kernel - Fix a major (pageable) memory leak
[dragonfly.git] / sys / vm / vm_map.c
blobd0f33fced8d5ee0c892ae20eabac4c0fbabde474
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
66 * Virtual memory mapping module.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
101 * Virtual memory maps provide for the mapping, protection, and sharing
102 * of virtual memory objects. In addition, this module provides for an
103 * efficient virtual copy of memory from one map to another.
105 * Synchronization is required prior to most operations.
107 * Maps consist of an ordered doubly-linked list of simple entries.
108 * A hint and a RB tree is used to speed-up lookups.
110 * Callers looking to modify maps specify start/end addresses which cause
111 * the related map entry to be clipped if necessary, and then later
112 * recombined if the pieces remained compatible.
114 * Virtual copy operations are performed by copying VM object references
115 * from one map to another, and then marking both regions as copy-on-write.
117 static __boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
125 * per-cpu page table cross mappings are initialized in early boot
126 * and might require a considerable number of vm_map_entry structures.
128 #define MAPENTRYBSP_CACHE (MAXCPU+1)
129 #define MAPENTRYAP_CACHE 8
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142 "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145 &vm_map_relock_enable, 0, "Randomize mmap offsets");
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155 vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
159 * Initialize the vm_map module. Must be called before any other vm_map
160 * routines.
162 * Map and entry structures are allocated from the general purpose
163 * memory pool with some exceptions:
165 * - The kernel map is allocated statically.
166 * - Initial kernel map entries are allocated out of a static pool.
167 * - We must set ZONE_SPECIAL here or the early boot code can get
168 * stuck if there are >63 cores.
170 * These restrictions are necessary since malloc() uses the
171 * maps and requires map entries.
173 * Called from the low level boot code only.
175 void
176 vm_map_startup(void)
178 mapzone = &mapzone_store;
179 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180 map_init, MAX_KMAP);
181 mapentzone = &mapentzone_store;
182 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 map_entry_init, MAX_MAPENT);
184 mapentzone_store.zflags |= ZONE_SPECIAL;
188 * Called prior to any vmspace allocations.
190 * Called from the low level boot code only.
192 void
193 vm_init2(void)
195 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 sizeof(struct vmspace),
197 0, ncpus * 4,
198 vmspace_ctor, vmspace_dtor,
199 NULL);
200 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
202 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
203 pmap_init2();
204 vm_object_init2();
208 * objcache support. We leave the pmap root cached as long as possible
209 * for performance reasons.
211 static
212 __boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
215 struct vmspace *vm = obj;
217 bzero(vm, sizeof(*vm));
218 vm->vm_refcnt = (u_int)-1;
220 return 1;
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
227 struct vmspace *vm = obj;
229 KKASSERT(vm->vm_refcnt == (u_int)-1);
230 pmap_puninit(vmspace_pmap(vm));
234 * Red black tree functions
236 * The caller must hold the related map lock.
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
245 if (a->start < b->start)
246 return(-1);
247 else if (a->start > b->start)
248 return(1);
249 return(0);
253 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
254 * every refcnt.
256 void
257 vmspace_initrefs(struct vmspace *vm)
259 vm->vm_refcnt = 1;
260 vm->vm_holdcnt = 1;
264 * Allocate a vmspace structure, including a vm_map and pmap.
265 * Initialize numerous fields. While the initial allocation is zerod,
266 * subsequence reuse from the objcache leaves elements of the structure
267 * intact (particularly the pmap), so portions must be zerod.
269 * Returns a referenced vmspace.
271 * No requirements.
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
276 struct vmspace *vm;
278 vm = objcache_get(vmspace_cache, M_WAITOK);
280 bzero(&vm->vm_startcopy,
281 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
285 * NOTE: hold to acquires token for safety.
287 * On return vmspace is referenced (refs=1, hold=1). That is,
288 * each refcnt also has a holdcnt. There can be additional holds
289 * (holdcnt) above and beyond the refcnt. Finalization is handled in
290 * two stages, one on refs 1->0, and the the second on hold 1->0.
292 KKASSERT(vm->vm_holdcnt == 0);
293 KKASSERT(vm->vm_refcnt == (u_int)-1);
294 vmspace_initrefs(vm);
295 vmspace_hold(vm);
296 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
297 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
298 vm->vm_shm = NULL;
299 vm->vm_flags = 0;
300 cpu_vmspace_alloc(vm);
301 vmspace_drop(vm);
303 return (vm);
307 * NOTE: Can return -1 if the vmspace is exiting.
310 vmspace_getrefs(struct vmspace *vm)
312 return ((int)vm->vm_refcnt);
316 * A vmspace object must already have a non-zero hold to be able to gain
317 * further holds on it.
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
322 KKASSERT(vm->vm_holdcnt != 0);
323 refcount_acquire(&vm->vm_holdcnt);
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
329 if (refcount_release(&vm->vm_holdcnt)) {
330 if (vm->vm_refcnt == (u_int)-1) {
331 vmspace_terminate(vm, 1);
336 void
337 vmspace_hold(struct vmspace *vm)
339 vmspace_hold_notoken(vm);
340 lwkt_gettoken(&vm->vm_map.token);
343 void
344 vmspace_drop(struct vmspace *vm)
346 lwkt_reltoken(&vm->vm_map.token);
347 vmspace_drop_notoken(vm);
351 * A vmspace object must not be in a terminated state to be able to obtain
352 * additional refs on it.
354 * Ref'ing a vmspace object also increments its hold count.
356 void
357 vmspace_ref(struct vmspace *vm)
359 KKASSERT((int)vm->vm_refcnt >= 0);
360 vmspace_hold_notoken(vm);
361 refcount_acquire(&vm->vm_refcnt);
365 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
366 * termination of the vmspace. Then, on the final drop of the hold we
367 * will do stage-2 final termination.
369 void
370 vmspace_rel(struct vmspace *vm)
372 if (refcount_release(&vm->vm_refcnt)) {
373 vm->vm_refcnt = (u_int)-1; /* no other refs possible */
374 vmspace_terminate(vm, 0);
376 vmspace_drop_notoken(vm);
380 * This is called during exit indicating that the vmspace is no
381 * longer in used by an exiting process, but the process has not yet
382 * been reaped.
384 * We release the refcnt but not the associated holdcnt.
386 * No requirements.
388 void
389 vmspace_relexit(struct vmspace *vm)
391 if (refcount_release(&vm->vm_refcnt)) {
392 vm->vm_refcnt = (u_int)-1; /* no other refs possible */
393 vmspace_terminate(vm, 0);
398 * Called during reap to disconnect the remainder of the vmspace from
399 * the process. On the hold drop the vmspace termination is finalized.
401 * No requirements.
403 void
404 vmspace_exitfree(struct proc *p)
406 struct vmspace *vm;
408 vm = p->p_vmspace;
409 p->p_vmspace = NULL;
410 vmspace_drop_notoken(vm);
414 * Called in two cases:
416 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417 * called with final == 0. refcnt will be (u_int)-1 at this point,
418 * and holdcnt will still be non-zero.
420 * (2) When holdcnt becomes 0, called with final == 1. There should no
421 * longer be anyone with access to the vmspace.
423 * VMSPACE_EXIT1 flags the primary deactivation
424 * VMSPACE_EXIT2 flags the last reap
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
429 int count;
431 lwkt_gettoken(&vm->vm_map.token);
432 if (final == 0) {
433 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
436 * Get rid of most of the resources. Leave the kernel pmap
437 * intact.
439 vm->vm_flags |= VMSPACE_EXIT1;
440 shmexit(vm);
441 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
442 VM_MAX_USER_ADDRESS);
443 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
444 VM_MAX_USER_ADDRESS);
445 lwkt_reltoken(&vm->vm_map.token);
446 } else {
447 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
448 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
451 * Get rid of remaining basic resources.
453 vm->vm_flags |= VMSPACE_EXIT2;
454 cpu_vmspace_free(vm);
455 shmexit(vm);
458 * Lock the map, to wait out all other references to it.
459 * Delete all of the mappings and pages they hold, then call
460 * the pmap module to reclaim anything left.
462 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
463 vm_map_lock(&vm->vm_map);
464 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
465 vm->vm_map.max_offset, &count);
466 vm_map_unlock(&vm->vm_map);
467 vm_map_entry_release(count);
469 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
470 pmap_release(vmspace_pmap(vm));
471 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
472 lwkt_reltoken(&vm->vm_map.token);
473 objcache_put(vmspace_cache, vm);
478 * Swap useage is determined by taking the proportional swap used by
479 * VM objects backing the VM map. To make up for fractional losses,
480 * if the VM object has any swap use at all the associated map entries
481 * count for at least 1 swap page.
483 * No requirements.
486 vmspace_swap_count(struct vmspace *vm)
488 vm_map_t map = &vm->vm_map;
489 vm_map_entry_t cur;
490 vm_object_t object;
491 int count = 0;
492 int n;
494 vmspace_hold(vm);
495 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
496 switch(cur->maptype) {
497 case VM_MAPTYPE_NORMAL:
498 case VM_MAPTYPE_VPAGETABLE:
499 if ((object = cur->object.vm_object) == NULL)
500 break;
501 if (object->swblock_count) {
502 n = (cur->end - cur->start) / PAGE_SIZE;
503 count += object->swblock_count *
504 SWAP_META_PAGES * n / object->size + 1;
506 break;
507 default:
508 break;
511 vmspace_drop(vm);
513 return(count);
517 * Calculate the approximate number of anonymous pages in use by
518 * this vmspace. To make up for fractional losses, we count each
519 * VM object as having at least 1 anonymous page.
521 * No requirements.
524 vmspace_anonymous_count(struct vmspace *vm)
526 vm_map_t map = &vm->vm_map;
527 vm_map_entry_t cur;
528 vm_object_t object;
529 int count = 0;
531 vmspace_hold(vm);
532 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
533 switch(cur->maptype) {
534 case VM_MAPTYPE_NORMAL:
535 case VM_MAPTYPE_VPAGETABLE:
536 if ((object = cur->object.vm_object) == NULL)
537 break;
538 if (object->type != OBJT_DEFAULT &&
539 object->type != OBJT_SWAP) {
540 break;
542 count += object->resident_page_count;
543 break;
544 default:
545 break;
548 vmspace_drop(vm);
550 return(count);
554 * Creates and returns a new empty VM map with the given physical map
555 * structure, and having the given lower and upper address bounds.
557 * No requirements.
559 vm_map_t
560 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
562 if (result == NULL)
563 result = zalloc(mapzone);
564 vm_map_init(result, min, max, pmap);
565 return (result);
569 * Initialize an existing vm_map structure such as that in the vmspace
570 * structure. The pmap is initialized elsewhere.
572 * No requirements.
574 void
575 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
577 map->header.next = map->header.prev = &map->header;
578 RB_INIT(&map->rb_root);
579 map->nentries = 0;
580 map->size = 0;
581 map->system_map = 0;
582 map->min_offset = min;
583 map->max_offset = max;
584 map->pmap = pmap;
585 map->first_free = &map->header;
586 map->hint = &map->header;
587 map->timestamp = 0;
588 map->flags = 0;
589 lwkt_token_init(&map->token, "vm_map");
590 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
594 * Shadow the vm_map_entry's object. This typically needs to be done when
595 * a write fault is taken on an entry which had previously been cloned by
596 * fork(). The shared object (which might be NULL) must become private so
597 * we add a shadow layer above it.
599 * Object allocation for anonymous mappings is defered as long as possible.
600 * When creating a shadow, however, the underlying object must be instantiated
601 * so it can be shared.
603 * If the map segment is governed by a virtual page table then it is
604 * possible to address offsets beyond the mapped area. Just allocate
605 * a maximally sized object for this case.
607 * The vm_map must be exclusively locked.
608 * No other requirements.
610 static
611 void
612 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
614 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
615 vm_object_shadow(&entry->object.vm_object, &entry->offset,
616 0x7FFFFFFF, addref); /* XXX */
617 } else {
618 vm_object_shadow(&entry->object.vm_object, &entry->offset,
619 atop(entry->end - entry->start), addref);
621 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
625 * Allocate an object for a vm_map_entry.
627 * Object allocation for anonymous mappings is defered as long as possible.
628 * This function is called when we can defer no longer, generally when a map
629 * entry might be split or forked or takes a page fault.
631 * If the map segment is governed by a virtual page table then it is
632 * possible to address offsets beyond the mapped area. Just allocate
633 * a maximally sized object for this case.
635 * The vm_map must be exclusively locked.
636 * No other requirements.
638 void
639 vm_map_entry_allocate_object(vm_map_entry_t entry)
641 vm_object_t obj;
643 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
644 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
645 } else {
646 obj = vm_object_allocate(OBJT_DEFAULT,
647 atop(entry->end - entry->start));
649 entry->object.vm_object = obj;
650 entry->offset = 0;
654 * Set an initial negative count so the first attempt to reserve
655 * space preloads a bunch of vm_map_entry's for this cpu. Also
656 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
657 * map a new page for vm_map_entry structures. SMP systems are
658 * particularly sensitive.
660 * This routine is called in early boot so we cannot just call
661 * vm_map_entry_reserve().
663 * Called from the low level boot code only (for each cpu)
665 * WARNING! Take care not to have too-big a static/BSS structure here
666 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
667 * can get blown out by the kernel plus the initrd image.
669 void
670 vm_map_entry_reserve_cpu_init(globaldata_t gd)
672 vm_map_entry_t entry;
673 int count;
674 int i;
676 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
677 if (gd->gd_cpuid == 0) {
678 entry = &cpu_map_entry_init_bsp[0];
679 count = MAPENTRYBSP_CACHE;
680 } else {
681 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
682 count = MAPENTRYAP_CACHE;
684 for (i = 0; i < count; ++i, ++entry) {
685 entry->next = gd->gd_vme_base;
686 gd->gd_vme_base = entry;
691 * Reserves vm_map_entry structures so code later on can manipulate
692 * map_entry structures within a locked map without blocking trying
693 * to allocate a new vm_map_entry.
695 * No requirements.
698 vm_map_entry_reserve(int count)
700 struct globaldata *gd = mycpu;
701 vm_map_entry_t entry;
704 * Make sure we have enough structures in gd_vme_base to handle
705 * the reservation request.
707 * The critical section protects access to the per-cpu gd.
709 crit_enter();
710 while (gd->gd_vme_avail < count) {
711 entry = zalloc(mapentzone);
712 entry->next = gd->gd_vme_base;
713 gd->gd_vme_base = entry;
714 ++gd->gd_vme_avail;
716 gd->gd_vme_avail -= count;
717 crit_exit();
719 return(count);
723 * Releases previously reserved vm_map_entry structures that were not
724 * used. If we have too much junk in our per-cpu cache clean some of
725 * it out.
727 * No requirements.
729 void
730 vm_map_entry_release(int count)
732 struct globaldata *gd = mycpu;
733 vm_map_entry_t entry;
735 crit_enter();
736 gd->gd_vme_avail += count;
737 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
738 entry = gd->gd_vme_base;
739 KKASSERT(entry != NULL);
740 gd->gd_vme_base = entry->next;
741 --gd->gd_vme_avail;
742 crit_exit();
743 zfree(mapentzone, entry);
744 crit_enter();
746 crit_exit();
750 * Reserve map entry structures for use in kernel_map itself. These
751 * entries have *ALREADY* been reserved on a per-cpu basis when the map
752 * was inited. This function is used by zalloc() to avoid a recursion
753 * when zalloc() itself needs to allocate additional kernel memory.
755 * This function works like the normal reserve but does not load the
756 * vm_map_entry cache (because that would result in an infinite
757 * recursion). Note that gd_vme_avail may go negative. This is expected.
759 * Any caller of this function must be sure to renormalize after
760 * potentially eating entries to ensure that the reserve supply
761 * remains intact.
763 * No requirements.
766 vm_map_entry_kreserve(int count)
768 struct globaldata *gd = mycpu;
770 crit_enter();
771 gd->gd_vme_avail -= count;
772 crit_exit();
773 KASSERT(gd->gd_vme_base != NULL,
774 ("no reserved entries left, gd_vme_avail = %d",
775 gd->gd_vme_avail));
776 return(count);
780 * Release previously reserved map entries for kernel_map. We do not
781 * attempt to clean up like the normal release function as this would
782 * cause an unnecessary (but probably not fatal) deep procedure call.
784 * No requirements.
786 void
787 vm_map_entry_krelease(int count)
789 struct globaldata *gd = mycpu;
791 crit_enter();
792 gd->gd_vme_avail += count;
793 crit_exit();
797 * Allocates a VM map entry for insertion. No entry fields are filled in.
799 * The entries should have previously been reserved. The reservation count
800 * is tracked in (*countp).
802 * No requirements.
804 static vm_map_entry_t
805 vm_map_entry_create(vm_map_t map, int *countp)
807 struct globaldata *gd = mycpu;
808 vm_map_entry_t entry;
810 KKASSERT(*countp > 0);
811 --*countp;
812 crit_enter();
813 entry = gd->gd_vme_base;
814 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
815 gd->gd_vme_base = entry->next;
816 crit_exit();
818 return(entry);
822 * Dispose of a vm_map_entry that is no longer being referenced.
824 * No requirements.
826 static void
827 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
829 struct globaldata *gd = mycpu;
831 KKASSERT(map->hint != entry);
832 KKASSERT(map->first_free != entry);
834 ++*countp;
835 crit_enter();
836 entry->next = gd->gd_vme_base;
837 gd->gd_vme_base = entry;
838 crit_exit();
843 * Insert/remove entries from maps.
845 * The related map must be exclusively locked.
846 * The caller must hold map->token
847 * No other requirements.
849 static __inline void
850 vm_map_entry_link(vm_map_t map,
851 vm_map_entry_t after_where,
852 vm_map_entry_t entry)
854 ASSERT_VM_MAP_LOCKED(map);
856 map->nentries++;
857 entry->prev = after_where;
858 entry->next = after_where->next;
859 entry->next->prev = entry;
860 after_where->next = entry;
861 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
862 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
865 static __inline void
866 vm_map_entry_unlink(vm_map_t map,
867 vm_map_entry_t entry)
869 vm_map_entry_t prev;
870 vm_map_entry_t next;
872 ASSERT_VM_MAP_LOCKED(map);
874 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
875 panic("vm_map_entry_unlink: attempt to mess with "
876 "locked entry! %p", entry);
878 prev = entry->prev;
879 next = entry->next;
880 next->prev = prev;
881 prev->next = next;
882 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
883 map->nentries--;
887 * Finds the map entry containing (or immediately preceding) the specified
888 * address in the given map. The entry is returned in (*entry).
890 * The boolean result indicates whether the address is actually contained
891 * in the map.
893 * The related map must be locked.
894 * No other requirements.
896 boolean_t
897 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
899 vm_map_entry_t tmp;
900 vm_map_entry_t last;
902 ASSERT_VM_MAP_LOCKED(map);
903 #if 0
905 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
906 * the hint code with the red-black lookup meets with system crashes
907 * and lockups. We do not yet know why.
909 * It is possible that the problem is related to the setting
910 * of the hint during map_entry deletion, in the code specified
911 * at the GGG comment later on in this file.
913 * YYY More likely it's because this function can be called with
914 * a shared lock on the map, resulting in map->hint updates possibly
915 * racing. Fixed now but untested.
918 * Quickly check the cached hint, there's a good chance of a match.
920 tmp = map->hint;
921 cpu_ccfence();
922 if (tmp != &map->header) {
923 if (address >= tmp->start && address < tmp->end) {
924 *entry = tmp;
925 return(TRUE);
928 #endif
931 * Locate the record from the top of the tree. 'last' tracks the
932 * closest prior record and is returned if no match is found, which
933 * in binary tree terms means tracking the most recent right-branch
934 * taken. If there is no prior record, &map->header is returned.
936 last = &map->header;
937 tmp = RB_ROOT(&map->rb_root);
939 while (tmp) {
940 if (address >= tmp->start) {
941 if (address < tmp->end) {
942 *entry = tmp;
943 map->hint = tmp;
944 return(TRUE);
946 last = tmp;
947 tmp = RB_RIGHT(tmp, rb_entry);
948 } else {
949 tmp = RB_LEFT(tmp, rb_entry);
952 *entry = last;
953 return (FALSE);
957 * Inserts the given whole VM object into the target map at the specified
958 * address range. The object's size should match that of the address range.
960 * The map must be exclusively locked.
961 * The object must be held.
962 * The caller must have reserved sufficient vm_map_entry structures.
964 * If object is non-NULL, ref count must be bumped by caller prior to
965 * making call to account for the new entry.
968 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
969 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
970 vm_maptype_t maptype,
971 vm_prot_t prot, vm_prot_t max, int cow)
973 vm_map_entry_t new_entry;
974 vm_map_entry_t prev_entry;
975 vm_map_entry_t temp_entry;
976 vm_eflags_t protoeflags;
977 int must_drop = 0;
978 vm_object_t object;
980 if (maptype == VM_MAPTYPE_UKSMAP)
981 object = NULL;
982 else
983 object = map_object;
985 ASSERT_VM_MAP_LOCKED(map);
986 if (object)
987 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
990 * Check that the start and end points are not bogus.
992 if ((start < map->min_offset) || (end > map->max_offset) ||
993 (start >= end))
994 return (KERN_INVALID_ADDRESS);
997 * Find the entry prior to the proposed starting address; if it's part
998 * of an existing entry, this range is bogus.
1000 if (vm_map_lookup_entry(map, start, &temp_entry))
1001 return (KERN_NO_SPACE);
1003 prev_entry = temp_entry;
1006 * Assert that the next entry doesn't overlap the end point.
1009 if ((prev_entry->next != &map->header) &&
1010 (prev_entry->next->start < end))
1011 return (KERN_NO_SPACE);
1013 protoeflags = 0;
1015 if (cow & MAP_COPY_ON_WRITE)
1016 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1018 if (cow & MAP_NOFAULT) {
1019 protoeflags |= MAP_ENTRY_NOFAULT;
1021 KASSERT(object == NULL,
1022 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1024 if (cow & MAP_DISABLE_SYNCER)
1025 protoeflags |= MAP_ENTRY_NOSYNC;
1026 if (cow & MAP_DISABLE_COREDUMP)
1027 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1028 if (cow & MAP_IS_STACK)
1029 protoeflags |= MAP_ENTRY_STACK;
1030 if (cow & MAP_IS_KSTACK)
1031 protoeflags |= MAP_ENTRY_KSTACK;
1033 lwkt_gettoken(&map->token);
1035 if (object) {
1037 * When object is non-NULL, it could be shared with another
1038 * process. We have to set or clear OBJ_ONEMAPPING
1039 * appropriately.
1041 * NOTE: This flag is only applicable to DEFAULT and SWAP
1042 * objects and will already be clear in other types
1043 * of objects, so a shared object lock is ok for
1044 * VNODE objects.
1046 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1047 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1050 else if ((prev_entry != &map->header) &&
1051 (prev_entry->eflags == protoeflags) &&
1052 (prev_entry->end == start) &&
1053 (prev_entry->wired_count == 0) &&
1054 prev_entry->maptype == maptype &&
1055 maptype == VM_MAPTYPE_NORMAL &&
1056 ((prev_entry->object.vm_object == NULL) ||
1057 vm_object_coalesce(prev_entry->object.vm_object,
1058 OFF_TO_IDX(prev_entry->offset),
1059 (vm_size_t)(prev_entry->end - prev_entry->start),
1060 (vm_size_t)(end - prev_entry->end)))) {
1062 * We were able to extend the object. Determine if we
1063 * can extend the previous map entry to include the
1064 * new range as well.
1066 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1067 (prev_entry->protection == prot) &&
1068 (prev_entry->max_protection == max)) {
1069 map->size += (end - prev_entry->end);
1070 prev_entry->end = end;
1071 vm_map_simplify_entry(map, prev_entry, countp);
1072 lwkt_reltoken(&map->token);
1073 return (KERN_SUCCESS);
1077 * If we can extend the object but cannot extend the
1078 * map entry, we have to create a new map entry. We
1079 * must bump the ref count on the extended object to
1080 * account for it. object may be NULL.
1082 * XXX if object is NULL should we set offset to 0 here ?
1084 object = prev_entry->object.vm_object;
1085 offset = prev_entry->offset +
1086 (prev_entry->end - prev_entry->start);
1087 if (object) {
1088 vm_object_hold(object);
1089 vm_object_chain_wait(object, 0);
1090 vm_object_reference_locked(object);
1091 must_drop = 1;
1092 map_object = object;
1097 * NOTE: if conditionals fail, object can be NULL here. This occurs
1098 * in things like the buffer map where we manage kva but do not manage
1099 * backing objects.
1103 * Create a new entry
1106 new_entry = vm_map_entry_create(map, countp);
1107 new_entry->start = start;
1108 new_entry->end = end;
1110 new_entry->maptype = maptype;
1111 new_entry->eflags = protoeflags;
1112 new_entry->object.map_object = map_object;
1113 new_entry->aux.master_pde = 0; /* in case size is different */
1114 new_entry->aux.map_aux = map_aux;
1115 new_entry->offset = offset;
1117 new_entry->inheritance = VM_INHERIT_DEFAULT;
1118 new_entry->protection = prot;
1119 new_entry->max_protection = max;
1120 new_entry->wired_count = 0;
1123 * Insert the new entry into the list
1126 vm_map_entry_link(map, prev_entry, new_entry);
1127 map->size += new_entry->end - new_entry->start;
1130 * Update the free space hint. Entries cannot overlap.
1131 * An exact comparison is needed to avoid matching
1132 * against the map->header.
1134 if ((map->first_free == prev_entry) &&
1135 (prev_entry->end == new_entry->start)) {
1136 map->first_free = new_entry;
1139 #if 0
1141 * Temporarily removed to avoid MAP_STACK panic, due to
1142 * MAP_STACK being a huge hack. Will be added back in
1143 * when MAP_STACK (and the user stack mapping) is fixed.
1146 * It may be possible to simplify the entry
1148 vm_map_simplify_entry(map, new_entry, countp);
1149 #endif
1152 * Try to pre-populate the page table. Mappings governed by virtual
1153 * page tables cannot be prepopulated without a lot of work, so
1154 * don't try.
1156 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1157 maptype != VM_MAPTYPE_VPAGETABLE &&
1158 maptype != VM_MAPTYPE_UKSMAP) {
1159 int dorelock = 0;
1160 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1161 dorelock = 1;
1162 vm_object_lock_swap();
1163 vm_object_drop(object);
1165 pmap_object_init_pt(map->pmap, start, prot,
1166 object, OFF_TO_IDX(offset), end - start,
1167 cow & MAP_PREFAULT_PARTIAL);
1168 if (dorelock) {
1169 vm_object_hold(object);
1170 vm_object_lock_swap();
1173 if (must_drop)
1174 vm_object_drop(object);
1176 lwkt_reltoken(&map->token);
1177 return (KERN_SUCCESS);
1181 * Find sufficient space for `length' bytes in the given map, starting at
1182 * `start'. Returns 0 on success, 1 on no space.
1184 * This function will returned an arbitrarily aligned pointer. If no
1185 * particular alignment is required you should pass align as 1. Note that
1186 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1187 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1188 * argument.
1190 * 'align' should be a power of 2 but is not required to be.
1192 * The map must be exclusively locked.
1193 * No other requirements.
1196 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1197 vm_size_t align, int flags, vm_offset_t *addr)
1199 vm_map_entry_t entry, next;
1200 vm_offset_t end;
1201 vm_offset_t align_mask;
1203 if (start < map->min_offset)
1204 start = map->min_offset;
1205 if (start > map->max_offset)
1206 return (1);
1209 * If the alignment is not a power of 2 we will have to use
1210 * a mod/division, set align_mask to a special value.
1212 if ((align | (align - 1)) + 1 != (align << 1))
1213 align_mask = (vm_offset_t)-1;
1214 else
1215 align_mask = align - 1;
1218 * Look for the first possible address; if there's already something
1219 * at this address, we have to start after it.
1221 if (start == map->min_offset) {
1222 if ((entry = map->first_free) != &map->header)
1223 start = entry->end;
1224 } else {
1225 vm_map_entry_t tmp;
1227 if (vm_map_lookup_entry(map, start, &tmp))
1228 start = tmp->end;
1229 entry = tmp;
1233 * Look through the rest of the map, trying to fit a new region in the
1234 * gap between existing regions, or after the very last region.
1236 for (;; start = (entry = next)->end) {
1238 * Adjust the proposed start by the requested alignment,
1239 * be sure that we didn't wrap the address.
1241 if (align_mask == (vm_offset_t)-1)
1242 end = ((start + align - 1) / align) * align;
1243 else
1244 end = (start + align_mask) & ~align_mask;
1245 if (end < start)
1246 return (1);
1247 start = end;
1249 * Find the end of the proposed new region. Be sure we didn't
1250 * go beyond the end of the map, or wrap around the address.
1251 * Then check to see if this is the last entry or if the
1252 * proposed end fits in the gap between this and the next
1253 * entry.
1255 end = start + length;
1256 if (end > map->max_offset || end < start)
1257 return (1);
1258 next = entry->next;
1261 * If the next entry's start address is beyond the desired
1262 * end address we may have found a good entry.
1264 * If the next entry is a stack mapping we do not map into
1265 * the stack's reserved space.
1267 * XXX continue to allow mapping into the stack's reserved
1268 * space if doing a MAP_STACK mapping inside a MAP_STACK
1269 * mapping, for backwards compatibility. But the caller
1270 * really should use MAP_STACK | MAP_TRYFIXED if they
1271 * want to do that.
1273 if (next == &map->header)
1274 break;
1275 if (next->start >= end) {
1276 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1277 break;
1278 if (flags & MAP_STACK)
1279 break;
1280 if (next->start - next->aux.avail_ssize >= end)
1281 break;
1284 map->hint = entry;
1287 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1288 * if it fails. The kernel_map is locked and nothing can steal
1289 * our address space if pmap_growkernel() blocks.
1291 * NOTE: This may be unconditionally called for kldload areas on
1292 * x86_64 because these do not bump kernel_vm_end (which would
1293 * fill 128G worth of page tables!). Therefore we must not
1294 * retry.
1296 if (map == &kernel_map) {
1297 vm_offset_t kstop;
1299 kstop = round_page(start + length);
1300 if (kstop > kernel_vm_end)
1301 pmap_growkernel(start, kstop);
1303 *addr = start;
1304 return (0);
1308 * vm_map_find finds an unallocated region in the target address map with
1309 * the given length and allocates it. The search is defined to be first-fit
1310 * from the specified address; the region found is returned in the same
1311 * parameter.
1313 * If object is non-NULL, ref count must be bumped by caller
1314 * prior to making call to account for the new entry.
1316 * No requirements. This function will lock the map temporarily.
1319 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1320 vm_ooffset_t offset, vm_offset_t *addr,
1321 vm_size_t length, vm_size_t align,
1322 boolean_t fitit,
1323 vm_maptype_t maptype,
1324 vm_prot_t prot, vm_prot_t max,
1325 int cow)
1327 vm_offset_t start;
1328 vm_object_t object;
1329 int result;
1330 int count;
1332 if (maptype == VM_MAPTYPE_UKSMAP)
1333 object = NULL;
1334 else
1335 object = map_object;
1337 start = *addr;
1339 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1340 vm_map_lock(map);
1341 if (object)
1342 vm_object_hold_shared(object);
1343 if (fitit) {
1344 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1345 if (object)
1346 vm_object_drop(object);
1347 vm_map_unlock(map);
1348 vm_map_entry_release(count);
1349 return (KERN_NO_SPACE);
1351 start = *addr;
1353 result = vm_map_insert(map, &count, map_object, map_aux,
1354 offset, start, start + length,
1355 maptype, prot, max, cow);
1356 if (object)
1357 vm_object_drop(object);
1358 vm_map_unlock(map);
1359 vm_map_entry_release(count);
1361 return (result);
1365 * Simplify the given map entry by merging with either neighbor. This
1366 * routine also has the ability to merge with both neighbors.
1368 * This routine guarentees that the passed entry remains valid (though
1369 * possibly extended). When merging, this routine may delete one or
1370 * both neighbors. No action is taken on entries which have their
1371 * in-transition flag set.
1373 * The map must be exclusively locked.
1375 void
1376 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1378 vm_map_entry_t next, prev;
1379 vm_size_t prevsize, esize;
1381 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1382 ++mycpu->gd_cnt.v_intrans_coll;
1383 return;
1386 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1387 return;
1388 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1389 return;
1391 prev = entry->prev;
1392 if (prev != &map->header) {
1393 prevsize = prev->end - prev->start;
1394 if ( (prev->end == entry->start) &&
1395 (prev->maptype == entry->maptype) &&
1396 (prev->object.vm_object == entry->object.vm_object) &&
1397 (!prev->object.vm_object ||
1398 (prev->offset + prevsize == entry->offset)) &&
1399 (prev->eflags == entry->eflags) &&
1400 (prev->protection == entry->protection) &&
1401 (prev->max_protection == entry->max_protection) &&
1402 (prev->inheritance == entry->inheritance) &&
1403 (prev->wired_count == entry->wired_count)) {
1404 if (map->first_free == prev)
1405 map->first_free = entry;
1406 if (map->hint == prev)
1407 map->hint = entry;
1408 vm_map_entry_unlink(map, prev);
1409 entry->start = prev->start;
1410 entry->offset = prev->offset;
1411 if (prev->object.vm_object)
1412 vm_object_deallocate(prev->object.vm_object);
1413 vm_map_entry_dispose(map, prev, countp);
1417 next = entry->next;
1418 if (next != &map->header) {
1419 esize = entry->end - entry->start;
1420 if ((entry->end == next->start) &&
1421 (next->maptype == entry->maptype) &&
1422 (next->object.vm_object == entry->object.vm_object) &&
1423 (!entry->object.vm_object ||
1424 (entry->offset + esize == next->offset)) &&
1425 (next->eflags == entry->eflags) &&
1426 (next->protection == entry->protection) &&
1427 (next->max_protection == entry->max_protection) &&
1428 (next->inheritance == entry->inheritance) &&
1429 (next->wired_count == entry->wired_count)) {
1430 if (map->first_free == next)
1431 map->first_free = entry;
1432 if (map->hint == next)
1433 map->hint = entry;
1434 vm_map_entry_unlink(map, next);
1435 entry->end = next->end;
1436 if (next->object.vm_object)
1437 vm_object_deallocate(next->object.vm_object);
1438 vm_map_entry_dispose(map, next, countp);
1444 * Asserts that the given entry begins at or after the specified address.
1445 * If necessary, it splits the entry into two.
1447 #define vm_map_clip_start(map, entry, startaddr, countp) \
1449 if (startaddr > entry->start) \
1450 _vm_map_clip_start(map, entry, startaddr, countp); \
1454 * This routine is called only when it is known that the entry must be split.
1456 * The map must be exclusively locked.
1458 static void
1459 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1460 int *countp)
1462 vm_map_entry_t new_entry;
1465 * Split off the front portion -- note that we must insert the new
1466 * entry BEFORE this one, so that this entry has the specified
1467 * starting address.
1470 vm_map_simplify_entry(map, entry, countp);
1473 * If there is no object backing this entry, we might as well create
1474 * one now. If we defer it, an object can get created after the map
1475 * is clipped, and individual objects will be created for the split-up
1476 * map. This is a bit of a hack, but is also about the best place to
1477 * put this improvement.
1479 if (entry->object.vm_object == NULL && !map->system_map) {
1480 vm_map_entry_allocate_object(entry);
1483 new_entry = vm_map_entry_create(map, countp);
1484 *new_entry = *entry;
1486 new_entry->end = start;
1487 entry->offset += (start - entry->start);
1488 entry->start = start;
1490 vm_map_entry_link(map, entry->prev, new_entry);
1492 switch(entry->maptype) {
1493 case VM_MAPTYPE_NORMAL:
1494 case VM_MAPTYPE_VPAGETABLE:
1495 if (new_entry->object.vm_object) {
1496 vm_object_hold(new_entry->object.vm_object);
1497 vm_object_chain_wait(new_entry->object.vm_object, 0);
1498 vm_object_reference_locked(new_entry->object.vm_object);
1499 vm_object_drop(new_entry->object.vm_object);
1501 break;
1502 default:
1503 break;
1508 * Asserts that the given entry ends at or before the specified address.
1509 * If necessary, it splits the entry into two.
1511 * The map must be exclusively locked.
1513 #define vm_map_clip_end(map, entry, endaddr, countp) \
1515 if (endaddr < entry->end) \
1516 _vm_map_clip_end(map, entry, endaddr, countp); \
1520 * This routine is called only when it is known that the entry must be split.
1522 * The map must be exclusively locked.
1524 static void
1525 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1526 int *countp)
1528 vm_map_entry_t new_entry;
1531 * If there is no object backing this entry, we might as well create
1532 * one now. If we defer it, an object can get created after the map
1533 * is clipped, and individual objects will be created for the split-up
1534 * map. This is a bit of a hack, but is also about the best place to
1535 * put this improvement.
1538 if (entry->object.vm_object == NULL && !map->system_map) {
1539 vm_map_entry_allocate_object(entry);
1543 * Create a new entry and insert it AFTER the specified entry
1546 new_entry = vm_map_entry_create(map, countp);
1547 *new_entry = *entry;
1549 new_entry->start = entry->end = end;
1550 new_entry->offset += (end - entry->start);
1552 vm_map_entry_link(map, entry, new_entry);
1554 switch(entry->maptype) {
1555 case VM_MAPTYPE_NORMAL:
1556 case VM_MAPTYPE_VPAGETABLE:
1557 if (new_entry->object.vm_object) {
1558 vm_object_hold(new_entry->object.vm_object);
1559 vm_object_chain_wait(new_entry->object.vm_object, 0);
1560 vm_object_reference_locked(new_entry->object.vm_object);
1561 vm_object_drop(new_entry->object.vm_object);
1563 break;
1564 default:
1565 break;
1570 * Asserts that the starting and ending region addresses fall within the
1571 * valid range for the map.
1573 #define VM_MAP_RANGE_CHECK(map, start, end) \
1575 if (start < vm_map_min(map)) \
1576 start = vm_map_min(map); \
1577 if (end > vm_map_max(map)) \
1578 end = vm_map_max(map); \
1579 if (start > end) \
1580 start = end; \
1584 * Used to block when an in-transition collison occurs. The map
1585 * is unlocked for the sleep and relocked before the return.
1587 void
1588 vm_map_transition_wait(vm_map_t map)
1590 tsleep_interlock(map, 0);
1591 vm_map_unlock(map);
1592 tsleep(map, PINTERLOCKED, "vment", 0);
1593 vm_map_lock(map);
1597 * When we do blocking operations with the map lock held it is
1598 * possible that a clip might have occured on our in-transit entry,
1599 * requiring an adjustment to the entry in our loop. These macros
1600 * help the pageable and clip_range code deal with the case. The
1601 * conditional costs virtually nothing if no clipping has occured.
1604 #define CLIP_CHECK_BACK(entry, save_start) \
1605 do { \
1606 while (entry->start != save_start) { \
1607 entry = entry->prev; \
1608 KASSERT(entry != &map->header, ("bad entry clip")); \
1610 } while(0)
1612 #define CLIP_CHECK_FWD(entry, save_end) \
1613 do { \
1614 while (entry->end != save_end) { \
1615 entry = entry->next; \
1616 KASSERT(entry != &map->header, ("bad entry clip")); \
1618 } while(0)
1622 * Clip the specified range and return the base entry. The
1623 * range may cover several entries starting at the returned base
1624 * and the first and last entry in the covering sequence will be
1625 * properly clipped to the requested start and end address.
1627 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1628 * flag.
1630 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1631 * covered by the requested range.
1633 * The map must be exclusively locked on entry and will remain locked
1634 * on return. If no range exists or the range contains holes and you
1635 * specified that no holes were allowed, NULL will be returned. This
1636 * routine may temporarily unlock the map in order avoid a deadlock when
1637 * sleeping.
1639 static
1640 vm_map_entry_t
1641 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1642 int *countp, int flags)
1644 vm_map_entry_t start_entry;
1645 vm_map_entry_t entry;
1648 * Locate the entry and effect initial clipping. The in-transition
1649 * case does not occur very often so do not try to optimize it.
1651 again:
1652 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1653 return (NULL);
1654 entry = start_entry;
1655 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1656 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1657 ++mycpu->gd_cnt.v_intrans_coll;
1658 ++mycpu->gd_cnt.v_intrans_wait;
1659 vm_map_transition_wait(map);
1661 * entry and/or start_entry may have been clipped while
1662 * we slept, or may have gone away entirely. We have
1663 * to restart from the lookup.
1665 goto again;
1669 * Since we hold an exclusive map lock we do not have to restart
1670 * after clipping, even though clipping may block in zalloc.
1672 vm_map_clip_start(map, entry, start, countp);
1673 vm_map_clip_end(map, entry, end, countp);
1674 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1677 * Scan entries covered by the range. When working on the next
1678 * entry a restart need only re-loop on the current entry which
1679 * we have already locked, since 'next' may have changed. Also,
1680 * even though entry is safe, it may have been clipped so we
1681 * have to iterate forwards through the clip after sleeping.
1683 while (entry->next != &map->header && entry->next->start < end) {
1684 vm_map_entry_t next = entry->next;
1686 if (flags & MAP_CLIP_NO_HOLES) {
1687 if (next->start > entry->end) {
1688 vm_map_unclip_range(map, start_entry,
1689 start, entry->end, countp, flags);
1690 return(NULL);
1694 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1695 vm_offset_t save_end = entry->end;
1696 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1697 ++mycpu->gd_cnt.v_intrans_coll;
1698 ++mycpu->gd_cnt.v_intrans_wait;
1699 vm_map_transition_wait(map);
1702 * clips might have occured while we blocked.
1704 CLIP_CHECK_FWD(entry, save_end);
1705 CLIP_CHECK_BACK(start_entry, start);
1706 continue;
1709 * No restart necessary even though clip_end may block, we
1710 * are holding the map lock.
1712 vm_map_clip_end(map, next, end, countp);
1713 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1714 entry = next;
1716 if (flags & MAP_CLIP_NO_HOLES) {
1717 if (entry->end != end) {
1718 vm_map_unclip_range(map, start_entry,
1719 start, entry->end, countp, flags);
1720 return(NULL);
1723 return(start_entry);
1727 * Undo the effect of vm_map_clip_range(). You should pass the same
1728 * flags and the same range that you passed to vm_map_clip_range().
1729 * This code will clear the in-transition flag on the entries and
1730 * wake up anyone waiting. This code will also simplify the sequence
1731 * and attempt to merge it with entries before and after the sequence.
1733 * The map must be locked on entry and will remain locked on return.
1735 * Note that you should also pass the start_entry returned by
1736 * vm_map_clip_range(). However, if you block between the two calls
1737 * with the map unlocked please be aware that the start_entry may
1738 * have been clipped and you may need to scan it backwards to find
1739 * the entry corresponding with the original start address. You are
1740 * responsible for this, vm_map_unclip_range() expects the correct
1741 * start_entry to be passed to it and will KASSERT otherwise.
1743 static
1744 void
1745 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1746 vm_offset_t start, vm_offset_t end,
1747 int *countp, int flags)
1749 vm_map_entry_t entry;
1751 entry = start_entry;
1753 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1754 while (entry != &map->header && entry->start < end) {
1755 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1756 ("in-transition flag not set during unclip on: %p",
1757 entry));
1758 KASSERT(entry->end <= end,
1759 ("unclip_range: tail wasn't clipped"));
1760 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1761 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1762 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1763 wakeup(map);
1765 entry = entry->next;
1769 * Simplification does not block so there is no restart case.
1771 entry = start_entry;
1772 while (entry != &map->header && entry->start < end) {
1773 vm_map_simplify_entry(map, entry, countp);
1774 entry = entry->next;
1779 * Mark the given range as handled by a subordinate map.
1781 * This range must have been created with vm_map_find(), and no other
1782 * operations may have been performed on this range prior to calling
1783 * vm_map_submap().
1785 * Submappings cannot be removed.
1787 * No requirements.
1790 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1792 vm_map_entry_t entry;
1793 int result = KERN_INVALID_ARGUMENT;
1794 int count;
1796 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1797 vm_map_lock(map);
1799 VM_MAP_RANGE_CHECK(map, start, end);
1801 if (vm_map_lookup_entry(map, start, &entry)) {
1802 vm_map_clip_start(map, entry, start, &count);
1803 } else {
1804 entry = entry->next;
1807 vm_map_clip_end(map, entry, end, &count);
1809 if ((entry->start == start) && (entry->end == end) &&
1810 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1811 (entry->object.vm_object == NULL)) {
1812 entry->object.sub_map = submap;
1813 entry->maptype = VM_MAPTYPE_SUBMAP;
1814 result = KERN_SUCCESS;
1816 vm_map_unlock(map);
1817 vm_map_entry_release(count);
1819 return (result);
1823 * Sets the protection of the specified address region in the target map.
1824 * If "set_max" is specified, the maximum protection is to be set;
1825 * otherwise, only the current protection is affected.
1827 * The protection is not applicable to submaps, but is applicable to normal
1828 * maps and maps governed by virtual page tables. For example, when operating
1829 * on a virtual page table our protection basically controls how COW occurs
1830 * on the backing object, whereas the virtual page table abstraction itself
1831 * is an abstraction for userland.
1833 * No requirements.
1836 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1837 vm_prot_t new_prot, boolean_t set_max)
1839 vm_map_entry_t current;
1840 vm_map_entry_t entry;
1841 int count;
1843 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1844 vm_map_lock(map);
1846 VM_MAP_RANGE_CHECK(map, start, end);
1848 if (vm_map_lookup_entry(map, start, &entry)) {
1849 vm_map_clip_start(map, entry, start, &count);
1850 } else {
1851 entry = entry->next;
1855 * Make a first pass to check for protection violations.
1857 current = entry;
1858 while ((current != &map->header) && (current->start < end)) {
1859 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1860 vm_map_unlock(map);
1861 vm_map_entry_release(count);
1862 return (KERN_INVALID_ARGUMENT);
1864 if ((new_prot & current->max_protection) != new_prot) {
1865 vm_map_unlock(map);
1866 vm_map_entry_release(count);
1867 return (KERN_PROTECTION_FAILURE);
1869 current = current->next;
1873 * Go back and fix up protections. [Note that clipping is not
1874 * necessary the second time.]
1876 current = entry;
1878 while ((current != &map->header) && (current->start < end)) {
1879 vm_prot_t old_prot;
1881 vm_map_clip_end(map, current, end, &count);
1883 old_prot = current->protection;
1884 if (set_max) {
1885 current->protection =
1886 (current->max_protection = new_prot) &
1887 old_prot;
1888 } else {
1889 current->protection = new_prot;
1893 * Update physical map if necessary. Worry about copy-on-write
1894 * here -- CHECK THIS XXX
1897 if (current->protection != old_prot) {
1898 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1899 VM_PROT_ALL)
1901 pmap_protect(map->pmap, current->start,
1902 current->end,
1903 current->protection & MASK(current));
1904 #undef MASK
1907 vm_map_simplify_entry(map, current, &count);
1909 current = current->next;
1912 vm_map_unlock(map);
1913 vm_map_entry_release(count);
1914 return (KERN_SUCCESS);
1918 * This routine traverses a processes map handling the madvise
1919 * system call. Advisories are classified as either those effecting
1920 * the vm_map_entry structure, or those effecting the underlying
1921 * objects.
1923 * The <value> argument is used for extended madvise calls.
1925 * No requirements.
1928 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1929 int behav, off_t value)
1931 vm_map_entry_t current, entry;
1932 int modify_map = 0;
1933 int error = 0;
1934 int count;
1937 * Some madvise calls directly modify the vm_map_entry, in which case
1938 * we need to use an exclusive lock on the map and we need to perform
1939 * various clipping operations. Otherwise we only need a read-lock
1940 * on the map.
1943 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1945 switch(behav) {
1946 case MADV_NORMAL:
1947 case MADV_SEQUENTIAL:
1948 case MADV_RANDOM:
1949 case MADV_NOSYNC:
1950 case MADV_AUTOSYNC:
1951 case MADV_NOCORE:
1952 case MADV_CORE:
1953 case MADV_SETMAP:
1954 case MADV_INVAL:
1955 modify_map = 1;
1956 vm_map_lock(map);
1957 break;
1958 case MADV_WILLNEED:
1959 case MADV_DONTNEED:
1960 case MADV_FREE:
1961 vm_map_lock_read(map);
1962 break;
1963 default:
1964 vm_map_entry_release(count);
1965 return (EINVAL);
1969 * Locate starting entry and clip if necessary.
1972 VM_MAP_RANGE_CHECK(map, start, end);
1974 if (vm_map_lookup_entry(map, start, &entry)) {
1975 if (modify_map)
1976 vm_map_clip_start(map, entry, start, &count);
1977 } else {
1978 entry = entry->next;
1981 if (modify_map) {
1983 * madvise behaviors that are implemented in the vm_map_entry.
1985 * We clip the vm_map_entry so that behavioral changes are
1986 * limited to the specified address range.
1988 for (current = entry;
1989 (current != &map->header) && (current->start < end);
1990 current = current->next
1992 if (current->maptype == VM_MAPTYPE_SUBMAP)
1993 continue;
1995 vm_map_clip_end(map, current, end, &count);
1997 switch (behav) {
1998 case MADV_NORMAL:
1999 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2000 break;
2001 case MADV_SEQUENTIAL:
2002 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2003 break;
2004 case MADV_RANDOM:
2005 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2006 break;
2007 case MADV_NOSYNC:
2008 current->eflags |= MAP_ENTRY_NOSYNC;
2009 break;
2010 case MADV_AUTOSYNC:
2011 current->eflags &= ~MAP_ENTRY_NOSYNC;
2012 break;
2013 case MADV_NOCORE:
2014 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2015 break;
2016 case MADV_CORE:
2017 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2018 break;
2019 case MADV_INVAL:
2021 * Invalidate the related pmap entries, used
2022 * to flush portions of the real kernel's
2023 * pmap when the caller has removed or
2024 * modified existing mappings in a virtual
2025 * page table.
2027 pmap_remove(map->pmap,
2028 current->start, current->end);
2029 break;
2030 case MADV_SETMAP:
2032 * Set the page directory page for a map
2033 * governed by a virtual page table. Mark
2034 * the entry as being governed by a virtual
2035 * page table if it is not.
2037 * XXX the page directory page is stored
2038 * in the avail_ssize field if the map_entry.
2040 * XXX the map simplification code does not
2041 * compare this field so weird things may
2042 * happen if you do not apply this function
2043 * to the entire mapping governed by the
2044 * virtual page table.
2046 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2047 error = EINVAL;
2048 break;
2050 current->aux.master_pde = value;
2051 pmap_remove(map->pmap,
2052 current->start, current->end);
2053 break;
2054 default:
2055 error = EINVAL;
2056 break;
2058 vm_map_simplify_entry(map, current, &count);
2060 vm_map_unlock(map);
2061 } else {
2062 vm_pindex_t pindex;
2063 int count;
2066 * madvise behaviors that are implemented in the underlying
2067 * vm_object.
2069 * Since we don't clip the vm_map_entry, we have to clip
2070 * the vm_object pindex and count.
2072 * NOTE! We currently do not support these functions on
2073 * virtual page tables.
2075 for (current = entry;
2076 (current != &map->header) && (current->start < end);
2077 current = current->next
2079 vm_offset_t useStart;
2081 if (current->maptype != VM_MAPTYPE_NORMAL)
2082 continue;
2084 pindex = OFF_TO_IDX(current->offset);
2085 count = atop(current->end - current->start);
2086 useStart = current->start;
2088 if (current->start < start) {
2089 pindex += atop(start - current->start);
2090 count -= atop(start - current->start);
2091 useStart = start;
2093 if (current->end > end)
2094 count -= atop(current->end - end);
2096 if (count <= 0)
2097 continue;
2099 vm_object_madvise(current->object.vm_object,
2100 pindex, count, behav);
2103 * Try to populate the page table. Mappings governed
2104 * by virtual page tables cannot be pre-populated
2105 * without a lot of work so don't try.
2107 if (behav == MADV_WILLNEED &&
2108 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2109 pmap_object_init_pt(
2110 map->pmap,
2111 useStart,
2112 current->protection,
2113 current->object.vm_object,
2114 pindex,
2115 (count << PAGE_SHIFT),
2116 MAP_PREFAULT_MADVISE
2120 vm_map_unlock_read(map);
2122 vm_map_entry_release(count);
2123 return(error);
2128 * Sets the inheritance of the specified address range in the target map.
2129 * Inheritance affects how the map will be shared with child maps at the
2130 * time of vm_map_fork.
2133 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2134 vm_inherit_t new_inheritance)
2136 vm_map_entry_t entry;
2137 vm_map_entry_t temp_entry;
2138 int count;
2140 switch (new_inheritance) {
2141 case VM_INHERIT_NONE:
2142 case VM_INHERIT_COPY:
2143 case VM_INHERIT_SHARE:
2144 break;
2145 default:
2146 return (KERN_INVALID_ARGUMENT);
2149 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2150 vm_map_lock(map);
2152 VM_MAP_RANGE_CHECK(map, start, end);
2154 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2155 entry = temp_entry;
2156 vm_map_clip_start(map, entry, start, &count);
2157 } else
2158 entry = temp_entry->next;
2160 while ((entry != &map->header) && (entry->start < end)) {
2161 vm_map_clip_end(map, entry, end, &count);
2163 entry->inheritance = new_inheritance;
2165 vm_map_simplify_entry(map, entry, &count);
2167 entry = entry->next;
2169 vm_map_unlock(map);
2170 vm_map_entry_release(count);
2171 return (KERN_SUCCESS);
2175 * Implement the semantics of mlock
2178 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2179 boolean_t new_pageable)
2181 vm_map_entry_t entry;
2182 vm_map_entry_t start_entry;
2183 vm_offset_t end;
2184 int rv = KERN_SUCCESS;
2185 int count;
2187 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2188 vm_map_lock(map);
2189 VM_MAP_RANGE_CHECK(map, start, real_end);
2190 end = real_end;
2192 start_entry = vm_map_clip_range(map, start, end, &count,
2193 MAP_CLIP_NO_HOLES);
2194 if (start_entry == NULL) {
2195 vm_map_unlock(map);
2196 vm_map_entry_release(count);
2197 return (KERN_INVALID_ADDRESS);
2200 if (new_pageable == 0) {
2201 entry = start_entry;
2202 while ((entry != &map->header) && (entry->start < end)) {
2203 vm_offset_t save_start;
2204 vm_offset_t save_end;
2207 * Already user wired or hard wired (trivial cases)
2209 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2210 entry = entry->next;
2211 continue;
2213 if (entry->wired_count != 0) {
2214 entry->wired_count++;
2215 entry->eflags |= MAP_ENTRY_USER_WIRED;
2216 entry = entry->next;
2217 continue;
2221 * A new wiring requires instantiation of appropriate
2222 * management structures and the faulting in of the
2223 * page.
2225 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2226 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2227 int copyflag = entry->eflags &
2228 MAP_ENTRY_NEEDS_COPY;
2229 if (copyflag && ((entry->protection &
2230 VM_PROT_WRITE) != 0)) {
2231 vm_map_entry_shadow(entry, 0);
2232 } else if (entry->object.vm_object == NULL &&
2233 !map->system_map) {
2234 vm_map_entry_allocate_object(entry);
2237 entry->wired_count++;
2238 entry->eflags |= MAP_ENTRY_USER_WIRED;
2241 * Now fault in the area. Note that vm_fault_wire()
2242 * may release the map lock temporarily, it will be
2243 * relocked on return. The in-transition
2244 * flag protects the entries.
2246 save_start = entry->start;
2247 save_end = entry->end;
2248 rv = vm_fault_wire(map, entry, TRUE, 0);
2249 if (rv) {
2250 CLIP_CHECK_BACK(entry, save_start);
2251 for (;;) {
2252 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2253 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2254 entry->wired_count = 0;
2255 if (entry->end == save_end)
2256 break;
2257 entry = entry->next;
2258 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2260 end = save_start; /* unwire the rest */
2261 break;
2264 * note that even though the entry might have been
2265 * clipped, the USER_WIRED flag we set prevents
2266 * duplication so we do not have to do a
2267 * clip check.
2269 entry = entry->next;
2273 * If we failed fall through to the unwiring section to
2274 * unwire what we had wired so far. 'end' has already
2275 * been adjusted.
2277 if (rv)
2278 new_pageable = 1;
2281 * start_entry might have been clipped if we unlocked the
2282 * map and blocked. No matter how clipped it has gotten
2283 * there should be a fragment that is on our start boundary.
2285 CLIP_CHECK_BACK(start_entry, start);
2289 * Deal with the unwiring case.
2291 if (new_pageable) {
2293 * This is the unwiring case. We must first ensure that the
2294 * range to be unwired is really wired down. We know there
2295 * are no holes.
2297 entry = start_entry;
2298 while ((entry != &map->header) && (entry->start < end)) {
2299 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2300 rv = KERN_INVALID_ARGUMENT;
2301 goto done;
2303 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2304 entry = entry->next;
2308 * Now decrement the wiring count for each region. If a region
2309 * becomes completely unwired, unwire its physical pages and
2310 * mappings.
2313 * The map entries are processed in a loop, checking to
2314 * make sure the entry is wired and asserting it has a wired
2315 * count. However, another loop was inserted more-or-less in
2316 * the middle of the unwiring path. This loop picks up the
2317 * "entry" loop variable from the first loop without first
2318 * setting it to start_entry. Naturally, the secound loop
2319 * is never entered and the pages backing the entries are
2320 * never unwired. This can lead to a leak of wired pages.
2322 entry = start_entry;
2323 while ((entry != &map->header) && (entry->start < end)) {
2324 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2325 ("expected USER_WIRED on entry %p", entry));
2326 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2327 entry->wired_count--;
2328 if (entry->wired_count == 0)
2329 vm_fault_unwire(map, entry);
2330 entry = entry->next;
2333 done:
2334 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2335 MAP_CLIP_NO_HOLES);
2336 map->timestamp++;
2337 vm_map_unlock(map);
2338 vm_map_entry_release(count);
2339 return (rv);
2343 * Sets the pageability of the specified address range in the target map.
2344 * Regions specified as not pageable require locked-down physical
2345 * memory and physical page maps.
2347 * The map must not be locked, but a reference must remain to the map
2348 * throughout the call.
2350 * This function may be called via the zalloc path and must properly
2351 * reserve map entries for kernel_map.
2353 * No requirements.
2356 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2358 vm_map_entry_t entry;
2359 vm_map_entry_t start_entry;
2360 vm_offset_t end;
2361 int rv = KERN_SUCCESS;
2362 int count;
2364 if (kmflags & KM_KRESERVE)
2365 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2366 else
2367 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2368 vm_map_lock(map);
2369 VM_MAP_RANGE_CHECK(map, start, real_end);
2370 end = real_end;
2372 start_entry = vm_map_clip_range(map, start, end, &count,
2373 MAP_CLIP_NO_HOLES);
2374 if (start_entry == NULL) {
2375 vm_map_unlock(map);
2376 rv = KERN_INVALID_ADDRESS;
2377 goto failure;
2379 if ((kmflags & KM_PAGEABLE) == 0) {
2381 * Wiring.
2383 * 1. Holding the write lock, we create any shadow or zero-fill
2384 * objects that need to be created. Then we clip each map
2385 * entry to the region to be wired and increment its wiring
2386 * count. We create objects before clipping the map entries
2387 * to avoid object proliferation.
2389 * 2. We downgrade to a read lock, and call vm_fault_wire to
2390 * fault in the pages for any newly wired area (wired_count is
2391 * 1).
2393 * Downgrading to a read lock for vm_fault_wire avoids a
2394 * possible deadlock with another process that may have faulted
2395 * on one of the pages to be wired (it would mark the page busy,
2396 * blocking us, then in turn block on the map lock that we
2397 * hold). Because of problems in the recursive lock package,
2398 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2399 * any actions that require the write lock must be done
2400 * beforehand. Because we keep the read lock on the map, the
2401 * copy-on-write status of the entries we modify here cannot
2402 * change.
2404 entry = start_entry;
2405 while ((entry != &map->header) && (entry->start < end)) {
2407 * Trivial case if the entry is already wired
2409 if (entry->wired_count) {
2410 entry->wired_count++;
2411 entry = entry->next;
2412 continue;
2416 * The entry is being newly wired, we have to setup
2417 * appropriate management structures. A shadow
2418 * object is required for a copy-on-write region,
2419 * or a normal object for a zero-fill region. We
2420 * do not have to do this for entries that point to sub
2421 * maps because we won't hold the lock on the sub map.
2423 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2424 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2425 int copyflag = entry->eflags &
2426 MAP_ENTRY_NEEDS_COPY;
2427 if (copyflag && ((entry->protection &
2428 VM_PROT_WRITE) != 0)) {
2429 vm_map_entry_shadow(entry, 0);
2430 } else if (entry->object.vm_object == NULL &&
2431 !map->system_map) {
2432 vm_map_entry_allocate_object(entry);
2436 entry->wired_count++;
2437 entry = entry->next;
2441 * Pass 2.
2445 * HACK HACK HACK HACK
2447 * vm_fault_wire() temporarily unlocks the map to avoid
2448 * deadlocks. The in-transition flag from vm_map_clip_range
2449 * call should protect us from changes while the map is
2450 * unlocked. T
2452 * NOTE: Previously this comment stated that clipping might
2453 * still occur while the entry is unlocked, but from
2454 * what I can tell it actually cannot.
2456 * It is unclear whether the CLIP_CHECK_*() calls
2457 * are still needed but we keep them in anyway.
2459 * HACK HACK HACK HACK
2462 entry = start_entry;
2463 while (entry != &map->header && entry->start < end) {
2465 * If vm_fault_wire fails for any page we need to undo
2466 * what has been done. We decrement the wiring count
2467 * for those pages which have not yet been wired (now)
2468 * and unwire those that have (later).
2470 vm_offset_t save_start = entry->start;
2471 vm_offset_t save_end = entry->end;
2473 if (entry->wired_count == 1)
2474 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2475 if (rv) {
2476 CLIP_CHECK_BACK(entry, save_start);
2477 for (;;) {
2478 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2479 entry->wired_count = 0;
2480 if (entry->end == save_end)
2481 break;
2482 entry = entry->next;
2483 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2485 end = save_start;
2486 break;
2488 CLIP_CHECK_FWD(entry, save_end);
2489 entry = entry->next;
2493 * If a failure occured undo everything by falling through
2494 * to the unwiring code. 'end' has already been adjusted
2495 * appropriately.
2497 if (rv)
2498 kmflags |= KM_PAGEABLE;
2501 * start_entry is still IN_TRANSITION but may have been
2502 * clipped since vm_fault_wire() unlocks and relocks the
2503 * map. No matter how clipped it has gotten there should
2504 * be a fragment that is on our start boundary.
2506 CLIP_CHECK_BACK(start_entry, start);
2509 if (kmflags & KM_PAGEABLE) {
2511 * This is the unwiring case. We must first ensure that the
2512 * range to be unwired is really wired down. We know there
2513 * are no holes.
2515 entry = start_entry;
2516 while ((entry != &map->header) && (entry->start < end)) {
2517 if (entry->wired_count == 0) {
2518 rv = KERN_INVALID_ARGUMENT;
2519 goto done;
2521 entry = entry->next;
2525 * Now decrement the wiring count for each region. If a region
2526 * becomes completely unwired, unwire its physical pages and
2527 * mappings.
2529 entry = start_entry;
2530 while ((entry != &map->header) && (entry->start < end)) {
2531 entry->wired_count--;
2532 if (entry->wired_count == 0)
2533 vm_fault_unwire(map, entry);
2534 entry = entry->next;
2537 done:
2538 vm_map_unclip_range(map, start_entry, start, real_end,
2539 &count, MAP_CLIP_NO_HOLES);
2540 map->timestamp++;
2541 vm_map_unlock(map);
2542 failure:
2543 if (kmflags & KM_KRESERVE)
2544 vm_map_entry_krelease(count);
2545 else
2546 vm_map_entry_release(count);
2547 return (rv);
2551 * Mark a newly allocated address range as wired but do not fault in
2552 * the pages. The caller is expected to load the pages into the object.
2554 * The map must be locked on entry and will remain locked on return.
2555 * No other requirements.
2557 void
2558 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2559 int *countp)
2561 vm_map_entry_t scan;
2562 vm_map_entry_t entry;
2564 entry = vm_map_clip_range(map, addr, addr + size,
2565 countp, MAP_CLIP_NO_HOLES);
2566 for (scan = entry;
2567 scan != &map->header && scan->start < addr + size;
2568 scan = scan->next) {
2569 KKASSERT(scan->wired_count == 0);
2570 scan->wired_count = 1;
2572 vm_map_unclip_range(map, entry, addr, addr + size,
2573 countp, MAP_CLIP_NO_HOLES);
2577 * Push any dirty cached pages in the address range to their pager.
2578 * If syncio is TRUE, dirty pages are written synchronously.
2579 * If invalidate is TRUE, any cached pages are freed as well.
2581 * This routine is called by sys_msync()
2583 * Returns an error if any part of the specified range is not mapped.
2585 * No requirements.
2588 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2589 boolean_t syncio, boolean_t invalidate)
2591 vm_map_entry_t current;
2592 vm_map_entry_t entry;
2593 vm_size_t size;
2594 vm_object_t object;
2595 vm_object_t tobj;
2596 vm_ooffset_t offset;
2598 vm_map_lock_read(map);
2599 VM_MAP_RANGE_CHECK(map, start, end);
2600 if (!vm_map_lookup_entry(map, start, &entry)) {
2601 vm_map_unlock_read(map);
2602 return (KERN_INVALID_ADDRESS);
2604 lwkt_gettoken(&map->token);
2607 * Make a first pass to check for holes.
2609 for (current = entry; current->start < end; current = current->next) {
2610 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2611 lwkt_reltoken(&map->token);
2612 vm_map_unlock_read(map);
2613 return (KERN_INVALID_ARGUMENT);
2615 if (end > current->end &&
2616 (current->next == &map->header ||
2617 current->end != current->next->start)) {
2618 lwkt_reltoken(&map->token);
2619 vm_map_unlock_read(map);
2620 return (KERN_INVALID_ADDRESS);
2624 if (invalidate)
2625 pmap_remove(vm_map_pmap(map), start, end);
2628 * Make a second pass, cleaning/uncaching pages from the indicated
2629 * objects as we go.
2631 for (current = entry; current->start < end; current = current->next) {
2632 offset = current->offset + (start - current->start);
2633 size = (end <= current->end ? end : current->end) - start;
2635 switch(current->maptype) {
2636 case VM_MAPTYPE_SUBMAP:
2638 vm_map_t smap;
2639 vm_map_entry_t tentry;
2640 vm_size_t tsize;
2642 smap = current->object.sub_map;
2643 vm_map_lock_read(smap);
2644 vm_map_lookup_entry(smap, offset, &tentry);
2645 tsize = tentry->end - offset;
2646 if (tsize < size)
2647 size = tsize;
2648 object = tentry->object.vm_object;
2649 offset = tentry->offset + (offset - tentry->start);
2650 vm_map_unlock_read(smap);
2651 break;
2653 case VM_MAPTYPE_NORMAL:
2654 case VM_MAPTYPE_VPAGETABLE:
2655 object = current->object.vm_object;
2656 break;
2657 default:
2658 object = NULL;
2659 break;
2662 if (object)
2663 vm_object_hold(object);
2666 * Note that there is absolutely no sense in writing out
2667 * anonymous objects, so we track down the vnode object
2668 * to write out.
2669 * We invalidate (remove) all pages from the address space
2670 * anyway, for semantic correctness.
2672 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2673 * may start out with a NULL object.
2675 while (object && (tobj = object->backing_object) != NULL) {
2676 vm_object_hold(tobj);
2677 if (tobj == object->backing_object) {
2678 vm_object_lock_swap();
2679 offset += object->backing_object_offset;
2680 vm_object_drop(object);
2681 object = tobj;
2682 if (object->size < OFF_TO_IDX(offset + size))
2683 size = IDX_TO_OFF(object->size) -
2684 offset;
2685 break;
2687 vm_object_drop(tobj);
2689 if (object && (object->type == OBJT_VNODE) &&
2690 (current->protection & VM_PROT_WRITE) &&
2691 (object->flags & OBJ_NOMSYNC) == 0) {
2693 * Flush pages if writing is allowed, invalidate them
2694 * if invalidation requested. Pages undergoing I/O
2695 * will be ignored by vm_object_page_remove().
2697 * We cannot lock the vnode and then wait for paging
2698 * to complete without deadlocking against vm_fault.
2699 * Instead we simply call vm_object_page_remove() and
2700 * allow it to block internally on a page-by-page
2701 * basis when it encounters pages undergoing async
2702 * I/O.
2704 int flags;
2706 /* no chain wait needed for vnode objects */
2707 vm_object_reference_locked(object);
2708 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2709 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2710 flags |= invalidate ? OBJPC_INVAL : 0;
2713 * When operating on a virtual page table just
2714 * flush the whole object. XXX we probably ought
2715 * to
2717 switch(current->maptype) {
2718 case VM_MAPTYPE_NORMAL:
2719 vm_object_page_clean(object,
2720 OFF_TO_IDX(offset),
2721 OFF_TO_IDX(offset + size + PAGE_MASK),
2722 flags);
2723 break;
2724 case VM_MAPTYPE_VPAGETABLE:
2725 vm_object_page_clean(object, 0, 0, flags);
2726 break;
2728 vn_unlock(((struct vnode *)object->handle));
2729 vm_object_deallocate_locked(object);
2731 if (object && invalidate &&
2732 ((object->type == OBJT_VNODE) ||
2733 (object->type == OBJT_DEVICE) ||
2734 (object->type == OBJT_MGTDEVICE))) {
2735 int clean_only =
2736 ((object->type == OBJT_DEVICE) ||
2737 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2738 /* no chain wait needed for vnode/device objects */
2739 vm_object_reference_locked(object);
2740 switch(current->maptype) {
2741 case VM_MAPTYPE_NORMAL:
2742 vm_object_page_remove(object,
2743 OFF_TO_IDX(offset),
2744 OFF_TO_IDX(offset + size + PAGE_MASK),
2745 clean_only);
2746 break;
2747 case VM_MAPTYPE_VPAGETABLE:
2748 vm_object_page_remove(object, 0, 0, clean_only);
2749 break;
2751 vm_object_deallocate_locked(object);
2753 start += size;
2754 if (object)
2755 vm_object_drop(object);
2758 lwkt_reltoken(&map->token);
2759 vm_map_unlock_read(map);
2761 return (KERN_SUCCESS);
2765 * Make the region specified by this entry pageable.
2767 * The vm_map must be exclusively locked.
2769 static void
2770 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2772 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2773 entry->wired_count = 0;
2774 vm_fault_unwire(map, entry);
2778 * Deallocate the given entry from the target map.
2780 * The vm_map must be exclusively locked.
2782 static void
2783 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2785 vm_map_entry_unlink(map, entry);
2786 map->size -= entry->end - entry->start;
2788 switch(entry->maptype) {
2789 case VM_MAPTYPE_NORMAL:
2790 case VM_MAPTYPE_VPAGETABLE:
2791 case VM_MAPTYPE_SUBMAP:
2792 vm_object_deallocate(entry->object.vm_object);
2793 break;
2794 case VM_MAPTYPE_UKSMAP:
2795 /* XXX TODO */
2796 break;
2797 default:
2798 break;
2801 vm_map_entry_dispose(map, entry, countp);
2805 * Deallocates the given address range from the target map.
2807 * The vm_map must be exclusively locked.
2810 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2812 vm_object_t object;
2813 vm_map_entry_t entry;
2814 vm_map_entry_t first_entry;
2816 ASSERT_VM_MAP_LOCKED(map);
2817 lwkt_gettoken(&map->token);
2818 again:
2820 * Find the start of the region, and clip it. Set entry to point
2821 * at the first record containing the requested address or, if no
2822 * such record exists, the next record with a greater address. The
2823 * loop will run from this point until a record beyond the termination
2824 * address is encountered.
2826 * map->hint must be adjusted to not point to anything we delete,
2827 * so set it to the entry prior to the one being deleted.
2829 * GGG see other GGG comment.
2831 if (vm_map_lookup_entry(map, start, &first_entry)) {
2832 entry = first_entry;
2833 vm_map_clip_start(map, entry, start, countp);
2834 map->hint = entry->prev; /* possible problem XXX */
2835 } else {
2836 map->hint = first_entry; /* possible problem XXX */
2837 entry = first_entry->next;
2841 * If a hole opens up prior to the current first_free then
2842 * adjust first_free. As with map->hint, map->first_free
2843 * cannot be left set to anything we might delete.
2845 if (entry == &map->header) {
2846 map->first_free = &map->header;
2847 } else if (map->first_free->start >= start) {
2848 map->first_free = entry->prev;
2852 * Step through all entries in this region
2854 while ((entry != &map->header) && (entry->start < end)) {
2855 vm_map_entry_t next;
2856 vm_offset_t s, e;
2857 vm_pindex_t offidxstart, offidxend, count;
2860 * If we hit an in-transition entry we have to sleep and
2861 * retry. It's easier (and not really slower) to just retry
2862 * since this case occurs so rarely and the hint is already
2863 * pointing at the right place. We have to reset the
2864 * start offset so as not to accidently delete an entry
2865 * another process just created in vacated space.
2867 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2868 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2869 start = entry->start;
2870 ++mycpu->gd_cnt.v_intrans_coll;
2871 ++mycpu->gd_cnt.v_intrans_wait;
2872 vm_map_transition_wait(map);
2873 goto again;
2875 vm_map_clip_end(map, entry, end, countp);
2877 s = entry->start;
2878 e = entry->end;
2879 next = entry->next;
2881 offidxstart = OFF_TO_IDX(entry->offset);
2882 count = OFF_TO_IDX(e - s);
2884 switch(entry->maptype) {
2885 case VM_MAPTYPE_NORMAL:
2886 case VM_MAPTYPE_VPAGETABLE:
2887 case VM_MAPTYPE_SUBMAP:
2888 object = entry->object.vm_object;
2889 break;
2890 default:
2891 object = NULL;
2892 break;
2896 * Unwire before removing addresses from the pmap; otherwise,
2897 * unwiring will put the entries back in the pmap.
2899 if (entry->wired_count != 0)
2900 vm_map_entry_unwire(map, entry);
2902 offidxend = offidxstart + count;
2904 if (object == &kernel_object) {
2905 vm_object_hold(object);
2906 vm_object_page_remove(object, offidxstart,
2907 offidxend, FALSE);
2908 vm_object_drop(object);
2909 } else if (object && object->type != OBJT_DEFAULT &&
2910 object->type != OBJT_SWAP) {
2912 * vnode object routines cannot be chain-locked,
2913 * but since we aren't removing pages from the
2914 * object here we can use a shared hold.
2916 vm_object_hold_shared(object);
2917 pmap_remove(map->pmap, s, e);
2918 vm_object_drop(object);
2919 } else if (object) {
2920 vm_object_hold(object);
2921 vm_object_chain_acquire(object, 0);
2922 pmap_remove(map->pmap, s, e);
2924 if (object != NULL &&
2925 object->ref_count != 1 &&
2926 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2927 OBJ_ONEMAPPING &&
2928 (object->type == OBJT_DEFAULT ||
2929 object->type == OBJT_SWAP)) {
2930 vm_object_collapse(object, NULL);
2931 vm_object_page_remove(object, offidxstart,
2932 offidxend, FALSE);
2933 if (object->type == OBJT_SWAP) {
2934 swap_pager_freespace(object,
2935 offidxstart,
2936 count);
2938 if (offidxend >= object->size &&
2939 offidxstart < object->size) {
2940 object->size = offidxstart;
2943 vm_object_chain_release(object);
2944 vm_object_drop(object);
2945 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2946 pmap_remove(map->pmap, s, e);
2950 * Delete the entry (which may delete the object) only after
2951 * removing all pmap entries pointing to its pages.
2952 * (Otherwise, its page frames may be reallocated, and any
2953 * modify bits will be set in the wrong object!)
2955 vm_map_entry_delete(map, entry, countp);
2956 entry = next;
2958 lwkt_reltoken(&map->token);
2959 return (KERN_SUCCESS);
2963 * Remove the given address range from the target map.
2964 * This is the exported form of vm_map_delete.
2966 * No requirements.
2969 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2971 int result;
2972 int count;
2974 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2975 vm_map_lock(map);
2976 VM_MAP_RANGE_CHECK(map, start, end);
2977 result = vm_map_delete(map, start, end, &count);
2978 vm_map_unlock(map);
2979 vm_map_entry_release(count);
2981 return (result);
2985 * Assert that the target map allows the specified privilege on the
2986 * entire address region given. The entire region must be allocated.
2988 * The caller must specify whether the vm_map is already locked or not.
2990 boolean_t
2991 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2992 vm_prot_t protection, boolean_t have_lock)
2994 vm_map_entry_t entry;
2995 vm_map_entry_t tmp_entry;
2996 boolean_t result;
2998 if (have_lock == FALSE)
2999 vm_map_lock_read(map);
3001 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3002 if (have_lock == FALSE)
3003 vm_map_unlock_read(map);
3004 return (FALSE);
3006 entry = tmp_entry;
3008 result = TRUE;
3009 while (start < end) {
3010 if (entry == &map->header) {
3011 result = FALSE;
3012 break;
3015 * No holes allowed!
3018 if (start < entry->start) {
3019 result = FALSE;
3020 break;
3023 * Check protection associated with entry.
3026 if ((entry->protection & protection) != protection) {
3027 result = FALSE;
3028 break;
3030 /* go to next entry */
3032 start = entry->end;
3033 entry = entry->next;
3035 if (have_lock == FALSE)
3036 vm_map_unlock_read(map);
3037 return (result);
3041 * If appropriate this function shadows the original object with a new object
3042 * and moves the VM pages from the original object to the new object.
3043 * The original object will also be collapsed, if possible.
3045 * We can only do this for normal memory objects with a single mapping, and
3046 * it only makes sense to do it if there are 2 or more refs on the original
3047 * object. i.e. typically a memory object that has been extended into
3048 * multiple vm_map_entry's with non-overlapping ranges.
3050 * This makes it easier to remove unused pages and keeps object inheritance
3051 * from being a negative impact on memory usage.
3053 * On return the (possibly new) entry->object.vm_object will have an
3054 * additional ref on it for the caller to dispose of (usually by cloning
3055 * the vm_map_entry). The additional ref had to be done in this routine
3056 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3057 * cleared.
3059 * The vm_map must be locked and its token held.
3061 static void
3062 vm_map_split(vm_map_entry_t entry)
3064 /* OPTIMIZED */
3065 vm_object_t oobject, nobject, bobject;
3066 vm_offset_t s, e;
3067 vm_page_t m;
3068 vm_pindex_t offidxstart, offidxend, idx;
3069 vm_size_t size;
3070 vm_ooffset_t offset;
3071 int useshadowlist;
3074 * Optimize away object locks for vnode objects. Important exit/exec
3075 * critical path.
3077 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3078 * anyway.
3080 oobject = entry->object.vm_object;
3081 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3082 vm_object_reference_quick(oobject);
3083 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3084 return;
3088 * Setup. Chain lock the original object throughout the entire
3089 * routine to prevent new page faults from occuring.
3091 * XXX can madvise WILLNEED interfere with us too?
3093 vm_object_hold(oobject);
3094 vm_object_chain_acquire(oobject, 0);
3097 * Original object cannot be split? Might have also changed state.
3099 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3100 oobject->type != OBJT_SWAP)) {
3101 vm_object_chain_release(oobject);
3102 vm_object_reference_locked(oobject);
3103 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3104 vm_object_drop(oobject);
3105 return;
3109 * Collapse original object with its backing store as an
3110 * optimization to reduce chain lengths when possible.
3112 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3113 * for oobject, so there's no point collapsing it.
3115 * Then re-check whether the object can be split.
3117 vm_object_collapse(oobject, NULL);
3119 if (oobject->ref_count <= 1 ||
3120 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3121 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3122 vm_object_chain_release(oobject);
3123 vm_object_reference_locked(oobject);
3124 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3125 vm_object_drop(oobject);
3126 return;
3130 * Acquire the chain lock on the backing object.
3132 * Give bobject an additional ref count for when it will be shadowed
3133 * by nobject.
3135 useshadowlist = 0;
3136 if ((bobject = oobject->backing_object) != NULL) {
3137 if (bobject->type != OBJT_VNODE) {
3138 useshadowlist = 1;
3139 vm_object_hold(bobject);
3140 vm_object_chain_wait(bobject, 0);
3141 vm_object_reference_locked(bobject);
3142 vm_object_chain_acquire(bobject, 0);
3143 KKASSERT(bobject->backing_object == bobject);
3144 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3145 } else {
3146 vm_object_reference_quick(bobject);
3151 * Calculate the object page range and allocate the new object.
3153 offset = entry->offset;
3154 s = entry->start;
3155 e = entry->end;
3157 offidxstart = OFF_TO_IDX(offset);
3158 offidxend = offidxstart + OFF_TO_IDX(e - s);
3159 size = offidxend - offidxstart;
3161 switch(oobject->type) {
3162 case OBJT_DEFAULT:
3163 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3164 VM_PROT_ALL, 0);
3165 break;
3166 case OBJT_SWAP:
3167 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3168 VM_PROT_ALL, 0);
3169 break;
3170 default:
3171 /* not reached */
3172 nobject = NULL;
3173 KKASSERT(0);
3176 if (nobject == NULL) {
3177 if (bobject) {
3178 if (useshadowlist) {
3179 vm_object_chain_release(bobject);
3180 vm_object_deallocate(bobject);
3181 vm_object_drop(bobject);
3182 } else {
3183 vm_object_deallocate(bobject);
3186 vm_object_chain_release(oobject);
3187 vm_object_reference_locked(oobject);
3188 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3189 vm_object_drop(oobject);
3190 return;
3194 * The new object will replace entry->object.vm_object so it needs
3195 * a second reference (the caller expects an additional ref).
3197 vm_object_hold(nobject);
3198 vm_object_reference_locked(nobject);
3199 vm_object_chain_acquire(nobject, 0);
3202 * nobject shadows bobject (oobject already shadows bobject).
3204 if (bobject) {
3205 nobject->backing_object_offset =
3206 oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3207 nobject->backing_object = bobject;
3208 if (useshadowlist) {
3209 bobject->shadow_count++;
3210 bobject->generation++;
3211 LIST_INSERT_HEAD(&bobject->shadow_head,
3212 nobject, shadow_list);
3213 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3214 vm_object_chain_release(bobject);
3215 vm_object_drop(bobject);
3216 vm_object_set_flag(nobject, OBJ_ONSHADOW);
3221 * Move the VM pages from oobject to nobject
3223 for (idx = 0; idx < size; idx++) {
3224 vm_page_t m;
3226 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3227 TRUE, "vmpg");
3228 if (m == NULL)
3229 continue;
3232 * We must wait for pending I/O to complete before we can
3233 * rename the page.
3235 * We do not have to VM_PROT_NONE the page as mappings should
3236 * not be changed by this operation.
3238 * NOTE: The act of renaming a page updates chaingen for both
3239 * objects.
3241 vm_page_rename(m, nobject, idx);
3242 /* page automatically made dirty by rename and cache handled */
3243 /* page remains busy */
3246 if (oobject->type == OBJT_SWAP) {
3247 vm_object_pip_add(oobject, 1);
3249 * copy oobject pages into nobject and destroy unneeded
3250 * pages in shadow object.
3252 swap_pager_copy(oobject, nobject, offidxstart, 0);
3253 vm_object_pip_wakeup(oobject);
3257 * Wakeup the pages we played with. No spl protection is needed
3258 * for a simple wakeup.
3260 for (idx = 0; idx < size; idx++) {
3261 m = vm_page_lookup(nobject, idx);
3262 if (m) {
3263 KKASSERT(m->flags & PG_BUSY);
3264 vm_page_wakeup(m);
3267 entry->object.vm_object = nobject;
3268 entry->offset = 0LL;
3271 * Cleanup
3273 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3274 * related pages were moved and are no longer applicable to the
3275 * original object.
3277 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3278 * replaced by nobject).
3280 vm_object_chain_release(nobject);
3281 vm_object_drop(nobject);
3282 if (bobject && useshadowlist) {
3283 vm_object_chain_release(bobject);
3284 vm_object_drop(bobject);
3286 vm_object_chain_release(oobject);
3287 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3288 vm_object_deallocate_locked(oobject);
3289 vm_object_drop(oobject);
3293 * Copies the contents of the source entry to the destination
3294 * entry. The entries *must* be aligned properly.
3296 * The vm_maps must be exclusively locked.
3297 * The vm_map's token must be held.
3299 * Because the maps are locked no faults can be in progress during the
3300 * operation.
3302 static void
3303 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3304 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3306 vm_object_t src_object;
3308 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3309 dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3310 return;
3311 if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3312 src_entry->maptype == VM_MAPTYPE_UKSMAP)
3313 return;
3315 if (src_entry->wired_count == 0) {
3317 * If the source entry is marked needs_copy, it is already
3318 * write-protected.
3320 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3321 pmap_protect(src_map->pmap,
3322 src_entry->start,
3323 src_entry->end,
3324 src_entry->protection & ~VM_PROT_WRITE);
3328 * Make a copy of the object.
3330 * The object must be locked prior to checking the object type
3331 * and for the call to vm_object_collapse() and vm_map_split().
3332 * We cannot use *_hold() here because the split code will
3333 * probably try to destroy the object. The lock is a pool
3334 * token and doesn't care.
3336 * We must bump src_map->timestamp when setting
3337 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3338 * to retry, otherwise the concurrent fault might improperly
3339 * install a RW pte when its supposed to be a RO(COW) pte.
3340 * This race can occur because a vnode-backed fault may have
3341 * to temporarily release the map lock.
3343 if (src_entry->object.vm_object != NULL) {
3344 vm_map_split(src_entry);
3345 src_object = src_entry->object.vm_object;
3346 dst_entry->object.vm_object = src_object;
3347 src_entry->eflags |= (MAP_ENTRY_COW |
3348 MAP_ENTRY_NEEDS_COPY);
3349 dst_entry->eflags |= (MAP_ENTRY_COW |
3350 MAP_ENTRY_NEEDS_COPY);
3351 dst_entry->offset = src_entry->offset;
3352 ++src_map->timestamp;
3353 } else {
3354 dst_entry->object.vm_object = NULL;
3355 dst_entry->offset = 0;
3358 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3359 dst_entry->end - dst_entry->start, src_entry->start);
3360 } else {
3362 * Of course, wired down pages can't be set copy-on-write.
3363 * Cause wired pages to be copied into the new map by
3364 * simulating faults (the new pages are pageable)
3366 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3371 * vmspace_fork:
3372 * Create a new process vmspace structure and vm_map
3373 * based on those of an existing process. The new map
3374 * is based on the old map, according to the inheritance
3375 * values on the regions in that map.
3377 * The source map must not be locked.
3378 * No requirements.
3380 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3381 vm_map_entry_t old_entry, int *countp);
3382 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3383 vm_map_entry_t old_entry, int *countp);
3385 struct vmspace *
3386 vmspace_fork(struct vmspace *vm1)
3388 struct vmspace *vm2;
3389 vm_map_t old_map = &vm1->vm_map;
3390 vm_map_t new_map;
3391 vm_map_entry_t old_entry;
3392 int count;
3394 lwkt_gettoken(&vm1->vm_map.token);
3395 vm_map_lock(old_map);
3397 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3398 lwkt_gettoken(&vm2->vm_map.token);
3399 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3400 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3401 new_map = &vm2->vm_map; /* XXX */
3402 new_map->timestamp = 1;
3404 vm_map_lock(new_map);
3406 count = 0;
3407 old_entry = old_map->header.next;
3408 while (old_entry != &old_map->header) {
3409 ++count;
3410 old_entry = old_entry->next;
3413 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3415 old_entry = old_map->header.next;
3416 while (old_entry != &old_map->header) {
3417 switch(old_entry->maptype) {
3418 case VM_MAPTYPE_SUBMAP:
3419 panic("vm_map_fork: encountered a submap");
3420 break;
3421 case VM_MAPTYPE_UKSMAP:
3422 vmspace_fork_uksmap_entry(old_map, new_map,
3423 old_entry, &count);
3424 break;
3425 case VM_MAPTYPE_NORMAL:
3426 case VM_MAPTYPE_VPAGETABLE:
3427 vmspace_fork_normal_entry(old_map, new_map,
3428 old_entry, &count);
3429 break;
3431 old_entry = old_entry->next;
3434 new_map->size = old_map->size;
3435 vm_map_unlock(old_map);
3436 vm_map_unlock(new_map);
3437 vm_map_entry_release(count);
3439 lwkt_reltoken(&vm2->vm_map.token);
3440 lwkt_reltoken(&vm1->vm_map.token);
3442 return (vm2);
3445 static
3446 void
3447 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3448 vm_map_entry_t old_entry, int *countp)
3450 vm_map_entry_t new_entry;
3451 vm_object_t object;
3453 switch (old_entry->inheritance) {
3454 case VM_INHERIT_NONE:
3455 break;
3456 case VM_INHERIT_SHARE:
3458 * Clone the entry, creating the shared object if
3459 * necessary.
3461 if (old_entry->object.vm_object == NULL)
3462 vm_map_entry_allocate_object(old_entry);
3464 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3466 * Shadow a map_entry which needs a copy,
3467 * replacing its object with a new object
3468 * that points to the old one. Ask the
3469 * shadow code to automatically add an
3470 * additional ref. We can't do it afterwords
3471 * because we might race a collapse. The call
3472 * to vm_map_entry_shadow() will also clear
3473 * OBJ_ONEMAPPING.
3475 vm_map_entry_shadow(old_entry, 1);
3476 } else if (old_entry->object.vm_object) {
3478 * We will make a shared copy of the object,
3479 * and must clear OBJ_ONEMAPPING.
3481 * Optimize vnode objects. OBJ_ONEMAPPING
3482 * is non-applicable but clear it anyway,
3483 * and its terminal so we don'th ave to deal
3484 * with chains. Reduces SMP conflicts.
3486 * XXX assert that object.vm_object != NULL
3487 * since we allocate it above.
3489 object = old_entry->object.vm_object;
3490 if (object->type == OBJT_VNODE) {
3491 vm_object_reference_quick(object);
3492 vm_object_clear_flag(object,
3493 OBJ_ONEMAPPING);
3494 } else {
3495 vm_object_hold(object);
3496 vm_object_chain_wait(object, 0);
3497 vm_object_reference_locked(object);
3498 vm_object_clear_flag(object,
3499 OBJ_ONEMAPPING);
3500 vm_object_drop(object);
3505 * Clone the entry. We've already bumped the ref on
3506 * any vm_object.
3508 new_entry = vm_map_entry_create(new_map, countp);
3509 *new_entry = *old_entry;
3510 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3511 new_entry->wired_count = 0;
3514 * Insert the entry into the new map -- we know we're
3515 * inserting at the end of the new map.
3518 vm_map_entry_link(new_map, new_map->header.prev,
3519 new_entry);
3522 * Update the physical map
3524 pmap_copy(new_map->pmap, old_map->pmap,
3525 new_entry->start,
3526 (old_entry->end - old_entry->start),
3527 old_entry->start);
3528 break;
3529 case VM_INHERIT_COPY:
3531 * Clone the entry and link into the map.
3533 new_entry = vm_map_entry_create(new_map, countp);
3534 *new_entry = *old_entry;
3535 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3536 new_entry->wired_count = 0;
3537 new_entry->object.vm_object = NULL;
3538 vm_map_entry_link(new_map, new_map->header.prev,
3539 new_entry);
3540 vm_map_copy_entry(old_map, new_map, old_entry,
3541 new_entry);
3542 break;
3547 * When forking user-kernel shared maps, the map might change in the
3548 * child so do not try to copy the underlying pmap entries.
3550 static
3551 void
3552 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3553 vm_map_entry_t old_entry, int *countp)
3555 vm_map_entry_t new_entry;
3557 new_entry = vm_map_entry_create(new_map, countp);
3558 *new_entry = *old_entry;
3559 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3560 new_entry->wired_count = 0;
3561 vm_map_entry_link(new_map, new_map->header.prev,
3562 new_entry);
3566 * Create an auto-grow stack entry
3568 * No requirements.
3571 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3572 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3574 vm_map_entry_t prev_entry;
3575 vm_map_entry_t new_stack_entry;
3576 vm_size_t init_ssize;
3577 int rv;
3578 int count;
3579 vm_offset_t tmpaddr;
3581 cow |= MAP_IS_STACK;
3583 if (max_ssize < sgrowsiz)
3584 init_ssize = max_ssize;
3585 else
3586 init_ssize = sgrowsiz;
3588 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3589 vm_map_lock(map);
3592 * Find space for the mapping
3594 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3595 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3596 flags, &tmpaddr)) {
3597 vm_map_unlock(map);
3598 vm_map_entry_release(count);
3599 return (KERN_NO_SPACE);
3601 addrbos = tmpaddr;
3604 /* If addr is already mapped, no go */
3605 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3606 vm_map_unlock(map);
3607 vm_map_entry_release(count);
3608 return (KERN_NO_SPACE);
3611 #if 0
3612 /* XXX already handled by kern_mmap() */
3613 /* If we would blow our VMEM resource limit, no go */
3614 if (map->size + init_ssize >
3615 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3616 vm_map_unlock(map);
3617 vm_map_entry_release(count);
3618 return (KERN_NO_SPACE);
3620 #endif
3623 * If we can't accomodate max_ssize in the current mapping,
3624 * no go. However, we need to be aware that subsequent user
3625 * mappings might map into the space we have reserved for
3626 * stack, and currently this space is not protected.
3628 * Hopefully we will at least detect this condition
3629 * when we try to grow the stack.
3631 if ((prev_entry->next != &map->header) &&
3632 (prev_entry->next->start < addrbos + max_ssize)) {
3633 vm_map_unlock(map);
3634 vm_map_entry_release(count);
3635 return (KERN_NO_SPACE);
3639 * We initially map a stack of only init_ssize. We will
3640 * grow as needed later. Since this is to be a grow
3641 * down stack, we map at the top of the range.
3643 * Note: we would normally expect prot and max to be
3644 * VM_PROT_ALL, and cow to be 0. Possibly we should
3645 * eliminate these as input parameters, and just
3646 * pass these values here in the insert call.
3648 rv = vm_map_insert(map, &count, NULL, NULL,
3649 0, addrbos + max_ssize - init_ssize,
3650 addrbos + max_ssize,
3651 VM_MAPTYPE_NORMAL,
3652 prot, max, cow);
3654 /* Now set the avail_ssize amount */
3655 if (rv == KERN_SUCCESS) {
3656 if (prev_entry != &map->header)
3657 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3658 new_stack_entry = prev_entry->next;
3659 if (new_stack_entry->end != addrbos + max_ssize ||
3660 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3661 panic ("Bad entry start/end for new stack entry");
3662 else
3663 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3666 vm_map_unlock(map);
3667 vm_map_entry_release(count);
3668 return (rv);
3672 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3673 * desired address is already mapped, or if we successfully grow
3674 * the stack. Also returns KERN_SUCCESS if addr is outside the
3675 * stack range (this is strange, but preserves compatibility with
3676 * the grow function in vm_machdep.c).
3678 * No requirements.
3681 vm_map_growstack (struct proc *p, vm_offset_t addr)
3683 vm_map_entry_t prev_entry;
3684 vm_map_entry_t stack_entry;
3685 vm_map_entry_t new_stack_entry;
3686 struct vmspace *vm = p->p_vmspace;
3687 vm_map_t map = &vm->vm_map;
3688 vm_offset_t end;
3689 int grow_amount;
3690 int rv = KERN_SUCCESS;
3691 int is_procstack;
3692 int use_read_lock = 1;
3693 int count;
3695 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3696 Retry:
3697 if (use_read_lock)
3698 vm_map_lock_read(map);
3699 else
3700 vm_map_lock(map);
3702 /* If addr is already in the entry range, no need to grow.*/
3703 if (vm_map_lookup_entry(map, addr, &prev_entry))
3704 goto done;
3706 if ((stack_entry = prev_entry->next) == &map->header)
3707 goto done;
3708 if (prev_entry == &map->header)
3709 end = stack_entry->start - stack_entry->aux.avail_ssize;
3710 else
3711 end = prev_entry->end;
3714 * This next test mimics the old grow function in vm_machdep.c.
3715 * It really doesn't quite make sense, but we do it anyway
3716 * for compatibility.
3718 * If not growable stack, return success. This signals the
3719 * caller to proceed as he would normally with normal vm.
3721 if (stack_entry->aux.avail_ssize < 1 ||
3722 addr >= stack_entry->start ||
3723 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3724 goto done;
3727 /* Find the minimum grow amount */
3728 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3729 if (grow_amount > stack_entry->aux.avail_ssize) {
3730 rv = KERN_NO_SPACE;
3731 goto done;
3735 * If there is no longer enough space between the entries
3736 * nogo, and adjust the available space. Note: this
3737 * should only happen if the user has mapped into the
3738 * stack area after the stack was created, and is
3739 * probably an error.
3741 * This also effectively destroys any guard page the user
3742 * might have intended by limiting the stack size.
3744 if (grow_amount > stack_entry->start - end) {
3745 if (use_read_lock && vm_map_lock_upgrade(map)) {
3746 /* lost lock */
3747 use_read_lock = 0;
3748 goto Retry;
3750 use_read_lock = 0;
3751 stack_entry->aux.avail_ssize = stack_entry->start - end;
3752 rv = KERN_NO_SPACE;
3753 goto done;
3756 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3758 /* If this is the main process stack, see if we're over the
3759 * stack limit.
3761 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3762 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3763 rv = KERN_NO_SPACE;
3764 goto done;
3767 /* Round up the grow amount modulo SGROWSIZ */
3768 grow_amount = roundup (grow_amount, sgrowsiz);
3769 if (grow_amount > stack_entry->aux.avail_ssize) {
3770 grow_amount = stack_entry->aux.avail_ssize;
3772 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3773 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3774 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3775 ctob(vm->vm_ssize);
3778 /* If we would blow our VMEM resource limit, no go */
3779 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3780 rv = KERN_NO_SPACE;
3781 goto done;
3784 if (use_read_lock && vm_map_lock_upgrade(map)) {
3785 /* lost lock */
3786 use_read_lock = 0;
3787 goto Retry;
3789 use_read_lock = 0;
3791 /* Get the preliminary new entry start value */
3792 addr = stack_entry->start - grow_amount;
3794 /* If this puts us into the previous entry, cut back our growth
3795 * to the available space. Also, see the note above.
3797 if (addr < end) {
3798 stack_entry->aux.avail_ssize = stack_entry->start - end;
3799 addr = end;
3802 rv = vm_map_insert(map, &count, NULL, NULL,
3803 0, addr, stack_entry->start,
3804 VM_MAPTYPE_NORMAL,
3805 VM_PROT_ALL, VM_PROT_ALL, 0);
3807 /* Adjust the available stack space by the amount we grew. */
3808 if (rv == KERN_SUCCESS) {
3809 if (prev_entry != &map->header)
3810 vm_map_clip_end(map, prev_entry, addr, &count);
3811 new_stack_entry = prev_entry->next;
3812 if (new_stack_entry->end != stack_entry->start ||
3813 new_stack_entry->start != addr)
3814 panic ("Bad stack grow start/end in new stack entry");
3815 else {
3816 new_stack_entry->aux.avail_ssize =
3817 stack_entry->aux.avail_ssize -
3818 (new_stack_entry->end - new_stack_entry->start);
3819 if (is_procstack)
3820 vm->vm_ssize += btoc(new_stack_entry->end -
3821 new_stack_entry->start);
3824 if (map->flags & MAP_WIREFUTURE)
3825 vm_map_unwire(map, new_stack_entry->start,
3826 new_stack_entry->end, FALSE);
3829 done:
3830 if (use_read_lock)
3831 vm_map_unlock_read(map);
3832 else
3833 vm_map_unlock(map);
3834 vm_map_entry_release(count);
3835 return (rv);
3839 * Unshare the specified VM space for exec. If other processes are
3840 * mapped to it, then create a new one. The new vmspace is null.
3842 * No requirements.
3844 void
3845 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3847 struct vmspace *oldvmspace = p->p_vmspace;
3848 struct vmspace *newvmspace;
3849 vm_map_t map = &p->p_vmspace->vm_map;
3852 * If we are execing a resident vmspace we fork it, otherwise
3853 * we create a new vmspace. Note that exitingcnt is not
3854 * copied to the new vmspace.
3856 lwkt_gettoken(&oldvmspace->vm_map.token);
3857 if (vmcopy) {
3858 newvmspace = vmspace_fork(vmcopy);
3859 lwkt_gettoken(&newvmspace->vm_map.token);
3860 } else {
3861 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3862 lwkt_gettoken(&newvmspace->vm_map.token);
3863 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3864 (caddr_t)&oldvmspace->vm_endcopy -
3865 (caddr_t)&oldvmspace->vm_startcopy);
3869 * Finish initializing the vmspace before assigning it
3870 * to the process. The vmspace will become the current vmspace
3871 * if p == curproc.
3873 pmap_pinit2(vmspace_pmap(newvmspace));
3874 pmap_replacevm(p, newvmspace, 0);
3875 lwkt_reltoken(&newvmspace->vm_map.token);
3876 lwkt_reltoken(&oldvmspace->vm_map.token);
3877 vmspace_rel(oldvmspace);
3881 * Unshare the specified VM space for forcing COW. This
3882 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3884 void
3885 vmspace_unshare(struct proc *p)
3887 struct vmspace *oldvmspace = p->p_vmspace;
3888 struct vmspace *newvmspace;
3890 lwkt_gettoken(&oldvmspace->vm_map.token);
3891 if (vmspace_getrefs(oldvmspace) == 1) {
3892 lwkt_reltoken(&oldvmspace->vm_map.token);
3893 return;
3895 newvmspace = vmspace_fork(oldvmspace);
3896 lwkt_gettoken(&newvmspace->vm_map.token);
3897 pmap_pinit2(vmspace_pmap(newvmspace));
3898 pmap_replacevm(p, newvmspace, 0);
3899 lwkt_reltoken(&newvmspace->vm_map.token);
3900 lwkt_reltoken(&oldvmspace->vm_map.token);
3901 vmspace_rel(oldvmspace);
3905 * vm_map_hint: return the beginning of the best area suitable for
3906 * creating a new mapping with "prot" protection.
3908 * No requirements.
3910 vm_offset_t
3911 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3913 struct vmspace *vms = p->p_vmspace;
3915 if (!randomize_mmap || addr != 0) {
3917 * Set a reasonable start point for the hint if it was
3918 * not specified or if it falls within the heap space.
3919 * Hinted mmap()s do not allocate out of the heap space.
3921 if (addr == 0 ||
3922 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3923 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3924 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3927 return addr;
3930 #ifdef notyet
3931 #ifdef __i386__
3933 * If executable skip first two pages, otherwise start
3934 * after data + heap region.
3936 if ((prot & VM_PROT_EXECUTE) &&
3937 ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3938 addr = (PAGE_SIZE * 2) +
3939 (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3940 return (round_page(addr));
3942 #endif /* __i386__ */
3943 #endif /* notyet */
3945 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3946 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3948 return (round_page(addr));
3952 * Finds the VM object, offset, and protection for a given virtual address
3953 * in the specified map, assuming a page fault of the type specified.
3955 * Leaves the map in question locked for read; return values are guaranteed
3956 * until a vm_map_lookup_done call is performed. Note that the map argument
3957 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3959 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3960 * that fast.
3962 * If a lookup is requested with "write protection" specified, the map may
3963 * be changed to perform virtual copying operations, although the data
3964 * referenced will remain the same.
3966 * No requirements.
3969 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3970 vm_offset_t vaddr,
3971 vm_prot_t fault_typea,
3972 vm_map_entry_t *out_entry, /* OUT */
3973 vm_object_t *object, /* OUT */
3974 vm_pindex_t *pindex, /* OUT */
3975 vm_prot_t *out_prot, /* OUT */
3976 boolean_t *wired) /* OUT */
3978 vm_map_entry_t entry;
3979 vm_map_t map = *var_map;
3980 vm_prot_t prot;
3981 vm_prot_t fault_type = fault_typea;
3982 int use_read_lock = 1;
3983 int rv = KERN_SUCCESS;
3985 RetryLookup:
3986 if (use_read_lock)
3987 vm_map_lock_read(map);
3988 else
3989 vm_map_lock(map);
3992 * If the map has an interesting hint, try it before calling full
3993 * blown lookup routine.
3995 entry = map->hint;
3996 cpu_ccfence();
3997 *out_entry = entry;
3998 *object = NULL;
4000 if ((entry == &map->header) ||
4001 (vaddr < entry->start) || (vaddr >= entry->end)) {
4002 vm_map_entry_t tmp_entry;
4005 * Entry was either not a valid hint, or the vaddr was not
4006 * contained in the entry, so do a full lookup.
4008 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4009 rv = KERN_INVALID_ADDRESS;
4010 goto done;
4013 entry = tmp_entry;
4014 *out_entry = entry;
4018 * Handle submaps.
4020 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4021 vm_map_t old_map = map;
4023 *var_map = map = entry->object.sub_map;
4024 if (use_read_lock)
4025 vm_map_unlock_read(old_map);
4026 else
4027 vm_map_unlock(old_map);
4028 use_read_lock = 1;
4029 goto RetryLookup;
4033 * Check whether this task is allowed to have this page.
4034 * Note the special case for MAP_ENTRY_COW
4035 * pages with an override. This is to implement a forced
4036 * COW for debuggers.
4039 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4040 prot = entry->max_protection;
4041 else
4042 prot = entry->protection;
4044 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4045 if ((fault_type & prot) != fault_type) {
4046 rv = KERN_PROTECTION_FAILURE;
4047 goto done;
4050 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4051 (entry->eflags & MAP_ENTRY_COW) &&
4052 (fault_type & VM_PROT_WRITE) &&
4053 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4054 rv = KERN_PROTECTION_FAILURE;
4055 goto done;
4059 * If this page is not pageable, we have to get it for all possible
4060 * accesses.
4062 *wired = (entry->wired_count != 0);
4063 if (*wired)
4064 prot = fault_type = entry->protection;
4067 * Virtual page tables may need to update the accessed (A) bit
4068 * in a page table entry. Upgrade the fault to a write fault for
4069 * that case if the map will support it. If the map does not support
4070 * it the page table entry simply will not be updated.
4072 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4073 if (prot & VM_PROT_WRITE)
4074 fault_type |= VM_PROT_WRITE;
4077 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4078 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4079 if ((prot & VM_PROT_WRITE) == 0)
4080 fault_type |= VM_PROT_WRITE;
4084 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4086 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4087 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4088 *object = NULL;
4089 goto skip;
4093 * If the entry was copy-on-write, we either ...
4095 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4097 * If we want to write the page, we may as well handle that
4098 * now since we've got the map locked.
4100 * If we don't need to write the page, we just demote the
4101 * permissions allowed.
4104 if (fault_type & VM_PROT_WRITE) {
4106 * Make a new object, and place it in the object
4107 * chain. Note that no new references have appeared
4108 * -- one just moved from the map to the new
4109 * object.
4112 if (use_read_lock && vm_map_lock_upgrade(map)) {
4113 /* lost lock */
4114 use_read_lock = 0;
4115 goto RetryLookup;
4117 use_read_lock = 0;
4119 vm_map_entry_shadow(entry, 0);
4120 } else {
4122 * We're attempting to read a copy-on-write page --
4123 * don't allow writes.
4126 prot &= ~VM_PROT_WRITE;
4131 * Create an object if necessary.
4133 if (entry->object.vm_object == NULL && !map->system_map) {
4134 if (use_read_lock && vm_map_lock_upgrade(map)) {
4135 /* lost lock */
4136 use_read_lock = 0;
4137 goto RetryLookup;
4139 use_read_lock = 0;
4140 vm_map_entry_allocate_object(entry);
4144 * Return the object/offset from this entry. If the entry was
4145 * copy-on-write or empty, it has been fixed up.
4147 *object = entry->object.vm_object;
4149 skip:
4150 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4153 * Return whether this is the only map sharing this data. On
4154 * success we return with a read lock held on the map. On failure
4155 * we return with the map unlocked.
4157 *out_prot = prot;
4158 done:
4159 if (rv == KERN_SUCCESS) {
4160 if (use_read_lock == 0)
4161 vm_map_lock_downgrade(map);
4162 } else if (use_read_lock) {
4163 vm_map_unlock_read(map);
4164 } else {
4165 vm_map_unlock(map);
4167 return (rv);
4171 * Releases locks acquired by a vm_map_lookup()
4172 * (according to the handle returned by that lookup).
4174 * No other requirements.
4176 void
4177 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4180 * Unlock the main-level map
4182 vm_map_unlock_read(map);
4183 if (count)
4184 vm_map_entry_release(count);
4187 #include "opt_ddb.h"
4188 #ifdef DDB
4189 #include <sys/kernel.h>
4191 #include <ddb/ddb.h>
4194 * Debugging only
4196 DB_SHOW_COMMAND(map, vm_map_print)
4198 static int nlines;
4199 /* XXX convert args. */
4200 vm_map_t map = (vm_map_t)addr;
4201 boolean_t full = have_addr;
4203 vm_map_entry_t entry;
4205 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4206 (void *)map,
4207 (void *)map->pmap, map->nentries, map->timestamp);
4208 nlines++;
4210 if (!full && db_indent)
4211 return;
4213 db_indent += 2;
4214 for (entry = map->header.next; entry != &map->header;
4215 entry = entry->next) {
4216 db_iprintf("map entry %p: start=%p, end=%p\n",
4217 (void *)entry, (void *)entry->start, (void *)entry->end);
4218 nlines++;
4220 static char *inheritance_name[4] =
4221 {"share", "copy", "none", "donate_copy"};
4223 db_iprintf(" prot=%x/%x/%s",
4224 entry->protection,
4225 entry->max_protection,
4226 inheritance_name[(int)(unsigned char)entry->inheritance]);
4227 if (entry->wired_count != 0)
4228 db_printf(", wired");
4230 switch(entry->maptype) {
4231 case VM_MAPTYPE_SUBMAP:
4232 /* XXX no %qd in kernel. Truncate entry->offset. */
4233 db_printf(", share=%p, offset=0x%lx\n",
4234 (void *)entry->object.sub_map,
4235 (long)entry->offset);
4236 nlines++;
4237 if ((entry->prev == &map->header) ||
4238 (entry->prev->object.sub_map !=
4239 entry->object.sub_map)) {
4240 db_indent += 2;
4241 vm_map_print((db_expr_t)(intptr_t)
4242 entry->object.sub_map,
4243 full, 0, NULL);
4244 db_indent -= 2;
4246 break;
4247 case VM_MAPTYPE_NORMAL:
4248 case VM_MAPTYPE_VPAGETABLE:
4249 /* XXX no %qd in kernel. Truncate entry->offset. */
4250 db_printf(", object=%p, offset=0x%lx",
4251 (void *)entry->object.vm_object,
4252 (long)entry->offset);
4253 if (entry->eflags & MAP_ENTRY_COW)
4254 db_printf(", copy (%s)",
4255 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4256 db_printf("\n");
4257 nlines++;
4259 if ((entry->prev == &map->header) ||
4260 (entry->prev->object.vm_object !=
4261 entry->object.vm_object)) {
4262 db_indent += 2;
4263 vm_object_print((db_expr_t)(intptr_t)
4264 entry->object.vm_object,
4265 full, 0, NULL);
4266 nlines += 4;
4267 db_indent -= 2;
4269 break;
4270 case VM_MAPTYPE_UKSMAP:
4271 db_printf(", uksmap=%p, offset=0x%lx",
4272 (void *)entry->object.uksmap,
4273 (long)entry->offset);
4274 if (entry->eflags & MAP_ENTRY_COW)
4275 db_printf(", copy (%s)",
4276 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4277 db_printf("\n");
4278 nlines++;
4279 break;
4280 default:
4281 break;
4284 db_indent -= 2;
4285 if (db_indent == 0)
4286 nlines = 0;
4290 * Debugging only
4292 DB_SHOW_COMMAND(procvm, procvm)
4294 struct proc *p;
4296 if (have_addr) {
4297 p = (struct proc *) addr;
4298 } else {
4299 p = curproc;
4302 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4303 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4304 (void *)vmspace_pmap(p->p_vmspace));
4306 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4309 #endif /* DDB */