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
4310 q = (inflate_huft *)Z_NULL; /* ditto */
4311 z = 0; /* ditto */
4313 /* go through the bit lengths (k already is bits in shortest code) */
4314 for (; k <= g; k++)
4316 a = c[k];
4317 while (a--)
4319 /* here i is the Huffman code of length k bits for value *p */
4320 /* make tables up to required level */
4321 while (k > w + l)
4323 h++;
4324 w += l; /* previous table always l bits */
4326 /* compute minimum size table less than or equal to l bits */
4327 z = g - w;
4328 z = z > (uInt)l ? l : z; /* table size upper limit */
4329 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
4330 { /* too few codes for k-w bit table */
4331 f -= a + 1; /* deduct codes from patterns left */
4332 xp = c + k;
4333 if (j < z)
4334 while (++j < z) /* try smaller tables up to z bits */
4336 if ((f <<= 1) <= *++xp)
4337 break; /* enough codes to use up j bits */
4338 f -= *xp; /* else deduct codes from patterns */
4341 z = 1 << j; /* table entries for j-bit table */
4343 /* allocate and link in new table */
4344 if ((q = (inflate_huft *)ZALLOC
4345 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4347 if (h)
4348 inflate_trees_free(u[0], zs);
4349 return Z_MEM_ERROR; /* not enough memory */
4351 #ifdef DEBUG_ZLIB
4352 inflate_hufts += z + 1;
4353 #endif
4354 *t = q + 1; /* link to list for huft_free() */
4355 *(t = &(q->next)) = Z_NULL;
4356 u[h] = ++q; /* table starts after link */
4358 /* connect to last table, if there is one */
4359 if (h)
4361 x[h] = i; /* save pattern for backing up */
4362 r.bits = (Byte)l; /* bits to dump before this table */
4363 r.exop = (Byte)j; /* bits in this table */
4364 r.next = q; /* pointer to this table */
4365 j = i >> (w - l); /* (get around Turbo C bug) */
4366 u[h-1][j] = r; /* connect to last table */
4370 /* set up table entry in r */
4371 r.bits = (Byte)(k - w);
4372 if (p >= v + n)
4373 r.exop = 128 + 64; /* out of values--invalid code */
4374 else if (*p < s)
4376 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4377 r.base = *p++; /* simple code is just the value */
4379 else
4381 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4382 r.base = d[*p++ - s];
4385 /* fill code-like entries with r */
4386 f = 1 << (k - w);
4387 for (j = i >> w; j < z; j += f)
4388 q[j] = r;
4390 /* backwards increment the k-bit code i */
4391 for (j = 1 << (k - 1); i & j; j >>= 1)
4392 i ^= j;
4393 i ^= j;
4395 /* backup over finished tables */
4396 while ((i & ((1 << w) - 1)) != x[h])
4398 h--; /* don't need to update q */
4399 w -= l;
4405 /* Return Z_BUF_ERROR if we were given an incomplete table */
4406 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4410 * Parameters:
4411 * c: 19 code lengths
4412 * bb: bits tree desired/actual depth
4413 * tb: bits tree result
4414 * z: for zfree function
4417 inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft * FAR *tb, z_streamp z)
4419 int r;
4421 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4422 if (r == Z_DATA_ERROR)
4423 z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4424 else if (r == Z_BUF_ERROR || *bb == 0)
4426 inflate_trees_free(*tb, z);
4427 z->msg = (char*)"incomplete dynamic bit lengths tree";
4428 r = Z_DATA_ERROR;
4430 return r;
4434 * Parameters:
4435 * nl: number of literal/length codes
4436 * nd: number of distance codes
4437 * c: that many (total) code lengths
4438 * bl: literal desired/actual bit depth
4439 * bd: distance desired/actual bit depth
4440 * tl: literal/length tree result
4441 * td: distance tree result
4442 * z: for zfree function
4445 inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd,
4446 inflate_huft * FAR *tl, inflate_huft * FAR *td,
4447 z_streamp z)
4449 int r;
4451 /* build literal/length tree */
4452 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4453 if (r != Z_OK || *bl == 0)
4455 if (r == Z_DATA_ERROR)
4456 z->msg = (char*)"oversubscribed literal/length tree";
4457 else if (r != Z_MEM_ERROR)
4459 inflate_trees_free(*tl, z);
4460 z->msg = (char*)"incomplete literal/length tree";
4461 r = Z_DATA_ERROR;
4463 return r;
4466 /* build distance tree */
4467 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4468 if (r != Z_OK || (*bd == 0 && nl > 257))
4470 if (r == Z_DATA_ERROR)
4471 z->msg = (char*)"oversubscribed distance tree";
4472 else if (r == Z_BUF_ERROR) {
4473 #ifdef PKZIP_BUG_WORKAROUND
4474 r = Z_OK;
4476 #else
4477 inflate_trees_free(*td, z);
4478 z->msg = (char*)"incomplete distance tree";
4479 r = Z_DATA_ERROR;
4481 else if (r != Z_MEM_ERROR)
4483 z->msg = (char*)"empty distance tree with lengths";
4484 r = Z_DATA_ERROR;
4486 inflate_trees_free(*tl, z);
4487 return r;
4488 #endif
4491 /* done */
4492 return Z_OK;
4496 /* build fixed tables only once--keep them here */
4497 local int fixed_built = 0;
4498 #define FIXEDH 530 /* number of hufts used by fixed tables */
4499 local inflate_huft fixed_mem[FIXEDH];
4500 local uInt fixed_bl;
4501 local uInt fixed_bd;
4502 local inflate_huft *fixed_tl;
4503 local inflate_huft *fixed_td;
4506 * Parameters:
4507 * q: opaque pointer
4508 * n: number of items
4509 * s: size of item
4511 local voidpf
4512 zfalloc(voidpf q, uInt n, uInt s)
4514 Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4515 "inflate_trees zfalloc overflow");
4516 *(intf *)q -= n+s-s; /* s-s to avoid warning */
4517 return (voidpf)(fixed_mem + *(intf *)q);
4521 * Parameters:
4522 * bl: literal desired/actual bit depth
4523 * bd: distance desired/actual bit depth
4524 * tl: literal/length tree result
4525 * td: distance tree result
4528 inflate_trees_fixed(uIntf *bl, uIntf *bd, inflate_huft * FAR *tl,
4529 inflate_huft * FAR *td)
4531 /* build fixed tables if not already (multiple overlapped executions ok) */
4532 if (!fixed_built)
4534 int k; /* temporary variable */
4535 unsigned c[288]; /* length list for huft_build */
4536 z_stream z; /* for zfalloc function */
4537 int f = FIXEDH; /* number of hufts left in fixed_mem */
4539 /* set up fake z_stream for memory routines */
4540 z.zalloc = zfalloc;
4541 z.zfree = Z_NULL;
4542 z.opaque = (voidpf)&f;
4544 /* literal table */
4545 for (k = 0; k < 144; k++)
4546 c[k] = 8;
4547 for (; k < 256; k++)
4548 c[k] = 9;
4549 for (; k < 280; k++)
4550 c[k] = 7;
4551 for (; k < 288; k++)
4552 c[k] = 8;
4553 fixed_bl = 7;
4554 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4556 /* distance table */
4557 for (k = 0; k < 30; k++)
4558 c[k] = 5;
4559 fixed_bd = 5;
4560 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4562 /* done */
4563 Assert(f == 0, "invalid build of fixed tables");
4564 fixed_built = 1;
4566 *bl = fixed_bl;
4567 *bd = fixed_bd;
4568 *tl = fixed_tl;
4569 *td = fixed_td;
4570 return Z_OK;
4574 * Parameters:
4575 * t: table to free
4576 * z: for zfree function
4577 * Free the malloc'ed tables built by huft_build(), which makes a linked
4578 * list of the tables it made, with the links in a dummy first entry of
4579 * each table.
4582 inflate_trees_free(inflate_huft *t, z_streamp z)
4584 inflate_huft *p, *q, *r;
4586 /* Reverse linked list */
4587 p = Z_NULL;
4588 q = t;
4589 while (q != Z_NULL)
4591 r = (q - 1)->next;
4592 (q - 1)->next = p;
4593 p = q;
4594 q = r;
4596 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4597 while (p != Z_NULL)
4599 q = (--p)->next;
4600 ZFREE(z,p);
4601 p = q;
4603 return Z_OK;
4605 /* --- inftrees.c */
4607 /* +++ infcodes.c */
4608 /* infcodes.c -- process literals and length/distance pairs
4609 * Copyright (C) 1995-1996 Mark Adler
4610 * For conditions of distribution and use, see copyright notice in zlib.h
4613 /* #include "zutil.h" */
4614 /* #include "inftrees.h" */
4615 /* #include "infblock.h" */
4616 /* #include "infcodes.h" */
4617 /* #include "infutil.h" */
4619 /* +++ inffast.h */
4620 /* inffast.h -- header to use inffast.c
4621 * Copyright (C) 1995-1996 Mark Adler
4622 * For conditions of distribution and use, see copyright notice in zlib.h
4625 /* WARNING: this file should *not* be used by applications. It is
4626 part of the implementation of the compression library and is
4627 subject to change. Applications should only use zlib.h.
4630 extern int inflate_fast OF((
4631 uInt,
4632 uInt,
4633 inflate_huft *,
4634 inflate_huft *,
4635 inflate_blocks_statef *,
4636 z_streamp ));
4637 /* --- inffast.h */
4639 /* simplify the use of the inflate_huft type with some defines */
4640 #define base more.Base
4641 #define next more.Next
4642 #define exop word.what.Exop
4643 #define bits word.what.Bits
4645 /* inflate codes private state */
4646 struct inflate_codes_state {
4648 /* mode */
4649 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4650 START, /* x: set up for LEN */
4651 LEN, /* i: get length/literal/eob next */
4652 LENEXT, /* i: getting length extra (have base) */
4653 DIST, /* i: get distance next */
4654 DISTEXT, /* i: getting distance extra */
4655 COPY, /* o: copying bytes in window, waiting for space */
4656 LIT, /* o: got literal, waiting for output space */
4657 WASH, /* o: got eob, possibly still output waiting */
4658 END, /* x: got eob and all data flushed */
4659 BADCODE} /* x: got error */
4660 mode; /* current inflate_codes mode */
4662 /* mode dependent information */
4663 uInt len;
4664 union {
4665 struct {
4666 inflate_huft *tree; /* pointer into tree */
4667 uInt need; /* bits needed */
4668 } code; /* if LEN or DIST, where in tree */
4669 uInt lit; /* if LIT, literal */
4670 struct {
4671 uInt get; /* bits to get for extra */
4672 uInt dist; /* distance back to copy from */
4673 } copy; /* if EXT or COPY, where and how much */
4674 } sub; /* submode */
4676 /* mode independent information */
4677 Byte lbits; /* ltree bits decoded per branch */
4678 Byte dbits; /* dtree bits decoder per branch */
4679 inflate_huft *ltree; /* literal/length/eob tree */
4680 inflate_huft *dtree; /* distance tree */
4685 * Parameters:
4686 * td: need separate declaration for Borland C++
4688 inflate_codes_statef *
4689 inflate_codes_new(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
4690 z_streamp z)
4692 inflate_codes_statef *c;
4694 if ((c = (inflate_codes_statef *)
4695 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4697 c->mode = START;
4698 c->lbits = (Byte)bl;
4699 c->dbits = (Byte)bd;
4700 c->ltree = tl;
4701 c->dtree = td;
4702 Tracev((stderr, "inflate: codes new\n"));
4704 return c;
4709 inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
4711 uInt j; /* temporary storage */
4712 inflate_huft *t; /* temporary pointer */
4713 uInt e; /* extra bits or operation */
4714 uLong b; /* bit buffer */
4715 uInt k; /* bits in bit buffer */
4716 Bytef *p; /* input data pointer */
4717 uInt n; /* bytes available there */
4718 Bytef *q; /* output window write pointer */
4719 uInt m; /* bytes to end of window or read pointer */
4720 Bytef *f; /* pointer to copy strings from */
4721 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4723 /* copy input/output information to locals (UPDATE macro restores) */
4724 LOAD
4726 /* process input and output based on current state */
4727 while (1) switch (c->mode)
4728 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4729 case START: /* x: set up for LEN */
4730 #ifndef SLOW
4731 if (m >= 258 && n >= 10)
4733 UPDATE
4734 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4735 LOAD
4736 if (r != Z_OK)
4738 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4739 break;
4742 #endif /* !SLOW */
4743 c->sub.code.need = c->lbits;
4744 c->sub.code.tree = c->ltree;
4745 c->mode = LEN;
4746 case LEN: /* i: get length/literal/eob next */
4747 j = c->sub.code.need;
4748 NEEDBITS(j)
4749 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4750 DUMPBITS(t->bits)
4751 e = (uInt)(t->exop);
4752 if (e == 0) /* literal */
4754 c->sub.lit = t->base;
4755 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4756 "inflate: literal '%c'\n" :
4757 "inflate: literal 0x%02x\n", t->base));
4758 c->mode = LIT;
4759 break;
4761 if (e & 16) /* length */
4763 c->sub.copy.get = e & 15;
4764 c->len = t->base;
4765 c->mode = LENEXT;
4766 break;
4768 if ((e & 64) == 0) /* next table */
4770 c->sub.code.need = e;
4771 c->sub.code.tree = t->next;
4772 break;
4774 if (e & 32) /* end of block */
4776 Tracevv((stderr, "inflate: end of block\n"));
4777 c->mode = WASH;
4778 break;
4780 c->mode = BADCODE; /* invalid code */
4781 z->msg = (char*)"invalid literal/length code";
4782 r = Z_DATA_ERROR;
4783 LEAVE
4784 case LENEXT: /* i: getting length extra (have base) */
4785 j = c->sub.copy.get;
4786 NEEDBITS(j)
4787 c->len += (uInt)b & inflate_mask[j];
4788 DUMPBITS(j)
4789 c->sub.code.need = c->dbits;
4790 c->sub.code.tree = c->dtree;
4791 Tracevv((stderr, "inflate: length %u\n", c->len));
4792 c->mode = DIST;
4793 case DIST: /* i: get distance next */
4794 j = c->sub.code.need;
4795 NEEDBITS(j)
4796 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4797 DUMPBITS(t->bits)
4798 e = (uInt)(t->exop);
4799 if (e & 16) /* distance */
4801 c->sub.copy.get = e & 15;
4802 c->sub.copy.dist = t->base;
4803 c->mode = DISTEXT;
4804 break;
4806 if ((e & 64) == 0) /* next table */
4808 c->sub.code.need = e;
4809 c->sub.code.tree = t->next;
4810 break;
4812 c->mode = BADCODE; /* invalid code */
4813 z->msg = (char*)"invalid distance code";
4814 r = Z_DATA_ERROR;
4815 LEAVE
4816 case DISTEXT: /* i: getting distance extra */
4817 j = c->sub.copy.get;
4818 NEEDBITS(j)
4819 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4820 DUMPBITS(j)
4821 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4822 c->mode = COPY;
4823 case COPY: /* o: copying bytes in window, waiting for space */
4824 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4825 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4826 s->end - (c->sub.copy.dist - (q - s->window)) :
4827 q - c->sub.copy.dist;
4828 #else
4829 f = q - c->sub.copy.dist;
4830 if ((uInt)(q - s->window) < c->sub.copy.dist)
4831 f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4832 #endif
4833 while (c->len)
4835 NEEDOUT
4836 OUTBYTE(*f++)
4837 if (f == s->end)
4838 f = s->window;
4839 c->len--;
4841 c->mode = START;
4842 break;
4843 case LIT: /* o: got literal, waiting for output space */
4844 NEEDOUT
4845 OUTBYTE(c->sub.lit)
4846 c->mode = START;
4847 break;
4848 case WASH: /* o: got eob, possibly more output */
4849 FLUSH
4850 if (s->read != s->write)
4851 LEAVE
4852 c->mode = END;
4853 case END:
4854 r = Z_STREAM_END;
4855 LEAVE
4856 case BADCODE: /* x: got error */
4857 r = Z_DATA_ERROR;
4858 LEAVE
4859 default:
4860 r = Z_STREAM_ERROR;
4861 LEAVE
4866 void
4867 inflate_codes_free(inflate_codes_statef *c, z_streamp z)
4869 ZFREE(z, c);
4870 Tracev((stderr, "inflate: codes free\n"));
4872 /* --- infcodes.c */
4874 /* +++ infutil.c */
4875 /* inflate_util.c -- data and routines common to blocks and codes
4876 * Copyright (C) 1995-1996 Mark Adler
4877 * For conditions of distribution and use, see copyright notice in zlib.h
4880 /* #include "zutil.h" */
4881 /* #include "infblock.h" */
4882 /* #include "inftrees.h" */
4883 /* #include "infcodes.h" */
4884 /* #include "infutil.h" */
4886 #ifndef NO_DUMMY_DECL
4887 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4888 #endif
4890 /* And'ing with mask[n] masks the lower n bits */
4891 uInt inflate_mask[17] = {
4892 0x0000,
4893 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4894 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4898 /* copy as much as possible from the sliding window to the output area */
4900 inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
4902 uInt n;
4903 Bytef *p;
4904 Bytef *q;
4906 /* local copies of source and destination pointers */
4907 p = z->next_out;
4908 q = s->read;
4910 /* compute number of bytes to copy as far as end of window */
4911 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4912 if (n > z->avail_out) n = z->avail_out;
4913 if (n && r == Z_BUF_ERROR) r = Z_OK;
4915 /* update counters */
4916 z->avail_out -= n;
4917 z->total_out += n;
4919 /* update check information */
4920 if (s->checkfn != Z_NULL)
4921 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4923 /* copy as far as end of window */
4924 if (p != Z_NULL) {
4925 zmemcpy(p, q, n);
4926 p += n;
4928 q += n;
4930 /* see if more to copy at beginning of window */
4931 if (q == s->end)
4933 /* wrap pointers */
4934 q = s->window;
4935 if (s->write == s->end)
4936 s->write = s->window;
4938 /* compute bytes to copy */
4939 n = (uInt)(s->write - q);
4940 if (n > z->avail_out) n = z->avail_out;
4941 if (n && r == Z_BUF_ERROR) r = Z_OK;
4943 /* update counters */
4944 z->avail_out -= n;
4945 z->total_out += n;
4947 /* update check information */
4948 if (s->checkfn != Z_NULL)
4949 z->adler = s->check = (*s->checkfn)(s->check, q, n);
4951 /* copy */
4952 if (p != Z_NULL) {
4953 zmemcpy(p, q, n);
4954 p += n;
4956 q += n;
4959 /* update pointers */
4960 z->next_out = p;
4961 s->read = q;
4963 /* done */
4964 return r;
4966 /* --- infutil.c */
4968 /* +++ inffast.c */
4969 /* inffast.c -- process literals and length/distance pairs fast
4970 * Copyright (C) 1995-1996 Mark Adler
4971 * For conditions of distribution and use, see copyright notice in zlib.h
4974 /* #include "zutil.h" */
4975 /* #include "inftrees.h" */
4976 /* #include "infblock.h" */
4977 /* #include "infcodes.h" */
4978 /* #include "infutil.h" */
4979 /* #include "inffast.h" */
4981 #ifndef NO_DUMMY_DECL
4982 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4983 #endif
4985 /* simplify the use of the inflate_huft type with some defines */
4986 #define base more.Base
4987 #define next more.Next
4988 #define exop word.what.Exop
4989 #define bits word.what.Bits
4991 /* macros for bit input with no checking and for returning unused bytes */
4992 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4993 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4995 /* Called with number of bytes left to write in window at least 258
4996 * (the maximum string length) and number of input bytes available
4997 * at least ten. The ten bytes are six bytes for the longest length/
4998 * distance pair plus four bytes for overloading the bit buffer.
5000 * Parameters:
5001 * td: need separate declaration for Borland C++
5004 inflate_fast(uInt bl, uInt bd, inflate_huft *tl, inflate_huft *td,
5005 inflate_blocks_statef *s, z_streamp z)
5007 inflate_huft *t; /* temporary pointer */
5008 uInt e; /* extra bits or operation */
5009 uLong b; /* bit buffer */
5010 uInt k; /* bits in bit buffer */
5011 Bytef *p; /* input data pointer */
5012 uInt n; /* bytes available there */
5013 Bytef *q; /* output window write pointer */
5014 uInt m; /* bytes to end of window or read pointer */
5015 uInt ml; /* mask for literal/length tree */
5016 uInt md; /* mask for distance tree */
5017 uInt c; /* bytes to copy */
5018 uInt d; /* distance back to copy from */
5019 Bytef *r; /* copy source pointer */
5021 /* load input, output, bit values */
5022 LOAD
5024 /* initialize masks */
5025 ml = inflate_mask[bl];
5026 md = inflate_mask[bd];
5028 /* do until not enough input or output space for fast loop */
5029 do { /* assume called with m >= 258 && n >= 10 */
5030 /* get literal/length code */
5031 GRABBITS(20) /* max bits for literal/length code */
5032 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5034 DUMPBITS(t->bits)
5035 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5036 "inflate: * literal '%c'\n" :
5037 "inflate: * literal 0x%02x\n", t->base));
5038 *q++ = (Byte)t->base;
5039 m--;
5040 continue;
5042 do {
5043 DUMPBITS(t->bits)
5044 if (e & 16)
5046 /* get extra bits for length */
5047 e &= 15;
5048 c = t->base + ((uInt)b & inflate_mask[e]);
5049 DUMPBITS(e)
5050 Tracevv((stderr, "inflate: * length %u\n", c));
5052 /* decode distance base of block to copy */
5053 GRABBITS(15); /* max bits for distance code */
5054 e = (t = td + ((uInt)b & md))->exop;
5055 do {
5056 DUMPBITS(t->bits)
5057 if (e & 16)
5059 /* get extra bits to add to distance base */
5060 e &= 15;
5061 GRABBITS(e) /* get extra bits (up to 13) */
5062 d = t->base + ((uInt)b & inflate_mask[e]);
5063 DUMPBITS(e)
5064 Tracevv((stderr, "inflate: * distance %u\n", d));
5066 /* do the copy */
5067 m -= c;
5068 if ((uInt)(q - s->window) >= d) /* offset before dest */
5069 { /* just copy */
5070 r = q - d;
5071 *q++ = *r++; c--; /* minimum count is three, */
5072 *q++ = *r++; c--; /* so unroll loop a little */
5074 else /* else offset after destination */
5076 e = d - (uInt)(q - s->window); /* bytes from offset to end */
5077 r = s->end - e; /* pointer to offset */
5078 if (c > e) /* if source crosses, */
5080 c -= e; /* copy to end of window */
5081 do {
5082 *q++ = *r++;
5083 } while (--e);
5084 r = s->window; /* copy rest from start of window */
5087 do { /* copy all or what's left */
5088 *q++ = *r++;
5089 } while (--c);
5090 break;
5092 else if ((e & 64) == 0)
5093 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5094 else
5096 z->msg = (char*)"invalid distance code";
5097 UNGRAB
5098 UPDATE
5099 return Z_DATA_ERROR;
5101 } while (1);
5102 break;
5104 if ((e & 64) == 0)
5106 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5108 DUMPBITS(t->bits)
5109 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5110 "inflate: * literal '%c'\n" :
5111 "inflate: * literal 0x%02x\n", t->base));
5112 *q++ = (Byte)t->base;
5113 m--;
5114 break;
5117 else if (e & 32)
5119 Tracevv((stderr, "inflate: * end of block\n"));
5120 UNGRAB
5121 UPDATE
5122 return Z_STREAM_END;
5124 else
5126 z->msg = (char*)"invalid literal/length code";
5127 UNGRAB
5128 UPDATE
5129 return Z_DATA_ERROR;
5131 } while (1);
5132 } while (m >= 258 && n >= 10);
5134 /* not enough input or output--restore pointers and return */
5135 UNGRAB
5136 UPDATE
5137 return Z_OK;
5139 /* --- inffast.c */
5141 /* +++ zutil.c */
5142 /* zutil.c -- target dependent utility functions for the compression library
5143 * Copyright (C) 1995-1996 Jean-loup Gailly.
5144 * For conditions of distribution and use, see copyright notice in zlib.h
5147 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5149 #ifdef DEBUG_ZLIB
5150 #include <stdio.h>
5151 #endif
5153 /* #include "zutil.h" */
5155 #ifndef NO_DUMMY_DECL
5156 struct internal_state {int dummy;}; /* for buggy compilers */
5157 #endif
5159 #ifndef STDC
5160 extern void exit OF((int));
5161 #endif
5163 const char
5164 *zlibVersion(void)
5166 return ZLIB_VERSION;
5169 #ifdef DEBUG_ZLIB
5170 void
5171 z_error(char *m)
5173 fprintf(stderr, "%s\n", m);
5174 exit(1);
5176 #endif
5178 #ifndef HAVE_MEMCPY
5180 void
5181 zmemcpy(Bytef *dest, Bytef *source, uInt len)
5183 if (len == 0) return;
5184 do {
5185 *dest++ = *source++; /* ??? to be unrolled */
5186 } while (--len != 0);
5190 zmemcmp(Bytef *s1, Bytef *s2, uInt len)
5192 uInt j;
5194 for (j = 0; j < len; j++) {
5195 if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5197 return 0;
5200 void
5201 zmemzero(Bytef *dest, uInt len)
5203 if (len == 0) return;
5204 do {
5205 *dest++ = 0; /* ??? to be unrolled */
5206 } while (--len != 0);
5208 #endif
5210 #ifdef __TURBOC__
5211 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5212 /* Small and medium model in Turbo C are for now limited to near allocation
5213 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5215 # define MY_ZCALLOC
5217 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5218 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5219 * must fix the pointer. Warning: the pointer must be put back to its
5220 * original form in order to free it, use zcfree().
5223 #define MAX_PTR 10
5224 /* 10*64K = 640K */
5226 local int next_ptr = 0;
5228 typedef struct ptr_table_s {
5229 voidpf org_ptr;
5230 voidpf new_ptr;
5231 } ptr_table;
5233 local ptr_table table[MAX_PTR];
5234 /* This table is used to remember the original form of pointers
5235 * to large buffers (64K). Such pointers are normalized with a zero offset.
5236 * Since MSDOS is not a preemptive multitasking OS, this table is not
5237 * protected from concurrent access. This hack doesn't work anyway on
5238 * a protected system like OS/2. Use Microsoft C instead.
5241 voidpf
5242 zcalloc(voidpf opaque, unsigned items, unsigned size)
5244 voidpf buf = opaque; /* just to make some compilers happy */
5245 ulg bsize = (ulg)items*size;
5247 /* If we allocate less than 65520 bytes, we assume that farmalloc
5248 * will return a usable pointer which doesn't have to be normalized.
5250 if (bsize < 65520L) {
5251 buf = farmalloc(bsize);
5252 if (*(ush*)&buf != 0) return buf;
5253 } else {
5254 buf = farmalloc(bsize + 16L);
5256 if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5257 table[next_ptr].org_ptr = buf;
5259 /* Normalize the pointer to seg:0 */
5260 *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5261 *(ush*)&buf = 0;
5262 table[next_ptr++].new_ptr = buf;
5263 return buf;
5266 void
5267 zcfree(voidpf opaque, voidpf ptr)
5269 int n;
5270 if (*(ush*)&ptr != 0) { /* object < 64K */
5271 farfree(ptr);
5272 return;
5274 /* Find the original pointer */
5275 for (n = 0; n < next_ptr; n++) {
5276 if (ptr != table[n].new_ptr) continue;
5278 farfree(table[n].org_ptr);
5279 while (++n < next_ptr) {
5280 table[n-1] = table[n];
5282 next_ptr--;
5283 return;
5285 ptr = opaque; /* just to make some compilers happy */
5286 Assert(0, "zcfree: ptr not found");
5288 #endif
5289 #endif /* __TURBOC__ */
5292 #if defined(M_I86) && !defined(__32BIT__)
5293 /* Microsoft C in 16-bit mode */
5295 # define MY_ZCALLOC
5297 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5298 # define _halloc halloc
5299 # define _hfree hfree
5300 #endif
5302 voidpf
5303 zcalloc(voidpf opaque, unsigned items, unsigned size)
5305 if (opaque) opaque = 0; /* to make compiler happy */
5306 return _halloc((long)items, size);
5309 void
5310 zcfree(voidpf opaque, voidpf ptr)
5312 if (opaque) opaque = 0; /* to make compiler happy */
5313 _hfree(ptr);
5316 #endif /* MSC */
5319 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5321 #ifndef STDC
5322 extern voidp calloc OF((uInt items, uInt size));
5323 extern void free OF((voidpf ptr));
5324 #endif
5326 voidpf
5327 zcalloc(voidpf opaque, unsigned items, unsigned size)
5329 if (opaque) items += size - size; /* make compiler happy */
5330 return (voidpf)calloc(items, size);
5333 void
5334 zcfree(voidpf opaque, voidpf ptr)
5336 free(ptr);
5337 if (opaque) return; /* make compiler happy */
5340 #endif /* MY_ZCALLOC */
5341 /* --- zutil.c */
5343 /* +++ adler32.c */
5344 /* adler32.c -- compute the Adler-32 checksum of a data stream
5345 * Copyright (C) 1995-1996 Mark Adler
5346 * For conditions of distribution and use, see copyright notice in zlib.h
5349 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5351 /* #include "zlib.h" */
5353 #define BASE 65521L /* largest prime smaller than 65536 */
5354 #define NMAX 5552
5355 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5357 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5358 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5359 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5360 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5361 #define DO16(buf) DO8(buf,0); DO8(buf,8);
5363 /* ========================================================================= */
5364 uLong
5365 adler32(uLong adler, const Bytef *buf, uInt len)
5367 unsigned long s1 = adler & 0xffff;
5368 unsigned long s2 = (adler >> 16) & 0xffff;
5369 int k;
5371 if (buf == Z_NULL) return 1L;
5373 while (len > 0) {
5374 k = len < NMAX ? len : NMAX;
5375 len -= k;
5376 while (k >= 16) {
5377 DO16(buf);
5378 buf += 16;
5379 k -= 16;
5381 if (k != 0) do {
5382 s1 += *buf++;
5383 s2 += s1;
5384 } while (--k);
5385 s1 %= BASE;
5386 s2 %= BASE;
5388 return (s2 << 16) | s1;
5390 /* --- adler32.c */