MFC r1.27:
[dragonfly.git] / sys / kern / lwkt_thread.c
bloba0e7f87ce0c84a6ac6bd2314ba42774ea7f186d4
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.116 2008/06/16 02:00:05 dillon Exp $
38 * Each cpu in a system has its own self-contained light weight kernel
39 * thread scheduler, which means that generally speaking we only need
40 * to use a critical section to avoid problems. Foreign thread
41 * scheduling is queued via (async) IPIs.
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/proc.h>
48 #include <sys/rtprio.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54 #include <sys/caps.h>
55 #include <sys/spinlock.h>
56 #include <sys/ktr.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
73 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
75 static int untimely_switch = 0;
76 #ifdef INVARIANTS
77 static int panic_on_cscount = 0;
78 #endif
79 static __int64_t switch_count = 0;
80 static __int64_t preempt_hit = 0;
81 static __int64_t preempt_miss = 0;
82 static __int64_t preempt_weird = 0;
83 static __int64_t token_contention_count = 0;
84 static __int64_t mplock_contention_count = 0;
85 static int lwkt_use_spin_port;
86 static struct objcache *thread_cache;
89 * We can make all thread ports use the spin backend instead of the thread
90 * backend. This should only be set to debug the spin backend.
92 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
94 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
95 #ifdef INVARIANTS
96 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
97 #endif
98 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
99 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
100 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
101 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
102 #ifdef INVARIANTS
103 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
104 &token_contention_count, 0, "spinning due to token contention");
105 SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
106 &mplock_contention_count, 0, "spinning due to MPLOCK contention");
107 #endif
110 * Kernel Trace
112 #if !defined(KTR_GIANT_CONTENTION)
113 #define KTR_GIANT_CONTENTION KTR_ALL
114 #endif
116 KTR_INFO_MASTER(giant);
117 KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
118 KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
120 #define loggiant(name) KTR_LOG(giant_ ## name, curthread)
123 * These helper procedures handle the runq, they can only be called from
124 * within a critical section.
126 * WARNING! Prior to SMP being brought up it is possible to enqueue and
127 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
128 * instead of 'mycpu' when referencing the globaldata structure. Once
129 * SMP live enqueuing and dequeueing only occurs on the current cpu.
131 static __inline
132 void
133 _lwkt_dequeue(thread_t td)
135 if (td->td_flags & TDF_RUNQ) {
136 int nq = td->td_pri & TDPRI_MASK;
137 struct globaldata *gd = td->td_gd;
139 td->td_flags &= ~TDF_RUNQ;
140 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
141 /* runqmask is passively cleaned up by the switcher */
145 static __inline
146 void
147 _lwkt_enqueue(thread_t td)
149 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
150 int nq = td->td_pri & TDPRI_MASK;
151 struct globaldata *gd = td->td_gd;
153 td->td_flags |= TDF_RUNQ;
154 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
155 gd->gd_runqmask |= 1 << nq;
159 static __boolean_t
160 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
162 struct thread *td = (struct thread *)obj;
164 td->td_kstack = NULL;
165 td->td_kstack_size = 0;
166 td->td_flags = TDF_ALLOCATED_THREAD;
167 return (1);
170 static void
171 _lwkt_thread_dtor(void *obj, void *privdata)
173 struct thread *td = (struct thread *)obj;
175 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
176 ("_lwkt_thread_dtor: not allocated from objcache"));
177 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
178 td->td_kstack_size > 0,
179 ("_lwkt_thread_dtor: corrupted stack"));
180 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
184 * Initialize the lwkt s/system.
186 void
187 lwkt_init(void)
189 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
190 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread), 0,
191 CACHE_NTHREADS/2, _lwkt_thread_ctor, _lwkt_thread_dtor,
192 NULL);
196 * Schedule a thread to run. As the current thread we can always safely
197 * schedule ourselves, and a shortcut procedure is provided for that
198 * function.
200 * (non-blocking, self contained on a per cpu basis)
202 void
203 lwkt_schedule_self(thread_t td)
205 crit_enter_quick(td);
206 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
207 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
208 _lwkt_enqueue(td);
209 crit_exit_quick(td);
213 * Deschedule a thread.
215 * (non-blocking, self contained on a per cpu basis)
217 void
218 lwkt_deschedule_self(thread_t td)
220 crit_enter_quick(td);
221 _lwkt_dequeue(td);
222 crit_exit_quick(td);
226 * LWKTs operate on a per-cpu basis
228 * WARNING! Called from early boot, 'mycpu' may not work yet.
230 void
231 lwkt_gdinit(struct globaldata *gd)
233 int i;
235 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
236 TAILQ_INIT(&gd->gd_tdrunq[i]);
237 gd->gd_runqmask = 0;
238 TAILQ_INIT(&gd->gd_tdallq);
242 * Create a new thread. The thread must be associated with a process context
243 * or LWKT start address before it can be scheduled. If the target cpu is
244 * -1 the thread will be created on the current cpu.
246 * If you intend to create a thread without a process context this function
247 * does everything except load the startup and switcher function.
249 thread_t
250 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
252 globaldata_t gd = mycpu;
253 void *stack;
256 * If static thread storage is not supplied allocate a thread. Reuse
257 * a cached free thread if possible. gd_freetd is used to keep an exiting
258 * thread intact through the exit.
260 if (td == NULL) {
261 if ((td = gd->gd_freetd) != NULL)
262 gd->gd_freetd = NULL;
263 else
264 td = objcache_get(thread_cache, M_WAITOK);
265 KASSERT((td->td_flags &
266 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
267 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
268 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
272 * Try to reuse cached stack.
274 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
275 if (flags & TDF_ALLOCATED_STACK) {
276 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
277 stack = NULL;
280 if (stack == NULL) {
281 stack = (void *)kmem_alloc(&kernel_map, stksize);
282 flags |= TDF_ALLOCATED_STACK;
284 if (cpu < 0)
285 lwkt_init_thread(td, stack, stksize, flags, gd);
286 else
287 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
288 return(td);
292 * Initialize a preexisting thread structure. This function is used by
293 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
295 * All threads start out in a critical section at a priority of
296 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
297 * appropriate. This function may send an IPI message when the
298 * requested cpu is not the current cpu and consequently gd_tdallq may
299 * not be initialized synchronously from the point of view of the originating
300 * cpu.
302 * NOTE! we have to be careful in regards to creating threads for other cpus
303 * if SMP has not yet been activated.
305 #ifdef SMP
307 static void
308 lwkt_init_thread_remote(void *arg)
310 thread_t td = arg;
313 * Protected by critical section held by IPI dispatch
315 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
318 #endif
320 void
321 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
322 struct globaldata *gd)
324 globaldata_t mygd = mycpu;
326 bzero(td, sizeof(struct thread));
327 td->td_kstack = stack;
328 td->td_kstack_size = stksize;
329 td->td_flags = flags;
330 td->td_gd = gd;
331 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
332 #ifdef SMP
333 if ((flags & TDF_MPSAFE) == 0)
334 td->td_mpcount = 1;
335 #endif
336 if (lwkt_use_spin_port)
337 lwkt_initport_spin(&td->td_msgport);
338 else
339 lwkt_initport_thread(&td->td_msgport, td);
340 pmap_init_thread(td);
341 #ifdef SMP
343 * Normally initializing a thread for a remote cpu requires sending an
344 * IPI. However, the idlethread is setup before the other cpus are
345 * activated so we have to treat it as a special case. XXX manipulation
346 * of gd_tdallq requires the BGL.
348 if (gd == mygd || td == &gd->gd_idlethread) {
349 crit_enter_gd(mygd);
350 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
351 crit_exit_gd(mygd);
352 } else {
353 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
355 #else
356 crit_enter_gd(mygd);
357 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
358 crit_exit_gd(mygd);
359 #endif
362 void
363 lwkt_set_comm(thread_t td, const char *ctl, ...)
365 __va_list va;
367 __va_start(va, ctl);
368 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
369 __va_end(va);
372 void
373 lwkt_hold(thread_t td)
375 ++td->td_refs;
378 void
379 lwkt_rele(thread_t td)
381 KKASSERT(td->td_refs > 0);
382 --td->td_refs;
385 void
386 lwkt_wait_free(thread_t td)
388 while (td->td_refs)
389 tsleep(td, 0, "tdreap", hz);
392 void
393 lwkt_free_thread(thread_t td)
395 KASSERT((td->td_flags & TDF_RUNNING) == 0,
396 ("lwkt_free_thread: did not exit! %p", td));
398 if (td->td_flags & TDF_ALLOCATED_THREAD) {
399 objcache_put(thread_cache, td);
400 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
401 /* client-allocated struct with internally allocated stack */
402 KASSERT(td->td_kstack && td->td_kstack_size > 0,
403 ("lwkt_free_thread: corrupted stack"));
404 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
405 td->td_kstack = NULL;
406 td->td_kstack_size = 0;
412 * Switch to the next runnable lwkt. If no LWKTs are runnable then
413 * switch to the idlethread. Switching must occur within a critical
414 * section to avoid races with the scheduling queue.
416 * We always have full control over our cpu's run queue. Other cpus
417 * that wish to manipulate our queue must use the cpu_*msg() calls to
418 * talk to our cpu, so a critical section is all that is needed and
419 * the result is very, very fast thread switching.
421 * The LWKT scheduler uses a fixed priority model and round-robins at
422 * each priority level. User process scheduling is a totally
423 * different beast and LWKT priorities should not be confused with
424 * user process priorities.
426 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
427 * cleans it up. Note that the td_switch() function cannot do anything that
428 * requires the MP lock since the MP lock will have already been setup for
429 * the target thread (not the current thread). It's nice to have a scheduler
430 * that does not need the MP lock to work because it allows us to do some
431 * really cool high-performance MP lock optimizations.
433 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
434 * is not called by the current thread in the preemption case, only when
435 * the preempting thread blocks (in order to return to the original thread).
437 void
438 lwkt_switch(void)
440 globaldata_t gd = mycpu;
441 thread_t td = gd->gd_curthread;
442 thread_t ntd;
443 #ifdef SMP
444 int mpheld;
445 #endif
448 * Switching from within a 'fast' (non thread switched) interrupt or IPI
449 * is illegal. However, we may have to do it anyway if we hit a fatal
450 * kernel trap or we have paniced.
452 * If this case occurs save and restore the interrupt nesting level.
454 if (gd->gd_intr_nesting_level) {
455 int savegdnest;
456 int savegdtrap;
458 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
459 panic("lwkt_switch: cannot switch from within "
460 "a fast interrupt, yet, td %p\n", td);
461 } else {
462 savegdnest = gd->gd_intr_nesting_level;
463 savegdtrap = gd->gd_trap_nesting_level;
464 gd->gd_intr_nesting_level = 0;
465 gd->gd_trap_nesting_level = 0;
466 if ((td->td_flags & TDF_PANICWARN) == 0) {
467 td->td_flags |= TDF_PANICWARN;
468 kprintf("Warning: thread switch from interrupt or IPI, "
469 "thread %p (%s)\n", td, td->td_comm);
470 #ifdef DDB
471 db_print_backtrace();
472 #endif
474 lwkt_switch();
475 gd->gd_intr_nesting_level = savegdnest;
476 gd->gd_trap_nesting_level = savegdtrap;
477 return;
482 * Passive release (used to transition from user to kernel mode
483 * when we block or switch rather then when we enter the kernel).
484 * This function is NOT called if we are switching into a preemption
485 * or returning from a preemption. Typically this causes us to lose
486 * our current process designation (if we have one) and become a true
487 * LWKT thread, and may also hand the current process designation to
488 * another process and schedule thread.
490 if (td->td_release)
491 td->td_release(td);
493 crit_enter_gd(gd);
494 if (td->td_toks)
495 lwkt_relalltokens(td);
498 * We had better not be holding any spin locks, but don't get into an
499 * endless panic loop.
501 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
502 ("lwkt_switch: still holding a shared spinlock %p!",
503 gd->gd_spinlock_rd));
504 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
505 ("lwkt_switch: still holding %d exclusive spinlocks!",
506 gd->gd_spinlocks_wr));
509 #ifdef SMP
511 * td_mpcount cannot be used to determine if we currently hold the
512 * MP lock because get_mplock() will increment it prior to attempting
513 * to get the lock, and switch out if it can't. Our ownership of
514 * the actual lock will remain stable while we are in a critical section
515 * (but, of course, another cpu may own or release the lock so the
516 * actual value of mp_lock is not stable).
518 mpheld = MP_LOCK_HELD();
519 #ifdef INVARIANTS
520 if (td->td_cscount) {
521 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
522 td);
523 if (panic_on_cscount)
524 panic("switching while mastering cpusync");
526 #endif
527 #endif
528 if ((ntd = td->td_preempted) != NULL) {
530 * We had preempted another thread on this cpu, resume the preempted
531 * thread. This occurs transparently, whether the preempted thread
532 * was scheduled or not (it may have been preempted after descheduling
533 * itself).
535 * We have to setup the MP lock for the original thread after backing
536 * out the adjustment that was made to curthread when the original
537 * was preempted.
539 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
540 #ifdef SMP
541 if (ntd->td_mpcount && mpheld == 0) {
542 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
543 td, ntd, td->td_mpcount, ntd->td_mpcount);
545 if (ntd->td_mpcount) {
546 td->td_mpcount -= ntd->td_mpcount;
547 KKASSERT(td->td_mpcount >= 0);
549 #endif
550 ntd->td_flags |= TDF_PREEMPT_DONE;
553 * XXX. The interrupt may have woken a thread up, we need to properly
554 * set the reschedule flag if the originally interrupted thread is at
555 * a lower priority.
557 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
558 need_lwkt_resched();
559 /* YYY release mp lock on switchback if original doesn't need it */
560 } else {
562 * Priority queue / round-robin at each priority. Note that user
563 * processes run at a fixed, low priority and the user process
564 * scheduler deals with interactions between user processes
565 * by scheduling and descheduling them from the LWKT queue as
566 * necessary.
568 * We have to adjust the MP lock for the target thread. If we
569 * need the MP lock and cannot obtain it we try to locate a
570 * thread that does not need the MP lock. If we cannot, we spin
571 * instead of HLT.
573 * A similar issue exists for the tokens held by the target thread.
574 * If we cannot obtain ownership of the tokens we cannot immediately
575 * schedule the thread.
579 * If an LWKT reschedule was requested, well that is what we are
580 * doing now so clear it.
582 clear_lwkt_resched();
583 again:
584 if (gd->gd_runqmask) {
585 int nq = bsrl(gd->gd_runqmask);
586 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
587 gd->gd_runqmask &= ~(1 << nq);
588 goto again;
590 #ifdef SMP
592 * THREAD SELECTION FOR AN SMP MACHINE BUILD
594 * If the target needs the MP lock and we couldn't get it,
595 * or if the target is holding tokens and we could not
596 * gain ownership of the tokens, continue looking for a
597 * thread to schedule and spin instead of HLT if we can't.
599 * NOTE: the mpheld variable invalid after this conditional, it
600 * can change due to both cpu_try_mplock() returning success
601 * AND interactions in lwkt_getalltokens() due to the fact that
602 * we are trying to check the mpcount of a thread other then
603 * the current thread. Because of this, if the current thread
604 * is not holding td_mpcount, an IPI indirectly run via
605 * lwkt_getalltokens() can obtain and release the MP lock and
606 * cause the core MP lock to be released.
608 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
609 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
611 u_int32_t rqmask = gd->gd_runqmask;
613 mpheld = MP_LOCK_HELD();
614 ntd = NULL;
615 while (rqmask) {
616 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
617 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
618 /* spinning due to MP lock being held */
619 #ifdef INVARIANTS
620 ++mplock_contention_count;
621 #endif
622 /* mplock still not held, 'mpheld' still valid */
623 continue;
627 * mpheld state invalid after getalltokens call returns
628 * failure, but the variable is only needed for
629 * the loop.
631 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
632 /* spinning due to token contention */
633 #ifdef INVARIANTS
634 ++token_contention_count;
635 #endif
636 mpheld = MP_LOCK_HELD();
637 continue;
639 break;
641 if (ntd)
642 break;
643 rqmask &= ~(1 << nq);
644 nq = bsrl(rqmask);
646 if (ntd == NULL) {
647 cpu_mplock_contested();
648 ntd = &gd->gd_idlethread;
649 ntd->td_flags |= TDF_IDLE_NOHLT;
650 goto using_idle_thread;
651 } else {
652 ++gd->gd_cnt.v_swtch;
653 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
654 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
656 } else {
657 ++gd->gd_cnt.v_swtch;
658 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
659 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
661 #else
663 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
664 * worry about tokens or the BGL. However, we still have
665 * to call lwkt_getalltokens() in order to properly detect
666 * stale tokens. This call cannot fail for a UP build!
668 lwkt_getalltokens(ntd);
669 ++gd->gd_cnt.v_swtch;
670 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
671 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
672 #endif
673 } else {
675 * We have nothing to run but only let the idle loop halt
676 * the cpu if there are no pending interrupts.
678 ntd = &gd->gd_idlethread;
679 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
680 ntd->td_flags |= TDF_IDLE_NOHLT;
681 #ifdef SMP
682 using_idle_thread:
684 * The idle thread should not be holding the MP lock unless we
685 * are trapping in the kernel or in a panic. Since we select the
686 * idle thread unconditionally when no other thread is available,
687 * if the MP lock is desired during a panic or kernel trap, we
688 * have to loop in the scheduler until we get it.
690 if (ntd->td_mpcount) {
691 mpheld = MP_LOCK_HELD();
692 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
693 panic("Idle thread %p was holding the BGL!", ntd);
694 } else if (mpheld == 0) {
695 cpu_mplock_contested();
696 goto again;
699 #endif
702 KASSERT(ntd->td_pri >= TDPRI_CRIT,
703 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
706 * Do the actual switch. If the new target does not need the MP lock
707 * and we are holding it, release the MP lock. If the new target requires
708 * the MP lock we have already acquired it for the target.
710 #ifdef SMP
711 if (ntd->td_mpcount == 0 ) {
712 if (MP_LOCK_HELD())
713 cpu_rel_mplock();
714 } else {
715 ASSERT_MP_LOCK_HELD(ntd);
717 #endif
718 if (td != ntd) {
719 ++switch_count;
720 td->td_switch(ntd);
722 /* NOTE: current cpu may have changed after switch */
723 crit_exit_quick(td);
727 * Request that the target thread preempt the current thread. Preemption
728 * only works under a specific set of conditions:
730 * - We are not preempting ourselves
731 * - The target thread is owned by the current cpu
732 * - We are not currently being preempted
733 * - The target is not currently being preempted
734 * - We are not holding any spin locks
735 * - The target thread is not holding any tokens
736 * - We are able to satisfy the target's MP lock requirements (if any).
738 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
739 * this is called via lwkt_schedule() through the td_preemptable callback.
740 * critpri is the managed critical priority that we should ignore in order
741 * to determine whether preemption is possible (aka usually just the crit
742 * priority of lwkt_schedule() itself).
744 * XXX at the moment we run the target thread in a critical section during
745 * the preemption in order to prevent the target from taking interrupts
746 * that *WE* can't. Preemption is strictly limited to interrupt threads
747 * and interrupt-like threads, outside of a critical section, and the
748 * preempted source thread will be resumed the instant the target blocks
749 * whether or not the source is scheduled (i.e. preemption is supposed to
750 * be as transparent as possible).
752 * The target thread inherits our MP count (added to its own) for the
753 * duration of the preemption in order to preserve the atomicy of the
754 * MP lock during the preemption. Therefore, any preempting targets must be
755 * careful in regards to MP assertions. Note that the MP count may be
756 * out of sync with the physical mp_lock, but we do not have to preserve
757 * the original ownership of the lock if it was out of synch (that is, we
758 * can leave it synchronized on return).
760 void
761 lwkt_preempt(thread_t ntd, int critpri)
763 struct globaldata *gd = mycpu;
764 thread_t td;
765 #ifdef SMP
766 int mpheld;
767 int savecnt;
768 #endif
771 * The caller has put us in a critical section. We can only preempt
772 * if the caller of the caller was not in a critical section (basically
773 * a local interrupt), as determined by the 'critpri' parameter. We
774 * also can't preempt if the caller is holding any spinlocks (even if
775 * he isn't in a critical section). This also handles the tokens test.
777 * YYY The target thread must be in a critical section (else it must
778 * inherit our critical section? I dunno yet).
780 * Set need_lwkt_resched() unconditionally for now YYY.
782 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
784 td = gd->gd_curthread;
785 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
786 ++preempt_miss;
787 return;
789 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
790 ++preempt_miss;
791 need_lwkt_resched();
792 return;
794 #ifdef SMP
795 if (ntd->td_gd != gd) {
796 ++preempt_miss;
797 need_lwkt_resched();
798 return;
800 #endif
802 * Take the easy way out and do not preempt if we are holding
803 * any spinlocks. We could test whether the thread(s) being
804 * preempted interlock against the target thread's tokens and whether
805 * we can get all the target thread's tokens, but this situation
806 * should not occur very often so its easier to simply not preempt.
807 * Also, plain spinlocks are impossible to figure out at this point so
808 * just don't preempt.
810 * Do not try to preempt if the target thread is holding any tokens.
811 * We could try to acquire the tokens but this case is so rare there
812 * is no need to support it.
814 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
815 ++preempt_miss;
816 need_lwkt_resched();
817 return;
819 if (ntd->td_toks) {
820 ++preempt_miss;
821 need_lwkt_resched();
822 return;
824 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
825 ++preempt_weird;
826 need_lwkt_resched();
827 return;
829 if (ntd->td_preempted) {
830 ++preempt_hit;
831 need_lwkt_resched();
832 return;
834 #ifdef SMP
836 * note: an interrupt might have occured just as we were transitioning
837 * to or from the MP lock. In this case td_mpcount will be pre-disposed
838 * (non-zero) but not actually synchronized with the actual state of the
839 * lock. We can use it to imply an MP lock requirement for the
840 * preemption but we cannot use it to test whether we hold the MP lock
841 * or not.
843 savecnt = td->td_mpcount;
844 mpheld = MP_LOCK_HELD();
845 ntd->td_mpcount += td->td_mpcount;
846 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
847 ntd->td_mpcount -= td->td_mpcount;
848 ++preempt_miss;
849 need_lwkt_resched();
850 return;
852 #endif
855 * Since we are able to preempt the current thread, there is no need to
856 * call need_lwkt_resched().
858 ++preempt_hit;
859 ntd->td_preempted = td;
860 td->td_flags |= TDF_PREEMPT_LOCK;
861 td->td_switch(ntd);
862 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
863 #ifdef SMP
864 KKASSERT(savecnt == td->td_mpcount);
865 mpheld = MP_LOCK_HELD();
866 if (mpheld && td->td_mpcount == 0)
867 cpu_rel_mplock();
868 else if (mpheld == 0 && td->td_mpcount)
869 panic("lwkt_preempt(): MP lock was not held through");
870 #endif
871 ntd->td_preempted = NULL;
872 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
876 * Yield our thread while higher priority threads are pending. This is
877 * typically called when we leave a critical section but it can be safely
878 * called while we are in a critical section.
880 * This function will not generally yield to equal priority threads but it
881 * can occur as a side effect. Note that lwkt_switch() is called from
882 * inside the critical section to prevent its own crit_exit() from reentering
883 * lwkt_yield_quick().
885 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
886 * came along but was blocked and made pending.
888 * (self contained on a per cpu basis)
890 void
891 lwkt_yield_quick(void)
893 globaldata_t gd = mycpu;
894 thread_t td = gd->gd_curthread;
897 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear
898 * it with a non-zero cpl then we might not wind up calling splz after
899 * a task switch when the critical section is exited even though the
900 * new task could accept the interrupt.
902 * XXX from crit_exit() only called after last crit section is released.
903 * If called directly will run splz() even if in a critical section.
905 * td_nest_count prevent deep nesting via splz() or doreti(). Note that
906 * except for this special case, we MUST call splz() here to handle any
907 * pending ints, particularly after we switch, or we might accidently
908 * halt the cpu with interrupts pending.
910 if (gd->gd_reqflags && td->td_nest_count < 2)
911 splz();
914 * YYY enabling will cause wakeup() to task-switch, which really
915 * confused the old 4.x code. This is a good way to simulate
916 * preemption and MP without actually doing preemption or MP, because a
917 * lot of code assumes that wakeup() does not block.
919 if (untimely_switch && td->td_nest_count == 0 &&
920 gd->gd_intr_nesting_level == 0
922 crit_enter_quick(td);
924 * YYY temporary hacks until we disassociate the userland scheduler
925 * from the LWKT scheduler.
927 if (td->td_flags & TDF_RUNQ) {
928 lwkt_switch(); /* will not reenter yield function */
929 } else {
930 lwkt_schedule_self(td); /* make sure we are scheduled */
931 lwkt_switch(); /* will not reenter yield function */
932 lwkt_deschedule_self(td); /* make sure we are descheduled */
934 crit_exit_noyield(td);
939 * This implements a normal yield which, unlike _quick, will yield to equal
940 * priority threads as well. Note that gd_reqflags tests will be handled by
941 * the crit_exit() call in lwkt_switch().
943 * (self contained on a per cpu basis)
945 void
946 lwkt_yield(void)
948 lwkt_schedule_self(curthread);
949 lwkt_switch();
953 * Generic schedule. Possibly schedule threads belonging to other cpus and
954 * deal with threads that might be blocked on a wait queue.
956 * We have a little helper inline function which does additional work after
957 * the thread has been enqueued, including dealing with preemption and
958 * setting need_lwkt_resched() (which prevents the kernel from returning
959 * to userland until it has processed higher priority threads).
961 * It is possible for this routine to be called after a failed _enqueue
962 * (due to the target thread migrating, sleeping, or otherwise blocked).
963 * We have to check that the thread is actually on the run queue!
965 static __inline
966 void
967 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri)
969 if (ntd->td_flags & TDF_RUNQ) {
970 if (ntd->td_preemptable) {
971 ntd->td_preemptable(ntd, cpri); /* YYY +token */
972 } else if ((ntd->td_flags & TDF_NORESCHED) == 0 &&
973 (ntd->td_pri & TDPRI_MASK) > (gd->gd_curthread->td_pri & TDPRI_MASK)
975 need_lwkt_resched();
980 void
981 lwkt_schedule(thread_t td)
983 globaldata_t mygd = mycpu;
985 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
986 crit_enter_gd(mygd);
987 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
988 if (td == mygd->gd_curthread) {
989 _lwkt_enqueue(td);
990 } else {
992 * If we own the thread, there is no race (since we are in a
993 * critical section). If we do not own the thread there might
994 * be a race but the target cpu will deal with it.
996 #ifdef SMP
997 if (td->td_gd == mygd) {
998 _lwkt_enqueue(td);
999 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1000 } else {
1001 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1003 #else
1004 _lwkt_enqueue(td);
1005 _lwkt_schedule_post(mygd, td, TDPRI_CRIT);
1006 #endif
1008 crit_exit_gd(mygd);
1011 #ifdef SMP
1014 * Thread migration using a 'Pull' method. The thread may or may not be
1015 * the current thread. It MUST be descheduled and in a stable state.
1016 * lwkt_giveaway() must be called on the cpu owning the thread.
1018 * At any point after lwkt_giveaway() is called, the target cpu may
1019 * 'pull' the thread by calling lwkt_acquire().
1021 * MPSAFE - must be called under very specific conditions.
1023 void
1024 lwkt_giveaway(thread_t td)
1026 globaldata_t gd = mycpu;
1028 crit_enter_gd(gd);
1029 KKASSERT(td->td_gd == gd);
1030 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1031 td->td_flags |= TDF_MIGRATING;
1032 crit_exit_gd(gd);
1035 void
1036 lwkt_acquire(thread_t td)
1038 globaldata_t gd;
1039 globaldata_t mygd;
1041 KKASSERT(td->td_flags & TDF_MIGRATING);
1042 gd = td->td_gd;
1043 mygd = mycpu;
1044 if (gd != mycpu) {
1045 cpu_lfence();
1046 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1047 crit_enter_gd(mygd);
1048 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1049 #ifdef SMP
1050 lwkt_process_ipiq();
1051 #endif
1052 cpu_lfence();
1054 td->td_gd = mygd;
1055 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1056 td->td_flags &= ~TDF_MIGRATING;
1057 crit_exit_gd(mygd);
1058 } else {
1059 crit_enter_gd(mygd);
1060 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1061 td->td_flags &= ~TDF_MIGRATING;
1062 crit_exit_gd(mygd);
1066 #endif
1069 * Generic deschedule. Descheduling threads other then your own should be
1070 * done only in carefully controlled circumstances. Descheduling is
1071 * asynchronous.
1073 * This function may block if the cpu has run out of messages.
1075 void
1076 lwkt_deschedule(thread_t td)
1078 crit_enter();
1079 #ifdef SMP
1080 if (td == curthread) {
1081 _lwkt_dequeue(td);
1082 } else {
1083 if (td->td_gd == mycpu) {
1084 _lwkt_dequeue(td);
1085 } else {
1086 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1089 #else
1090 _lwkt_dequeue(td);
1091 #endif
1092 crit_exit();
1096 * Set the target thread's priority. This routine does not automatically
1097 * switch to a higher priority thread, LWKT threads are not designed for
1098 * continuous priority changes. Yield if you want to switch.
1100 * We have to retain the critical section count which uses the high bits
1101 * of the td_pri field. The specified priority may also indicate zero or
1102 * more critical sections by adding TDPRI_CRIT*N.
1104 * Note that we requeue the thread whether it winds up on a different runq
1105 * or not. uio_yield() depends on this and the routine is not normally
1106 * called with the same priority otherwise.
1108 void
1109 lwkt_setpri(thread_t td, int pri)
1111 KKASSERT(pri >= 0);
1112 KKASSERT(td->td_gd == mycpu);
1113 crit_enter();
1114 if (td->td_flags & TDF_RUNQ) {
1115 _lwkt_dequeue(td);
1116 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1117 _lwkt_enqueue(td);
1118 } else {
1119 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1121 crit_exit();
1124 void
1125 lwkt_setpri_self(int pri)
1127 thread_t td = curthread;
1129 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1130 crit_enter();
1131 if (td->td_flags & TDF_RUNQ) {
1132 _lwkt_dequeue(td);
1133 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1134 _lwkt_enqueue(td);
1135 } else {
1136 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1138 crit_exit();
1142 * Determine if there is a runnable thread at a higher priority then
1143 * the current thread. lwkt_setpri() does not check this automatically.
1144 * Return 1 if there is, 0 if there isn't.
1146 * Example: if bit 31 of runqmask is set and the current thread is priority
1147 * 30, then we wind up checking the mask: 0x80000000 against 0x7fffffff.
1149 * If nq reaches 31 the shift operation will overflow to 0 and we will wind
1150 * up comparing against 0xffffffff, a comparison that will always be false.
1153 lwkt_checkpri_self(void)
1155 globaldata_t gd = mycpu;
1156 thread_t td = gd->gd_curthread;
1157 int nq = td->td_pri & TDPRI_MASK;
1159 while (gd->gd_runqmask > (__uint32_t)(2 << nq) - 1) {
1160 if (TAILQ_FIRST(&gd->gd_tdrunq[nq + 1]))
1161 return(1);
1162 ++nq;
1164 return(0);
1168 * Migrate the current thread to the specified cpu.
1170 * This is accomplished by descheduling ourselves from the current cpu,
1171 * moving our thread to the tdallq of the target cpu, IPI messaging the
1172 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1173 * races while the thread is being migrated.
1175 #ifdef SMP
1176 static void lwkt_setcpu_remote(void *arg);
1177 #endif
1179 void
1180 lwkt_setcpu_self(globaldata_t rgd)
1182 #ifdef SMP
1183 thread_t td = curthread;
1185 if (td->td_gd != rgd) {
1186 crit_enter_quick(td);
1187 td->td_flags |= TDF_MIGRATING;
1188 lwkt_deschedule_self(td);
1189 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1190 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1191 lwkt_switch();
1192 /* we are now on the target cpu */
1193 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1194 crit_exit_quick(td);
1196 #endif
1199 void
1200 lwkt_migratecpu(int cpuid)
1202 #ifdef SMP
1203 globaldata_t rgd;
1205 rgd = globaldata_find(cpuid);
1206 lwkt_setcpu_self(rgd);
1207 #endif
1211 * Remote IPI for cpu migration (called while in a critical section so we
1212 * do not have to enter another one). The thread has already been moved to
1213 * our cpu's allq, but we must wait for the thread to be completely switched
1214 * out on the originating cpu before we schedule it on ours or the stack
1215 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1216 * change to main memory.
1218 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1219 * against wakeups. It is best if this interface is used only when there
1220 * are no pending events that might try to schedule the thread.
1222 #ifdef SMP
1223 static void
1224 lwkt_setcpu_remote(void *arg)
1226 thread_t td = arg;
1227 globaldata_t gd = mycpu;
1229 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1230 #ifdef SMP
1231 lwkt_process_ipiq();
1232 #endif
1233 cpu_lfence();
1235 td->td_gd = gd;
1236 cpu_sfence();
1237 td->td_flags &= ~TDF_MIGRATING;
1238 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1239 _lwkt_enqueue(td);
1241 #endif
1243 struct lwp *
1244 lwkt_preempted_proc(void)
1246 thread_t td = curthread;
1247 while (td->td_preempted)
1248 td = td->td_preempted;
1249 return(td->td_lwp);
1253 * Create a kernel process/thread/whatever. It shares it's address space
1254 * with proc0 - ie: kernel only.
1256 * NOTE! By default new threads are created with the MP lock held. A
1257 * thread which does not require the MP lock should release it by calling
1258 * rel_mplock() at the start of the new thread.
1261 lwkt_create(void (*func)(void *), void *arg,
1262 struct thread **tdp, thread_t template, int tdflags, int cpu,
1263 const char *fmt, ...)
1265 thread_t td;
1266 __va_list ap;
1268 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1269 tdflags);
1270 if (tdp)
1271 *tdp = td;
1272 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1275 * Set up arg0 for 'ps' etc
1277 __va_start(ap, fmt);
1278 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1279 __va_end(ap);
1282 * Schedule the thread to run
1284 if ((td->td_flags & TDF_STOPREQ) == 0)
1285 lwkt_schedule(td);
1286 else
1287 td->td_flags &= ~TDF_STOPREQ;
1288 return 0;
1292 * Destroy an LWKT thread. Warning! This function is not called when
1293 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1294 * uses a different reaping mechanism.
1296 void
1297 lwkt_exit(void)
1299 thread_t td = curthread;
1300 thread_t std;
1301 globaldata_t gd;
1303 if (td->td_flags & TDF_VERBOSE)
1304 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1305 caps_exit(td);
1308 * Get us into a critical section to interlock gd_freetd and loop
1309 * until we can get it freed.
1311 * We have to cache the current td in gd_freetd because objcache_put()ing
1312 * it would rip it out from under us while our thread is still active.
1314 gd = mycpu;
1315 crit_enter_quick(td);
1316 while ((std = gd->gd_freetd) != NULL) {
1317 gd->gd_freetd = NULL;
1318 objcache_put(thread_cache, std);
1320 lwkt_deschedule_self(td);
1321 lwkt_remove_tdallq(td);
1322 if (td->td_flags & TDF_ALLOCATED_THREAD)
1323 gd->gd_freetd = td;
1324 cpu_thread_exit();
1327 void
1328 lwkt_remove_tdallq(thread_t td)
1330 KKASSERT(td->td_gd == mycpu);
1331 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1334 void
1335 crit_panic(void)
1337 thread_t td = curthread;
1338 int lpri = td->td_pri;
1340 td->td_pri = 0;
1341 panic("td_pri is/would-go negative! %p %d", td, lpri);
1344 #ifdef SMP
1347 * Called from debugger/panic on cpus which have been stopped. We must still
1348 * process the IPIQ while stopped, even if we were stopped while in a critical
1349 * section (XXX).
1351 * If we are dumping also try to process any pending interrupts. This may
1352 * or may not work depending on the state of the cpu at the point it was
1353 * stopped.
1355 void
1356 lwkt_smp_stopped(void)
1358 globaldata_t gd = mycpu;
1360 crit_enter_gd(gd);
1361 if (dumping) {
1362 lwkt_process_ipiq();
1363 splz();
1364 } else {
1365 lwkt_process_ipiq();
1367 crit_exit_gd(gd);
1371 * get_mplock() calls this routine if it is unable to obtain the MP lock.
1372 * get_mplock() has already incremented td_mpcount. We must block and
1373 * not return until giant is held.
1375 * All we have to do is lwkt_switch() away. The LWKT scheduler will not
1376 * reschedule the thread until it can obtain the giant lock for it.
1378 void
1379 lwkt_mp_lock_contested(void)
1381 loggiant(beg);
1382 lwkt_switch();
1383 loggiant(end);
1386 #endif